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Abstract Since the first discovery of ultrahigh pressure (UHP) rocks 30 years ago in the Western Alps, the
mechanisms for exhumation of (U)HP terranes worldwide are still debated. In the western Mediterranean,
the presently accepted model of synconvergent exhumation (e.g., the channel-flow model) is in conflict
with parts of the geologic record. We synthesize regional geologic data and present alternative exhumation
mechanisms that consider the role of divergence within subduction zones. These mechanisms, i.e., (i) the
motion of the upper plate away from the trench and (ii) the rollback of the lower plate, are discussed in
detail with particular reference to the Cenozoic Adria-Europe plate boundary, and along three different
transects (Western Alps, Calabria-Sardinia, and Corsica-Northern Apennines). In the Western Alps, (U)HP
rocks were exhumed from the greatest depth at the rear of the accretionary wedge during motion of the
upper plate away from the trench. Exhumation was extremely fast, and associated with very low geothermal
gradients. In Calabria, HP rocks were exhumed from shallower depths and at lower rates during rollback of
the Adriatic plate, with repeated exhumation pulses progressively younging toward the foreland. Both
mechanisms were active to create boundary divergence along the Corsica-Northern Apennines transect,
where European southeastward subduction was progressively replaced along strike by Adriatic northwest-
ward subduction. The tectonic scenario depicted for the Western Alps trench during Eocene exhumation of
(U)HP rocks correlates well with present-day eastern Papua New Guinea, which is presented as a modern
analog of the Paleogene Adria-Europe plate boundary.

1. Introduction

Since the revolutionary discovery of ultrahigh pressure (UHP) rocks in the Dora-Maira of the Western Alps
[Chopin, 1984], the exhumation of (U)HP rocks remains one of the most exciting and controversial topics in
Earth Sciences [e.g., Platt, 1993; Ernst et al., 1997; Carswell and Compagnoni, 2003; Jolivet et al., 2003; Hacker
et al,, 2006; Agard et al., 2009; Guillot et al., 2009a; Liou et al., 2009; Gilotti, 2013; Warren, 2013]. Many different
mechanisms have been proposed to explain how buoyant (U)HP rocks travel back to the surface following
subduction to depths even >100 km [e.g., von Blanckenburg and Davies, 1995; Maruyama et al., 1996; Boute-
lier and Chemenda, 2008; Webb et al., 2008; Beaumont et al., 2009; Ellis et al., 2011]. Most popular models,
such as the channel-flow model [Beaumont et al., 2001; Godin et al., 2006], assume a stationary trench and
fixed boundaries within the subduction zone, which requires removal of the overlying rock pile by erosion/
tectonics or forced circulation in a low-viscosity wedge [e.g., Chemenda et al., 1995; Zeitler et al., 2001; Gerya
et al,, 2002; Yamato et al., 2008]. However, erosional removal of overlying cover to exhume (U)HP rocks is
often contradicted by the negligible amount of synexhumational detritus [e.g., Krabbendam and Dewey,
1998; Taylor et al., 1999; Zhang et al., 2002; Garzanti and Malusa, 2008]. In addition, forced circulation in a
low-viscosity wedge is often contradicted by the strength and coherence of the exhumed nappe pile, which
often preserves precollisional structures [Jolivet et al., 2003; Manatschal, 2004]. Alternative exhumation mod-
els have thus been proposed, which consider boundary divergence within the subduction zone to explain
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exhumation of coherent (U)HP units even in cases where the stratigraphic record suggests that erosion was
minor. These models are the motion of the upper plate away from the trench [Malusa et al., 2011a], and the
rollback of the lower plate [Jolivet et al., 1994; Brun and Faccenna, 2008; Lister and Forster, 2009].

In this paper, we discuss such boundary divergence exhumation models with particular reference to the
Cenozoic Adria-Europe plate boundary in the western Mediterranean, by combining geologic evidence
with plate motion and tomography constraints. We integrate petrologic, structural, and stratigraphic
data from the Western Alps [Malusa et al., 2011a] with available data from the Apennines and Corsica,
and provide the first integrated reconstruction of the Alpine and Apenninic subduction zones within the
framework of the recent palinspastic reconstructions proposed for this plate boundary area [Malusa
et al., 2015]. Geologic observations are compared with predictions derived from fixed-boundary models
of synconvergence exhumation recently applied to the Western Alps [Butler et al., 2013; Jamieson and
Beaumont, 2013]. We then compare (U)HP exhumation in the Western Alps with available constraints
from the (U)HP units of eastern Papua New Guinea in the southwestern Pacific [Davies and Warren, 1992;
Baldwin et al., 2008], and suggest that this region provides a modern analog for the Paleogene Adria-
Europe plate boundary.

2. Divergence in Subduction Zones: Upper Plate Motion Versus Slab Rollback

Fixed-boundary models, including a stationary trench, are widely applied to explore (U)HP rock exhumation
during subduction and orthogonal convergence between upper and lower plates. One of the major implica-
tions of fixed-boundary exhumation models (Figure 1, case (i)) is the major role played by erosion [e.g.,
Beaumont et al., 2001; Zeitler et al., 2001]. As a consequence, during (U)HP rock exhumation, massive vol-
umes of orogenic detritus eroded from the overlying accretionary wedge is predicted to be deposited in
sedimentary basins surrounding the orogen. This sediment includes HP clasts, and is generally accreted at
the toe of the wedge and underplated (Figure 1c, case (i)). Figure 2 illustrates a recent attempt of applica-
tion of this category of models to the Western Alps [Butler et al., 2013; Jamieson and Beaumont, 2013]. How-
ever, these models are generally unable to reproduce the observed stratigraphic and petrologic evidence,
as explained in more detail in the next sections.

On the other hand, two alternative end-member mechanisms may lead to divergence in accretionary
wedges, leading to exhumation of (U)HP rocks in cases where the stratigraphic record is supportive of a
minor role played by erosion. These mechanisms are: the motion of the upper plate away from the trench
(Figure 1, case (ii)); and the retreat of the subduction hinge, also referred to as slab rollback (Figure 1, case
(iii)). In case (ii), exhumation is controlled by the motion of the upper plate, whereas in the case (iii) it is con-
trolled by motion (rollback) of the lower plate [Dewey, 1980; Brun and Faccenna, 2008; Malusa et al., 2011a].
Both of these mechanisms result in removal of a tectonic lid, allowing for the exhumation of more buoyant
rocks from HP or UHP depths.

Divergence between the upper plate and trench (Figure 1, case (ii)) can be observed in geometrically com-
plex active margins characterized by strongly oblique convergence, and may represent a local, transient
response to the far-field plate motion along suitably oriented orogenic segments [Malusa et al., 2011a, their
Figure 6d]. In case (ii), when the upper plate moves away from the trench, extension is localized within the
weak portion of the upper plate, and reactivates preexisting shear zones in the rear of the accretionary
wedge. Exhumation thus occurs on the upper plate side of the subduction system (full red arrow in Figure
1b), bringing (U)HP rocks to the surface from subcrustal depths. In this scenario, turbidites accumulating
along the trench axis during exhumation (black star in Figure 1b) are unmetamorphosed, only slightly
deformed, and are generally preserved unconformably on top of their basement. Divergence between
upper plate and trench may lead to a decrease in slab steepness, because the slab is free to move upward
to fill the gap with the diverging upper plate (Figure 1b). Such a shallowing of the slab may provide a suita-
ble mechanism to facilitate exhumation of the overlying (U)HP rocks above the middle crust, where uplift-
ing rocks may become neutrally buoyant [Ernst et al, 1997]. The predicted geologic record in this case
(Figure 1¢, case (ii)) is (U)HP rocks exhumed on the upper plate side of the orogen at the rear of a lower-
pressure accretionary wedge, associated with sedimentary sequences attesting to sedimentary basins that
were starved of orogenic detritus during (U)HP exhumation. Synexhumation sedimentary successions
deposited on the lower plate are unconformably preserved on top of their basement.
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Figure 1. Exhumation mechanisms discussed in this paper: (a) map view and (b) cross sections, and (c) predicted geologic record; black dots indicate fixed points on lower (L) and upper
(U) plates; H is the subduction hinge; stars indicate trench turbidites accumulated at time t,. (left) Case (i)—exhumation during orthogonal convergence between upper and lower plate
(i.e., L moves toward the accretionary wedge) [e.g., Beaumont et al., 2001]: massive volumes of synexhumation orogenic detritus (including HP clasts) are accreted at the toe of the wedge
and/or underplated (see also Figure 2). (middle) Case (ii)—upper plate motion away from the trench (i.e,, U moves away from the accretionary wedge) [e.g., Malusa et al.,, 2011a]: exten-
sion focuses in the rear of the accretionary wedge, (U)HP exhumation occurs on the upper plate side of the orogen (full red arrow); slab shallowing may occur to fill the gap with the
diverging upper plate; erosion plays a minor role, trench turbidites (without HP clasts) are unconformably preserved on top of the basement units of the lower plate.(right) Case (iii)—
retreat of the subduction hinge (i.e., H moves away from the accretionary wedge) [e.g., Brun and Faccenna, 2008]: lower plate and accretionary wedge are decoupled, HP rocks are
exhumed on the lower plate side of the orogen (purple arrow); exhumation pulses get progressively younger toward the foreland, slab steepness may decrease as the slab moves away
from the upper plate during hinge retreat; erosion plays a minor role, turbidites undetached from the lower plate are subducted. Note that hinge retreat allows subduction also in the
case where there is no convergence between the upper and the lower plates.

In contrast, hinge retreat in the lower plate (Figure 1, case (iii)) could be either fostered by a favorable
lithosphere-asthenosphere relative motion [e.g., Doglioni et al, 1999], by a change in the buoyancy and
rheological structure of the slab [e.g., Di Giuseppe et al., 2009], or by subduction of continental ribbons lead-
ing to repeated exhumation pulses each time a distinct ribbon reaches the trench [e.g., Lister et al., 2001;
Brun and Faccenna, 2008; Bialas et al., 2011]. Slab rollback implies decoupling between the subducting lower
plate and the overlying accretionary wedge, and results in the forelandward shift of the subduction zone
during progressive accretion on the overriding plate. HP rock exhumation thus occurs on the lower plate
side of the accretionary wedge (purple arrow in Figure 1b). Unlike exhumation driven by relative movement
of the upper plate away from the trench, several burial/exhumation pulses are generally expected, and the
age of the pressure peak assemblages gets younger toward the foreland, from the inner to the external
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Figure 2. Two-dimensional numerical model of synconvergent exhumation applied to the Western Alps [after Butler et al., 2013] and comparison with geologic record. (a) After continen-
tal collision at time t. = 65 Ma, continental crust undergoes (UHP metamorphism and is detached and stored with previously accreted oceanic material; (b) a plume of buoyant material
is inserted into the base of the crust, which is accompanied by extension in the overlying wedge; (c) exhumation takes place in the upper crust in the hanging wall of a retroshear zone.
Note the dramatic size reduction of the preexisting orogenic wedge (in red). (d) Comparison with the stratigraphic record: according to the model, >525,000 km* detritus would be pro-
duced to exhume the Eclogite belt to the surface, which is not comparable with the much lower sediment volume found in the starved Eocene-Oligocene basins (1, in black); (e)
pressure-time data for model particles are largely inconsistent with the exhumation paths recorded by the Eclogite belt of the Western Alps [from Malusa et al., 2011a], which was rapidly
exhumed directly to the Earth’s surface; (f) in spite of the huge amount of detritus required, the size of HP volumes for synconvergent exhumation (e = 0.10 w in Figure 2c) is much
smaller than what observed in the Western Alps (e = 0.33 w).

zones of the orogen [e.g., Rosenbaum and Lister, 2005; Lister and Forster, 2009]. Turbidites accumulating
along the trench axis during exhumation are either offscraped, or subducted together with the underlying
basement (black star in Figure 1b), whereas a decrease in slab steepness may occur as the slab moves away
from the upper plate during hinge retreat [Brun and Faccenna, 2008]. The predicted geologic record in this
case (Figure 1c, case (iii)) is HP rocks exhumed in the frontal part of the accretionary wedge and showing a
younging trend toward the foreland, associated with sedimentary sequences attesting to minor orogenic
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erosion during HP rock exhumation. Synexhumation sedimentary sequences are generally offscraped from
their basement.

We use the geologic record preserved in the western Mediterranean to illustrate the contrasting records of
cases (ii) and (iii), as both mechanisms leading to boundary divergence within the subduction zone have
occurred along the Cenozoic Adria-Europe plate boundary. The case of divergence between the upper plate
and trench is illustrated using examples from the Western Alps, the case of exhumation during slab rollback
is illustrated by examples from the Apennines.

3. The Western Mediterranean Study Area

The western Mediterranean area (Figure 3, top left) is the result of a complex Meso-Cenozoic evolution
along the boundary between the Eurasian and African plates [e.g., Dewey et al., 1989; Jolivet and Faccenna,
2000; Rosenbaum et al., 2002; Giacomuzzi et al., 2011; Carminati et al., 2012]. It includes Cenozoic orogenic
belts (Alps, Apennines, Betics, and Pyrenées) related to different, possibly interacting subduction zones [Joli-
vet et al., 2003; Vignaroli et al., 2008a; Malusa et al., 2011al, and large Neogene backarc basins (Ligurian-Pro-
vencal and Tyrrhenian) that partly mask the original relationships between these belts. Remnants of the
Mesozoic Tethyan crust are possibly preserved in the lonian Sea.

Within the Alps-Apennines system, Cenozoic HP units with different paleogeographic positions, metamor-
phic age, and peak P-T conditions are variably exposed not only in the Alps-Apennines mountain range, but
also in Corsica and in other minor Tyrrhenian islands (i.e., the Tuscan archipelago), and at various locations
on the Tyrrhenian seafloor (Figures 3 and 4). In the Western Alps (Figure 3a), major continental and oceanic
(U)HP units have been described and mapped in the field since the beginning of the twentieth century
[e.g., Franchi, 1902; Compagnoni and Maffeo, 1973; Dal Piaz et al., 1983, 2010; Elter, 1987; Polino et al., 2002,
2010; Capponi et al., 2008]. To the south, HP rocks have been mapped in the Tuscan metamorphic com-
plexes of the Northern Apennines (Figure 4) [e.g., Carmignani and Kligfield, 1990; Jolivet et al., 1998; Bales-
trieri et al., 2011], and in the Calabria-Peloritani arc [e.g., Rossetti et al., 2001a; lannace et al., 2007]. The major
plates involved in these orogenic segments are the European plate to the northwest, and the Adriatic
microplate to the southeast. The Adriatic microplate possibly represents a promontory of the larger African
plate located farther to the south [Channell et al., 1979].

Crustal sections across the Alps-Apennines system show that Adria represents the upper plate of the sub-
duction system along the northern segments of the orogen, i.e., in the central and Western Alps (W-W’' and
X-X"in Figure 3), but represents the lower plate along the southern segments, e.g., in the Northern Apen-
nines and Calabria (Z-Z' and K-K' in Figure 3). Additional constraints for slab configuration are provided by P
wave tomography [Piromallo and Morelli, 2003]: the high-velocity anomaly corresponding to the European
slab can be traced beneath the Western Alps down to ~300 km depth [Piromallo and Faccenna, 2004],
whereas the Adriatic slab can be traced, to the south, for ~700 km beneath the Northern Apennines and
for ~1300 km beneath Calabria [Faccenna et al., 2004].

Because (U)HP rocks have been exhumed and are now found at various sites along the orogen, and the
same plate (Adria) acted as upper plate to the north and as lower plate to the south, the Alps-Apennines
system represents the ideal site to compare the role exerted by upper and lower plates during exhumation
of (U)HP rocks. After an overview of the Meso-Cenozoic evolution of the Adria-Europe plate boundary (sec-
tion 4), (U)HP rock exhumation will be analyzed in detail along three different transects, i.e., in the Western
Alps (section 5), Calabria (section 6), and Corsica-Northern Apennines (section 7).

4. Evolution of the Adria-Europe Plate Boundary

The Meso-Cenozoic evolution of the Adria-Europe plate boundary is summarized in the palinspastic recon-
structions illustrated in Figure 5. These maps, based on Malusa et al. [2015], encompass the first-order geo-
logic constraints available for the Adria-Europe plate boundary zone, including the relative Adria-Europe
plate motion (purple arrows), the trend of the paleomargins (thick dashed lines), and the orientation of the
Alpine and Apenninic trenches. The trend of the Adriatic and European passive margins is constrained by
stratigraphic evidence in the South Alpine successions [Winterer and Bosellini, 1981; Bertotti et al., 1993;
Fantoni and Franciosi, 2010], and by low-temperature thermochronologic data in Corsica-Sardinia
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[Malusa et al., 2015]. The paleotrench orientation during subduction in the central and Western Alps is
obtained by retrodeformation in the foreland and retroforeland areas [e.g., Schonborn, 1992; Sinclair, 1997;
Lickorish and Ford, 1998]. Due to the minor shortening documented along the Western Alps segment since

External
Massifs

B .
' EUROPE

W

P Fig 3A {‘j\,

F y'eneesw\ﬁg%
/\}9 ) )

&

WA e
Lepontine \ \-
+*q-orpeﬁ-dAL++

+ o+
N+ +
¢+

DA /* / Gonfolite
e

~
y/’ f A4
>~ Po Plain

AFRICA

TETY e Y,

C, Corsica; CA, Calabria; S, Sardinia kR N / "\k ADRIA 45
10, lonian; LP, Ligurian-Provencal; TY, Tyrrhenian Monferrato \E?l,\\ N rz \ -

_ \\\P < \\ T \x\

e . A \ 4 /1 -—

2B
o

T
£ Q .
-m Wedge-top successions k y % = :
N S
""" Briangonnais units (a); Ligurian units, z Q S:N Northerm
Helminthoid flysch, Piedmont and Ligurian Sea \. @P\
9 N 10

o Apennine1sm 44°
1

8

Valaisan units of the Frontal wedge (b) -7

Eocene Eclogite belt: ophiolites (a);
Internal Crystalline Massifs (b)

Austroalpine units and

associated mantle slivers

- Periadriatic intrusives

PR L tine d Southalpine basement (a) Adriatic foredeep turbidites,
- epontine dome and cover sequences (b) Subligurian and Tuscan units
CENTRALALPS WESTERN ALPS ALPS-APENNINES TRANSITION ZONE
Frontal Lepontine Cretaceous Frontal Eclogite Cretaceous y o Jertiary Monferrato v,
wedge dome wedge European wedge  belt wedge om ._Piedmont Basin vy
w X foreland FpFy v gy sL IF X as.. =SS
0 0 W
........ Moho \ ~¢C hDRIA z v o z
..................... om m Eplllgun(/js
50 50 EUROPE om. z 5
50 km 11
25km
CORSICA CALABRIA Calabride forearc
i Kty . ,CA_gbmnipf
Alpine Corsica Alpine 0 s ,
J___FPFOF_1e  pumrvTY, Y Corsica T T ==
0 = = o s e A Mohe | LF e

Variscan
Corsica

15 km

Paleogene to
Neogene
successions

A~

Alpine Corsica

Low P units .
(<1.4 GPa) Volcanic rocks
a, very low grade; LP
b, low grade
High P units I Toonde
(>1.4 GPa) J i S

Variscan Corsica

III "] magmatic rocks:
,

a, U1; b, U2 plutonics;
abcd G U2volcanics; d, U3

[ ]

Paleozoic
metamorphic rocks

Oligo-Miocene
successions

Calabride units

Apenninic -

Ligurian ophiolites

Maghrebian units

Figure 3.

16* 17

MALUSA ET AL.

CONTRASTING STYLES OF (UHP EXHUMATION

1791



@AG U Geochemistry, Geophysics, Geosystems 10.1002/2015GC005767

the Oligocene (on the order of 10" km) [Malusa et al.,, 2009, and references therein], the resulting paleo-
trench configuration shows a major right-angle bend between the central and the Western Alps, which mir-
rors the configuration inherited from the Adriatic passive margin that is largely preserved south of the Alps
[e.g., Fantoni and Franciosi, 2010, their Figure 3]. Farther south, along the future Provencal margin, the pale-
otrench orientation is constrained by paleomagnetic data and by the morphological fit of the Ligurian-
Provencal basin margins [e.g., Séranne, 1999; Gattacceca et al., 2007; Jolivet et al., 2015]. These data point to
a NE-SW trend of that segment of the paleotrench before the opening of the Neogene backarc basins. The
resulting paleotrench configuration, shown in Figures 5c and 5d, is consistent with the present-day trace of
the European slab imaged by seismic tomography at 150 km depth (Figure 6, top left) [Malusa et al., 2011al.

The rotation poles of Dewey et al. [1989] provide an estimate of the Adria-Europe relative motion during the
last 100 Ma, leading to solutions that are consistent with those provided by alternative velocity models
[e.g., Savostin et al., 1986; Jolivet and Faccenna, 2000; Rosenbaum et al., 2002; Capitanio and Goes, 2006] (a
detailed discussion on uncertainties in kinematic parameters can be found in Jolivet and Faccenna [2000]).
In Figure 5, we considered coherent motion of Adria with Africa during most of the Meso-Cenozoic, as indi-
cated by paleogeographic evidence and paleomagnetic data [Channell et al., 1979; Van der Voo, 1993; Mut-
toni et al., 2001]. First-order consequences of these palinspastic reconstructions include: (i) the obliquity of
Adria motion relative to the paleotrench and (ii) the obliquity of the Western Alps paleotrench relative to
the European paleomargin of the Tethys.

The slab lengths observed in tomographic sections [Piromallo and Morelli, 2003; Faccenna et al., 2004], and
the age and location of subduction-related magmatism [Lustrino et al., 2009], provide independent con-
straints to validate these palinspastic restorations. Slab lengths observed in tomographic sections are in fact
fully consistent with those independently predicted by palinspastic reconstructions taking into account roll-
back, convergence, and lateral slab translation (Figure 6). Additionally, the first arrival of the Adriatic slab at
~100 km depth during subduction matches with the onset of orogenic magmatism in Sardinia (Calabona
locality) [Lustrino et al., 2009], in line with current models of magma generation.

4.1. Opening and Closure of the Alpine Tethys

During the Alpine orogeny, subduction along the Adria-Europe plate boundary led to the demise of the
Mesozoic Tethyan Ocean, and involved the adjoining passive margins [Bernoulli et al., 1979; Vialon, 1990;
Handy et al., 2010]. Today, a nearly complete section of the former Adriatic margin can be reconstructed by
examination of the Cretaceous wedge of the central Alps [Manatschal and Nievergelt, 1997]. There, units
derived from the proximal margin (upper Austroalpine nappes), distal margin (lower Austroalpine and Err
nappes), and ocean-continent transition (Platta and Malenco nappes) were first telescoped, and then
extended E-W in the Late Cretaceous [Froitzheim et al., 1994; Manatschal et al., 2003; Manatschal, 2004].
Another complete section of the former Adriatic margin, and originally located farther south, can be
observed south of the Insubric Fault (South Alpine domain, SO in Figure 5a), where the Mesozoic rift struc-
ture, sampled in south-vergent nonmetamorphic thrust sheets, shows a NNE-SSW trend [Winterer and Bosel-
lini, 1981; Bertotti et al., 1993; Schumacher et al., 1997].

The proximal and distal portions of the paleo-European margin are preserved in the Dauphinois (DA in Fig-
ure 5a) and in the Briangonnais (BC in Figure 5a) successions of the Western Alps [Lemoine et al., 1986; Jail-
lard, 1989], where they were delaminated and accreted within basement and sedimentary cover nappes.
The Valaisan units (VL in Figure 3a), exposed between the Dauphinois and Briangonnais successions, are
sometimes ascribed to an independent oceanic domain, referred to as the Valaisan ocean, but may simply
indicate that the Tethyan ocean was not completely subducted and still existed to the NE until the late

Figure 3. (top left) Tectonic sketch map of the western Mediterranean, geologic maps of the study areas, and representative cross sections. (a) Central and Western Alps, including the transi-
tion zone with the Northern Apennines (main tectonic domains according to Malusa et al. [2011a] and Malusa and Balestrieri [2012]). Cross sections: W-W’, based on crustal seismic data along
the EGT NRP20 traverse, modified after Pfiffner et al. [2002]; X-X', based on crustal seismic data along the ECORS-CROP traverse [Polino et al., 1990], modified after Malusa et al. [2011a]; Y-Y’,
based on seismic data in Rossi et al. [2009b), modified after Malusa and Balestrieri [2012]; Z-Z', modified after Cerrina Feroni et al. [2004]. (b) Corsica (simplified after Carmignani et al. [2000]).
Alpine P-T conditions according to Lahondere [1996], Jolivet et al. [1998], and Vitale Brovarone et al. [2013]; Variscan basement according to Cocherie et al. [2005]. Cross-section J-J' based on
Daniel et al. [1996], modified according to original field data. (c) Calabria (map after Faccenna et al. [2004]). Cross-section K-K’ based on Rossetti et al. [2001a, 20041, Piana Agostinetti and Amato
[2009], Minelli and Faccenna [2010], and Vignaroli et al. [2012]. Acronyms: AL, Alpe Arami; AA, Aar; AD, Adamello; AM, Ambin; AN, Antola; AR, Argentera; BC, Brianconnais; BE, Belledonne; B,
Biella; BR, Bregaglia-Bergell; BW, Bobbio window; CA, Castagna; CH, Chenaillet; DA, Dauphinois; DB, Dent Blanche; DM, Dora-Maira; EL, External Ligurids; FV, Farinole-Volpajola; GO, Gotthard;
GP, Gran Paradiso; GV, Grivola; IL, Internal Ligurids; 1V, Ivrea-Verbano; LB, Ligurian Brianconnais; LG, Longobucco; LN, Lago Nero; LO, Gimigliano lower Ophiolites; LP, Ligurian-Provencal; LV, Lev-
erogne; MB, Mont Blanc; MR, Monte Rosa; NB, North Penninic calcschists; NF, Numidian Flysch; PA, Parpaillon; PE, Pelvoux; PM, Pigno-Morosaglia; SC, Queyras calcschists; SL, Sesia-Lanzo; TE,
Tenda; TY, Tyrrhenian; VA, Valosio; VE, Lungro-Verbicaro; VI, Viso; VL, Valaisan; VO, Voltri; ZS, Zermatt-Saas. Major faults (italics): FPF, Frontal Pennine; IF, Insubric; OF, Ostriconi; SV, Sestri-
Voltaggio; TSZ, Tenda shear zone; WV, Villalvernia-Varzi-Ottone. Open symbols indicate location of samples shown in Figures 7-10 (green fillings for ophiolites).
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Figure 4. Digital topographic-bathymetric model of the Western Alps, Northern Apennines, Corsica-Sardinia, and adjoining back-arc basins (after http://www.geomapapp.org and Ryan
et al. [2009]) (looking west, 3/1 vertical exaggeration). Circles indicate rocks exposed in minor islands or found in drillings in the Tyrrhenian and Ligurian-Provencal basins (compiled after
Colantoni et al. [1981], Sartori [1986], Schreider et al. [1986], Bigi et al. [1991, 1992], Mauffret et al. [1999], Sartori et al. [2004], and Réhault et al. [2012]). Note the contrasting physiography
and basement lithology in the northern and southern Tyrrhenian and the drastic change in basement lithology across the central Fault. Acronyms: Eclogite belt (dark blue)—DM, Dora-
Maira; FV, Farinole-Volpajola; GP, Gran Paradiso; GV, Grivola; MR, Monte Rosa; VA, Valosio; VI, Viso; VO, Voltri; ZS, Zermatt-Saas. Frontal wedge and Ligurian units (light blue)—AM, Ambin;
AN, Antola; EL, External Ligurids; GO, Gorgona; IL, Internal Ligurids; LB, Ligurian Brianconnais; LN, Lago Nero; LV, Leverogne; PA, Parpaillon; TE, Tenda. Tuscan metamorphic units (pur-
ple)—AP, Apuane; AR, Argentario; Gl, Giglio; MO, Monticiano Roccastrada; PI, Monti Pisani. European basement (black)—AR, Argentera; BE, Belledonne; MB, Mont Blanc; ME, Maures

Esterel; PE, Pelvoux.

Eocene (Figures 5a and 5c). The European distal margin is also well preserved in Sardinia [Fourcade et al.,
1993; Costamagna et al., 2007; Jadoul et al., 2010], where it is not involved in subsequent accretion. Thermo-
chronologic data from Corsica-Sardinia indicate that the European margin had an original ENE-WSW strike
[Malusa et al., 2015], parallel to the major Variscan faults exposed on the mainland (e.g., Cévennes Fault)
[Arthaud and Seguret, 1981; Vialon, 1990; Guillot et al., 2009b].

The first evidence of strong, differential subsidence associated with faulting along the future margins of the
Tethys are recorded in the Alps from the Late Triassic, and were more apparent on the Adriatic side [Bertotti
et al., 1993; Berra, 1995; Manatschal, 2004]. Rifting was initially distributed, then extension became localized
along a few major faults, to be eventually concentrated within the area of future lithospheric breakup.
Detachment faulting led to the exhumation of subcontinental mantle and to the emplacement and exhu-
mation of gabbros on the seafloor [Lagabrielle and Lemoine, 1997]. The age of breakup is constrained by the
crystallization ages of gabbros and trondhjemites (158-169 Ma) [Ohnenstetter et al., 1981; Rossi et al., 2002;
Li et al, 2013], by the biostratigraphic ages of overlying radiolarites (upper Bathonian-lower Callovian)
[Chiari et al., 2000; Danelian et al., 2008], and by rapid cooling recorded by fission track data during breakup
[Malusa et al.,, 2015]. In the distal European margin, karst features in Triassic-Lower Jurassic carbonates are
filled by Middle Jurassic sediments, attesting to a change from initial subsidence and block tilting to uplift
during a later stage of the rifting [Lemoine et al., 1986]. At the same time, the conjugate Adriatic margin was
subsiding beneath the calcite compensation depth as indicated by deposition of radiolarian cherts [Winterer
and Bosellini, 1981]. For this reason, a simple-shear model for the Tethyan rifting, including a west-dipping
detachment fault, was originally proposed by Lemoine et al. [1987], and may also explain the exhumation of
lower crust on the Adriatic side of the Tethys as compared to the widespread exposure of upper crustal
rocks on the European side.

Adria started moving NE-ward relative to Europe in Cretaceous times [Dewey et al., 1989], leading to the accre-
tion of extensional allochthons consisting of Adriatic crust (Austroalpine units) to form the Cretaceous wedge
(Figure 5a). Along the central-Eastern Alps trench, the accretion of the Austroalpine units was followed by sub-
duction of Tethyan crust beneath the Adriatic plate [Zanchetta et al,, 2012]. Farther south, motion of Adria was
initially near-parallel to the northern Tethyan margin (Figure 5a), which is largely preserved in Sardinia north of
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Figure 5. Evolution of the Alps-Apennines system since the Cretaceous (shape of Adria promontory and enclosed Cretaceous wedge from Malusa et al. [2011a]; Adria trajectories relative
to Europe from Dewey et al. [1989] and Jolivet and Faccenna [2000]; European Tethyan margin and migrating tip of Adriatic subduction from Malusa et al. [2015]). Active subduction
zones are marked in red. (b) In mid-Cretaceous times, Sardinia faces the South Alpine domain (SO); the European and Adriatic continental margins are parallel to the major Variscan faults
on the mainland (e.g., Cévennes Fault); between 100 and 80 Ma, Adria rotates counterclockwise and moves near-parallel to the Tethyan passive margin, which is preserved north of the
future central Fault. (b) In the latest Cretaceous, the Alpine Tethys is almost closed by Alpine subduction (the future External Massifs are shown in grey for reference); accretion of Austro-
alpine units (AU) in the Cretaceous wedge, including the Sesia-Lanzo (SL), is completed; the inherited tectonic configuration south of the central Fault includes slivers of lower crust now
exposed in Calabria. (c) E-W Adria-Europe convergence (67-49 Ma) is accommodated along the Corsica transect by eastward subduction propagating from the Eastern Alps, and along
the Sardinia transect by westward subduction possibly propagating from the Betics. (d) Choking of Alpine subduction and localized extension in the Alpine trench in the late Eocene trig-
gers extremely fast exhumation of the Eclogite belt [Malusa et al., 2011a]; Adria subduction is still active to the south, the Adriatic slab moves northward beneath Sardinia. (e) The Adriatic
slab shifts farther north beneath the Alpine wedge of Corsica; the onset of slab rollback induces extension in the back-arc region; Adriatic foredeep turbidites fed from the Lepontine
dome are progressively accreted within the Apenninic wedge. (f) The Corsica-Sardinia block has completed its counterclockwise rotation; west of the central Fault, the inheritance of
Tethyan rifting is still largely preserved. Acronyms: AA, Aar; AL, Alpe Arami; AP, Apuane; AR, Argentera; AU, Austroalpine; BE, Belledonne; BS, Baronie Smt; CA, Castagna; DM, Dora-Maira;
EB, Epiligurian basins; FV, Farinole-Volpajola; Gl, Giglio; GO, Gorgona; GP, Gran Paradiso; LO, Gimigliano lower ophiolites; VE, Lungro-Verbicaro; MB, Mont Blanc; PE, Pelvoux; SL, Sesia-
Lanzo; SO, South Alpine; TE, Tenda; TPB, Tertiary Piedmont Basin; VI, Viso; VO, Voltri ZS, Zermatt-Saas.
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Figure 6. Validation of the Alps-Apennines evolution model based on tomographic data. Prediction of slab length taking into account rollback, convergence and lateral slab translation
according to the model of Figure 5, is fully consistent with the high-velocity anomaly observed in tomographic sections across the Western Alps (1), Corsica-Northern Apennines (2), and
Calabria (3) (tomographic data after Piromallo and Morelli [2003] and Piromallo and Faccenna [2004]).

the future central Fault [Malusa et al., 2015] (Figure 5b). The tectonic configuration south of the central Fault
was more complex due to the translation of the Cretaceous wedge, and possibly incorporated slivers of lower
continental crust now exposed in Calabria. Tethys closure by Alpine subduction was almost complete by the
latest Cretaceous (Figure 5b), and remnants of Tethyan crust are now accreted within the orogenic wedge.
Exhumed subcontinental mantle not involved within the orogenic wedge is possibly preserved offshore east-
ern Sardinia [Malusa et al., 2015], and was possibly sampled in the Baronie seamount (BS in Figure 5) [Schreider
et al, 1986; Yastrebov et al.,, 1988]. The >4 km deep lonian seafloor (Figure 3) may represent a major oceanic
relict of Mesozoic age, but the nature of this remnant abyssal plain is still disputed [e.g., Biju-Duval et al.,, 1977;
Finetti, 1982; Boccaletti et al., 1984; Nicolich et al., 2000].

4.2, Relationships Between Alpine and Apenninic Subduction

In the western Mediterranean, the original southward extension of the Alpine orogenic wedge during
the Paleogene and the transition in space and time between the opposite-dipping European (Alpine)
and Adriatic (Apenninic) subduction zones have long been debated [Gueguen et al., 1997; Jolivet et al.,
1998; Faccenna et al., 2001a; Molli and Malavieille, 2011; Argnani, 2012; Carminati et al., 2012; Turco et al.,
2012]. End-member hypotheses envisage either the occurrence of two coeval opposite-dipping subduc-
tion zones (the Alpine one to the north and the Apenninic one to the south—the so-called “ancient-
Apennines” hypothesis) [e.g., Principi and Treves, 1984; Rossetti et al., 2001a] or the occurrence of a
Cretaceous-to-Eocene Alpine subduction zone developed across the whole western Mediterranean, later
replaced by a westward Apenninic subduction developed at the rear of the Alpine wedge since the Oli-
gocene (the so-called “young-Apennines” hypothesis) [e.g., Boccaletti et al., 1971; Doglioni et al., 1998;
Handy et al., 2010]. Fundamental clues to solve this debate are provided by fission-track and (U-Th)/He
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data from Corsica-Sardinia [Danisik et al., 2007, 2012; Malusa et al., 2015], which show that the European
distal margin of the Tethys, exposed in Sardinia, still preserves the low-temperature thermochronologic
history acquired during Tethyan rifting. This finding precludes any subduction of European continental
crust south of Corsica since the Mesozoic.

A viable Paleocene-early Eocene scenario for the Adria-Europe plate boundary thus includes an eastward
(Alpine) subduction propagating from the central-Eastern Alps, that was active along the Western Alps and
Corsica transect, and a coeval northwestward (Apenninic) subduction that was active along the Sardinia
transect. The E-W Adria-Europe convergence predicted by plate-motion constraints (Figure 5c) was thus
accommodated by opposite-dipping subduction zones, juxtaposed along the eastern continuation of the
future Pyrenées. In the middle-late Eocene, Alpine subduction was choked by the arrival of thick continental
crust at the trench, while Adria started moving NNE-ward (Figure 5d). Localized extension within the choked
Alpine subduction channel (~30 km extension according to Malusa et al. [2011a]) triggered the extremely
rapid exhumation of the Eclogite belt in the late Eocene. This occurred while the Adriatic slab started its
northward motion, obliquely subducting beneath Corsica, and reaching the remnants of the Alpine wedge
in Oligocene times (Figure 5e) [Malusa et al., 2015].

4.3. Opening of the Neogene Backarc Basins

By the end of the Oligocene, when the Adriatic plate was still obliquely converging with northward motion
relative to Europe (Figure 5e), the Adriatic trench began retreating toward the east [Malinverno and Ryan,
1986; Jolivet and Faccenna, 2000]. Intermittent trench retreat produced back-arc extension at an average
rate of a few centimeters per year, leading to the opening of the Ligurian-Provencal basin [Jolivet et al.,
2015] and associated 45° counterclockwise rotation of the Corsica-Sardinia block, constrained to have
chiefly occurred between 20.5 and 15 Ma by paleomagnetic data [Gattacceca et al., 2007]. Meanwhile, the
Adriatic foredeep turbidites supplied from the exhuming central Alps were progressively accreted within
the Apenninic wedge [Ricci Lucchi, 1990; Garzanti and Malusa, 2008] (Figure 5e). During early Miocene rift-
ing, the crust beneath the Ligurian-Provengal basin, now floored by oceanic crust [Mauffret et al., 1995;
Rollet et al., 2002], was thinned from ~25 to ~5 km [Bois, 1993; Chamot-Rooke et al., 1999]. Seafloor spread-
ing was broadly coeval with the climax of orogenic volcanism in Sardinia [Lustrino et al., 2009], but magma-
tism is also documented north of Corsica and along the northern offshore continuation of the Sardinia rift
[Réhault et al., 2012] (Figure 4).

In the late Miocene, extension east of Corsica-Sardinia led to the opening of the Tyrrhenian basin (Figure 5f),
reactivating preexisting structures inherited from Alpine convergence offshore Corsica, and those inherited
from Tethyan rifting offshore Sardinia. The Tyrrhenian basin shows contrasting features in its northern and
southern parts in terms of bathymetry, basement lithology, and Moho depth (Figure 4). The northern Tyrrhe-
nian Sea is relatively shallow and has a 22-25 km deep Moho [Mauffret et al., 1999]. The basement includes
post-Variscan metasediments, metaophiolites, and limestones that are ascribed to a Cenozoic accretionary
wedge. These rocks are unconformably overlain by Eocene to Recent deposits, exceeding 8.5 km thickness in
the Oligocene-early Miocene Corsica basin, and are intruded by upper Miocene-lower Pliocene granitoids
[Colantoni et al., 1981; Mascle and Rehault, 1990; Serri et al., 1993; Cornamusini et al., 2002; Pascucci, 2002].

The southern Tyrrhenian Sea is much deeper (Figure 4), and shows highly asymmetric conjugate margins,
~250 km wide on the Sardinian side, ~120 km wide on the Southern Apennines-Calabria side [Kastens
et al., 1988; Mascle and Rehault, 1990]. On the Sardinian margin, a wide and rather flat area known as the
Cornaglia Terrace is bounded to the east by the NNE-trending scarps of the central Fault [Selli and Fabbri,
1971], whereas the lower part of the margin includes Plio-Quaternary oceanic areas and the Vavilov and
Marsili volcanoes [Savelli and Schreider, 1991; Sartori et al., 2004; Nicolosi et al., 2006]. Thick Messinian evap-
orites are found on the Cornaglia Terrace, which is identified as a major Messinian depocenter, but these
units are missing farther to the east [Kastens et al., 1988]. Southern Tyrrhenian basement lithologies include
widespread alkali olivine and tholeiitic volcanic rocks, and change markedly across the central Fault (Figure
4): Paleozoic continental units are exclusively found to the west of the fault, whereas the acoustic basement
east of the fault includes metasediments and metaophiolites piled up within a Cenozoic accretionary wedge
[Sartori, 1986; Sartori et al., 2001].

The retreat of the Adriatic subduction zone during the Neogene was accompanied by its progressive frag-
mentation [Faccenna et al., 2005]. The relict of this once larger subduction zone is presently limited to a
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quite narrow (<200 km), deep (>400 km), and steep (70°) NW-dipping Wadati-Benioff zone in the southern
Tyrrhenian basin offshore Calabria [Selvaggi and Chiarabba, 1995; Faccenna et al., 2001b, 2003], and shows
no direct linkage with the Southern Apennines slab to the north [Chiarabba et al., 2008]. Although the sub-
ducted slab beneath Calabria is seismically active down to a depth of 450 km, trench retreat has probably
ceased, as indicated by geodetic and paleomagnetic data [Hollenstein et al., 2003; D’Agostino and Selvaggi,
2004; Mattei et al., 2007; Minelli and Faccenna, 2010].

5. Exhumation Triggered by Motion of the Upper Plate: The Western Alps

5.1. Tectonic Setting

The European Alps mark the Adria-Europe plate-boundary zone across continental Europe, and are part of a
~250 km wide deformation zone that extends from the Po Plain to the Jura mountains (see the tectonic
sketch map in Figure 3). Cenozoic metamorphic units are exposed in the axial part of the belt, between the
Insubric Fault and the Frontal Pennine Fault (IF and FPF respectively on Figure 3a) [Polino et al., 1990; Schmid
and Kissling, 2000] and were built within the framework of European (Alpine) subduction, as shown in deep
seismic and tomographic profiles (Figures 3a and 6). Because of its obliquity relative to Adria motion, and
also to the trend of the European passive margin (Figure 5), the central-eastern and the western segments
of the orogen are quite dissimilar. A markedly variable structure is therefore observed along strike, both in
map view and in cross sections (Figure 3a).

5.1.1. The Central Alps Segment

The orogenic segment exposed in the central and Eastern Alps chiefly comprises a doubly vergent precolli-
sional orogenic wedge, referred to as the Cretaceous wedge in Figure 3a, and consisting of Adriatic crust
accreted against the upper plate (Adria) during the early stages of the Alpine orogeny [Thoni et al., 2008;
Zanchetta et al., 2012]. This wedge, including the Austroalpine units and the South Alpine basement and
cover sequences described in the classical Alpine literature [Frey et al., 1999], forms a klippe on top of the
Cenozoic metamorphic units, and is intruded by Cenozoic magmatic rocks (Periadriatic intrusives) [von
Blanckenburg et al., 1998; Rosenberg, 2004]. The underlying metamorphic units record Paleogene subduction
and exhumation of oceanic (Tethyan) and attenuated European continental-margin crust. The HP gneisses
exposed in the Lepontine dome represent the deepest levels of the postcollisional nappe stack in this seg-
ment of the orogen [Argand, 1911]. They are pervasively retrogressed under amphibolite-facies conditions,
and are overlain by lower-grade Briangonnais units (Tambo, Suretta) and North Penninic calcschists (section
W-W’). Along the central Alps transect, the Adriatic lower crust and the underlying lithospheric mantle act
as a rigid indentor beneath the axial belt, and major thrust-sheets are mapped also to the north of the Fron-
tal Pennine Fault.

5.1.2. The Western Alps Segment

In the western segment of the orogen, the Cretaceous wedge is only locally preserved (e.g., Sesia-Lanzo
unit), and a 20-25 km wide belt of Eocene eclogite units is exposed adjacent to the Adriatic plate, at the
rear of a Cenozoic double-vergence accretionary wedge (section X-X" and Figure 7a). The Eclogite belt of
the Western Alps [Malusa et al., 2011a] extends from the Lepontine dome in the north, to the Sestri-
Voltaggio Fault in the south (Figure 3a). It consists of large coherent units of eclogitized European continen-
tal crust, forming tectonic domes also referred to as Internal Crystalline Massifs (Monte Rosa, Gran Paradiso,
Dora-Maira and Valosio), tectonically enveloped by mafic-ultramafic eclogitic slivers (Zermatt-Saas, Grivola,
Viso, and Voltri). In the Eclogite belt, quartz-eclogite assemblages prevail, but small tectonic slices including
coesite-eclogite assemblages were recognized in the Dora-Maira unit (Brossasco-Isasca slice) [Chopin et al.,
1991] and at the top of the Zermatt-Saas ophiolites (Cignana slice) [Reinecke, 1991; Frezzotti et al., 2011]. The
southern part of the Eclogite belt is unconformably overlain by the Oligo-Miocene successions of the Terti-
ary Piedmont Basin (Figure 3a, section Y-Y’), and underwent major counterclockwise rotation during the
Neogene opening of the Ligurian-Provencal basin [Maffione et al., 2008].

The lower-pressure metamorphic units of the Western Alps are exposed closer to the European mainland,
within a Cenozoic doubly-vergent Frontal wedge (section X-X') including blueschist-to-greenschist facies
cover sequences (e.g., Lago Nero, Queyras) and basement slivers (e.g., Ambin, Leverogne). Different tecto-
nostratigraphic domains are involved along strike within the Frontal wedge, as a consequence of oblique
subduction relative to the European passive margin (cf. Figure 5). To the north (i.e, west of the Gran
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Paradiso dome), the frontal part of the wedge includes Valaisan oceanic metasediments with minor ophio-
lites and upper Paleozoic continental metaclastics [Polino et al, 2012], juxtaposed against Briangonnais
basement units in the rear part of the wedge [Malusa et al., 2005a]. To the south (i.e., west of the Dora-Maira
dome), the frontal part of the wedge includes Briangonnais cover sequences [Barfety et al., 1996] juxtaposed
against Piedmont oceanic metasediments in the rear part of the wedge [Polino and Lemoine, 1984; Malusa
et al., 2002; Lardeaux et al., 2006], which are locally capped by subgreenschist facies ophiolites (e.g., Chenail-
let unit) and turbidites (e.g., Antola and Parpaillon Helminthoid Flysch) [Kerckhove, 1969; Chalot-Prat, 2005].
Progressively more distal facies are thus accreted in the Frontal wedge from the north to the south, but the
effects of oblique subduction are also observed in the Eclogite belt, where the relative amount of oceanic
crust comprised within the domes markedly increases toward the south, and is dominant in the Voltri massif
[Forcella et al., 1973; Capponi and Crispini, 2002].

Along the Western Alps transect, Adria indentation beneath the axial belt is negligible (Figure 3a), unlike in
the central Alps where indentation is significant. West of the Frontal Pennine Fault, where continental crust
that has escaped Alpine metamorphism is exposed in the External Massifs, shortening is also minor [Malusa
et al., 2009; Dumont et al., 2012]. A major duplex of European crust [Schmid and Kissling, 2000] or litho-
spheric mantle [Polino et al., 1990], 10-15 km thick and 30-40 km long, is seismically imaged along the
Western Alps transect structurally on top of the lower plate, and beneath the Eclogite belt (section X-X' in
Figure 3a). Mantle exhumed at shallow depth along the Adriatic margin, evidenced by gravity data and clas-
sically referred to as the Ivrea Body [Closs and Labrouste, 1963; Rey et al., 1990], may represent a relict of the
lithospheric necking zone on the southern Tethyan margin.

5.1.3. The Alps-Apennines Transition Zone

Further south, along the transition zone with the Northern Apennines, the low-grade Ligurian units exposed
east of the Voltri eclogites (Internal and External Ligurian units in Figure 3a) were deformed and metamor-
phosed before the middle Eocene [Ellero et al., 2001; Marroni et al., 2001; Levi et al., 2006], and were uncon-
formably covered by wedge-top Epiligurian successions beginning in the upper Lutetian-Priabonian
[Catanzariti et al., 2002, and references therein]. For this reason, they are often ascribed to the Alpine accre-
tionary wedge [Cerrina Feroni et al., 2004; Malusa and Balestrieri, 2012]. The underlying Subligurian and Tus-
can units were instead accreted, since Oligocene times, within the framework of Apenninic subduction and
coeval northward motion of the retreating Adriatic microplate. They chiefly include Meso-Cenozoic succes-
sions topped by Oligo-Miocene turbidites fed from the exhuming Lepontine dome [Garzanti and Malusa,
2008; Malusa et al., 2013], originally deposited in the Adriatic foredeep and now exposed in tectonic win-
dows within the Ligurian units (e.g., Apuane and Bobbio windows, Figure 3a, section Z-Z'). East of the
Villalvernia-Varzi-Ottone fault, the Oligo-Miocene Apenninic tectonics strongly reshaped the former Paleo-
gene orogenic wedge [Elter and Pertusati, 1973; Malusa and Balestrieri, 2012]. This major fault is part of a
larger Miocene-Pliocene transpressional system near-parallel to the orogenic trend, also including out-of-
sequence thrusts and faults [Cerrina Feroni et al., 2002, 2004; Elter et al., 2011]. Along cross-section Y-Y’, the
Villalvernia-Varzi-Ottone fault juxtaposes the N-dipping Tertiary Piedmont succession against the External
Ligurian units. Along cross-section Z-Z', it juxtaposes the uppermost levels of the Paleogene orogenic
wedge (Antola, and underlying Internal Ligurian units) against the lowermost External Ligurian units. The
Sestri-Voltaggio Fault (SV in Figure 3a), sometimes interpreted as the metamorphic boundary between the
Alps and the Apennines, is overlain by Tertiary Piedmont strata, attesting that it was virtually inactive after
the Eocene [Elter and Pertusati, 1973).

5.2. Geologic Record of (U)HP Rocks Exhumation

5.2.1. Exhumation Paths

In Cenozoic times, rocks now exposed in the Alpine orogenic wedge were either subducted to deep sub-
crustal levels [Chopin, 2003; Vignaroli et al., 2005; Groppo et al., 2009], detached and subcreted at intermedi-
ate crustal levels [Desmons, 1992; Malusa et al., 2005a; Lanari et al., 2014], or offscraped at shallow structural
levels thus escaping metamorphism [Chalot-Prat, 2005; Levi et al., 2006; Schwartz et al., 2007]. During subse-
quent exhumation, deeply subducted rocks were retrogressed at lower pressures and temperatures until
they eventually reached the surface.

The typical pressure-temperature paths followed by the exhuming (U)HP units of the Western Alps show an
early rapid stage of nearly isothermal decompression, which is followed by slow cooling after an inflection
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point invariably located at 34-32 Ma (Figure 7a). Peak-pressure assemblages in the Sesia-Lanzo unit are
remarkably older than those observed in all of the other units [Ducheéne et al., 1997; Rubatto et al., 1999].
Heating after decompression is documented both in the Lepontine dome [Brouwer et al., 2004] and in the
continental units of the Eclogite belt [Borghi et al., 1996].

Pressure-time paths allow an easier comparison between the exhumation trajectories followed by different
units within the subduction zone (Figure 2e). They show that the Frontal wedge displays the oldest peak-
pressure parageneses associated with Eocene subduction, with peak pressure generally lower than 1.2-1.4
GPa [Agard et al., 2002; Ganne et al., 2006; Malusa et al.,, 2005a; Lanari et al., 2012]. The youngest peak
assemblages are observed in the Eclogite belt, where estimated peak pressure locally exceeds 3 GPa [Cho-
pin et al., 1991; Reinecke, 1991], which likely indicates burial to subcrustal depths. Units of the Eclogite belt
experienced very fast exhumation after 45-40 Ma [Duchene et al., 1997; Federico et al., 2005; Rubatto and
Hermann, 2001; Rubatto et al., 1998; Vignaroli et al., 2010] and started traveling back to the surface, at rates
of 10-30 km/Ma, at the same time as the blueschist-greenschist facies units of the Frontal wedge were
already emplaced at shallow crustal levels. Exhumation rates in the Western Alps dropped markedly after
34-32 Ma (Figure 2e), when sediments of the Tertiary Piedmont Basin, including patch reef carbonates [Fra-
vega et al., 1987; Vannucci et al., 19971, were deposited upon the southern part of the Eclogite belt [Federico
et al,, 2005; Malusa and Garzanti, 2012]. Since then, relatively fast exhumation within the axial belt is docu-
mented only in the Lepontine dome of the central Alps (up to 1.3-2.0 km/Ma during the late Oligocene-
early Miocene) [Malusa et al., 2011b].

5.2.2. Strain Partitioning During Subduction and Exhumation

During subduction and exhumation of (U)HP rocks, deformation was strongly partitioned between the
major tectonic domains of the Western Alps. On the upper plate side of the subduction system, the western
tip of the Cretaceous wedge shows a complex structural pattern that formed in Paleocene times within a
regional framework of right-lateral transpression [Babist et al., 2006]. Close to the Eclogite belt, these struc-
tures are overprinted by left-lateral shear zones, and by transposed greenschist-facies foliations with E-W
stretching lineations developed since middle Eocene times [Inger and Ramsbotham, 1997; Malusa et al.,
2006; Gasco et al., 2009]. Inclusions in coeval quartz veins show a mixing between rising CO,-rich fluids and
saline fluids infiltrating from the surface [Malusa et al., 2006], which suggests that the western tip of the Cre-
taceous wedge was still below the sea level at that time. Meteoric fluids are found instead in veins postdat-
ing the Oligocene Periadriatic magmatism.

In the Frontal wedge, contractional structures are dominant. They define a long-recognized doubly vergent
pattern [Fabre, 1961], outlined by east-dipping thrusts and Europe-vergent folds in the west [Freeman et al.,
1998; Fugenschuh et al., 1999] and by thick west-dipping shear zones and associated Adria-vergent struc-
tures in the east [Malusa et al., 2005a; Michard et al., 2004]. These structures are cut by steeply dipping left-
lateral faults, which are near-parallel to the orogenic trend [Michard et al., 2004; Ricou and Siddans, 1986]
and show to the north evidence of right-lateral reactivation [Malusa et al., 2009]. Adria-vergent structures of
the Frontal wedge are generally marked by higher-pressure assemblages (up to the blueschist facies) than
Europe-vergent structures (greenschist facies or lower), and record early exhumation trajectories during
shortening and accretion of crustal material on top of the downgoing European slab [Malusa et al., 2011a].

During (U)HP exhumation in the Eocene, widespread synmetamorphic extension occurs in rocks that lie
structurally on top of and within the Eclogite belt. Such synmetamorphic extension is often associated with
the development of L-tectonites, which are not found inside the Frontal and Cretaceous wedges. On the
eastern side of the Eclogite belt, greenschist-facies top-to-SE extensional shearing affected the Combin and
Dent Blanche units between 45 and 36 Ma [Reddy et al., 2003]. Top-to-NW extension occurred before 34 Ma
along the Entrelor shear zone, west of the Gran Paradiso unit [Malusa et al., 2005a]. Farther south,
greenschist-facies top-to-W extension is documented on top of the eclogitic ophiolites exposed west of the
Dora-Maira unit [Agard et al., 2002], and in the Queyras calcschists on top of the Viso ophiolites [Ballevre
et al., 1990; Schwartz et al., 2007]. Extension in the Eclogite belt is associated with a regular pattern of
stretching lineations perpendicular to the orogen trend, observed within extensional shear zones both in
the Internal Massifs [Wheeler, 1991; Brouwer et al., 2002; Pleuger et al., 2005; Le Bayon and Ballévre, 2006] and
in their ophiolitic envelopes [Philippot, 1990; Inger and Ramsbotham, 1997; Reddy et al., 1999; Gasco et al.,
2009, 20111, which is fully consistent with the trend observed in the overlying Cretaceous wedge [Gasco
et al., 2009]. On the northern tip of the Eclogite belt, close to the Lepontine dome, late tectonic shortening
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Figure 7. Exhumation pressure-temperature paths, complemented by geochronologic ages unambiguously linked with petrologic and structural data (boxes, in Ma). Sample location in
Figure 3. (a) Selected exhumation paths from the Western Alps (see Malusa et al. [2011a] and supporting information S1 for additional paths), and typical P-T path for Alpine (U)HP units
(inset): DM, Brossasco-Isasca UHP slice, Dora-Maira [Chopin et al., 1991; Rubatto and Hermann, 2001]; LV, Leverogne unit, Gran San Bernardo nappe [Malusa et al., 2005a, 2005b; Villa et al.,
2014]; SL, Sesia-Lanzo unit, Cretaceous wedge [Babist et al., 2006; Duchéne et al., 1997; Malusa et al., 2006; Rubatto et al,, 1999]; ZS, Cignana UHP slice, Zermatt-Saas [Amato et al., 1999;
Malusa et al., 2005b; Rubatto et al., 1998]. Three-dimensional model based on the ECORS-CROP seismic section and on the geologic map in Figure 3a (FPF, Frontal Pennine Fault; IF,
Insubric Fault). (b) Calabria: CA, Castagna unit, Calabride units [Thomson, 1994; Rossetti et al., 2001a]; LO, Gimigliano lower ophiolitic unit [Thomson, 1994; Rossetti et al., 2001a]; VE,
Lungro-Verbicaro unit [lannace et al., 2007; D’Errico and Di Staso, 2010]. (c) Corsica-Northern Apennines. AP, Apuane, Tuscan metamorphic units [Balestrieri et al., 2003; Molli and Vaselli,
2006]; FV, Farinole-Volpajola Unit, Corsica [Mailhé et al., 1986; Brunet et al., 2000; Ravna et al., 2010; Martin et al., 2011; Vitale Brovarone and Herwartz, 2013; Vitale Brovarone et al., 2014];
Gl, Giglio Island, Tuscan metamorphic units [Rossetti et al., 1999; Balestrieri et al., 2011]; GO, Gorgona Island, Schistes Lustrés metapelites [Brunet et al., 2000; Rossetti et al., 2001b]; PM,
Pigno-Morosaglia unit, Corsica [Brunet et al., 2000; Fellin et al. 2006; Vitale Brovarone and Herwartz, 2013; Vitale Brovarone et al., 2014]; TE, Tenda unit, Corsica [Brunet et al., 2000; Cavazza
et al., 2001; Molli et al., 2006; Maggi et al., 2012]. Geochronologic constraints: U-Pb SHRIMP on zircon (a), titanite (b); U-Pb TIMS on acmite-phengite (c), rutile (d); Sm-Nd on garnet-
omphacite-paragonite-clinozoisite-glaucophane (e); Lu-Hf on garnet-phengite (f), lawsonite-glaucophane (g); “°Ar->*Ar on white mica (h); Rb-Sr on phengite-calcite (i), phengite-feldspar
(j), phengite-whole rock (k); fission tracks on zircon (1), or apatite (m); age of undeformed magmatic bodies (n); biostratigraphic age of sediments (o).
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overprinted extensional shearing after (UHP exhumation, thus shaping regional-scale Adria-vergent folds
such as the Vanzone antiform, located NE of the Monte Rosa Massif [Keller et al., 2006]. No regional-scale
late backfolding is observed in the Internal Massifs located farther south.

5.2.3. Stratigraphic Constraints on (U)HP Exhumation

During (U)HP exhumation, the growing Alpine orogen was bounded to the northwest by a foreland basin
built upon European crust [Sinclair, 1997], and to the southeast by a foredeep floored by Adriatic crust [Cat-
anzariti et al., 1996, 2009; Elter et al., 2003] (Figure 5d). Since the middle Eocene, smaller depocentere also
developed on top of the orogenic wedge, as indicated by the Tertiary Piedmont and Epiligurid successions
[Mutti et al., 1995; Cibin et al., 2001; Gelati and Gnaccolini, 2003; Bertotti et al., 2006]. All of these basins were
starved of orogenic detritus during exhumation of (U)HP rocks.

In the European (North Alpine) foreland basin, the shallow-marine Nummulite Limestone and overlying Glo-
bigerina Marl record deepening of a sediment-starved basin diachronously in the Paleogene [Ford and Lick-
orish, 2004]. Starting from the latest Priabonian, the basin was filled by turbidites such as the Annot
Sandstone, chiefly derived from the European basement exposed to the southwest [Sinclair, 1997], whereas
minor detrital supply from the axial belt is documented since the Oligocene [Jourdan et al., 2012, 2013]. The
Annot turbidites are unmetamorphosed and still lay on top of the European basement, which was thrust
westward only after (U)HP exhumation was completed [e.g., Bellanger et al, 2015] (Figure 5e). Such
basement-cover relationships exclude slab retreat along the Western Alps trench during exhumation of
(U)HP rocks (see Figure 1c). In that case, turbidites would be in fact detached from their basement as
observed in the Apennines.

In the Adriatic foredeep, starved sedimentation after Paleocene-Eocene deposition of pelagic marls (Scaglia Fm)
is recorded by the middle Eocene-lower Oligocene Gallare Marl and Chiasso Fm to the north [Di Giulio et al.,
2001], and by the Canetolo Complex and Aveto Fm to the south [Catanzariti et al., 1996]. Volcaniclastic supply
characterized this otherwise starved stage, both in the North Alpine basin and in the Adriatic foredeep, during
the Oligocene climax of Periadriatic magmatism [Elter et al., 1999; Malusa et al., 2011b; Ruffini et al., 1997].

The only depocenters fed by detritus from the axial belt before the Periadriatic climax are the small sedi-
mentary basins developed on top of the orogenic wedge [Ottria, 2000; Cibin et al., 2001; Cerrina Feroni and
Vescovi, 2002; Gelati and Gnaccolini, 2003; Jourdan et al.,, 2012]. In the Tertiary Piedmont basin, the strati-
graphic relations between HP rocks, and sediments derived from their erosion, are unambiguously pre-
served on top of the Voltri and Valosio units, where the dominant antigorite-serpentinite clasts in the lower
Oligocene Molare and Rocchetta Fms demonstrate that metaophiolites were already exhumed and eroded
by the end of the Eocene. Calcareous nannoplankton assemblages point to a stratigraphic age of 32-30 Ma
for the Rocchetta Fm (NP23 nannozone) [D’Atri et al., 1997; Maffione et al., 2008; Ghibaudo et al., 2014]. This
age is consistent with the Rupelian age (~30 Ma) provided by planktonic foramnifera in the Rocchetta Fm
basal strata (P20 biozone) [Gnaccolini et al.,, 1990], and with the early Rupelian age provided both by larger
(benthic) foramnifera (32 = 2 Ma, SBZ 21 zone) [Vannucci et al., 1997, 2010] and by dinoflagellate stratigra-
phy (32 = 1 Ma, W. gochtii zone [M. Rossi et al., 2009]) in the underlying Molare Fm (biozones according to
Gradstein et al. [2004, and references therein]). Corals on top of the Voltri metaophiolites [Vannucci et al.,
1997; Quaranta et al., 2009] and of the Antola flysch sediments [Carnevale et al., 2003] attests to orogenic
wedge exposure close to the sea level, while pollen data indicate that the Frontal wedge already repre-
sented a topographic high in the early Oligocene [Fauquette et al., 2015].

Massive influx of orogenic detritus from the Alpine accretionary wedge reached the North Alpine basin and
the Adriatic foredeep no earlier than the latest Oligocene [Gelati et al., 1988; Schlunegger, 1999], synchro-
nous with topographic growth of the central Alps [Gansser, 1982] (Figure 5). In the Adriatic foredeep, the
Gonfolite-Macigno clastic wedge (upper Oligocene-lower Miocene) was chiefly fed by focused erosion of
medium-grade rocks of the Lepontine dome and the encased Bregaglia pluton, with minor detritus sup-
plied from the axial Western Alps [Garzanti and Malusa, 2008; Malusa et al., 2011b; Dafov et al., 2014].

5.2.4. Plate Motion Constraints

The metamorphic, structural, and stratigraphic record in the Western Alps suggests divergence within the
subduction zone during exhumation of (U)HP rocks (cf. Figure 1). Available kinematic constraints [e.g.,
Dewey et al., 1989; Jolivet et al., 2003], when analyzed within the framework of recent palinspastic recon-
structions [Malusa et al., 2015], confirm that Adria motion shows no convergence along the Western Alps
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Figure 8. Exhumation driven by the upper plate (Western Alps). (a) (left) Trench-normal and trench-parallel components of Adria-Europe relative motion, and comparison with the strati-
graphic record and the (U)HP exhumation timing in the Tertiary Western Alps; components of plate motion are derived from displacement trajectories in Figure 5, square size encom-
passes uncertainties in plate motion deconvolution; the grey area indicates convergence and strike-slip possibly accommodated outside the subduction zone. Note that trench-normal
divergence (bracketed by red squares) and starved sedimentation are coeval with fast exhumation of the Eclogite belt (blue dot). (right) Restored cross sections along the ECORS-CROP
traverse in three steps (acronyms as in Figure 3); the amount of trench-normal convergence is referred to fixed points on lower (L) and upper (U) plates (modified after Malusa et al.
[2011a]): Step 1 (Paleocene-early Eocene): convergence is near-perpendicular to the trench (Figure 5¢ for map view), crustal material is progressively accreted in the Frontal wedge or
deeply subducted (unlike steps 2 and 3, (U)HP rocks are not indicated in blue to take into account uncertainties in pressure-to-depth conversion). Step 2 (middle-late Eocene): Adria
motion away from the trench (Figure 5d for map view) induces localized extension within the weak portion of the upper plate; the Eclogite belt is exhumed up to the surface at rates
much faster than subduction rates; erosion is minor, adjacent basins remain starved. Step 3 (Oligocene): oblique convergence replaces oblique divergence (Figure 5e for map view), and
is accommodated by crustal shortening; axial-belt detritus reaches sedimentary basins. (B) trench-normal component of Adria-Europe relative motion in the central Alps, and restored
cross section along the EGT NRP 20 traverse (based on Pfiffner et al. [2002]); unlike the Western Alps, no episode of divergence characterized this segment of the subduction zone; the
fast post-Eocene erosional unroofing of the Lepontine dome (cf. Figure 2e) is ascribed to Adria indentation beneath the axial belt.

trench in this time frame (Figure 5d), but is instead characterized by high obliquity associated to a slight
motion away from the trench. Adria-Africa moved northward relative to Europe during most of the Ceno-
zoic, and the Western Alps experienced strike-slip tectonics during most of their evolution, with dominant
E-W convergence restricted to the 67-49 Ma time interval (Figure 5c).

In Figure 8a, the predicted amount of convergence at the Western Alps trench, based on the rotation poles
of Dewey et al. [1989], is deconvolved into a trench-normal and into a trench-parallel component to
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evaluate the amount of shortening and strike-slip motion accommodated along the paleotrench over time.
Bias due to uncertainties in paleotrench orientation, which is strongly controlled by the configuration inher-
ited from the Adriatic passive margin, is possibly minor because this configuration is reasonably well con-
strained south of the Alps [e.g., Winterer and Bosellini, 1981; Fantoni and Franciosi, 2010]. If the kinematic
model is correct (see Jolivet and Faccenna [2000] and Jolivet et al. [2003] for more recent applications), the
estimated Cenozoic trench-normal convergence that was accommodated before choking of Alpine subduc-
tion is on the order of 100 km, and includes ~30 km trench-normal divergence bracketed between 49 and
35 Ma. In the same time span, the amount of sinistral strike-slip motion accommodated along the N-S pale-
otrench of the Western Alps is much higher, on the order of 200 km. In the E-W paleotrench of the central
Alps, 200 km of trench-normal convergence does not include major episodes of trench-normal divergence
(Figure 8b).

5.3. Evolution of the Western Alps Subduction Zone
The above geologic constraints for the Western Alps subduction zone consistently indicate (U)HP rock exhu-
mation facilitated by the motion of the upper plate away from the trench (case (ii) in Figure 1).

In Paleocene-early Eocene times (first time frame in Figure 8a), plate motion constraints imply ~110 km
convergence and minor strike slip motion along the active margin of the Western Alps. The first attenuated
European crust arrived at the Western Alps trench no later than the earliest Paleocene (~65 Ma) and was
buried at rates of 3-4 mm/a during the prograde path, reaching mantle depths by the late Eocene (~35
Ma) as indicated by petrologic and geochronologic data [e.g., Rubatto and Hermann, 2001]. During subduc-
tion, crustal material was progressively accreted in the Frontal wedge locally reaching blueschist facies con-
ditions (e.g., Leverogne unit, LV in Figure 8a), to be subsequently exhumed along eastward trajectories on
the rear part of the Frontal wedge [e.g., Malusa et al., 2005a; Lanari et al., 2014]. Slivers of oceanic crust (e.g.,
Zermatt-Saas unit, ZS in Figure 8a), followed by slivers of thinned continental crust (e.g., Dora-Maira and
Gran Paradiso units, DM and GP in Figure 8a), were deeply subducted, metamorphosed under eclogite-
facies conditions, eventually detached from the lower plate, and underplated at depth beneath the upper
plate. Sediments were only occasionally dragged down to great depth, as indicated by the small amount of
exhumed (U)HP metasediments in the Eclogite belt, compared to widespread cover sequences accreted in
the Frontal wedge along the same transect.

In the middle-late Eocene, NNE-ward Adria motion caused a significant kinematic change along the Western
Alps subduction zone (Figure 5d). Left-lateral motion was dominant in this time interval, and was associated
with ~30 km trench-normal divergence (Figure 8a). This is an extremely important point with respect to
(U)HP exhumation, as the divergence provided sufficient space to allow the exhumation and subsequent
emplacement of the whole Eclogite belt in the upper crust without any overburden removal by erosion.
Eclogitic crustal slivers, previously underplated at depth beneath the upper plate, experienced rapid
buoyancy-driven uplift. The density of eclogitized granitoid rocks after subduction (~3.0 kg/dm?) was less
than the density of the nearby mantle rocks (~3.2 kg/dm?3), and their density further decreased during ret-
rogression and exhumation toward the upper crust (~2.7 kg/dm?3). Metabasaltic eclogites, although denser
than mantle rocks (~3.7 versus ~3.2 kg/dm?), were associated with low-density serpentinites (~2.6 kg/dm?)
that greatly increased their overall buoyancy [e.g., Schwartz et al.,, 2001]. Slab shallowing following upper
plate divergence provided an additional mechanism to facilitate fast exhumation of (U)HP rocks through
the accretionary wedges (i.e., Frontal and Cretaceous), where exhuming units became neutrally buoyant
(Figure 8a). The Eclogite belt was thus tectonically emplaced within the upper crust, on the upper plate side
of the orogen, and rapidly exposed at the surface beneath opposite-dipping extensional shear zones, and
then was finally covered by lower Oligocene sediments. Exhumation was much faster than subduction [cf.
Rubatto and Hermann, 2001], with exhumation rates locally exceeding 30 mm/a [e.g., Duchene et al., 1997],
i.e, 1 order of magnitude higher than average burial rates during the prograde path. It is important to
emphasize that during tectonic exhumation of the Eclogite belt the role of erosion was negligible, and fore-
land basins surrounding the orogen remained starved of sediment (cf. Figure 1).

Rapid exhumation of (U)HP rocks ceased by the end of the Eocene, when Adria started moving NNW-
ward with respect to Europe, and the component of trench-normal divergence was replaced by a com-
ponent of trench-normal convergence (Figure 5e). This turning point corresponds to the transition
between nearly isothermal decompression and slower cooling recorded by P-T-t paths. After the

MALUSA ET AL.

CONTRASTING STYLES OF (UHP EXHUMATION 1803



(] (]
QAGU Geochemistry, Geophysics, Geosystems 10.1002/2015GC005767
@ SARDINIA - CALABRIA E ADRIA SUBDUCTION BENEATH SARDINIA
Slab rollback 3Ma saina - Apenninic
time (Ma) o ° 05: - Cornaglia Terrace CF wedge - B:
70 60 50 40 30 20 10 0 J® EUROPE T gs r
1Y e © |
1 " Lithospheric ADRIA ™ =
50 . mantle 0. SLAB -
Frontal R o
10 Wedge : ____"- c, "‘_'__:
[ 10047 & i
CONVERGENCE: ~ 80 km
. SUBDUCTION RATE: ~ 6 mm/a
v CA Castagna
’o o Lo G oites) SLAB ROLLBACK AND HP ROCK EXHUMATION Hinge retreat
g < o VE Verbicaro 23 Ma Sardinia Apenninic H
S By s =  Cornaglia Terrace CFwedge// v ;VE B
o 0 D T -
5 le EUROPE: - 1
? e : Moho' >
2 ] i ° :
s i Lo Lithospheric =
a Lso - _
Eclogite 50 s mantle -
belt - ] [ i
g - P i
= B S
o 100 TN P L
g Asthenosphere / //
o FA400 km 2 - -
o T 7 rollback CONVERGENCE: ~ 170 km
S F3oo EXHUMATION RATE: 5-6 mm/a
S F200
§ 100 ] FORELANDWARD MIGRATION OF EXHUMATION PULSES
IS) e 1 15Ma _ _ )
70 60 50 40 0 Ma o Hinge regrelzat —
Ligurian o ) Apenninic H
Provengal Sardinia Cornaglia wedge / v B
F 400 k basin Terrace )
£ Faoo ) 0 <2 el SNy
% B e i
g favo o0 e _
2 FO- —O L
m = = - - -
R A 50 i
70 60 50 40 30 20 10 0 Ma i i
time o - T e C

100

4
CONVERGENCE: <10 km /

EXHUMATION RATE: 5-6 mm/a
HINGE RETREAT: ~ 390 km

.

, rollback S/
2 /

7’

Figure 9. Exhumation driven by the lower plate (Calabria). (a) (top) Comparison between exhumation paths, and (bottom) trench-normal and trench-parallel components of Adria-
Europe relative motion along the Sardinia-Calabria transect (same keys as in Figure 8, acronyms as in Figure 3). Components of plate motion are derived from displacement trajectories
in Figure 5. Pressure-time paths are based on data in Figure 7b, error bars indicate uncertainties on mineral ages (*10) and pressure ranges for specific mineral assemblages (bias of
depth conversion by assuming purely lithostatic pressure is well within the large error of pressure estimates). Note that: exhumation in Calabria (purple) is younger than in the Western
Alps (grey areas, cf. Figure 2e), and coeval with rollback of the Adriatic plate; exhumation pulses young toward the foreland during the retreat of the subduction hinge; subduction is
largely due to convergence during the Paleogene, and to hinge retreat during the Neogene. (b) Restored cross sections along the Sardinia-Calabria traverse in three steps (based on Ros-
setti et al. [2001a, 2004], Piana Agostinetti and Amato [2009], Minelli and Faccenna [2010], Vignaroli et al. [2012], and Malusa et al. [2015]).Step 1 (Eocene-Oligocene): the Adriatic slab is
subducted beneath the remnants of the northern Tethyan margin (Figure 5d for map view); ophiolites (LO) are accreted beneath the Calabride units (CA), the slab reaches a depth con-
sistent with the onset of orogenic magmatism in NW Sardinia. Step 2 (latest Oligocene-early Miocene): the onset of slab rollback (Figure 5e for map view) triggers detachment-style
extension in Calabria leading to exhumation of HP ophiolites (purple arrow), and the climax of orogenic magmatism in Sardinia. Step 3 (middle Miocene): a younger exhumation pulse,
still related to Adriatic slab retreat before its drastic deceleration at ~10 Ma, is recorded toward the foreland by the Apenninic-Maghrebian units (VE), which were still at the surface dur-

ing metamorphism of HP ophiolites.

deceleration in exhumation rate, and cessation of active subduction along the trench, relaxation of
isotherms-induced late-stage heating of the continental eclogitic units, and led to a progressive increase
in geothermal gradients. Adria-Europe convergence continued throughout the Neogene. It was strongly
partitioned across the orogen and chiefly accommodated in the external zones by frontal thrusting
[Malusa et al., 2009; Dumont et al., 2012], leading to a progressive relief development [e.g., Fauquette
et al., 2015] until the European margin was deeply underthrust beneath the axial belt and shortening
started propagating to the Jura mountains.
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While the Western Alps were the site of major Eocene-Oligocene strike-slip motion, the central Alps were
dominated by convergence during most of the Tertiary (Figure 8b). Convergence in the central Alps was ini-
tially accommodated by subduction, coupled with upper crustal shortening on the European side of the
orogen, and later by indentation of Adriatic lithosphere beneath the axial belt. Indentation led to the ero-
sional unroofing of the Lepontine dome, with consequent delivery of a massive detrital supply toward the
Adriatic foredeep.

6. Exhumation Driven by the Lower Plate: Calabria

The Calabria orogenic segment (Figure 3¢), lying atop the retreating west-dipping Adriatic slab, preserves a
different geologic record of HP rock exhumation as compared to the Western Alps (case (iii) in Figure 1).
This orogenic segment, also referred to as the Calabrian Arc, includes an onshore-to-offshore accretionary
prism, up to 35-38 km thick at the drainage divide [Di Stefano et al., 2009; Piana Agostinetti and Amato,
2009]. This accretionary prism was subsequently reactivated by extensional processes along the Tyrrhenian
side [Cello et al., 1996; lannace et al., 2007, Rossetti et al., 2004; Vignaroli et al., 2012]. The prominent arcuate
shape of the Calabrian Arc was acquired between the end of the Ligurian-Provencal spreading in the Serra-
vallian, and the opening of the Tyrrhenian Sea in the late Miocene-Pleistocene [Cifelli et al., 2007; Mattei
et al., 2007]. Subduction along the Calabria transect, largely exceeding 1000 km, is mainly due to hinge
retreat and additionally accommodates ~300 km convergence (Figure 9a).

The uppermost tectonic units exposed in Calabria largely consist of crystalline basement nappes, also
referred to as the Calabride units (Figure 3c). The Calabride units form imbricated kilometer-scale thrust
sheets with the highest grade rocks structurally above the lowest grade rocks [Amodio-Morelli et al., 1976;
Ghisetti and Vezzani, 1981; Van Dijk et al., 2000; Bonardi et al., 2001; Caggianelli and Prosser, 2001]. They
include amphibolitic to granulitic metamorphic rocks [e.g., Borsi et al., 1976; Schenk, 1980; Graessner and
Schenk, 2001] that are common along the Adriatic margin of the Tethys, but are generally absent on the
European side. The lowermost part of the Calabride nappe stack (Castagna and Bagni units) displays an
intense post-Variscan low-grade blueschist facies overprint [Piccarreta, 1981; Rossetti et al., 2001a], possibly
developed during the northeastward motion of Adria near-parallel to the Tethyan margin of Sardinia (Figure
5). In contrast, the uppermost Calabride units resided at shallow depths (<7 km) since the late Paleozoic,
and experienced relatively rapid exhumation to the surface in Neogene times [Thomson, 1994, 1998] follow-
ing the onset of slab retreat. These units were eventually buried beneath Tortonian sediments (Stilo Capo
d’'Orlando and Albidona Fms).

The paleotectonic collocation of the Calabride units has been either attributed to the African margin
[Amodio-Morelli et al., 1976; Grandjacquet and Mascle, 1978; Scandone, 1982], to the European margin
[Ogniben, 1973; Dietrich, 1988; Rossetti et al., 2001a], or to a microcontinent(s) in between [e.g., Vai, 1992;
Guerrera et al., 1993; Perrone, 1996; Bonardi et al., 2001]. Preservation of the distal northern Tethyan mar-
gin and of exhumed subcontinental mantle offshore Sardinia (Cornaglia Terrace) suggests that the Cal-
abride units may represent former extensional allochthon(s) originally located farther to the SE [Malusa
et al., 2015]. Differences in nappe architecture between northern and southern Calabria, the former
showing both Europe and Adria verging structures and the latter exclusively Adria-verging structures,
led to the suggestion that these orogenic segments may represent two subterranes with distinct
Cretaceous-Paleogene tectonometamorphic evolution, juxtaposed only in Oligocene times [Bonardi
et al., 2001]. However, recent works indicate that northern and southern Calabria had a common oro-
genic polarity toward the Adriatic foreland during crustal thickening and nappe stacking [Rossetti et al.,
2001a, 2004; Vignaroli et al., 2008b, 2012], which indicates that Calabria might instead represent a single
terrane.

Cenozoic HP rocks are found in northern Calabria at the base of the nappe stack, beneath the Calabride
units. They include Ligurian-derived metaophiolites and Adria-derived Apenninic-Maghrebian units (e.g.,
Verbicaro and San Donato units) [Ogniben, 1973; Cello et al.,, 1996; Rossetti et al., 2001a, 2004], which pro-
vided peak P-T conditions of 1.1-1.3 GPa and ~350°C [Rossetti et al., 2001a, 2004; lannace et al., 2007; Vitale
et al., 2013], similar to those observed in the Frontal wedge of the Western Alps. These values largely exceed
the peak P-T estimates for the overlying Calabride units, reaching 0.4-0.6 GPa and <300°C in the Castagna
unit [Rossetti et al.,, 2001a] (Figures 7b and 9a).
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The thrust system of northern Calabria involves not only basement rocks, but also sedimentary units
including Mesozoic continental redbeds, Cenozoic shelf limestones, slope shales and deep-sea turbidites
(Longobucco cover in Figure 3c) [Lorenzoni et al., 1978]. The youngest unit involved within the thrust edi-
fice is Aquitanian in age (Paludi Fm) [Bonardi et al., 2005]. The Rossano and Crotone-Spartivento wedge-
top basins, unconformably resting on top of the thrust edifice, include alluvial and fan-delta conglomer-
ates overlain by Serravallian(?)-Tortonian fossiliferous sandstones, passing upward to deeper water marls
and clays [Critelli, 1999]. The age of thrusting in the frontal part of the wedge is thus bracketed between
the Aquitanian and the Serravallian-Tortonian [Cavazza and De Celles, 1998; Barone et al., 2008; Vignaroli
et al., 2012]. Therefore, Neogene accretion in Calabria occurred without the presence of a backstop
[Minelli and Faccenna, 2010], as the fore-arc region was flanking at that time a back-arc spreading center
(see section 4.3).

Miocene shortening on the lonian side of the Calabrian Arc was concomitant with extensional tectonics and
HP rock exhumation on the Tyrrhenian side [Vignaroli et al., 2012], where detachment-style extension over-
printed early Adria-directed nappe stacking, stretching apart the previously structured nappe edifice [Ros-
setti et al., 2001a, 2004] (Figure 9b). Exhumation of HP ophiolites was completed in the middle Miocene,
after the onset of slab retreat, as indicated by the presence of ophiolitic pebbles in the Miocene clastic
sequences lying unconformably atop the Coastal Range (Amantea basin) [Rossetti et al., 2001a]; only Calabr-
ide nappe pebbles are instead observed in the Stilo-Capo d’Orlando deposits of the Sila area [Bonardi et al.,
1980; Cavazza, 1989]. A younger exhumation pulse, still related to Adriatic slab retreat before its abrupt
deceleration at ~10 Ma [Faccenna et al., 2001b], is recorded forelandward by the Apenninic-Maghrebian
units (VE in Figure 9b), which were still at the surface during metamorphism of HP ophiolites. High spread-
ing rate was reestablished in the back-arc region a few million years later, during the opening of the Vavilov
(6-4 Ma) and Marsili basins (2-1 Ma).

Topographic development in Calabria chiefly postdates exhumation of HP rocks. Uplift to form the modern
day topography started in the early Pliocene, as indicated by stratigraphic and structural relationships in
the fore-arc basin, and accelerated during the Pleistocene as recorded by marine terraces sculpted into
basement rocks [Bonardi et al., 2001; Ferranti et al.,, 2006]. As in the Western Alps, erosion thus played a
minor role during HP rock exhumation (Figure 1, case (jii)).

7. Upper Versus Lower Plate Control on Exhumation: The Corsica Transect

Corsica represents the northern part of the Corsica-Sardinia continental block, which is bounded by the
Ligurian-Provencal basin to the west and by the Tyrrhenian basin to the east (Figure 4). It largely con-
sists of Paleozoic rocks (Variscan Corsica [Matte, 1991; P. Rossi et al., 2009]), but also includes, to the NE,
a Cenozoic HP wedge classically referred to as the Alpine Corsica (Figure 3b) [Durand-Delga, 1984;
Caron, 1994]. Subduction and exhumation of HP rocks in Alpine Corsica has long been debated [Jolivet
et al., 1990; Molli and Malavieille, 20111, and it has been either associated with Alpine dominant south-
eastward subduction [e.g., Mattauer et al., 1981; Malavieille et al., 1998; Vitale Brovarone et al., 2013] or
with Apenninic northwestward subduction [e.g., Principi and Treves, 1984; Jolivet et al., 1998; Vitale Bro-
varone and Herwartz, 2013]. Like in the Western Alps, HP units are exposed in tectonic domes, at the
rear of a doubly vergent accretionary wedge also including the Tenda unit (J-J' in Figure 3) [Durand-
Delga, 1984]. These domes are characterized by peak P-T conditions up to 2.4 GPa and ~450°C (FV in
Figure 7c) [Ravna et al., 2010; Vitale Brovarone et al., 2013], and chiefly include oceanic basement and
cover rocks with only minor gneiss slivers. The minor amount of gneiss found within the domes is in
line with the observation that the relative amount of continental crust involved in the Alpine subduc-
tion zone decreases toward the south, as subduction was oblique relative to the northern Tethyan mar-
gin [Malusa et al., 2015]. Lower-pressure rocks of Alpine Corsica are chiefly exposed in a doubly vergent
frontal wedge closer to the European basement and, in places, overlay the HP rocks exposed on the Tyr-
rhenian side of the island [Durand-Delga, 1984; Molli, 2008]. Metamorphic grade increases from the west
toward the east: the frontal part of the lower-pressure accretionary wedge includes very low grade
ophiolites and flysch units (Balagne Nappe) and minor slices of European continental crust [Nardi et al.,
1978; Malasoma et al., 2006], whereas the rear part includes greenschist-to-blueschist facies ophiolites
and continental units (e.g., Pigno-Morosaglia and Tenda units) [Lahondere, 1996; Molli and Tribuzio,
2004; Rossetti et al., 2015].
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Alpine Corsica and the Western Alps share not only a similar tectonic configuration but also a similar timing
of exhumation (Figure 10b). Tectonic units exposed in the Frontal wedge of Alpine Corsica display the old-
est peak-pressure parageneses grown during Cenozoic subduction, and peak pressures generally lower
than 1.4 GPa (e.g. Tenda and Pigno-Morosaglia units) [Maggi et al., 2012; Vitale Brovarone et al., 2013]. The
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youngest peak assemblages are described in the HP units on the Tyrrhenian side, where estimated peak
pressure may largely exceed 2 GPa (e.g., Farinole-Volpajola unit) [Brunet et al., 2000; Martin et al., 2011; Vitale
Brovarone and Herwartz, 2013]. As in the Western Alps, eclogitic units in Corsica experienced very fast exhu-
mation since 35 Ma. They returned to the surface at rates as high as 30 km/Ma, at the same time the
blueschist-greenschist facies units of the Frontal wedge were already emplaced at shallow crustal levels
[Rossetti et al., 2015] (Figure 10b).

Deformation during subduction and exhumation of Alpine Corsica was strongly partitioned between differ-
ent tectonic domains. In the Frontal wedge, contractional structures are dominant, and define a doubly ver-
gent pattern outlined by east-dipping thrusts to the west [Egal, 1992], and by Adria vergent structures to
the east [Rossi et al., 1994; Molli et al., 2006]. Major left-lateral slip was accommodated by steeply dipping
faults parallel to the orogen trend (e.g., Ostriconi fault) [Jourdan, 1988; Lacombe and Jolivet, 2005], as indeed
observed in the Frontal wedge of the Western Alps. Widespread synmetamorphic extension, associated
with E-W stretching lineations, is documented on the top of, as well as inside the HP units on the Tyrrhenian
side [Malavieille et al., 2011]. Unlike the Western Alps, no major late tectonic shortening affected the HP tec-
tonic domes, but on the contrary detachment style extension overprinted the early Alpine nappe stacking
[Jolivet et al., 1990; Daniel et al., 1996], leading to the development of major east-dipping shear zones (e.g.,
the Tenda shear zone in Figure 3b). The age of late extensional deformation, based on Rb-Sr geochronol-
ogy, is ~20-21 Ma [Rossetti et al., 2015].

Stratigraphic data provide accurate constraints on the topographic growth of Alpine Corsica. European fore-
land successions of Corsica still lie unconformably on top of their Variscan basement [Rossi et al., 2001]. This
excludes, like in the Western Alps, any major European slab retreat during exhumation of (U)HP rocks (see
Figure 1). Synorogenic clastic successions of Cretaceous-to-Eocene age are partly accreted in the frontal
part of the wedge [Egal, 1992], and locally folded unconformably on top of the Alpine metamorphic units
on the rear side [Rossi et al., 1994; A. Botti, Le arenarie di P.ta de I'Acciolu (Corsica settentrionale) e il loro
substrato cristallino: Successione stratigrafica, assetto strutturale e vincoli desunti dall'analisi di tracce di fis-
sione, unpublished BSc thesis, University of Milano-Bicocca, Milan, Italy, 2010]. Detritus was chiefly derived
from the European basement exposed to the SW [Nardi et al., 1978; Marroni and Pandolfi, 2007; Malusa
et al., 2015], which indicates that Alpine Corsica, like the Western Alps, was not a major source of detritus
during during nappe stacking, and was probably characterized by relatively low topography during most of
the Alpine orogeny [Malusa et al.,, 2011c].

We can thus conclude that metamorphic, structural, and stratigraphic data consistently demonstrate that
Alpine Corsica was largely structured within the framework of Alpine subduction. Before Neogene opening
of the Ligurian-Provencal basin, Alpine Corsica together with the Western Alps was a continuous orogenic
segment. As in the Western Alps, exhumation of HP tectonic domes of the Alpine Corsica can thus be
ascribed to divergence between upper plate and trench (case (ii) in Figure 1). However, HP rocks are
observed not only in the main Corsica island, but also farther to the east in the small islands of the northern
Tyrrhenian Sea (e.g., Gl and GO in Figure 4) and on the rear side of the Northern Apennines range (e.g., AP,
Pl, and MO in Figure 4) [Rossetti et al., 1999, 2001b; Balestrieri et al., 2011]. Peak P-T conditions in HP ophio-
lites of the Gorgona Island, and in the Adria-derived metamorphic units of the Giglio Island, are on the order
of 1.2-1.5 GPa and 300-350°C [Brunet et al., 2000; Rossetti et al., 1999, 2001b; Balestrieri et al., 2011] (Figure
7¢). Farther east, the metamorphic Adriatic-foredeep turbidites (Pseudomacigno Fm) exposed in the
Apuane tectonic window experienced metamorphic peak conditions of 0.6-0.7 GPa and 350-450°C [Bales-
trieri et al., 2003; Molli and Vaselli, 2006]. Although P-T conditions, in all of these units, are comparable with

Figure 10. Upper versus lower plate control on exhumation (Corsica-Northern Apennines). (a) Restored cross sections along the Corsica-Northern Apennines transect, showing the rela-
tionships between the Alpine and Apenninic orogenic wedges (same keys as in Figures 8b and 9b). Step 1 (Paleocene-early Eocene): Adria initially acts as the upper plate of the subduc-
tion system; convergence is near-perpendicular to the trench (Figure 5c for map view); crustal material is progressively accreted in the Frontal wedge of Alpine Corsica, while oceanic
crust is deeply subducted. Step 2 (middle-late Eocene): Adria motion away from the trench induces localized extension within the weak portion of the upper plate (Figure 5d for map
view), and the Eclogite belt is exhumed up to the surface. Step 3 (Oligocene-early Miocene): the Alpine orogenic wedge is progressively involved in Adriatic subduction propagating
from the south, and it is juxtaposed to the Apenninic wedge; the onset of slab rollback triggers detachment-style extension in the Alpine wedge, and exhumation of HP rocks (GO, Gl) in
the Apenninic wedge. Step 4 (middle Miocene): a younger exhumation pulse, still related to Adriatic slab retreat, is recorded forelandward by the Adriatic turbidites (AP), which were still
at the surface during peak metamorphism in the Tuscan archipelago (GO, Gl). (b) (top) Comparison between exhumation paths, and (bottom) components of Adria-Europe relative
motion along the Corsica-Northern Apennines transect (same keys as Figure 9a). Note that, in Alpine Corsica, exhumation timing match with the Western Alps (grey areas): HP ages are
systematically younger in the Eclogite belt (FV) than in the Frontal wedge (PM, TE), fast exhumation of the Eclogite belt is coeval with trench-normal divergence (Case (ii) in Figure 1).
Exhumation timing in Tuscan archipelago (GO, Gl) and Northern Apennines (AP) is not consistent with the Alpine evolution observed to the west. Like in Calabria, exhumation is coeval
with rollback of the Adriatic plate, and exumation pulses young toward the foreland during retreat of the subduction hinge (Case (iii) in Figure 1).
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those documented in the Alpine Frontal wedge (e.g., Tenda unit), their timing of exhumation is not consist-
ent with the Alpine evolution observed to the west. Conversely, timing of exhumation in the northern Tyr-
rhenian Sea and in the Northern Apennines has many analogies with the evolution observed in Calabria,
where exhumation of HP rocks was driven by rollback of the Adriatic slab (case (iii) in Figure 1). Exhumation
is in fact coeval with Adria slab rollback also in the Gorgona and Giglio islands, where it was largely com-
pleted by the early Miocene. A younger exhumation pulse at ~15 Ma, still related to Adriatic slab retreat, is
recorded forelandward in the Apuane Alps by the Adriatic-foredeep turbidites (AP in Figure 10b), which
were still at the surface during metamorphism of HP ophiolites in Gorgona (GO in Figure 10b). Note that
the timing of exhumation of the Tuscan metamorphic units, including the Apuane Alps, was likely overesti-
mated in Balestrieri et al. [2011] due to inheritance in zircon grains ascribed to the minimum age peak. Like
Calabria, the orogenic wedge of the Northern Apennines was topographically depressed during most of its
evolution, and experienced major uplift and erosional exhumation only since early Pliocene times [Malusa
and Balestrieri, 2012; Vaselli et al., 2012].

As shown in section 4, along the Corsica transect, Adria initially acted as the upper plate of the subduction
system, until Alpine subduction was choked in late Eocene times and the Alpine orogenic wedge was pro-
gressively involved in Adriatic subduction propagating from the south. The Adriatic slab began its transla-
tion beneath Corsica as soon as Adria began moving northward, reaching the remnants of the Alpine
wedge in Oligocene times [Malusa et al., 2015]. The onset of slab rollback-induced extension in the back-arc
regions [Jolivet et al., 1998; Faccenna et al., 2001b], leading to the opening of the Ligurian-Provencal basin
and associated Neogene counterclockwise rotation of Corsica-Sardinia, while Adriatic foredeep turbidites
were progressively accreted within the Apenninic wedge (Figures 5e and 5f). As a result, two distinct oro-
genic wedges are now juxtaposed along the Corsica-Northern Apennines transect (Figure 10): (a) to the
west, an Alpine orogenic wedge associated with European subduction, which includes HP rocks exhumed
from great depth during divergence between upper plate (Adria) and the trench (case (ii) in Figure 1); (b) to
the east, an Apenninic wedge associated with Adriatic subduction, which includes progressively younger
HP rocks moving toward the foreland and exhumed during rollback of the lower plate (Adria) (case (iii) in
Figure 1). During opening of the Tyrrhenian basin, extension east of the Corsica-Sardinia block led to a wide-
spread reactivation of preexisting structures, masking the original relationships between the Alpine and
Apenninic orogenic wedges along this transect.

8. Exhumation Styles, Rates, and Geothermal Gradients

As discussed in detail in the sections above, along the Cenozoic subduction zones of the Alps-Apennines
system, divergence was controlled by the upper plate to the north, and by the lower plate to the south (Fig-
ure 11), leading to different styles of (U)HP rock exhumation along strike. When divergence was controlled
by upper plate motion away from the trench, rocks were exhumed from greatest depth at the rear of the
accretionary wedge, whereas when divergence was controlled by motion of the lower plate (slab rollback)
rocks were exhumed from shallower depth in the frontal part of the wedge, with repeated exhumation
pulses progressively younging toward the foreland. These two end-members are cases (ii) and (iii), respec-
tively, in Figure 1.

Major differences between the two end-member scenarios are also observed in exhumation rates and pale-
ogeothermal gradients. Exhumation rates are much higher in the case of upper plate motion away from the
trench than in the case of slab rollback, as attested by the different slope of pressure-time exhumation
paths (Figure 10b). For upper plate motion away from the trench, divergence actually affected the whole
crust synchronously, providing enough space for extremely rapid exhumation of deep-seated rocks up to
the surface, with exhumation also promoted by the shallowing of the subducted slab. Such a slab shallow-
ing also prevented any major interaction between the orogenic wedge and the underlying asthenospheric
mantle, a scenario that is much more likely in the case of slab rollback (Figure 11). Paleogeothermal gra-
dients during exhumation of the Western Alps eclogites were consequently very low, and can be calculated
using the data sets in Figure 7a (and supporting information S1). Our analysis shows that these gradients
were dependent on the type of subducted crust at the trench (Figure 11), and did not reach steady state
during orogenesis [cf. Jolivet et al., 2003; Malusa et al., 2006; Lanari et al., 2012]. As shown in Figure 11, the
eclogites initially experienced geothermal gradients of 5-6°C/km, very close to the forbidden zone (which is
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pean subduction zone; on the right side of the model, Adriatic continental crust and Mesozoic oceanic crust (green) are actively subducted
beneath Sardinia (SA), forming an Apenninic wedge (light blue) also including Calabria (CA). The northward translation of the Adriatic slab
beneath Sardinia and Corsica is mirrored by the coeval migration of erosional pulses at the surface(longer arrows = faster rates; Adria tra-
jectory relative to Europe as in Figure 5) [from Malusa et al., 2015]. (bottom) Along-strike variation in paleogeothermal gradients along the
European and Adriatic subduction zones (based on data in Figure 7 and supporting information S1; VO after Malatesta et al. [2012]; acro-
nyms and sample location as in Figures 3 and 4). (left) Gradients in the Western Alps were very close to the forbidden zone (5-6°C/km,
time t;) until subducted crust was exclusively of oceanic type (VI, VO, ZS), and increased to 7-8°C/km when continental crust (DM, GP) was
deeply subducted (time t,). Because subduction was oblique to the northern Tethyan margin, higher gradients characterized first the cen-
tral Alps (time t;), and then the Western Alps (time t,). Gradients in Alpine Corsica remained close to the forbidden zone until final exhu-
mation of HP rocks (FV), because continental crust was not deeply subducted at that segment of the trench. (right) In the Adriatic
subduction zone, gradients experienced by the oceanic units (GO, LO) were never close to the forbidden zone, possibly due to the interac-
tion between the accretionary wedge and the rising asthenosphere atop the retreating slab (thin orange arrows in the 23 Ma inset).

defined for geothermal gradients <5°C/km, not expected to be realized on Earth) at least while subducted
crust was exclusively of oceanic type (VI, VO, ZS in Figure 11). When continental crust was deeply subducted
at the trench (DM, GP in Figure 11), gradients increased to 7-8°C/km, possibly due to a decrease in subduc-
tion rates. Because subduction at the Alpine trench was oblique to the European passive margin, the Euro-
pean continental crust was deeply subducted earlier in the central Alps than in the Western Alps. This is in
line with the observation that higher paleogeothermal gradients characterized first the central Alps (since
45-40 Ma), and then the Western Alps (since 40-35 Ma). By contrast, paleogeothermal gradients in Alpine
Corsica remained close to the forbidden zone until final exhumation of HP units (FV in Figure 11), because
continental crust was not deeply subducted at that segment of the trench. As a result, HP rocks of Alpine
Corsica are characterized by the widespread and peculiar preservation of lawsonite [e.g., Caron, 1994;
Lahondeére, 1996], which is not common elsewhere within the Alpine subduction zone. In the same time
interval, paleogeothermal gradients in the Frontal and Cretaceous wedges were on the order of ~20°C/km,
and eventually increased to ~30°C/km in the whole belt since 30 Ma.
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Exhumation rates above the retreating Adriatic slab were lower than rates inferred for the Western Alps
trench. Divergence was in fact more gradual during Adriatic slab rollback, and diachronously affected differ-
ent levels of the overriding plate (Figure 9b). The higher geothermal gradients—never close to the forbid-
den zone—that were experienced by the exhuming oceanic units in the Adriatic subduction zone (GO, LO
in Figure 11) cannot be explained by differences in the age of the subducted oceanic lithosphere with
respect to the Western Alps, but instead possibly reflect the expected thermal response to interaction
between the accretionary wedge and the rising asthenosphere atop the retreating slab (Figure 11).

9. Comparison With Synconvergent Exhumation Models

Despite the compelling geologic evidence provided by the stratigraphic record indicating that exhumation
took place during episodes of divergence within the plate boundary zone, fixed-boundary synconvergent
exhumation models (case (i) in Figure 1), such as the popular channel-flow model [Beaumont et al., 2001],
are still routinely applied to the Alps [e.g., Bucher et al., 2003; Rosenbaum et al., 2012]. However, the recently
published 2-D numerical models [Jamieson and Beaumont, 2013; Butler et al., 2013, 2014] provide the oppor-
tunity to quantify the amount of detritus expected in sedimentary basins during synconvergent exhuma-
tion, and can be also used to test predictions derived using these synconvergent exhumation models with
actual constraints from the geologic record (Figure 2).

The model of synconvergent exhumation in Figures 2a-2c is based on the approach described in Beaumont
et al. [2009], and includes slope-dependent surface erosion that varies spatially according to the local slope
of the model surface, with a maximum erosion rate operating on a slope of 45° and scaled down linearly to
the local slope of the model [Butler et al., 2013]. Using these assumptions, erosion rates during exhumation
of HP rocks would be <0.8 km/Ma, suggesting that exhumation of HP rocks requires neither rapid erosion,
nor lithosphere-scale extension. Accommodation space, in fact, would be provided by the internal exten-
sion of the orogenic wedge during ongoing plate convergence [Jamieson and Beaumont, 2013; Butler et al.,
2013].

However, the upward material flux and the progressive reduction in size of the preexisting orogenic wedge
accreted against the upper plate (indicated in red in Figures 2a-2c) provides a key for a more reliable and
testable estimate of detrital fluxes during exhumation. This is important as numerical models have intrinsic
problems dealing with an upper free surface [Billen, 2008]. As shown in Figure 2b, using a numerical fixed-
boundary synconvergent exhumation model, more than 200,000 km® of detritus would be produced in
order to exhume the Eclogite belt to the base of the crust, and more than 525,000 km?® would be produced
to exhume the Eclogite belt up to the surface (Figure 2c). However, even using conservative estimates from
the model, not including Alpine Corsica and the Lepontine dome, model estimates conflict with the actual
geologic evidence that indicates much lower sediment volume (1, in black, in Figure 2d) found in the
starved Eocene-Oligocene basins. Moreover, the observed Eocene-Oligocene sediment volume is partly
ascribed to intrabasinal carbonate production, not to erosion. The estimated volume of the Oligo-Miocene
clastic wedge forming the backbone of the Northern Apennines, and fed by the erosion of the Lepontine
dome (Macigno-Modino Fm), is much greater (2, in black, in Figure 2d), but still below 20,000 km?* [Di Giulio,
1999].

Synconvergent models also fail to reproduce other key characteristics of the Western Alps. In spite of the enor-
mous amount of detritus predicted by the models, the size of the exhumed HP volumes (one-tenth of the total
orogenic section, i.e., e = 0.1 w, see Figure 2¢) is much smaller than what is actually observed in the Western
Alps (e = 0.33 w, see Figure 2f). In addition, synconvergent models predict that rapid exhumation and stacking
of (UHP units at the base of the crust is followed by slower trans-crustal exhumation. Such a prediction is not
specific of the model analyzed in Figure 2, but it is also common to other synconvergent exhumation models
incorporating a free behavior of the slab [e.g.,, Yamato et al., 2007, 2008; Burov et al., 2014]. However, HP rocks
of the Western Alps have been rapidly exhumed directly to the Earth’s surface in the Eocene, where they were
covered by sediments by 32 Ma (black star in Figure 2e). Therefore, pressure-time data for model particles
shown in Figure 2e are largely inconsistent with the measured exhumation paths recorded by the Eclogite belt
of the Western Alps (shaded areas in Figure 2e). Note however that model particle paths fit quite well the exhu-
mation path of the Lepontine dome, possibly due to the long-lasting trench-normal convergence that charac-
terized the orogenic segment exposed in the central Alps.
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Figure 12. Restoration of the early Oligocene Alps as compared with modern Papua New Guinea. Subduction zones where continental crust was subducted to (U)HP depths, but were
no longer active during rock exhumation, are marked in red. (a) Palinspastic map of the Western Alps at 30 Ma, shortly after exhumation of the Eclogite belt, rotated counterclockwise by
90° (same acronyms as in Figure 5). (b) Eastern Papua New Guinea today (simplified after Baldwin et al. [2008]). Like in the Western Alps, eclogite units (blue) are exposed behind a
lower-pressure accretionary wedge (light blue) [Webb et al., 2014]; GPS data (red arrows) [Wallace et al., 2004, 2014] attest to motion of the upper Woodlark plate away from the Austra-
lian plate [Webb et al., 2008]. Differences between the Western Alps and Papua New Guinea are the nature of the upper plate (continental Cretaceous wedge versus oceanic lithosphere)
and the changes (i.e., increase) in geothermal gradient as the subduction to rifting transition occurred along the plate boundary in response to the westward propagating Woodlark
Basin seafloor spreading system (rift axes in red). Keys: dotted areas, Neogene sediments and volcanic rocks; brown areas, remnants of older orogenic wedges or magmatic arcs; orange
areas, Tertiary plutons; grey areas, oceanic crust in the Woodlark Basin. Acronyms: GB, Goodenough Basin; K, Kagi metamorphics; MB, Milne Basin; Mi, Misima Island; Ms, Moresby sea-
mount; OSF, Owen Stanley Fault; S, Suckling-Dayman metabasites; Ta, Tagula Island; Tr, Trobriand Island; Wo, Woodlark Island.

10. Implications for (U)HP Exhumation Mechanisms—Comparisons With a Modern
Analog

The tectonic setting of eastern Papua New Guinea (Figure 12) offers a geologically younger (i.e,, late Miocene
to present) analog for the Western Alps, and in particular, an example of (UHP exhumation facilitated by
removal of the upper plate (case (i) in Figure 1) [Webb et al,, 2008; Malusa et al., 2011a]. The rapidly evolving
tectonic evolution of eastern Papua New Guinea is the result of the oblique convergence between the Pacific
plate (moving WSW at ~110 mm/yr) and the Australian plate [DeMets et al., 1994]. The region between these
two major plates comprises a number of relatively small rotating microplates leading to considerable along-
strike variation in relative motion along these rapidly evolving plate boundaries [e.g., Wallace et al., 2004, 2014].

During the Cenozoic, eastern Papua New Guinea occupied the leading northern margin of the Australian plate
as it moved northward [Heine et al.,, 2010]. From 61 to 52 Ma, seafloor spreading in the Coral Sea [Gaina et al,
1999] led to rifting and separation of a continental fragment that was largely comprised of volcaniclastic sedi-
ments derived from the Australian continental margin [Zirakparvar et al., 2013]. These continental ribbons were
subducted at a north-dipping subduction zone, the remnant of which is now marked by the Pocklington
Trough [Webb et al, 2014] (Figure 12b). An accretionary wedge formed as sediments were progressively
scraped off the northward subducting Australian plate [Davies, 1980, Davies and Jaques, 1984] and, by Miocene
time, a nascent arc was built upon oceanic lithosphere of the Solomon Sea plate (i.e,, Woodlark Island) [Ashley
and Flood, 1981] with accreted metasediments of the Louisiade Archipelago (e.g., Misima and Tagula Islands)
comprising the forearc [Webb et al., 2014]. Subducted sediments and basalts continued to be metamorphosed
under high-pressure/temperature conditions, with some reaching mantle depths, and others underplated
within the accretionary wedge built beneath the forearc of oceanic island arc(s) [Baldwin et al., 2012]. Peak
(UHP metamorphism [Baldwin et al., 2008] occurred at depths of ~90 km at 7-8 Ma [Monteleone et al., 2007;
Zirakparvar et al., 2011; Baldwin and Das, 2013].

The reconstructed middle to late Miocene map pattern of exhumed metasedimentary and metabasalt rocks
exposed on the Papuan Peninsula, in the D'Entrecasteaux Islands and on the southern rifted margin, and
nascent volcanic arc(s) on the northern rifted margin is consistent with the northward subduction polarity.
Eclogitic gneisses (dark blue in Figure 12b) of the (U)HP terrane of eastern Papua New Guinea are now
exposed on the upper plate side of lower-pressure (prehnite-pumpellyite, greenschist and blueschist) accre-
tionary wedge metasediments (light blue in Figure 12b) [Worthing and Crawford, 1996; Baldwin et al., 2012;
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Webb et al., 2014]. Eclogitic gneisses form domes that reach elevations of >2.5 km and are flanked by active
normal faults [Davies and Warren, 1988; Hill et al., 1992; Little et al., 2007].

Presently, the upper plate to the (U)HP rocks are serpentinized ultramafic and mafic rocks [Little et al., 2007;
Baldwin et al., 2012] inferred to be dismembered ophiolites (i.e., Papuan Ultramafic Belt [Monteleone et al.,
2001], or Solomon Sea lithosphere [Gaina and Muller, 20071). A carapace shear zone now marks the former
subduction thrust that previously separated subducted sediments and basalts from overthrust ophiolitic
rocks. The resulting crustal architecture, with relatively low-density (U)HP rocks structurally beneath high-
density obducted ophiolites created a density inversion [Martinez et al., 2001]. Counterclockwise rotation of
the Woodlark microplate due to northward subduction at the New Britain trench farther north led to upper
plate removal, allowing rapid exhumation of buoyant, ductiley deformed eclogitic gneisses from beneath
mafic and ultramafic upper plate rocks [Webb et al., 2008].

Important constraints on the mechanisms for late Miocene to present (U)HP exhumation in eastern Papua
New Guinea include: (1) (U)HP rocks were rapidly exhumed [Baldwin et al., 2004] from beneath the former
thrust along which ophiolite obduction was accommodated [Davies, 1980; Little et al., 2007], (2) the upper
plate (Woodlark Plate) is a rotating microplate [Webb et al., 2008] moving counterclockwise away from the
Australian Plate [Wallace et al., 2004, 2014], (3) buoyancy forces [Martinez et al., 2001], likely enhanced by
partial melting during exhumation [Hill et al., 1995; Little et al., 2011; Gordon et al., 2012] contributed to
exhumation as did (4) late slip on normal faults flanking eclogitic domes [Davies and Warren, 1988; Hill,
1994; Little et al., 2007].

Similarities with the Western Alps include: (1) the similar size and shape of the extensional gneiss domes of
the D’Entrecasteaux Islands compared to the size and spacing of the Internal Crystalline Massifs of the West-
ern Alps, (2) similar rates of (U)HP exhumation [Baldwin et al., 2004], (3) motion of the upper plate away
from the trench, (4) the exhumation of eclogites being facilitated by a density contrast between subducted
and accreted material, and the upper plate rocks, and (5) the importance of along-strike variation in the
temporal and spatial patterns of rock exhumation, a manifestation of oblique convergence between two
major tectonic plates. In the case of eastern Papua, the density contrast is more enhanced due to a density
inversion (i.e., lower plate rocks have densities of 2.7-3.0 kg/dm?>, whereas ophiolites of the upper plate
have densities of 3.1 kg/dm? [Martinez et al., 2001].

There are also broad similarities between the Western Alps and eastern Papua New Guinea as regards the
stratigraphic record in the adjacent basins surrounding the exhumed (U)HP rocks. Goodenough Basin lies to
the south of the D’Entrecasteaux Islands, and the Trobriand Basin lies to the north (Figure 12b). These basins
contain a Neogene succession of deep-marine mudrocks and volcaniclastic sandstones, with minor and lat-
erally discontinuous Pliocene conglomerates capped by widespread Quaternary shallow-water carbonates
[Francis et al., 1987; Davies and Warren, 1988]. Most of the detritus in the Goodenough Basin was inferred to
be derived from erosion of the emergent D'Entrecasteaux (U)HP domes since the late Miocene, with later
Pliocene detritus shed from the Papuan Peninsula when the Dayman Dome was actively exhuming [Fitz
and Mann, 2013al. The relatively thin successions of synexhumation sediments (late Miocene and younger)
[e.g., Fitz and Mann, 2013a] are similar to the late Eocene Epiligurian basins of the Alps that were also largely
starved of orogenic detritus during eclogite exhumation [Francis et al., 1987; Malusa and Garzanti, 2012]. In
both the Papuan and Alpine cases, exhumation of (U)HP rocks from depth was therefore not associated
with significant erosion, but took place and was largely completed while adjacent sedimentary basins were
relatively starved of terrigenous sediments, instead being characterized by the slow accumulation of deep
water limestones and mudrocks (cf. Figure 1).

We thus conclude that the sequential stages of subduction and then (U)HP exhumation are distinct, and
separated in time from the genesis of topographic relief, which may take place many million years later as
documented, for example, by foreland basin stratigraphy throughout the Alpine-Himalayan belt [Garzanti,
2008; Malusa et al., 2011a]. Synconvergent extension within an accretionary wedge, facilitated by removal
of the upper plate (case (ii) in Figure 1) can explain the similarities in crustal thickness to the north and
south of the D’Entrecasteaux domes without calling upon crustal flow to move against a gravitational
potential [cf,, Little et al., 2011; Fitz and Mann, 2013b]. Exhumation from within an accretionary wedge, at a
plate interface where geothermal gradients are low, and prior to westward propagation of the Woodlark
Basin seafloor, also allows for the preservation of coesite eclogite during rapid exhumation.
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11. Conclusions

Subduction zone kinematics exerts a prominent control on exhumation style, depth, and rate of rock exhu-
mation, as well as on geothermal gradients, preservation of peak pressure assemblages, orogenic-wedge
structure, topography development, and detritus production.

Geologic data provide evidence for (U)HP exhumation along the Cenozoic Adria-Europe plate boundary
without significant erosion. We propose that exhumation occurred during episodes of divergence within
the subduction zone, either controlled by the motion of the upper plate away from the trench (Western
Alps) or by the rollback of the lower plate (Calabria).

In the Western Alps, the motion of the upper plate away from the trench allows (U)HP rocks to be exhumed
from subcrustal depths at the rear of the accretionary wedge. Exhumation was extremely fast because
divergence affected the whole crust synchronously, while geothermal gradients were very close to the for-
bidden zone (i.e., very low at 5-8°C/km). The slab-rollback mechanism is documented along the Calabria
transect to the south, where HP rocks were exhumed from shallower depths and at lower rates during roll-
back of the Adriatic plate. Along this transect, exhumation took place in the frontal part of the wedge, with
repeated exhumation pulses younging toward the foreland. Both of these mechanisms have been active at
different times and in different places along the Corsica-Northern Apennines transect, where the western
part of the accretionary wedge evolved in the Paleogene during European subduction, and the eastern part
evolved in the Neogene during subduction and retreat of the Adriatic plate.

The geologic record preserved in the Western Alps, where (U)HP continental eclogites were quickly
exhumed up to the surface to be eventually covered by sediments, is not consistent with numerical models
of synconvergent exhumation. Instead, the Western Alps share many similarities with the present-day set-
ting of eastern Papua New Guinea, where the youngest known eclogites on Earth are exposed within a tec-
tonic framework dominated by motion of the upper plate away from the accretionary wedge. Future
comparison between the Paleogene Alps and modern Papua New Guinea may thus provide invaluable
insights for a better understanding of deep exhumation processes in ancient orogenic belts.
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