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The Cardinality Balanced Multi-Target
Multi-Bernoulli Filter and its Implementations

Ba-Tuong Vo, Ba-Ngu Vo, and Antonio Cantoni

Abstract— It is shown analytically that the Multi-Target Multi-
Bernoulli (MeMBer) recursion, proposed by Mahler, has a signifi-
cant bias in the number of targets. To reduce the cardinality bias,
a novel multi-Bernoulli approximation to the multi-target Bayes
recursion is derived. Under the same assumptions as the MeMBer
recursion, the proposed recursion is unbiased. In addition, a
Sequential Monte Carlo (SMC) implementation (for generic
models) and a Gaussian mixture (GM) implementation (for linear
Gaussian models) are proposed. The latter is also extended to
accommodate mildly non-linear models by linearization and the
unscented transform.

Index Terms— Tracking, estimation, random sets, point pro-
cesses, finite set statistics, multi-Bernoulli.

I. INTRODUCTION

Multi-target tracking, involves the joint estimation of the
number of targets and their individual states from a sequence
of observations in the presence of detection uncertainty, as-
sociation uncertainty and clutter [1]–[3]. Mahler’s finite set
statistics (FISST) is an elegant Bayesian formulation of multi-
target filtering based on random finite set (RFS) theory, which
has generated substantial interest in recent years due to the de-
velopment of the Probability Hypothesis Density (PHD) filter
[4] and the Cardinalized PHD (CPHD) filter [5]. The PHD and
CPHD filters are moment approximations of the Bayes multi-
target filter, which operate on the single-target state space
and avoid the combinatorial problem that arises from data
association. Sequential Monte Carlo (SMC) implementations
[6]–[8] with provable convergence [6], [9], [10] and closed
form solutions [11], [12] have opened the door to numerous
novel extensions and applications which can be found in the
surveys [3], [13].

In addition to the PHD and CPHD filters, Mahler recently
proposed the Multi-Target Multi-Bernoulli (MeMBer) recur-
sion as a tractable approximation to the Bayes multi-target
recursion under low clutter density scenarios [3]. Unlike the
PHD and CPHD recursions, which propagate moments and
cardinality distributions, the MeMBer recursion propagates
(approximately) the multi-target posterior density. Specifically,
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the parameters of a multi-Bernoulli RFS that approximates the
posterior multi-target RFS are propagated. A Gaussian mixture
(GM) solution to the MeMBer recursions was also outlined for
linear Gaussian multi-target models with uniform sensor field
of view [3].

In this paper, we show analytically that Mahler’s MeMBer
filter over-estimates the cardinality (number of targets) and
propose a novel filter that is unbiased in cardinality under
the same signal setting. Specifically, we derive the cardinality
bias that occurs in the MeMBer data update step, and use this
to develop an unbiased update. The proposed filter, called the
cardinality-balanced MeMBer (CBMeMBer) filter, propagates
a set of multi-Bernoulli parameters characterizing the posterior
multi-target RFS. Sequential Monte Carlo techniques for the
standard Bayes [14] and PHD/CPHD [6], [15] recursions
cannot be utilized directly for the CBMeMBer (nor MeMBer)
recursion, and at present, no general implementation exists.

We propose a generic Sequential Monte Carlo (SMC) im-
plementation of the CBMeMBer recursion (also applicable to
the MeMBer recursion) that accommodates nonlinear dynamic
and measurement models with state-dependent sensor field of
view. The key advantage of this approach over the SMC-PHD
filters is that the multi-Bernoulli representation allows reliable
and inexpensive extraction of state estimates. In contrast,
the SMC-PHD approach requires clustering to extract state
estimates from the particle population, which is expensive and
unreliable [11]. We also propose a Gaussian mixture (GM)
implementation for linear Gaussian multi-target models and
extend this technique to mildly nonlinear multi-target models
(with uniform sensor field of view) via linearization and
the unscented transform. Simulations demonstrate significant
reduction of false tracks, under harsher signal settings than
initially assumed. Our numerical studies also show that under
certain range of signal settings, the SMC-CBMeMBer filter
outperforms the SMC-CPHD (and hence SMC-PHD) filter,
despite having smaller complexity. The GM-CBMeMBer filter
though, is only comparable to the GM-PHD filter.

Preliminary results have been announced in the conference
paper [16]. This paper presents a more complete analytical
and numerical study. In summary, our contributions are:
• an analytic expression for the cardinality bias in the

MeMBer filter;
• the CBMeMBer filter;
• a generic SMC implementation for general nonlinear

multi-target models;
• analytic implementations for linear and mildly nonlinear

multi-target models;
• performance evaluation against the PHD/CPHD filters.
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The paper is organised as follows. The necessary back-
ground on RFSs and multi-target filtering is given in Section II.
Section III presents a review of Mahler’s MeMBer recursion,
followed by a derivation of the cardinality bias, and the
CBMeMBer update. A generic Sequential Monte Carlo im-
plementation for non-linear multi-target models is described in
Section IV-A and analytic Gaussian mixture implementations
for linear and mildly non-linear multi-target models are given
in Section IV-B. Numerical studies are shown in Section V
Closing remarks are given in Section VI.

II. BACKGROUND

This section introduces RFSs, multi-target system models
and the multi-target Bayes filter.

A. Random Finite Sets

Intuitively, a random finite set (RFS), is a random (spatial)
point pattern, e.g. measurements on a radar screen. What
distinguishes an RFS from a random vector is that: the number
of points is random; the points themselves are random and
unordered. In essence, an RFS is simply a finite-set-valued
random variable. At the fundamental level, like any other
random variable, the randomness of an RFS is captured by
its probability distribution or probability density.

Another fundamental descriptor of an RFS, which has direct
relevance to this paper, is the probability generating functional
(PGFl). Let F(X ) denote the space of finite subsets of X ⊆
Rn. Suppose X is an RFS on X , i.e. X is a random variable
taking values in F(X ). Following [17], [18], the probability
generating functional (PGFl) G[·] of X is defined by

G[h] ≡ E[hX ], (1)

where E denotes the expectation operator, h is any real-valued
function on X such that 0 ≤ h(x) ≤ 1, and hX ≡ ∏

x∈X h(x)
with h∅ = 1 by convention. The cardinality (number of
elements) of X , denoted as |X|, is a discrete random variable
whose probability generating function G(·) can be obtained
by substituting the constant function h(x) = y into the PGFl.
Some examples of RFS pertinent to development of our key
results are given next.

1) Poisson RFSs: An RFS X on X is said to be Poisson
with a given intensity function v (defined on X ) if its car-
dinality is Poisson distributed, with mean N̄ =

∫
v(x)dx,

and for any finite cardinality, the elements x of X are
independently and identically distributed (i.i.d.) according to
the probability density v(·)/N̄ [17], [18]. A Poisson RFS is
completely characterized by its intensity function, also known
in the tracking literature as the Probability Hypothesis Density
(PHD). A Poisson RFS with intensity function v has PGFl
G[h] = e〈v,h−1〉 where 〈v, h〉 =

∫
v(x)h(x)dx (see [3] pp.

374). The probability density1 of a Poisson RFS can also be
explicitly expressed in terms of v as π(X) = e−N̄vX (see [3]
pp. 366).

1For simplicity, in this paper, we shall not distinguish a FISST set derivative
of a belief functional and a probability density. While the former is not a
probability density [3], it is, equivalent to a probability density relative to the
distribution of a Poisson RFS with unit intensity (see [6]).

2) Bernoulli RFS: A Bernoulli RFS on X has probability
1 − r of being empty, and probability r of being a singleton
whose (only) element is distributed according to a probability
density p (defined on X ). The cardinality distribution of a
Bernoulli RFS is a Bernoulli distribution with parameter r.
The PGFl of a Bernoulli RFS is (see [3] pp. 375)

G[h] = 1− r + r 〈p, h〉 , (2)

while its probability density is (see [3] pp. 368)

π(X) =
{

1− r
r · p(x)

X = ∅,
X = {x}. (3)

3) Multi-Bernoulli RFS: A multi-Bernoulli RFS X on X
is a union of a fixed number of independent Bernoulli RFSs
X(i) with existence probability r(i) ∈ (0, 1) and probability
density p(i) (defined on X ), i = 1, ...,M , i.e. X =

⋃M
i=1 X(i).

The PGFl of a multi-Bernoulli RFS is (see [3] pp. 375)

G[h] =
M∏

i=1

(
1− r(i) + r(i)〈p(i), h〉

)
. (4)

A multi-Bernoulli RFS is thus completely described by the
multi-Bernoulli parameter set {(r(i), p(i))}M

i=1. The mean car-
dinality of a multi-Bernoulli RFS is

∑M
i=1 r(i). Moreover,

the probability density π is (see [3] pp. 368) π(∅) =∏M
j=1

(
1− r(j)

)
and

π({x1, ..., xn})=π(∅)
∑

1≤i1 6=···6=in≤M

n∏

j=1

r(ij)p(ij)(xj)
1− r(ij)

. (5)

Throughout this paper, we abbreviate a probability density of
the form (5) by π = {(r(i), p(i))}M

i=1. We also refer to a PGFl
of the form (4), or a multi-target density of the form (5), as
multi-Bernoulli.

B. Multi-Target System Model

Suppose that at time k, there are N(k) target states
xk,1, . . . , xk,N(k), each taking values in a state space X ⊆
Rnx , and M(k) measurements zk,1, . . . , zk,M(k) each taking
values in an observation space Z ⊆ Rnz . In the random finite
set approach, the finite sets of targets and observations, at time
k, [3], [4], [19] are treated as the multi-target state and multi-
target observation, respectively

Xk = {xk,1, . . . , xk,N(k)} ∈ F(X ),
Zk = {zk,1, . . . , zk,M(k)} ∈ F(Z).

Using RFS theory, we can construct stochastic models for the
time evolution of the multi-target state and the multi-target
observations as follows.

Given a multi-target state Xk−1 at time k − 1, each
xk−1 ∈ Xk−1 either continues to exist at time k with
probability pS,k(xk−1) and move to a new state xk with
probability density fk|k−1(xk|xk−1), or dies with probability
1 − pS,k (xk−1). Thus, given a target with state xk−1 ∈
Xk−1 at time k − 1, its behaviour time k is modeled by
the Bernoulli RFS Sk|k−1(xk−1) with r = pS,k(xk−1) and
p(·) = fk|k−1(·|xk−1). This transition is commonly known in
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point process theory as a Markov shift [17]. The RFS modeling
the multi-target state Xk at time k is given by the union

Xk =


 ⋃

xk−1∈Xk−1

Sk|k−1(xk−1)


 ∪ Γk, (6)

where Γk denotes the multi-Bernoulli RFS of spontaneous
births. The RFS multi-target transition equation (6) incorpo-
rates target motion, birth and death. Assuming that the RFSs
constituting the union in (6) are mutually independent, Xk is
a multi-Bernoulli RFS conditional on Xk−1.

A given target xk ∈ Xk, at time k, is either detected with
probability pD,k (xk) and generates an observation zk with
likelihood gk(zk|xk), or missed with probability 1−pD,k (xk),
i.e. each state xk ∈ Xk generates a Bernoulli RFS Θk(xk)
with r = pD,k(xk) and p(·) = gk(·|xk). In addition, the sensor
also receives a set of false alarms or clutter which can be
modeled as a Poisson RFS Kk with intensity function κk(·).
Thus, at time k, the multi-target measurement Zk generated
by a multi-target state Xk is formed by the union

Zk =

[ ⋃

x∈Xk

Θk(x)

]
∪Kk. (7)

The RFS multi-target measurement equation (7) accounts
for detection uncertainty and clutter. It is assumed that the
RFSs constituting the union in (7) are independent of one
another. Note that conditional on Xk, the target generated
measurements in (7) form a multi-Bernoulli RFS.

C. Multi-Target Bayes Recursion

The multi-target filtering problem can be posed as a Bayes
filter with state space F(X ) and observation space F(Z). Let
πk(·|Z1:k) denote the multi-target posterior density at time k.
Then, the multi-target Bayes recursion propagates πk(·|Z1:k)
in time [4], [6], [19] according to

πk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|X)πk−1(X|Z1:k−1)δX, (8)

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫
gk(Zk|X)πk|k−1(X|Z1:k−1)δX

, (9)

where the integrals in the above recursion are FISST set
integrals (see [3], [4], [19]), fk|k−1(·|·) is the multi-target
transition density2 and gk(·|·) is the multi-target likelihood2.
The multi-target transition encapsulates the underlying models
of target motions, births and deaths described in (6), while the
multi-target likelihood encapsulates the underlying models of
detections and false alarms described in (7). Explicit expres-
sions for fk|k−1(Xk|Xk−1) and gk(Zk|Xk) can be derived
from (6) and (7) using FISST, see for example [3], [4], [19].

III. MEMBER APPROXIMATIONS

The MeMBer recursion, proposed by Mahler in [3], is an
approximation to the full multi-target Bayes recursion (8-9)
using multi-Bernoulli RFSs. Intuitively, the MeMBer recursion

2The same notation is used for multi-target and single-target densities.
There is no danger of confusion since in the single-target case the arguments
are vectors whereas in the multi-target case the arguments are finite sets.

propagates the multi-target posterior probability density in
time by propagating a finite but time-varying number of
hypothesized tracks, each characterized by the probability of
existence and the probability density of the current hypothe-
sized state.

In this section, we briefly summarize Mahler’s MeMBer
recursion and derive the cardinality bias that occurs in the
update step. Moreover, we propose a MeMBer update step that
is unbiased in cardinality, herein referred to as the cardinality-
balanced MeMBer (CBMeMBer) update.

A. The Original MeMBer Recursion

The premise of the MeMBer recursion is that the multi-
target RFS at each time step is approximated by a multi-
Bernoulli RFS, based on the following modelling assumptions:
• Each target evolves and generates measurements indepen-

dently,
• Target births follow a multi-Bernoulli RFS independent

of target survivals,
• Clutter follows a Poisson RFS, not too dense, and is

independent of target-generated measurements.
The MeMBer recursion is summarized in Propositions 1 and

2 as follows3. The original equations are found in [3], for the
prediction on pp. 661 eqs. (17.36)-(17.43), and for the update
on pp. 662 eqs. (17.45)-(17.55).

Proposition 1 (MeMBer Prediction). If at time k− 1, the
posterior multi-target density is a multi-Bernoulli of the form

πk−1 = {(r(i)
k−1, p

(i)
k−1)}Mk−1

i=1 ,

then the predicted multi-target density is also a multi-Bernoulli
and is given by

πk|k−1 ={(r(i)
P,k|k−1, p

(i)
P,k|k−1)}

Mk−1
i=1 ∪{(r(i)

Γ,k, p
(i)
Γ,k)}MΓ,k

i=1 , (10)

where

r
(i)
P,k|k−1 = r

(i)
k−1〈p(i)

k−1, pS,k〉, (11)

p
(i)
P,k|k−1(x) =

〈fk|k−1(x|·), p(i)
k−1pS,k〉

〈p(i)
k−1, pS,k〉

, (12)

fk|k−1(·|ζ) = single target transition density at

time k, given previous state ζ,

pS,k(ζ) = probability of target existence at

time k, given previous state ζ,

{(r(i)
Γ,k, p

(i)
Γ,k)}MΓ,k

i=1 = parameters of the multi-Bernoulli

RFS of births at time k.

In essence, the multi-Bernoulli parameter set for the pre-
dicted multi-target density πk|k−1 is formed by the union of
the multi-Bernoulli parameter sets for the surviving targets
(the first term in (10)) and target births (the second term in

3The statement of the MeMBer update in Proposition 2 is summarized as an
approximate update in the interest of readability. The formal statement would
otherwise require lengthy descriptions of its premises and consequently is not
presented here. The complete statement is given in the original equations in
[3].
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(10)). The total number of predicted hypothesized tracks is
Mk|k−1 = Mk−1 + MΓ,k.

Proposition 2 (MeMBer Update). If at time k, the pre-
dicted multi-target density is a multi-Bernoulli of the form

πk|k−1 = {(r(i)
k|k−1, p

(i)
k|k−1)}

Mk|k−1
i=1 ,

then the posterior multi-target density can be approximated by
a multi-Bernoulli as follows

πk≈{(r(i)
L,k, p

(i)
L,k)}Mk|k−1

i=1 ∪{(rU,k(z), pU,k(·; z))}z∈Zk
, (13)

where

r
(i)
L,k = r

(i)
k|k−1

1− 〈p(i)
k|k−1, pD,k〉

1− r
(i)
k|k−1〈p

(i)
k|k−1, pD,k〉

, (14)

p
(i)
L,k(x) = p

(i)
k|k−1(x)

1− pD,k(x)

1− 〈p(i)
k|k−1, pD,k〉

, (15)

rU,k(z) =

Mk|k−1∑
i=1

r
(i)
k|k−1〈p

(i)
k|k−1,ψk,z〉

1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉

κk(z) +
Mk|k−1∑

i=1

r
(i)
k|k−1〈p

(i)
k|k−1,ψk,z〉

1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉

, (16)

pU,k(x; z) =

Mk|k−1∑
i=1

r
(i)
k|k−1p

(i)
k|k−1(x)ψk,z(x)

1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉

Mk|k−1∑
i=1

r
(i)
k|k−1〈p

(i)
k|k−1,ψk,z〉

1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉

, (17)

ψk,z(x) = gk(z|x)pD,k(x),
Zk = measurement set at time k,

gk(·|x) = single target measurement likelihood at

time k, given current state x,

pD,k(x) = probability of target detection at time k

given current state x,

κk(·) = intensity of Poisson clutter at time k.

It is implicitly assumed that pD,k and r
(i)
k|k−1, i =

1, ...,Mk|k−1 cannot all be equal to 1. In essence, the multi-
Bernoulli parameter set for the updated multi-target density πk

is formed by the union of the multi-Bernoulli parameter sets
for the legacy tracks (the first term in (13)) and measurement-
corrected tracks (the second term in (13)). The total number
of posterior hypothesized tracks is Mk = Mk|k−1 + |Zk|.

While the time prediction step of the MeMBer recursion
is exact, the data update step is based on the following
approximation to the PGFl of the posterior multi-target state
at time k (see [3] pp. 680 eqs. (17.173)-(17.174))

Gk[h] ≈
Mk|k−1∏

i=1

G
(i)
L,k[h]

∏

z∈Zk

GU,k[z; h], (18)

where

G
(i)
L,k[h] =

1− r
(i)
k|k−1+ r

(i)
k|k−1〈p

(i)
k|k−1, hqD,k〉

1− r
(i)
k|k−1+ r

(i)
k|k−1〈p

(i)
k|k−1, qD,k〉

, (19)

GU,k[h; z] =
κk(z) +

Mk|k−1∑
i=1

G
(i)
U,k[h; z]

κk(z) +
Mk|k−1∑

i=1

G
(i)
U,k[1; z]

, (20)

G
(i)
U,k[h; z] =

r
(i)
k|k−1〈p

(i)
k|k−1, hψk,z〉

1− r
(i)
k|k−1+ r

(i)
k|k−1〈p

(i)
k|k−1, hqD,k〉

, (21)

qD,k = 1− pD,k.

This is a reasonable approximation when clutter is not too
dense as assumed at the onset of this section. The reader is
referred to Mahler’s original derivation [3] (see pp. 678-680)
for the rationale behind this approximation.

Observe however that the first product in (18) is a multi-
Bernoulli but the second product is not. In fact, each factor
GU,k[h; z] of the second product might not even be a PGFl
of an RFS. Nonetheless, finding a Bernoulli approximation
to GU,k[·; z], allows the second product in (18) (and hence
Gk[·]) to be approximated by a multi-Bernoulli. In the original
MeMBer update approximation, Mahler simply sets h = 1 in
the denominator of (21), i.e.

G
(i)
U,k[h; z] ≈

r
(i)
k|k−1〈p

(i)
k|k−1, hψk,z〉

1− r
(i)
k|k−1〈p

(i)
k|k−1, pD,k〉

, (22)

(see [3] pp. 681 eq. (17.176)) which, after substituting into
(20), yields the following Bernoulli approximation

GU,k[h; z] ≈ 1− rU,k(z) + rU,k(z)〈pU,k(·; z), h〉, (23)

with rU,k(z) and pU,k(·; z) given by (16) and (17) (see [3] pp.
681 eq. (17.184)). It is unclear why (23) is a good approxima-
tion. Moreover, it will be shown this particular approximation
leads to a bias in the cardinality of the measurement-updated
tracks and consequently a bias in the posterior cardinality.

B. Cardinality Bias

It follows from Proposition 1 that the mean cardinality of
the predicted multi-target state is

N̄k|k−1 =
Mk−1∑

i=1

r
(i)
P,k|k−1 +

MΓ,k∑

i=1

r
(i)
Γ,k.

According to Proposition 2, the posterior multi-target density
is approximated by a multi-Bernoulli with mean cardinality

Ñk =
Mk|k−1∑

i=1

r
(i)
L,k +

∑

z∈Zk

rU,k(z). (24)

This mean is not necessarily the mean cardinality of the
posterior multi-target state (or simply the mean posterior
cardinality) even if equality holds in approximation (18). The
following result gives the mean posterior cardinality under the
assumption that equality holds in (18).

Proposition 3. If the PGFl of the posterior multi-target
density is

Gk[h] =
Mk|k−1∏

i=1

G
(i)
L,k[h]

∏

z∈Zk

GU,k[z; h], (25)

then the mean cardinality of the posterior multi-target state at
time k is

N̄k =
Mk|k−1∑

i=1

r
(i)
L,k +

∑

z∈Zk

r∗U,k(z), (26)
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where r
(i)
L,k is given by (14), and

r∗U,k(z) =

Mk|k−1∑
i=1

r
(i)
k|k−1(1−r

(i)
k|k−1)〈p

(i)
k|k−1,ψk,z〉

(1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉)2

κk(z) +
Mk|k−1∑

i=1

r
(i)
k|k−1〈p

(i)
k|k−1,ψk,z〉

1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉

. (27)

Proof: The product,
∏Mk|k−1

i=1 G
(i)
L,k[h], in (25), corresponds

to the set of legacy tracks and is a multi-Bernoulli, since (19)
can be rewritten in Bernoulli form

G
(i)
L,k[h] = 1− r

(i)
L,k + r

(i)
L,k〈p(i)

L,k, h〉

with r
(i)
L,k and p

(i)
L,k given as in Proposition 2. Hence the mean

cardinality of the legacy tracks is
∑Mk|k−1

i=1
r
(i)
L,k. (28)

The product,
∏

z∈Zk
GU,k[h; z] in (25), corresponds to the

set of measurement-updated tracks, which is not a multi-
Bernoulli RFS. Nonetheless, the corresponding mean cardi-
nality can be computed exactly. Indeed, the mean cardinality
of the measurement-updated tracks is

∑
z∈Z

G′U,k(1; z). (29)

Substituting h(x) = y into the PGFl (20-21); then differenti-
ating at y = 1 yields G′U,k(1; z) = r∗U,k(z) as given in (27). It
follows from (18) that the mean posterior cardinality is the sum
of the legacy track cardinality (28) and measurement-updated
track cardinality (29). ¤

Corollary to Proposition 3. Under the premises of Propo-
sition 3, the posterior cardinality bias at time k is

Ñk − N̄k =

∑

z∈Zk

Mk|k−1∑
i=1

r
(i)2
k|k−1(1−〈p

(i)
k|k−1,pD,k〉)〈p(i)

k|k−1,ψk,z〉
(1−r

(i)
k|k−1〈p

(i)
k|k−1,pD,k〉)2

κk(z) +
Mk|k−1∑

i=1

r
(i)
k|k−1〈p

(i)
k|k−1,ψk,z〉

1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉

. (30)

Each term of the sum over z in (30) is non-negative and
equals zero only when pD,k = 1. Hence the bias Ñk − N̄k is
always non-negative, and is zero only when pD,k = 1. Exper-
imental results in Section V demonstrate that the cardinality
bias is significant.

C. Cardinality Balancing

Similar to the approach of Mahler in [3], we propose
to approximate the PGFl GU,k[h; z] by a Bernoulli 1 −
rU,k(z) + rU,k(z)〈pU,k(·; z), h〉. However, we choose the pa-
rameters rU,k(z) and pU,k(·; z) so that our proposed Bernoulli
approximation has the same intensity function (and hence
the same mean cardinality) as that of the original PGFl.
More concisely, let vU,k(·; z) denote the intensity function
of GU,k[·; z], and noting that the intensity function of the
Bernoulli is rU,k(z)pU,k(·; z), we have

rU,k(z)pU,k(·; z) = vU,k(·; z). (31)

Integrating and normalising (31), respectively, yield the
Bernoulli parameters

rU,k(z) =
∫

vU,k(x; z)dx, (32)

pU,k(·; z) =
vU,k(·; z)
rU,k(z)

. (33)

If GU,k[·; z] is indeed a PGFl of an RFS, then this approach
yields the Bernoulli that best approximates GU,k[·; z] to the
first moment.

The intensity function vU,k(·; z) of the PGFl GU,k[·; z] can
be obtained by taking the Frecht derivative4of GU,k[·; z] at
h = 1 in the direction of ζ = δx (i.e. the functional derivative
at x):

vU,k(x; z) =

∑Mk|k−1
i=1 v

(i)
U,k(x; z)

κk(z) +
∑Mk|k−1

i=1 G
(i)
U,k[1; z]

, (34)

where

v
(i)
U,k(x; z) = p

(i)
k|k−1(x)

(
1− r

(i)
k|k−1〈p

(i)
k|k−1, pD,k〉

)−2

×
[(

1− r
(i)
k|k−1〈p

(i)
k|k−1, pD,k〉

)
r
(i)
k|k−1ψk,z(x)

− r
(i)2
k|k−1〈p

(i)
k|k−1, ψk,z〉(1− pD,k(x))

]
.(35)

In general, vU,k(x; z) is negative whenever pD,k(x) = 0,
and thus, pU,k(·; z), given by (33), is not a valid probability
density. Nonetheless, rU,k(z), given by (32), agrees with the
mean cardinality of GU,k[·; z] as given by (27). To obtain a
valid pU,k(·; z), we make the approximation pD,k ≈ 1, which
eliminates the negative term in (35), i.e.

pU,k(·; z) =

Mk|k−1∑
i=1

r
(i)
k|k−1p

(i)
k|k−1(x)ψk,z(x)

1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉

Mk|k−1∑
i=1

r
(i)
k|k−1(1−r

(i)
k|k−1)〈p

(i)
k|k−1,ψk,z〉

(1−r
(i)
k|k−1〈p

(i)
k|k−1,pD,k〉)2

, (36)

Moreover, from the same approximation we have
〈p(i)

k|k−1, pD,k〉 ≈ 1, and consequently (36) reduces to a
valid probability density.

The resulting multi-Bernoulli approximation to the updated
multi-target density is summarised as follows5.

Proposition 4 (Cardinality-Balanced MeMBer Update).
Under the premises of Proposition 3, if at time k the predicted
multi-target density is a multi-Bernoulli of the form

πk|k−1 = {(r(i)
k|k−1, p

(i)
k|k−1)}

Mk|k−1
i=1

then the posterior multi-target density can be approximated
by a multi-Bernoulli with unbiased cardinality as follows

πk≈{(r(i)
L,k, p

(i)
L,k)}Mk|k−1

i=1 ∪{(r∗U,k(z), p∗U,k(·; z))}z∈Zk
, (37)

4Defined by limε→0+
GU,k[h+εζ;z]−GU,k[h;z]

ε
, see [3] pp. 375 eq.

(11.186), or [15] pp. 25 eq. (2.51).
5The statement of the CBMeMBer update in Proposition 4 is, similar to

Proposition 2, also summarized as an approximate update in the interest of
readability.
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where r
(i)
L,k, p

(i)
L,k, r∗U,k(z), are given in (14),(15), (27), and

p∗U,k(x; z) =

∑Mk|k−1
i=1

r
(i)
k|k−1

1−r
(i)
k|k−1

p
(i)
k|k−1(x)ψk,z(x)

∑Mk|k−1
i=1

r
(i)
k|k−1

1−r
(i)
k|k−1

〈p(i)
k|k−1, ψk,z〉

. (38)

Propositions 1 and 4 constitute, respectively, the prediction
and update step of the cardinality-balanced MeMBer (CB-
MeMBer) filter, which propagates the multi-Bernoulli param-
eters of the posterior multi-target density forward in time.

The complexity of the CBMeMBer recursion is linear in the
number of targets and linear in the number of measurements.
This is a similar complexity to the PHD filter, but a lower
complexity compared to the CPHD filter which is linear in the
number of targets and cubic in the number of measurements.

Remark: Note that although the approximation for the
posterior PGFl may not be a proper PGFl, it is close to
the true posterior PGFl. Hence the approximation given in
Proposition 4 is reasonable when clutter is not too dense and
the probability of detection is high.

D. Multi-Target State Estimation

The multi-Bernoulli representation πk = {(r(i)
k , p

(i)
k )}Mk

i=1

has an intuitive interpretation that facilitates multi-target state
estimation from the posterior multi-target density. The exis-
tence probability r

(i)
k indicates how likely the ith hypothesized

track is a true track, and the posterior density p
(i)
k describes

the estimated current state of the track. Hence, a multi-target
state estimate can be obtained by choosing the means or
modes from the posterior densities of the hypothesized tracks
with existence probabilities exceeding a given threshold (e.g.
0.5). Alternatively, the following basic two-stage procedure
can be used. First, we estimate the number of targets from
the posterior cardinality distribution by taking its mean or
mode (the mode is preferred as it is more stable than the
mean). Then, we take the corresponding number of hypothe-
sized tracks having the highest probabilities of existence and
compute the individual means or modes from the individual
posterior densities.

E. Extension to Track Propagation

Following the approach in [3], the CBMeMBer recursions
can be extended to propagate track continuity, by appropriately
labeling and updating the individual Bernoulli components
of the posterior multi-Bernoulli density. Thus, given a multi-
Bernoulli density π = {(r(i), p(i))}M

i=1, to each (Bernoulli)
component (r(i), p(i)) we assign a unique (usually integer)
track label `(i) to identify hypothesized tracks. The collection
of triplets T = {(`(i), r(i), p(i))}M

i=1 is referred to as a track
table. While there are many possible schemes for propagating
track labels, a simple scheme is presented as follows.

Prediction: If at time k − 1 the posterior
track table is Tk−1 = {(`(i)k−1, r

(i)
k−1, p

(i)
k−1)}Mk−1

i=1 ,
then the predicted track table to time k is
Tk|k−1 = {(`(i)P,k|k−1, r

(i)
P,k|k−1, p

(i)
P,k|k−1)}

Mk−1
i=1 ∪

{(`(i)Γ,k, r
(i)
Γ,k, p

(i)
Γ,k)}MΓ,k

i=1 where `
(i)
P,k|k−1 = `

(i)
k−1,

`
(i)
Γ,k = new label and r

(i)
P,k|k−1, p

(i)
P,k|k−1, r

(i)
Γ,k, p

(i)
Γ,k are

given in Proposition 1. Thus, existing components retain their
original labels, and birth components are assigned new labels.

Update: If at time k the predicted track table is
Tk|k−1 = {(`(i)k|k−1, r

(i)
k|k−1, p

(i)
k|k−1)}

Mk|k−1
i=1 , then the updated

track table at time k is Tk = {(`(i)L,k, r
(i)
L,k, p

(i)
L,k)}Mk|k−1

i=1 ∪
{(`U,k(z), rU,k(z), pU,k(z))}z∈Zk

where `
(i)
L,k = `

(i)
k|k−1,

`U,k(z) = `
(n)
k|k−1, n = arg maxi r

(i)
k|k−1(1 −

r
(i)
k|k−1)〈p

(i)
k|k−1, ψk,z〉/(1− r

(i)
k|k−1〈p

(i)
k|k−1, pD,k〉)2 and

r
(i)
L,k, p

(i)
L,k, rU,k(z), pU,k(z) are given in Proposition 4.

Thus, legacy components maintain their original labels, and
measurement-updated components are assigned the label
of the predicted track which has the largest contribution to
the current measurement-updated probability of existence
(compare Eq. (27)).

Remark: Although simple to implement, the proposed
scheme is expected to perform poorly when targets are close
together. Its performance can be significantly improved by
adding the track association schemes considered in [20].

IV. IMPLEMENTATIONS

In this section, we detail a generic Sequential Monte Carlo
(SMC) implementation and an analytic Gaussian mixture
(GM) implementation of the proposed CBMeMBer filter.

A. Sequential Monte Carlo Implementation
In the following, we present a generic SMC implementation

of the CBMeMBer recursion which can accommodate non-
linear dynamic and measurement models, as well as state-
dependent probabilities of survival and detection. This tech-
nique directly extends to Mahler’s original MeMBer recursion.

1) Prediction: Suppose that at time k − 1 the
(multi-Bernoulli) posterior multi-target density πk−1 =
{(r(i)

k−1, p
(i)
k−1)}Mk−1

i=1 is given and each p
(i)
k−1, i = 1, ...,Mk−1,

is comprised of a set of weighted samples {w(i,j)
k−1 , x

(i,j)
k−1}

L
(i)
k−1

j=1 ,
i.e.

p
(i)
k−1(x) =

L
(i)
k−1∑

j=1

w
(i,j)
k−1δ

x
(i,j)
k−1

(x).

Then, given importance (or proposal) densities
q
(i)
k (·|xk−1, Zk) such that support(p(i)

k ) ⊆ support(q(i)
k )

and b
(i)
k (·|Zk) such that support(p(i)

Γ,k) ⊆ support(b(i)
k ),

the predicted (multi-Bernoulli) multi-target density
πk|k−1 = {(r(i)

P,k|k−1, p
(i)
P,k|k−1)}

Mk−1
i=1 ∪ {(r(i)

Γ,k, p
(i)
Γ,k)}MΓ,k

i=1

can be computed as follows

r
(i)
P,k|k−1 = r

(i)
k−1

∑L
(i)
k−1

j=1 w
(i,j)
k−1pS,k(x(i,j)

k−1), (39)

p
(i)
P,k|k−1(x) =

∑L
(i)
k−1

j=1 w̃
(i,j)
P,k|k−1δx

(i,j)
P,k|k−1

(x), (40)

r
(i)
Γ,k = parameter given by birth model, (41)

p
(i)
Γ,k(x) =

∑L
(i)
Γ,k

j=1 w̃
(i,j)
Γ,k δ

x
(i,j)
Γ,k

(x), (42)

where

x
(i,j)
P,k|k−1 ∼ q

(i)
k (·|x(i,j)

k−1 , Zk), j = 1, ..., L
(i)
k−1
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w
(i,j)
P,k|k−1 =

w
(i,j)
k−1fk|k−1(x

(i,j)
P,k|k−1|x

(i,j)
k−1)pS,k(x

(i,j)
k−1)

q
(i)
k (x(i,j)

P,k|k−1|x
(i,j)
k−1 , Zk)

,

w̃
(i,j)
P,k|k−1 = w

(i,j)
P,k|k−1/

∑L
(i)
k−1

j=1 w
(i,j)
P,k|k−1

x
(i,j)
Γ,k ∼ b

(i)
k (·|Zk) j = 1, ..., L

(i)
Γ,k

w
(i,j)
Γ,k =

pΓ,k(x(i,j)
Γ,k )

b
(i)
k (x(i,j)

Γ,k |Zk)
,

w̃
(i,j)
Γ,k = w

(i,j)
Γ,k /

∑L
(i)
Γ,k

j=1 w
(i,j)
Γ,k .

2) Update: Suppose that at time k the predicted
(multi-Bernoulli) multi-target density πk|k−1 =
{(r(i)

k|k−1, p
(i)
k|k−1)}

Mk|k−1
i=1 is given and each p

(i)
k|k−1,

i = 1, ..., Mk|k−1, is comprised of a set of weighted

samples {w(i,j)
k|k−1, x

(i,j)
k|k−1}

L
(i)
k−1

j=1 , i.e.

p
(i)
k|k−1 =

L
(i)
k|k−1∑

j=1

w
(i,j)
k|k−1δx

(i,j)
k|k−1

(x).

Then, (the multi-Bernoulli approximation of) the up-
dated multi-target density πk = {(r(i)

L,k, p
(i)
L,k)}Mk|k−1

i=1 ∪
{(rU,k(z), pU,k(·; z))}z∈Zk

, can be computed as follows

r
(i)
L,k = r

(i)
k|k−1

1− %
(i)
L,k

1− r
(i)
k|k−1%

(i)
L,k

, (43)

p
(i)
L,k(x) =

∑L
(i)
k|k−1

j=1 w̃
(i,j)
L,k δ

x
(i,j)
k|k−1

(x), (44)

r∗U,k(z) =

∑Mk|k−1
i=1

r
(i)
k|k−1(1−r

(i)
k|k−1)%

(i)
U,k(z)

(1−r
(i)
k|k−1%

(i)
L,k)2

κk(z) +
∑Mk|k−1

i=1

r
(i)
k|k−1%

(i)
U,k(z)

1−r
(i)
k|k−1%

(i)
L,k

, (45)

p∗U,k(x; z) =
∑Mk|k−1

i=1

∑L
(i)
k|k−1

j=1 w̃
∗(i,j)
U,k (z)δ

x
(i,j)
k|k−1

(x),(46)

where

%
(i)
L,k =

∑L
(i)
k|k−1

j=1 w
(i,j)
k|k−1pD,k(x(i,j)

k|k−1)

w̃
(i,j)
L,k = w

(i,j)
L,k /

∑L
(i)
k|k−1

j=1 w
(i,j)
L,k

w
(i,j)
L,k = w

(i,j)
k|k−1(1− pD,k(x(i,j)

k|k−1))

%
(i)
U,k(z) =

∑L
(i)
k|k−1

j=1 w
(i,j)
k|k−1ψk,z(x

(i,j)
k|k−1)

w̃
∗(i,j)
U,k (z) = w

∗(i,j)
U,k (z)/

∑Mk|k−1
i=1

∑L
(i)
k|k−1

j=1 w
∗(i,j)
U,k (z)

w
∗(i,j)
U,k (z) = w

(i,j)
k|k−1

r
(i)
k|k−1

1− r
(i)
k|k−1

ψk,z(x
(i,j)
k|k−1).

3) Resampling and Implementation Issues: Analogous to
the standard particle filter, degeneracy is inevitable [14]. To
reduce the effect of degeneracy, we resample the particles for
each hypothesized track after the update step. This effectively
eliminates particles with low weights and multiplies particles
with high weights to focus on the important zones of the
(single-target) space. Note that there are many resampling
schemes available, and that the choice of resampling scheme

affects the computational load as well as the Monte Carlo
approximation error [21], [22]. For simplicity however, multi-
nomial resampling is used for the numerical studies in this
paper.

Notice that the number of particles required to represent
the posterior multi-object density increases due to the birth of
objects in the prediction and the averaging of hypothesized
tracks in the update. To reduce the number of particles, at
each time step pruning of hypothesized tracks is performed by
discarding those with existence probabilities below a threshold
P (e.g. 10−3). For the remaining hypothesized tracks, similar
to the SMC-PHD/CPHD filters, it is desirable to allocate the
number of particles in the track density to be proportional to
the expected number of objects present. Thus, at each time
step the number of particles given to each hypothesized track
is reallocated in proportion to its probability of existence, i.e.
during the prediction we sample L

(i)
Γ,k = r

(i)
Γ,kLmax particles

per birth term, and during resampling we resample L
(i)
k =

r
(i)
k Lmax particles for each updated track. It is usually also

necessary to impose a maximum of Lmax and minimum of
Lmin number of particles per hypothesized track.

4) Multi-Target State Estimation: The estimated number
of targets is the cardinality mean or mode. Individual state
estimates are the means of the corresponding posterior den-
sities since the modes are very difficult to compute from the
particle population. This is the main advantage over the SMC-
PHD/CPHD filters whereby multi-target state estimates are
calculated by: first estimating the number of targets from the
cardinality mean or mode; second the particles of the intensity
are clustered into the corresponding number of clusters; lastly
the centers of each cluster then forms the multi-target state
estimate. It is clear in this case that when the estimated number
of targets does not match the natural number of clusters in the
particle population, the output from clustering is likely to be
erroneous. Moreover, clustering is computationally expensive
and does not scale gracefully with the number of targets. In
contrast, in the SMC-CBMeMBer filter computing the means
of the individual posterior densities is inexpensive and scales
linearly with the number of hypothesized tracks.

B. Closed Form Linear Gaussian Implementation

In the following, we present a closed form solution to
the CBMeMBer recursion for the class of linear Gaussian
multi-target models which consists of standard linear Gaussian
assumptions for the transition and observation models of
individual targets, as well as certain assumptions on birth,
death and detection:
• Each target follows a linear Gaussian dynamical and

observation model i.e.

fk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1), (47)
gk(z|x) = N (z; Hkx,Rk), (48)

where N (·; m,P ) denotes a Gaussian density with mean
m and covariance P , Fk−1 is the state transition matrix,
Qk−1 is the process noise covariance, Hk is the observa-
tion matrix, and Rk is the observation noise covariance.
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• The survival and detection probabilities are state inde-
pendent, i.e.

pS,k(x) = pS,k, (49)
pD,k(x) = pD,k. (50)

• The birth model is a multi-Bernoulli with parameter set
{(r(i)

Γ,k, p
(i)
Γ,k)}MΓ,k

i=1 where p
(i)
Γ,k, = 1..., MΓ,k are Gaussian

mixtures of the form

p
(i)
Γ,k(x) =

J
(i)
Γ,k∑

j=1

w
(i,j)
Γ,k N (x; m(i,j)

Γ,k , P
(i,j)
Γ,k ), (51)

with w
(i,j)
Γ,k , m

(i,j)
Γ,k , P

(i,j)
Γ,k denoting the weights, means

and covariances of the jth component.
For the linear Gaussian multi-target model, the following

two subsections present a closed form solution to the CB-
MeMBer recursion by showing how the posterior density is
analytically propagated in time.

1) Prediction: Suppose that at time k − 1 the
(multi-Bernoulli) posterior multi-target density πk−1 =
{(r(i)

k−1, p
(i)
k−1)}Mk−1

i=1 is given and each probability density
p
(i)
k−1, i = 1, ..., Mk−1, is comprised of Gaussian mixtures of

the form

p
(i)
k−1(x) =

J
(i)
k−1∑

j=1

w
(i,j)
k−1N (x;m(i,j)

k−1 , P
(i,j)
k−1 ).

Then, the predicted (multi-Bernoulli) multi-target density
πk|k−1 = {(r(i)

P,k|k−1, p
(i)
P,k|k−1)}

Mk−1
i=1 ∪{(r(i)

Γ,k, p
(i)
Γ,k)}MΓ,k

i=1 can

be computed as follows: (r(i)
Γ,k, p

(i)
Γ,k), i, ...,MΓ,k are given by

the birth model (51), while

r
(i)
P,k|k−1 = r

(i)
k−1pS,k, (52)

p
(i)
P,k|k−1(x) =

∑J
(i)
k−1

j=1 w
(i,j)
k−1N(x;m(i,j)

P,k|k−1, P
(i,j)

P,k|k−1), (53)

where

m
(i,j)
P,k|k−1 = Fk−1m

(i,j)
k−1 ,

P
(i,j)
P,k|k−1 = Qk−1 + Fk−1P

(i,j)
k−1 FT

k−1.

2) Update: Suppose that at time k the predicted
(multi-Bernoulli) multi-target density πk|k−1 =
{(r(i)

k|k−1, p
(i)
k|k−1)}

Mk|k−1
i=1 is given and each probability

density p
(i)
k|k−1, i = 1, ..., Mk−1, is comprised of Gaussian

mixtures of the form

p
(i)
k|k−1(x) =

J
(i)
k|k−1∑

j=1

w
(i,j)
k|k−1N (x; m(i,j)

k|k−1, P
(i,j)
k|k−1).

Then, (the multi-Bernoulli approximation of) the updated den-
sity πk = {(r(i)

L,k, p
(i)
L,k)}Mk|k−1

i=1 ∪ {(rU,k(z), pU,k(·; z))}z∈Zk

can be computed as follows

r
(i)
L,k = r

(i)
k|k−1

1− pD,k

1− r
(i)
k|k−1pD,k

, (54)

p
(i)
L,k(x) = p

(i)
k|k−1(x), (55)

r∗U,k(z) =

Mk|k−1∑
i=1

r
(i)
k|k−1(1−r

(i)
k|k−1)%

(i)
U,k(z)

(1−r
(i)
k|k−1pD,k)2

κk(z) +
Mk|k−1∑

i=1

r
(i)
k|k−1%

(i)
U,k(z)

1−r
(i)
k|k−1pD,k

, (56)

p∗U,k(x; z) =

Mk|k−1∑
i=1

J
(i)
k|k−1∑
j=1

w
(i,j)
U,k (z)N(x;m(i,j)

U,k , P
(i,j)
U,k )

Mk|k−1∑
i=1

J
(i)
k|k−1∑
j=1

w
(i,j)
U,k (z)

, (57)

where

%
(i)
U,k(z) = pD,k

∑J
(i)
k|k−1

j=1 w
(i,j)
k|k−1q

(i,j)
k (z)

q
(i,j)
k (z) = N (z;Hkm

(i,j)
k|k−1,HkP

(i,j)
k|k−1H

T
k + Rk),

w
(i,j)
U,k (z) =

r
(i)
k|k−1

1− r
(i)
k|k−1

pD,kw
(i,j)
k|k−1q

(i,j)
k (z),

m
(i,j)
U,k (z) = m

(i,j)
k|k−1 + K

(i,j)
U,k (z −Hkm

(i,j)
k|k−1),

P
(i,j)
U,k = [I −K

(i,j)
U,k Hk]P (i,j)

k|k−1,

K
(i,j)
U,k = P

(i,j)
k|k−1H

T
k

[
HkP

(i,j)
k|k−1H

T
k + Rk

]−1

.

The derivation of the closed form prediction and update
steps involves analytically calculating products of Gaussians
and integrals of Gaussians using the same approach as in [11],
[12]. Full details of this derivation can be found in [15].

Remark: The proposed closed form recursions can easily be
extended to accommodate exponential mixture forms for pS,k

and pD,k, following the same line of arguments as for the
Gaussian Mixture PHD filter in [11]. Simple approximations
such as those proposed in [23], may instead be suitable
for accommodating non-constant pS,k and pD,k in certain
applications. These however, will not be pursued here.

3) Implementation Issues: Notice that the number of Gaus-
sians required to represent the multi-Bernoulli posterior den-
sity exactly increases without bound due to the birth of objects
in the prediction and averaging of hypothesized tracks in the
update. To reduce the number of components, at each time
step pruning of hypothesized tracks is performed by discarding
those with existence probabilities below a threshold P (e.g.
10−3). For each of the remaining tracks, to reduce the number
of components comprising its spatial density, we eliminate
components with weights below a threshold T , and merge
components within a distance U of each other, analogous to the
Gaussian mixture PHD and CPHD filters [11], [12]. In addition
it is necessary to impose a maximum of Jmax components
per hypothesized track, see [11], [12] for the exact meaning
of these parameters.

4) Multi-Target State Estimation: Similar to the SMC im-
plementation, the estimated number of targets can be the
cardinality mean or mode, though the latter is preferred.
Unlike the SMC implementation, estimates other than the
means are possible for individual states. For example, since
each posterior density is a Gaussian mixture, it is possible
to compute the mode (if the Gaussian components are well-
separated this is straightforward). For simplicity we use the
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mean of the Gaussian component with the highest weight in
our numerical study.

5) Closed Form Linearized and Unscented Implementa-
tions: The proposed closed form solution to the CBMeMBer
recursion for linear Gaussian models can be to extended to
accommodate non-linear Gaussian dynamical and observation
models with standard approximation methods. Analogous to
the linearization and unscented transform strategies of the ex-
tended and unscented Kalman filters, we propose the extended
and unscented Kalman CBMeMBer filters respectively. Since
the proposed extensions are conceptually straightforward, we
will not present explicit equations but instead briefly describe
the basic approach for the approximate recursions. For the
extended-Kalman (EK) version, the closed form expressions
for the prediction and update of individual Gaussian com-
ponents are approximated substituting local linearizations of
the non-linear dynamical and observation models respectively.
For the unscented-Kalman (UK) version, the prediction and
update of individual Gaussian components are approximated
by applying the unscented transform to analytically propagate
means and covariances through the non-linear dynamical and
observation models respectively.

V. NUMERICAL STUDIES

In this section, we demonstrate the performance of the
SMC-CBMeMBer and GM-CBMeMBer filters proposed in
Section IV with two separate examples and compare with
the PHD, CPHD and original MeMBer filters. We evaluate
filter performance using the Optimal Sub-Pattern Assignment
(OSPA) multi-target miss-distance. The miss-distance, or error
between the estimated and true state, is fundamental for
the performance evaluation of any filter. We use the OSPA
metric because it jointly captures differences in cardinality
and individual elements between two finite sets in a math-
ematically consistent yet intuitively meaningful way [24]. The
OSPA metric d̄

(c)
p is defined as follows. Let d(c)(x, y) :=

min (c, ‖x− y‖) for x, y ∈ X , and Πk denote the set of
permutations on {1, 2, . . . , k} for any positive integer k. Then,
for p ≥ 1, c > 0, and X = {x1, . . . , xm} and Y =
{y1, . . . , yn} in F(X ),

d̄(c)
p (X, Y ) :=

(
1
n

(
min
π∈Πn

m∑

i=1

d(c)(xi, yπ(i))p + cp(n−m)

))1
p

(58)
if m ≤ n, and d̄

(c)
p (X,Y ) := d̄

(c)
p (Y, X) if m > n; and

d̄
(c)
p (X, Y ) = d̄

(c)
p (Y, X) = 0 if m = n = 0. This distance is

interpreted as a p-th order per-target error, comprising a p-th
order per-target localization error and a p-th order per-target
cardinality error. The order parameter p determines the sensi-
tivity to outliers, and the cut-off parameter c determines the
relative weighting of the penalties assigned to cardinality and
localization errors. The OSPA metric is also easily computable,
for full details see [24].

A. Non-Linear Example Using SMC Implementations

We demonstrate the SMC-CBMeMBer filter and compare
its performance with SMC implementations of the (original)

MeMBer, PHD, CPHD filters in this example. Consider a non-
linear bearings and range example with a time varying number
of targets observed in clutter. The observation region is the half
disc of radius 2000m. A maximum of 10 targets appears on
the scene for any given instant with various births and deaths
throughout the scenario. The true trajectories are shown in
Fig. 1 along with the start and stop positions of each track.
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  2000
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90

120

150

180 0

radius (m)

angle (deg)

Fig. 1. Target trajectories in the rθ plane. Start/Stop positions for each track
are shown with ◦/4.

The following non-linear dynamical and measurement mod-
els are used. A nearly constant turn model having vary-
ing turn rate together with noisy bearings and range mea-
surements is considered. The target state variable xk =
[ x̃T

k , ωk ]T comprises the planar position and velocity x̃T
k =

[ px,k, ṗx,k, py,k, ṗy,k ]T as well as the turn rate ωk. The state
transition model is

x̃k = F (ωk−1)x̃k−1 + Gwk−1

ωk = ωk−1 + ∆uk−1

where

F (ω) =




1 sin ω∆
ω 0 − 1−cos ω∆

ω
0 cos ω∆ 0 − sinω∆
0 1−cos ω∆

ω 1 sin ω∆
ω

0 sin ω∆ 0 cosω∆


, G =




∆2

2 0
T 0
0 ∆2

2
0 ∆


,

wk−1 ∼ N (·; 0, σ2
wI), uk−1 ∼ N (·; 0, σ2

uI), ∆ = 1s, σw =
15m/s2, and σu = π/180rad/s. If detected the observation
is a noisy bearing and range vector given by

zk =

[
arctan(px,k/py,k)√

p2
x,k + p2

y,k

]
+ εk

where εk ∼ N (·; 0, Rk), with Rk = diag([ σ2
θ , σ2

r ]T ),
σθ = (π/180)rad, and σr = 5m. The birth process is a
multi Bernoulli RFS with density πΓ = {(r(i)

Γ , p
(i)
Γ )}4i=1

where r
(1)
Γ = r

(2)
Γ = 0.02, r

(3)
Γ = r

(4)
Γ = 0.03,

p
(i)
Γ (x) = N (x; m(i)

γ , Pγ), m
(1)
γ = [ − 1500, 0, 250, 0 0 ]T ,

m
(2)
γ = [ − 250, 0, 1000, 0 0 ]T , m

(3)
γ =

[ 250, 0, 750, 0 0 ]T , m
(4)
γ = [ 1000, 0, 1500, 0 0 ]T , Pγ =

diag([ 50, 50, 50, 50, 6(π/180) ]T )2. The probability of tar-
get survival and detection are pS,k(x) = 0.99 and pD,k(x) =
0.98N ([px,k, py,k]T ; 0, 60002I2)/N (0; 0, 60002I2)
respectively. Clutter is Poisson with intensity λc = 1.6×10−3

(radm)−1 over the region [0, π]rad × [0, 2000]m (giving an
average of 10 clutter points per scan).
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At each time step in the SMC implementations of the
CBMeMBer and MeMBer filters, a maximum of Lmax = 1000
and minimum of Lmin = 300 particles per hypothesized track
is imposed, with resampling performed so that the number
of particles representing each track is proportional to its
probability of existence. Additionally, pruning of hypothesized
tracks is performed with a weight threshold of P = 10−3 and
a maximum of Tmax = 100 tracks. Fig. 2 plots the x and y
components (versus time) of the measurements, true trajecto-
ries, and SMC-CBMeMBer filter estimates. The plots indicate
that the SMC-CBMeMBer filter is able to identify all target
births and deaths, as well as successfully accommodating non-
linearities. The filter has no difficulty handling target crossings,
in particular the crossing of three targets at time k = 50, and
a another pair at time k = 80.
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Fig. 2. Measurements, true tracks, and SMC-CBMeMBer filter estimates.

1) Monte Carlo Verification: To evaluate the performance
of the SMC-CBMeMBer filter, we compare it with the SMC-
PHD, SMC-CPHD and SMC-MeMBer filters over 1000 Monte
Carlo (MC) trials. At each trial, the same target tracks shown
in Fig. 1 are used but a new set of measurement data
is randomly generated. Fig. 3(a)-(d) shows the mean and
standard deviation of the estimated cardinality distribution
versus time for the filters under study. These results confirm
that the CBMeMBer, PHD and CPHD filters are unbiased in
estimating the number of targets, whereas the MeMBer filter
has a significant positive bias. In addition, the CBMeMBer
filter has a lower variance on its estimated cardinality than
the PHD filter, but has a larger variance than the CPHD
filter. This observation can be attributed to the fact that the
CBMeMBer filter propagates a parameterized approximation
to the posterior cardinality distribution, whereas the PHD filter
propagates only the corresponding mean and the CPHD filter
propagates the entire distribution.

In Fig. 4, the MC averages of the OSPA distance (for p = 1
and c = 300) are shown versus time. It can be seen that
the SMC-CBMeMBer, SMC-CPHD, SMC-PHD and SMC-
MeMBer filters produce average errors of approximately 50m,
60m, 70m, and 160m per-target. These results suggest that
the CBMeMBer filter outperforms the CPHD filter which in
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Fig. 3. Cardinality statistics for the (a) SMC-CBMeMBer filter (b) SMC-
PHD filter (c) SMC-CPHD filter (d) SMC-MeMBer filter

turn outperforms the PHD filter. This is due to the previously
mentioned drawbacks in the way that the latter extract state
estimates. Note also that the error in the CPHD filter is
noticeably lower than in the PHD filter due to the difference in
the variance of their cardinality estimates observed in Fig. 3. It
can also be seen that the MeMBer filter performs significantly
worse than the other filters under consideration. The large
penalty observed here can be attributed to the large cardinality
errors produced by this filter as seen in Fig. 3.
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Fig. 4. OSPA distances for the SMC-CBMeMBer, SMC-PHD, SMC-CPHD
and SMC-MeMBer filters

2) Testing of Limitations: We now briefly discuss the extent
of the limitations of the proposed cardinality-balancing. Since
the CBMeMBer filter is derived under the assumption of
reasonably low clutter, we investigate the breakdown of the
proposed filter by increasing the clutter rate to λc = 8.0 ×
10−3(radm)−1 (giving an average of 50 clutter returns per
scan). 1000 MC trials are again performed for our SMC
implementations. In Fig. 5, the mean and standard deviation
of the estimated cardinality distribution versus time are shown
for all filters under consideration. It can be seen that the
CBMeMBer filter exhibits a noticeable bias, although the
extent of the bias is still significantly less than the MeMBer
filter. In contrast, the CPHD filter remains unbiased in such
conditions, whereas the PHD filter exhibits noticeable signs of
breakdown. Empirically, our experiments have suggested that
the proposed SMC-CBMeMBer filter performs well up to a
clutter intensity of approximately λc = 3.20×10−3(radm)−1
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(giving an average of 20 clutter returns per scan). Above this
value, the bias in the filter’s cardinality estimate becomes
increasingly noticeable.
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Fig. 5. Cardinality statistics for a high clutter rate for (a) SMC-CBMeMBer
filter (b) SMC-PHD filter (c) SMC-CPHD filter (d) SMC- MeMBer filter

3) Overall Evaluation: In Fig. 6, the 1000 MC trial aver-
ages of the OSPA distance (time-averaged over the duration
of the scenario) for the SMC-CBMeMBer, SMC-PHD, SMC-
CPHD and SMC-MeMBer filters are shown against clutter in-
tensities from λc = 0(radm)−1 to λc = 8.0×10−3(radm)−1.
As expected, the miss-distances increase with higher clutter in-
tensities. Moreover, it appears that the SMC-CBMeMBer filter
outperforms the SMC-CPHD filter which in turn outperforms
the SMC-PHD filter (with the latter exhibiting breakdown
at higher clutter), whereas the SMC-MeMBer filter performs
poorly overall (primarily due to cardinality errors). Note that
the result of time-averaging should only be viewed as a broad
indication of filter performance, since the average is likely
to be scenario dependent. The performance over a range of
probability of detection values are not considered since pD,k(·)
is state dependent in this scenario.
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Fig. 6. Time averaged OSPA distances for varying clutter intensity

B. Linear Gaussian Example

We demonstrate the performance of the GM-CBMeMBer
filter and compare it with the GM-MeMBer, GM-PHD and
GM-CPHD filters via the following example. A time varying
number of targets is observed in clutter on a two dimen-
sional surveillance region with dimensions [−1000, 1000]m×

[−1000, 1000]m. A maximum of 10 targets appears on the
scene at any one time, and target births and deaths occur at
various times and locations. The trajectories for each target
are shown in Fig. 7.
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Fig. 7. Target trajectories in the xy plane. Start/Stop positions for each track
are shown with ◦/4.

The following dynamical and measurement models are used.
The target state variable is a vector of planar position and
velocity xk = [ px,k, py,k, ṗx,k, ṗy,k ]T . The single-target
transition model is linear Gaussian specified by

Fk =
[
I2 ∆I2

02 I2

]
, Qk = σ2

ν

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]
,

where In and 0n denote the n×n identity and zero matrices,
∆ = 1s is the sampling period, and σν = 5m/s2 is the
standard deviation of the process noise. The probability of
target survival is pS,k = 0.99. The birth process is multi
Bernoulli with density πΓ = {(rΓ, p

(i)
Γ )}4i=1 where rΓ = 0.03,

p
(i)
Γ (x) = N (x; m(i)

Γ , PΓ), m
(1)
Γ = [ 0, 0, 0, 0 ]T , m

(2)
Γ =

[ 400,−600, 0, 0 ]T , m
(3)
Γ = [ − 800,−200, 0, 0 ]T , m

(4)
Γ =

[ − 200, 800, 0, 0 ]T , PΓ = diag([ 10, 10, 10, 10 ]T )2. The
probability of target detection is pD,k = 0.98. The single-
target measurement model is also linear Gaussian with

Hk =
[
I2 02

]
, Rk = σ2

εI2,

where σε = 10m, is the standard deviation of the mea-
surement noise. Clutter is Poisson with intensity κk(z) =
λcV u(z), where u(·) is a uniform probability density over
the surveillance region, V = 4×106m2 is the ‘volume’ of the
surveillance region, and λc = 2.5 × 10−6m−2 is the clutter
intensity (giving an average of 10 clutter returns per scan).

At each time step in the GM-CBMeMBer and GM-MeMBer
filters, pruning and merging of Gaussian components are per-
formed for each hypothesized track using a weight threshold
of T = 10−5, a merging threshold of U = 4m, and a
maximum of Jmax = 100 components. Additionally, pruning
of hypothesized tracks is performed with a weight threshold
of P = 10−3 and a maximum of Tmax = 100 tracks. In the
GM-PHD, GM-CPHD filters used for comparison, the same
pruning and merging of Gaussian components is performed on
the posterior intensity.
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In Fig. 8, the x and y components of the measurements, true
trajectories and state estimates from the GM-CBMeMBer filter
are shown versus time. These results suggest that the proposed
filter is able to correctly track the individual target motions and
identify the various target births and deaths throughout. The
filter also has no difficulty handling crossings of three targets
at time k = 40, and two targets at time k = 60.
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Fig. 8. Measurements, true tracks, and GM-CBMeMBer filter estimates.

1) Monte Carlo Verification: We verify the performance of
the GM-CBMeMBer filter over 1000 Monte Carlo (MC) trials
with the one fixed set of target tracks but randomly generated
measurement data. In Fig. 9(a)-(d), the mean and standard
deviation of the estimated cardinality distribution versus time
are shown for the GM-CBMeMBer, GM-PHD, GM-CPHD
and GM-MeMBer filters. Similar to the SMC implementations,
inspection of these results verifies that the CBMeMBer, PHD
and CPHD filters are unbiased in their estimates of the
cardinality, whereas the MeMBer filter is significantly biased.
Again, these results suggest that the CBMeMBer filter has a
lower variance on its estimated cardinality than the PHD filter,
but has a larger variance than the CPHD filter.

In Fig. 10, the MC averages of the OSPA distance (for p = 1
and c = 300) are shown for all filters under consideration.
It can be seen that the GM-CPHD, GM-CBMeMBer, GM-
PHD and GM-MeMBer filters settle to errors of approximately
17m, 23m, 23m and 125m per-target. In contrast to the
SMC case, the Gaussian mixture implementations show that
the CBMeMBer filter performs similarly to the PHD filter,
but worse than the CPHD filter. This further consolidates
the observation that the better multi-target state estimation in
the SMC implementation contributes to better performance of
the CBMeMBer filter (relative to the PHD, CPHD filters).
The disparity with CPHD filter can be expected due to
the difference in the variance of their cardinality estimates.
However, the similar performance with the PHD filter, despite
the difference in the variance of their cardinality estimates, is
most likely due to the high SNR in this scenario giving the
PHD filter more of an advantage than usual. Again, the poor
performance of the original MeMBer filter can be expected as
a direct result of its significant cardinality bias.
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Fig. 9. Cardinality statistics for (a) GM-CBMeMBer filter (b) GM-PHD
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Fig. 10. OSPA distances versus time for the GM-CBMeMBer filter, GM-
PHD filter, GM-CPHD filter, GM-MeMBer filter

2) Testing of Limitations: We now briefly demonstrate the
breakdown of the proposed cardinality-balancing by suffi-
ciently increasing the clutter rate to λc = 1.25 × 10−5m−2

(giving an average of 50 clutter returns per scan). Again,
1000 MC trials are performed for the GM implementations.
In Fig. 11, the mean and standard deviation of the estimated
cardinality distribution versus time are shown for all filters.
The CBMeMBer filter now exhibits a noticeable bias which
is still significantly smaller than the MeMBer filter, but it
is clear that the PHD and CPHD filters remain unbiased in
these conditions. Empirically, the proposed GM-CBMeMBer
filter performs well up to a clutter intensity of approximately
λc = 5.00×10−6m−2, and down to a probability of detection
of approximately pD,k = 0.90.

3) Overall Evaluation: In Fig. 12, the 1000 MC trial av-
erages of the OSPA distance (time-averaged over the duration
of the scenario) for the GM-CBMeMBer, GM-PHD, GM-
CPHD and GM-MeMBer filters are shown for various clutter
intensities from λc = 0m−2 to λc = 1.25 × 10−5m−2.
As expected, the miss-distances increase with higher clutter
intensities. On the whole, these results suggest that the GM-
CBMeMBer filter has performance consistent with that of the
GM-PHD and GM-CPHD filters, whereas the GM-MeMBer
filter performs poorly overall (again due to cardinality errors).

4) EK/UK Approximations: We briefly demonstrate the
proposed EK and UK CBMeMBer approximations using the
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Fig. 12. Time averaged OSPA distances for varying clutter intensity

previous non-linear example. The same target tracks, mea-
surement models, and filter parameters are used except for
setting constant pD,k(x) = 0.98. For one sample run, the
measurements, true tracks, and filter estimates are shown in
x and y coordinates versus time for the EK approximation
in Fig. 13, while the result for the UK approximation is
very similar and not shown. These results suggest that both
proposed approximations are able to cope with the non-
linearities encountered without difficulty.

VI. CONCLUSION

It has been shown analytically that Mahler’s MeMBer filter
has a bias in the number of targets, which vanishes only for
unity probability of detection. A new filter, the CBMeMBer
filter, which eliminates the posterior cardinality bias has been
proposed along with Sequential Monte Carlo and Gaussian
mixture implementations. The CBMeMBer filter has smaller
complexity than the CPHD filter and similar complexity to the
PHD filter. Experiments with linear and nonlinear scenarios
confirm that the proposed filter drastically reduces the cardi-
nality bias. Under low clutter and high probability of detection,
empirical results suggest that, in SMC implementations the
CBMeMBer filter outperforms the CPHD and PHD filters,
whereas in Gaussian mixture implementations the CPHD filter
is still superior and the CBMeMBer can only achieve similar
performance to the PHD filter. Thus, for applications where
Gaussian mixture implementations are not applicable, e.g.

10 20 30 40 50 60 70 80 90 100
−2000

−1000

0

1000

2000

Time

x−
co

or
di

na
te

 (
m

)

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

Time

y−
co

or
di

na
te

 (
m

)

True tracks
Filter Estimates
Measurements

Fig. 13. Measurements, true tracks, and EK/UK-CBMeMBer filter estimates

highly nonlinear dynamic and observation model and/or state-
dependent probability of detection, the SMC-CBMeMBer filter
offers an attractive alternative.
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