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Abstract

NanoCap provides both libraries and a standalone application for the construction of capped nanotubes of
arbitrarily chirality and fullerenes of any radius. Structures are generated by constructing a set of optimal
dual graph topologies which are subsequently optimised using a carbon interatomic potential. Combining this
approach with a GUI featuring 3D rendering capabilities allows for the rapid inspection of physically sensible
structures which can be used as input for molecular simulation.
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1. Introduction

An immediate problem facing computational sci-
entists who wish to model the physical and chemical
properties of fullerenes or non-periodic capped nan-
otubes is the generation of sensible initial atomic co-
ordinates. On one hand, highly symmetric topologies
are readily available, such as icosahedral fullerenes
which can be modified to terminate nanotubes of cer-
tain chiralities. A common example is the capping of
the (5,5) or (9,0) nanotubes with a section of the C60
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fullerene. The construction of capped nanotubes us-
ing this approach is severely limited as the choice of
nanotube chirality is constrained to known fullerene
structures. Alternatively, complete enumeration of
fullerene and cap topologies is possible when treating
the carbon network as a 3-regular graph [1, 2]. How-
ever, as the number of carbon atoms increases, the
number of possible topological arrangements grows
exponentially. As a result, additional optimisation
and analysis is required to produce a set of physically
sensible structures. An application that enabled a
computer modeller to quickly and directly generate
a set of energetically favourable fullerene or capped
nanotube structures would undoubtedly be a useful
tool.

At the time of writing, there are two applica-
tions available which explicitly enable the construc-
tion of fullerenes and capped nanotubes. Nanotube

Modeler [3] is capable of constructing both capped
nanotubes and fullerenes, however options are lim-
ited particularly with regards to nanotube caps where
only five simple chiralities [(9,0), (5,5), (6,6), (10,0)
and (10,10)] are available. A larger number of
fullerene structures are available but it is not possible
to produce fullerene of arbitrarily diameter. The cap-
ping of nanotubes using sections of fullerenes can also
be carried out using generic visualisation and data
manipulation tools such as Virtual NanoLab part of
the Atomistix ToolKit [4].

FullGen [1, 2] part of the CaGe software package
also enables the generation of fullerenes and capped
nanotubes but adopts a purely mathematical ap-
proach. This application is useful for the enumeration
of structures and identifies the associated symmetry
groups. Unlike the application described in this pa-
per, FullGen does not attempt to produce physically
sensible, low energy structures nor does it produce
structures containing heptagons which may be im-
portant for studies of defects.

The fundamental function of the NanoCap applica-
tion is the construction of physically sensible fullerene
and capped nanotube topologies for use in atomistic
computer simulations. To achieve this goal, the al-
gorithms outlined are highly generalised such that
fullerenes of any radius and capped nanotubes of ar-
bitrary chirality can be constructed. Such a level of
generalisation is possible due to the underlying con-
cept behind the approach: the carbon lattice itself
is not constructed but instead construction involves
its dual lattice equivalent. This idea is illustrated

in Fig. 1 which shows the connection between the
carbon network and its face dual lattice triangula-
tion. Notably, the duality demonstrated is reversible,
the ability to generate the triangular mesh allows ex-
traction of the 3-fold coordinate carbon network and
vice-versa. Therefore, construction of the dual lat-
tice implicitly produces a carbon lattice and herein
lies the advantage of this approach; generating the
dual lattice is simpler and faster.

(a) (b) (c)

Carbon atom
Dual lattice point

Figure 1: The connection between the carbon lattice (solid
black spheres) and the face dual representation (larger grey
spheres). (a) A graphene layer. (b) The (5,5) nanotube, which
is constructed by rolling the graphene layer shown in (a). (c)
The C60 fullerene and its dual lattice the truncated icosahe-
dron, which is typically used to cap the (5,5) nanotube. Bonds
are shown between neighbouring carbon atoms.

The reason for the relative ease in which the dual
lattice is produced becomes apparent when consider-
ing the lattice as close packed arrangement of spheres.
This arrangement can be constructed by maximis-
ing the distance between the centre point of each
sphere. A way of achieving this is to assign a re-
pulsive potential energy function to each point and
minimise the net total energy. This approach is anal-
ogous to a well studied problem, The Thomson Prob-
lem [5, 6, 7, 8, 9, 10, 11, 12, 13], which concerns the
minimum energy arrangement of point charges on the
surface of a sphere.

The applicability of the proposed algorithm was
recently demonstrated through the construction and
examination of caps for nanotubes of various chiral-
ities [14]. The reader is directed to this study for
an overview of literature specific to the construction
of nanotube caps. Using Density Functional Tight
Binding (DFTB) to accurately model the carbon sys-
tem, this work validated the ability of the approach to
produce low energy cap topologies. This conclusion
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emphasised the value of the approach and provided
the motivation for the development of NanoCap.

2. Algorithm Flow Chart

An overview of the algorithms present in NanoCap

is shown in Fig. 2. The core procedures (represented
by rectangles with double-struck vertical edges) vary
in complexity but fundamentally involve the creation,
manipulation or analysis of point sets. Each routine
is described in the proceeding sections following the
order illustrated in Fig. 2.

3. Fullerene Dual Lattice Initialisation

The initial set of fullerene dual lattice points are
produced by randomly distributing points on the
sphere. This is achieved by drawing two random
numbers, z0=[−1,1] and t0=[0,2π], which are then
used to construct the cartesian coordinates:

xi =
√

1− z0 cos(t0)
yi =

√
1− z0 sin(t0)

zi = z0

(1)

During the dual lattice optimisation process, a sin-
gle point is fixed at the pole to constrain the rota-
tional degrees of freedom of the system during the
search for alternate structures. An additional point
may also be held on the equator to further reduce the
generation of symmetry equivalent structures.

4. Nanotube Dual Lattice Initialisation

Algorithms for the generation of uncapped nan-
otubes are well documented [15, 16] and typically
concern the construction nanotubes that are peri-
odic along the tube axis. However, producing finite
capped nanotubes removes the requirement of such
periodicity and a simpler approach to nanotube gen-
eration can be adopted. Fundamentally, the construc-
tion of a nanotube involves the transformation from
a single 2D sheet of graphene. To correspond to the
eventual construction of the nanotube, the 2D axis
are labelled x and z, where z represents the nanotube
axis. As illustrated in Fig. 3, this sheet is tradition-
ally defined using two lattice vectors a1 and a2:

a1 =
√

3ac
2 (
√

3, 1) (2)

a2 =
√

3ac
2 (
√

3,−1) (3)
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Figure 2: Flow diagram for the construction of a carbon
fullerene or capped nanotube. Each core process (represented
by rectangles with double-struck vertical edges) is explained in
the text. In the above diagram, Nu indicates the number of
unique structures to be found. Nmax limits the minima search-
ing procedure.
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Fig. 2.An unrolled nanotube unit cell projected on the graphene layer. When the nanotube is rolled up, the chiral vector !Ch turns into the circumference
of the cylinder, and the translation vector !T is aligned along the cylinder axis. !R is the symmetry vector (Section 2.4) and ! is the chiral angle. The
unit vectors (!a1, !a2) of the graphene layer are indicated in the figure along with the inequivalent A and B sites within the unit cell of the graphene
layer given by a hexagon. The unit cell of the nanaotube is defined by the rectangle delimited by the vectors !Ch and !T [3].

circumference of the cylinder when the graphene layer is rolled up into a tube. The chiral vector can be written in the
form !Ch = n!a1 + m!a2, where the vectors !a1 and !a2 bound the unit cell of the graphene layer, which contains the two
distinct carbon atom sites A and B. The values of n and m are arbitrary integer numbers which uniquely characterize
the nanotube structure. In the shortened (n, m) form, the chiral vector is written as a pair of integers, and the same
notation is widely used to characterize the geometry of each distinct (n, m) nanotube [3].

The nanotube can also be characterized by its diameterdt and chiral angle!, which determine the lengthCh=| !Ch|="dt

of the chiral vector and its orientation on the graphene layer (see Fig. 2). Both dt and ! are expressed in terms of the
indices n and m by the relations dt = a

√
n2 + nm + m2/" and tan ! =

√
3m/(2n + m), as one can derive from

Fig. 2, where a =
√

3aC−C =0.246 nm is the lattice constant for the graphene layer and aC−C =0.142 nm is the nearest
neighbor C.C distance. As an example, the chiral vector !Ch shown in Fig. 2 is given by !Ch = 4!a1 + 2!a2, and thus the
corresponding nanotube can be identified by the pair of integers (n, m) = (4, 2). Due to the six-fold symmetry of the
graphene layer, all non-equivalent nanotubes can be characterized by the (n, m) pairs of integers where 0�m�n. It
is also possible to define nanotubes with opposite handedness, for which 0�n�m [9]. The nanotubes are classified
as chiral (0 < m < n) and achiral (m = 0 or m = n), which in turn are known as zigzag (m = 0) and armchair (m = n)
nanotubes (see Figs. 1 and 2). A (4, 2) nanotube is one of the smallest diameter nanotubes ever synthesized [10].

It should be mentioned here that, for small diameter nanotubes (dt < 1 nm), the geometrical structure of the nanotube
will be slightly different from that of a rolled up graphene layer. For a correct description of the nanotube properties,
it is necessary to take the geometrical structure relaxation due to the curvature effect into account [11,12].

2.2. Lattice vectors in real space

To specify the symmetry properties of carbon nanotubes as 1D systems, it is necessary to define the lattice vector
or translation vector !T along the nanotube axis and normal to the chiral vector !Ch defined in Fig. 2. The vectors !T
and !Ch define the unit cell of the 1D nanotube. The translation vector !T , of a general chiral nanotube as a function
of n and m, can be written as !T = t1 !a1 + t2 !a2, where t1 = (2m + n)/dR and t2 = −(2n + m)/dR . The length of the
translation vector is T =

√
3Ch/dR , where d is the greatest common divisor of (n, m) (denoted by gcd(n, m)), and dR

is the greatest common divisor of 2n + m and 2m + n. Then d and dR are related by [3]

dR =
{

d if n − m is not a multiple of 3d,

3d if n − m is a multiple of 3d.
(1)

Figure 1: Defintion of the graphene layer used for nanotube
construction. Bonds are shown between neighbouring carbon
atoms. Circles inside hexagons represent the dual lattice con-
struction of the graphene layer

mirror plane symmetry when compared to chiral
[Ch=(n, m)] nanotubes.

Perpendicular to Ch is the vector that defines the
axial length of the nanotube unit cell, T. Although
not necessary for cap construction, T is defined such
that the nanotube is periodic along the nanotube
axis. As a result the magnitude of T and thus the
length of the uncapped nanotube depends directly
on Ch. For example, the achiral nanotubes have a
significantly smaller unit cell length than chiral nan-
otubes, particularly when the greatest common divi-
sor of (n, m) equals unity. The definition of T

T = t1a1 + t2a2 (6)

where the coe�cients t1 and t2 are defined in the work
of Saito et al..

The vectors Ch and T now form a new basis in
which each of the atoms in the nanotube can be de-
fined. The position of each atom is given by a sym-
metry vector R,

R = pa1 + qa2 (7)

where the coe�cients p and q are derived as in the
work of Saito et al. Using the 2 atom basis of the
graphene lattice, the position of the i-th A atom is
defined simply as iR. The B atom is then o↵set from
this position along a proportion of Ch and T. All
atom positions are generated from i=0 to Nhex, where
Nhex is the number of hexagons in the graphene sheet.
Application of the symmetry vector R to all sites un-

doubtedly generates coordinates outside of the nan-
otube cell. When this occurs, positions are wrapped
using T.

As introduced previously, the algorithm for cap
construction is based upon solving the Thomson
problem using the dual lattice presentation of the
graphene network. Therefore, only the centres of
each hexagon which make up the dual lattice are re-
quired as input, not the carbon atoms. This gives
Ntube

T =Nhex dual lattice points associated with the
uncapped nanotube.

To determine position of each dual lattice point,
only minor modifications of the algorithm proposed
by Saito et al. are required. To construct the 3D
coordinates of each dual lattice point it is useful to
define the following angles:
(a) the angle between a1 and R:

✓a1
6 R = (8)

(b) the angle between Ch and R

✓Ch
6 R = (9)

(c) the angle of the i-th A atom around the nanotube
circumference �A (projection of the i-th atoms posi-
tion onto Ch):

�A = i
2⇡

Nhex
(10)

(d) the additional angle from an A atom to a B atom
(�B) and to the centre of a hexagon (�hex) is given
by:

� =
ac · cos

⇥
⇡
6 � ✓Ch

⇤

|Ch|
�B =

2⇡

�
�hex = 2�B

(11)

The boundary along R with respect to periodic wrap-
ping is defined as:

Rm =
|T|

sin(✓Ch
6 R)

(12)

which is used to wrap positions of A atoms that leave
the nanotube unit cell. The additional distance along
T to the centre of a hexagon is given by:

�B = ac · sin
h⇡
6
� ✓Ch

i

�hex = 2�B

(13)

2

0°

Figure 3: Definition of the 2D graphene lattice used for nan-
otube construction. Bonds are shown between neighbouring
carbon atoms. Circles inside hexagons represent the triangular
dual lattice of the graphene sheet. Example shown is the unit
cell of the (4,2) nanotube.

The magnitude of C gives the circumference of the
nanotube and as such the position of any point pro-
jected onto C is proportional to the angle around the
nanotube. The cylindrical radius of the nanotube rt

is also defined by C:

rt =
|C|
2⇡

(5)

which is used to determine the scaling factor � to
reduce the nanotube to a cylinder of unit radius.
(�=1/rt).

The angle C subtends with the axis of the graphene
sheet is labelled the chiral angle ✓C as shown in
Fig 3. Two special cases of nanotube are constructed
when ✓C equals 0� [C=(n, 0)] and 30� [C=(n, n)].
These achiral nanotubes are known as the zigzag and
armchair respectively and have additional mirror
plane symmetry when compared to chiral [C=(n, m)]
nanotubes.

Perpendicular to C is the vector T that defines the
axial length of the nanotube unit cell. Although not
necessary for cap construction, T is defined such that
the nanotube is periodic along the nanotube axis. As
such, T extends to the atom corresponding to the
first atom at the origin of 2D unit cell and is given in
terms of a1 and a2:

T = t1a1 + t2a2 (6)

As T defines the smallest periodic unit, the coe�-
cients t1 and t2 have no common divisors except for
unity and are given by:

t1 = (2m + n)/dR

t2 = �(2n + m)/dR

dR = gcd(2n + m, 2m + n)

(7)

where gcd is a function that returns the greatest com-
mon divisor.

The vectors C and T now form a new basis in which
each of the atoms in the nanotube can be defined.
Construction is simplified further by the introduction
of the symmetry vector R, which can be defined in
terms of C and T or more conveniently in terms of
a1 and a2:

R = pa1 + qa2 (8)

where the coe�cients p and q are derived as in the
work of Saito et al. Using this vector the position of
the i-th A atom is defined simply as iR. All other
points in the basis, including the B atom are then
o↵set from this position along a proportion of C and
T. All atom positions are generated from i=0 to NH,
where NH is the number of hexagons in the graphene
sheet:

NH = 2(n2 + m2 + nm)/dR (9)

When the application of the symmetry vector gen-
erates coordinates outside of the nanotube cell posi-
tions are wrapped using the appropriate projection
onto C and T.

As introduced previously, the algorithm for cap
construction is based upon solving the Thomson
problem using the dual lattice presentation of the
graphene network. Therefore, the two atom basis is
modified to incorporate a dual lattice point, which
is positioned in the centre of a hexagon as shown in
Fig 4. Upon construction of the nanotube, this gives
Ntube

D =NH dual lattice points. In addition to the gen-
eration of carbon atoms and dual lattice points, three
other basis points are constructed. These points rep-
resent intersections of local carbon bonds (which are
also located at intersections of neighbouring dual lat-
tice points) and are denoted I1 to I3. Each of these
points represents a potential C2 axis of rotational
symmetry once the 3D nanotube is constructed. This
is useful in later routines involving transformations
of the final cap structure. The full basis is shown
in Fig 4 and by translation using R produces all the
points required for nanotube construction.
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Figure 3: Definition of the 2D lattice points P used for nan-
otube construction. At each point, the basis shown in Fig. 4
is constructed. Points are constructed in rows along the chiral
vector as indicated by the graduated colour scale. Example
chiral vector shown is for the (4,2) nanotube.

where ac is the carbon bond length of 1.421 Å.
The properties, symmetry and caps of a nanotube

depend on the orientation of the underlying graphene
sheet. To describe this orientation, a vector is intro-
duced, namely the chiral vector C which is defined in
terms of a1 and a2:

C = (n,m) = na1 +ma2 (4)

The magnitude of C gives the circumference of the
nanotube and as such the cylindrical radius rt is given
by:

rt =
|C|
2π

(5)

which is used to determine the scaling factor γ to
reduce the nanotube to a cylinder of unit radius.
(γ=1/rt).

The angle C subtends with the axis of the graphene
sheet is labelled the chiral angle θC as shown in
Fig. 3. Two special cases of nanotube are constructed
when θC equals 0◦ [C=(n, 0)] and 30◦ [C=(n, n)].
These achiral nanotubes are known as the zigzag and
armchair respectively and have additional mirror
plane symmetry when compared to chiral [C=(n,m)]
nanotubes.

Perpendicular to C is the vector T that defines the
axial direction of the nanotube:

T = (−Cz,Cx) (6)

The vectors Ĉ and T̂ form a new orthonormal coor-
dinate system that can be used to align the nanotube

with the cartesian axis.
The construction of each point P in the 2D

graphene lattice is carried out row by row along C.
These rows are indicated in Fig. 3 and contain n+m
points. The points in each row are produced itera-
tively, with the point at iteration i given by:

Pi = nia1 +mia2 (7)

with (ni,mi) ranging from (0,0) to (n,m). The in-
crementation of mi or ni is dependent on:

ni++ if mi/(2ni +mi) > m/(2n+m)
mi++ if mi/(2ni +mi) ≤ m/(2n+m)

(8)

Each new row is translated in the z direction by√
3ac. Rows of points are continually added until the

current length of the nanotube surpasses a user de-
fined length. The minimum length is governed by the
force cutoff described in Section 6.1 which is propor-
tional to the density of dual lattice points in the cap.
Performing the capping procedure with the short-
est nanotube possible significantly reduces compu-
tational expensive, particularly in triangulation and
rendering routines.

At each point in the 2D nanotube lattice basis
points are required as shown in Fig. 4. The carbon
atoms although not needed by NanoCap are produced
by default. For each point P at position (px, pz), the
position of the A and B carbon atoms are given by:

A = (px, pz) (9)

B = (px + ac, pz) (10)

The dual lattice point D which is fundamental to
the operation of NanoCap is simply offset along the x
direction to the centre of a hexagon:

D = (px + 2ac, pz) (11)

The final three points labelled I1−3 represent a po-
tential C

′
2 axis of rotational symmetry once the 3D

nanotube is constructed. The position of these points
on the 2D lattice are given by:

I1 = (px + ac/2, pz) (12)

I2 = (px + 5ac/4, pz +
√

3ac/4) (13)

I3 = (px + 5ac/4, pz −
√

3ac/4) (14)

These points are used to align the 2D lattice such
that once in 3D, there exists a simple 180◦ rotation
to map one end of the nanotube to the other. This
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Fig. 2.An unrolled nanotube unit cell projected on the graphene layer. When the nanotube is rolled up, the chiral vector !Ch turns into the circumference
of the cylinder, and the translation vector !T is aligned along the cylinder axis. !R is the symmetry vector (Section 2.4) and ! is the chiral angle. The
unit vectors (!a1, !a2) of the graphene layer are indicated in the figure along with the inequivalent A and B sites within the unit cell of the graphene
layer given by a hexagon. The unit cell of the nanaotube is defined by the rectangle delimited by the vectors !Ch and !T [3].

circumference of the cylinder when the graphene layer is rolled up into a tube. The chiral vector can be written in the
form !Ch = n!a1 + m!a2, where the vectors !a1 and !a2 bound the unit cell of the graphene layer, which contains the two
distinct carbon atom sites A and B. The values of n and m are arbitrary integer numbers which uniquely characterize
the nanotube structure. In the shortened (n, m) form, the chiral vector is written as a pair of integers, and the same
notation is widely used to characterize the geometry of each distinct (n, m) nanotube [3].

The nanotube can also be characterized by its diameterdt and chiral angle!, which determine the lengthCh=| !Ch|="dt

of the chiral vector and its orientation on the graphene layer (see Fig. 2). Both dt and ! are expressed in terms of the
indices n and m by the relations dt = a

√
n2 + nm + m2/" and tan ! =

√
3m/(2n + m), as one can derive from

Fig. 2, where a =
√

3aC−C =0.246 nm is the lattice constant for the graphene layer and aC−C =0.142 nm is the nearest
neighbor C.C distance. As an example, the chiral vector !Ch shown in Fig. 2 is given by !Ch = 4!a1 + 2!a2, and thus the
corresponding nanotube can be identified by the pair of integers (n, m) = (4, 2). Due to the six-fold symmetry of the
graphene layer, all non-equivalent nanotubes can be characterized by the (n, m) pairs of integers where 0�m�n. It
is also possible to define nanotubes with opposite handedness, for which 0�n�m [9]. The nanotubes are classified
as chiral (0 < m < n) and achiral (m = 0 or m = n), which in turn are known as zigzag (m = 0) and armchair (m = n)
nanotubes (see Figs. 1 and 2). A (4, 2) nanotube is one of the smallest diameter nanotubes ever synthesized [10].

It should be mentioned here that, for small diameter nanotubes (dt < 1 nm), the geometrical structure of the nanotube
will be slightly different from that of a rolled up graphene layer. For a correct description of the nanotube properties,
it is necessary to take the geometrical structure relaxation due to the curvature effect into account [11,12].

2.2. Lattice vectors in real space

To specify the symmetry properties of carbon nanotubes as 1D systems, it is necessary to define the lattice vector
or translation vector !T along the nanotube axis and normal to the chiral vector !Ch defined in Fig. 2. The vectors !T
and !Ch define the unit cell of the 1D nanotube. The translation vector !T , of a general chiral nanotube as a function
of n and m, can be written as !T = t1 !a1 + t2 !a2, where t1 = (2m + n)/dR and t2 = −(2n + m)/dR . The length of the
translation vector is T =

√
3Ch/dR , where d is the greatest common divisor of (n, m) (denoted by gcd(n, m)), and dR

is the greatest common divisor of 2n + m and 2m + n. Then d and dR are related by [3]

dR =
{

d if n − m is not a multiple of 3d,

3d if n − m is a multiple of 3d.
(1)

Figure 1: Defintion of the graphene layer used for nanotube
construction. Bonds are shown between neighbouring carbon
atoms. Circles inside hexagons represent the dual lattice con-
struction of the graphene layer

mirror plane symmetry when compared to chiral
[Ch=(n, m)] nanotubes.

Perpendicular to Ch is the vector that defines the
axial length of the nanotube unit cell, T. Although
not necessary for cap construction, T is defined such
that the nanotube is periodic along the nanotube
axis. As a result the magnitude of T and thus the
length of the uncapped nanotube depends directly
on Ch. For example, the achiral nanotubes have a
significantly smaller unit cell length than chiral nan-
otubes, particularly when the greatest common divi-
sor of (n, m) equals unity. The definition of T

T = t1a1 + t2a2 (6)

where the coe�cients t1 and t2 are defined in the work
of Saito et al..

The vectors Ch and T now form a new basis in
which each of the atoms in the nanotube can be de-
fined. The position of each atom is given by a sym-
metry vector R,

R = pa1 + qa2 (7)

where the coe�cients p and q are derived as in the
work of Saito et al. Using the 2 atom basis of the
graphene lattice, the position of the i-th A atom is
defined simply as iR. The B atom is then o↵set from
this position along a proportion of Ch and T. All
atom positions are generated from i=0 to Nhex, where
Nhex is the number of hexagons in the graphene sheet.
Application of the symmetry vector R to all sites un-

doubtedly generates coordinates outside of the nan-
otube cell. When this occurs, positions are wrapped
using T.

As introduced previously, the algorithm for cap
construction is based upon solving the Thomson
problem using the dual lattice presentation of the
graphene network. Therefore, only the centres of
each hexagon which make up the dual lattice are re-
quired as input, not the carbon atoms. This gives
Ntube

T =Nhex dual lattice points associated with the
uncapped nanotube.

To determine position of each dual lattice point,
only minor modifications of the algorithm proposed
by Saito et al. are required. To construct the 3D
coordinates of each dual lattice point it is useful to
define the following angles:
(a) the angle between a1 and R:

✓a1
6 R = (8)

(b) the angle between Ch and R

✓Ch
6 R = (9)

(c) the angle of the i-th A atom around the nanotube
circumference �A (projection of the i-th atoms posi-
tion onto Ch):

�A = i
2⇡

Nhex
(10)

(d) the additional angle from an A atom to a B atom
(�B) and to the centre of a hexagon (�hex) is given
by:

� =
ac · cos

⇥
⇡
6 � ✓Ch

⇤

|Ch|
�B =

2⇡

�
�hex = 2�B

(11)

The boundary along R with respect to periodic wrap-
ping is defined as:

Rm =
|T|

sin(✓Ch
6 R)

(12)

which is used to wrap positions of A atoms that leave
the nanotube unit cell. The additional distance along
T to the centre of a hexagon is given by:

�B = ac · sin
h⇡
6
� ✓Ch

i

�hex = 2�B

(13)

2

0°

Figure 3: Definition of the 2D graphene lattice used for nan-
otube construction. Bonds are shown between neighbouring
carbon atoms. Circles inside hexagons represent the triangular
dual lattice of the graphene sheet. Example shown is the unit
cell of the (4,2) nanotube.

The magnitude of C gives the circumference of the
nanotube and as such the position of any point pro-
jected onto C is proportional to the angle around the
nanotube. The cylindrical radius of the nanotube rt

is also defined by C:

rt =
|C|
2⇡

(5)

which is used to determine the scaling factor � to
reduce the nanotube to a cylinder of unit radius.
(�=1/rt).

The angle C subtends with the axis of the graphene
sheet is labelled the chiral angle ✓C as shown in
Fig 3. Two special cases of nanotube are constructed
when ✓C equals 0� [C=(n, 0)] and 30� [C=(n, n)].
These achiral nanotubes are known as the zigzag and
armchair respectively and have additional mirror
plane symmetry when compared to chiral [C=(n, m)]
nanotubes.

Perpendicular to C is the vector T that defines the
axial length of the nanotube unit cell. Although not
necessary for cap construction, T is defined such that
the nanotube is periodic along the nanotube axis. As
such, T extends to the atom corresponding to the
first atom at the origin of 2D unit cell and is given in
terms of a1 and a2:

T = t1a1 + t2a2 (6)

As T defines the smallest periodic unit, the coe�-
cients t1 and t2 have no common divisors except for
unity and are given by:

t1 = (2m + n)/dR

t2 = �(2n + m)/dR

dR = gcd(2n + m, 2m + n)

(7)

where gcd is a function that returns the greatest com-
mon divisor.

The vectors C and T now form a new basis in which
each of the atoms in the nanotube can be defined.
Construction is simplified further by the introduction
of the symmetry vector R, which can be defined in
terms of C and T or more conveniently in terms of
a1 and a2:

R = pa1 + qa2 (8)

where the coe�cients p and q are derived as in the
work of Saito et al. Using this vector the position of
the i-th A atom is defined simply as iR. All other
points in the basis, including the B atom are then
o↵set from this position along a proportion of C and
T. All atom positions are generated from i=0 to NH,
where NH is the number of hexagons in the graphene
sheet:

NH = 2(n2 + m2 + nm)/dR (9)

When the application of the symmetry vector gen-
erates coordinates outside of the nanotube cell posi-
tions are wrapped using the appropriate projection
onto C and T.

As introduced previously, the algorithm for cap
construction is based upon solving the Thomson
problem using the dual lattice presentation of the
graphene network. Therefore, the two atom basis is
modified to incorporate a dual lattice point, which
is positioned in the centre of a hexagon as shown in
Fig 4. Upon construction of the nanotube, this gives
Ntube

D =NH dual lattice points. In addition to the gen-
eration of carbon atoms and dual lattice points, three
other basis points are constructed. These points rep-
resent intersections of local carbon bonds (which are
also located at intersections of neighbouring dual lat-
tice points) and are denoted I1 to I3. Each of these
points represents a potential C2 axis of rotational
symmetry once the 3D nanotube is constructed. This
is useful in later routines involving transformations
of the final cap structure. The full basis is shown
in Fig 4 and by translation using R produces all the
points required for nanotube construction.

4

A B D

I2

I1 I3

T

C

x

z

a1

a2

Figure 4: Basis positions of the atoms and points associated
with the 2D nanotube sheet. A and B represent the carbon
atoms, D indicates the position of the dual lattice point and
I1−3 give the three intersections of carbon-carbon bonds which
represent C

′
2 rotational axis of symmetry once the 3D tube

is constructed. Repeating this basis for each 2D lattice point
generates all atoms and points required for the nanotube cap
construction.

is achieved by determining the point which intersects
with the perpendicular bisector to T. This point is
used to shift the 2D lattice such that 3D x axis of the
nanotube is inline with the C

′
2 axis of rotation.

Once constructed the 2D lattice is reorientated
such that Ĉ and T̂ align with the x and z cartesian
axis. The dual lattice points are then shifted in the
z direction such that the boundary is at z=0.

The transformation of the 2D lattice points into
the 3D nanotube is straightforward. As the z position
remains the same in 3D as in 2D, the only coordinate
to consider is along the x axis. The position of each
point i along the 2D x-axis gives the angle around
the circumference of the nanotube:

θi = 2π
x2D
i

|C| (15)

This angle is used to determine the cartesian coordi-
nates of each point in the 3D xy plane:

xi = rt cos(θi)
yi = rt sin(θi)

(16)

Once created, the dual lattice is scaled to a unit
cylinder using γ defined previously. The dual lattice
points belonging to the nanotube are held fixed dur-
ing the minimisation process.

5. Cap Dual Lattice Initialisation

Upon construction of the nanotube of the required
chirality, the number of dual lattice points in the tube
are used to estimate the number of points that should
be used in the generation of the caps. This estimate is
extrapolated from the density of dual lattice points in
the nanotube. It should be noted that for nanotubes
that have a small radius, this estimate will be lower
than the ideal number of points. For all cases of cap
construction it is recommended to sample a range of
dual lattice points, either side of the estimated num-
ber.

Generation of the initial cap points is carried out
in a similar manner to that described for the initial-
isation of the fullerene dual lattice. The points are
produced along the negative z coordinate, attaching
to the nanotube at z=0. This is achieved by mod-
ifying equation 1 such that z0=[−1,0]. These dual
lattice points belonging to the cap are free to move
during the minimisation process.

Currently, a single cap is constructed at one end
of the nanotube which is then rotated 180◦ about
the x axis to cap the alternate end. This is possi-
ble due to the alignment of the C

′
2 axis with the x

axis during the construction of the nanotube. Pro-
ducing identical caps at either end of the nanotube
is important when determining cap energies as in our
previous work [14]. As an alternative, different caps
could be produced by repeating the initialisation, op-
timisation and triangulation processes for each end
of the nanotube. Currently, the NanoCap software is
constrained to produce identical cap structures.

6. Dual Lattice Optimisation

As introduced previously, optimising the dual lat-
tice corresponds to finding a solution to the Thomson
problem. For a given set of ND points, this involves
minimising the total potential energy:

φ =

ND∑

i=1

ND∑

j=i+1

1

|ri − rj|
(17)

which is analogous to the total electrostatic energy of
a system of point charges. The algorithm outlined in
the present work centres around minimising this po-
tential energy for the dual lattice points constructed
for either the fullerene or capped nanotube topolo-
gies. The process of minimisation of the fullerene
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dual lattice points is directly in line with traditional
approaches to solving the Thomson problem. At each
iteration of the minimisation algorithm, the points
are normalised back to the surface of the sphere. In
addition, the radial component of force is removed
from each atom, ensuring all forces act tangentially
to the sphere’s surface.

The algorithm adopted for the minimisation
of the dual lattice is an implementation of the
limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method [17, 18, 19] as included in the
SciPy optimisation libraries [21]. The method cir-
cumvents direct calculation of the Hessian matrix by
continual updates and corrections during optimisa-
tion.

6.1. Modifications for Capping Nanotubes

In contrast to the fullerene dual lattice minimisa-
tion which is a direct analogue to solving the Thom-
son problem, the optimisation procedure associated
with the capped nanotube dual lattice requires im-
portant modifications. Firstly, only the cap dual lat-
tice points are free to move during minimisation, with
the points generated on the tube held fixed. The im-
plementation of this is trivial and involves the multi-
plication of the force by a binary mask of length 3ND,
which contains zeros for the fixed points. A further
adaption of the minimisation process specific to cap-
ping nanotubes is the surface to which the points are
normalised. Dependent on which side of the tube-cap
boundary a point lies, it is either scaled to the unit
hemisphere or cylinder. This is an important feature
as it allows cap points to move into the nanotube re-
gion, which is a necessity for highly chiral tubes where
the tube boundary may be coarse.

A final and vital modification specific to capping
nanotubes is associated with the range of the poten-
tial energy function. The introduction of the tube
points which are held fixed generates a significant
net repulsion towards the cap points. For long nan-
otubes, this can cause clustering of the cap points
at the apex of cap. There are two solutions to this
problem; truncate the potential at a given pair sepa-
ration or restrict the number of tube points included
in the force evaluation. Using the first option, cap
points were found to penetrate the tube resulting in
the need for different truncation criteria for the cap
and tube points. The second option was found to be
much more reliable and involved fewer modifications
to the generalised optimisation routines implemented

for the fullerene construction. To determine the tube
points involved in the energy minimisation, a cutoff
Zc is introduced along the tube axis which depends
on the number of cap points Ncap

D :

Zc(ρ) = A exp (µρα) , ρ =
Ncap
D

2π
(18)

where A= 0.790378, µ = 1.62583 and α= 0.251753.
Although this cutoff is calculated automatically by
default, it can be manually overridden in situations
where the cap density is significantly greater than the
tube density.

7. Escaping Minima

As discussed in the literature regarding finding so-
lutions to the Thomson problem, as the number of
points increases the number of local minima grows
exponentially [22]. For this reason, the code includes
a tool for minima searching. This involves looping
through the procedures for dual lattice minimisation,
triangulation and if selected, the minimisation of the
resulting carbon lattice using a physical carbon po-
tential. The user defines the extent of the search by
inputting the number of required unique minima and
the maximum number of minima to search. After
each successful minimisation, there are several op-
tions to escape the local potential energy basin. The
two simplest methods are to either randomly offset
the dual lattice points from the minima or to reset
them completely. Resetting the structures can be
very effective for systems with a large number of well
separated local minima and can be quick to produce
a multitude of structures. Randomly offsetting the
dual lattice points is also effective and the minimi-
sation process is typically quicker than a complete
reset due to the closer proximity to a minimum. Im-
portantly the perturbation is constrained to be tan-
gential to the surface of either the sphere or cylinder.
Also, in the case of nanotube cap generation, care
is taken as to ensure no cap points are offset into
the tube as points may become too close to the fixed
points belonging to the tube. This ensures sensible
initial forces during optimisation. The magnitude of
the random tangential perturbation is determined by
the nearest neighbour separation of the current set of
points.

Although fast, resetting or offsetting the system in
the hope to find a new basin is not reliable and can
result in revisiting the same minima, particularly if
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the system is in a wide basin. Therefore as a final
option, the system with position vector R can escape
the current minimum by iteratively climbing out of
the basin following the gradient of the potential or
the negative direction of force F:

Ri+1 = Ri − αFi (19)

where i denotes the iteration number and α is a vari-
able step size dependent on the change in the magni-
tude of force per iteration. When the system leaves
the vicinity of the current basin, the projection of
force onto the separation vector changes sign:

(Ri+1 −Ri) · Fi (20)

This ensures the system visits a new basin, although
does not guarantee the resultant structure will be
symmetrically unique. As the algorithm only requires
a method of escaping a minimum, advanced saddle
point finding methods are not required.

Currently, structures are determined to be unique
by comparison of the total dual lattice energy. Fu-
ture revisions will introduce the detection of symme-
try equivalent structures.

To encourage the sampling of different minima dur-
ing the structure search, an option to add 3ND dimen-
sional Gaussians to the potential energy function has
been implemented. If enabled, after each dual lattice
optimisation stage a Gaussian is placed at the loca-
tion of the new minima. In future steps of the struc-
ture search the total potential energy used during the
dual lattice optimisation then has an additional con-
tribution from previously placed Gaussians. This ad-
ditional potential for each Gaussian g takes the form:

φg(R∆) = H exp
(
−RT

∆AR∆

)

R∆ = R−Rg

(21)

where R and Rg are the 3ND position vectors of the
the dual lattice points and the Gaussian respectively.
The matrix A contains 1/2σ2 on the diagonal. The
height H and width σ of the Gaussian are user de-
fined parameters and should ideally be significantly
smaller than the widths and heights of potential wells
on the dual lattice energy surface. Typical parame-
ters used during development of NanoCap range from
0.1 to 0.5 for systems containing up to a few hundred
dual lattice points. If these parameters are too small
the structure search will take a long time to locate a
new minima, yet clearly if they are too large then the

potential energy surface may be modified to such an
extent that the structure search fails completely.

Gaussian functions were chosen due the simple
form of the derivatives with respect a component of
the position vector rα:

dφg(R∆)

drα
= φg(R∆) · d

(
−RT

∆AR∆

)

drα
(22)

which allows for fast force evaluation.

8. Triangulation

Upon successful termination of the minimisation
process, the dual lattice points represent a mini-
mum energy structure with regards to the potential
in Eq. 17. To construct the carbon lattice, the face
dual of the dual lattice network is generated. This
is achieved by reversing the dual lattice transforma-
tion shown in Figure 1 which requires triangulation
of the dual lattice points. There is a significant lit-
erature and knowledge base regarding triangulation
algorithms. Many of these algorithms concern much
more complex topologies where the neighbourhood
of each point varies greatly. For this reason, a simple
procedure is adopted based upon 3D Delauny trian-
gulation. This involves constructing triangles such
that no point lies within the circumcircle created by
each triangles vertices. As the routine progresses,
the normals of each triangle are stored and are used
in a secondary algorithm which ensures no triangles
are constructed inside the closed surface. This is ac-
complished by checking the intersections of the for-
ward and backward facing normals with other trian-
gles. Any normal that intersects multiple triangles
is flagged and the corresponding triangle is removed.
This is an important check for nanotubes which have
a diameter that is of a similar magnitude as the dual
lattice point separation, for example the (5,0) nan-
otube.

Due to the various definitions of the centre of a
triangle, the carbon lattice may be constructed in a
number of different ways. Currently NanoCap places
a carbon atom at the centroid of each triangle as
this has been found to give the best spacing between
atoms. This choice is only significant for the fullerene
and cap regions as the dual lattice points belonging
to the nanotube produce an equilateral triangulated
mesh, for which each centre is coincident.

The triangulation routine is the first generalised
module, working on fullerene and capped nanotube
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(a) (b)

Figure 5: Minimised dual lattice of the capped (23,17) nan-
otube with 444 carbon atoms in the cap. (a) Triangulation of
the dual lattice is shown in grey with the cap dual lattice points
shown in white. (b) Rendering of carbon rings with pentagons
in blue, hexagons in green and heptagons in red.

dual lattice points alike. After triangulation, a single
set of carbon atoms are produced which are used in
later analysis and minimisation routines.

9. Carbon Lattice Minimisation

As the fullerenes and capped nanotubes con-
structed from the dual lattice only represent sensi-
ble 3-fold topologies, an accurate physical model of
carbon is required to produce the final atomic co-
ordinates. Currently, the Environmental Dependent
Interatomic Potential (EDIP) [23] is implemented
within the code. EDIP provides a suitably physi-
cal model of carbon without the computational ex-
pensive of first principles methods. Future releases
of NanoCap will incorporate other empirical car-
bon potentials, in particular those accessible through
The Large-scale Atomic/Molecular Massively Paral-
lel Simulator (LAMMPS) [24] using the already de-
veloped Python interface.

The carbon potential is used in a two stage pro-
cess to produce the fully relaxed carbon structures.
Firstly, the structures are scaled from the unit radius
topologies outputted from the dual lattice minimi-
sation procedure. For fullerenes, an initial estimate
of the scale factor is determined using the known
C60 radius. For capped nanotubes, an estimate is
already known as the radius of the uncapped nan-
otube has been defined (Eq. 5). To determine the
precise scale factor, constrained optimisation is per-
formed using the Nelder-Mead simplex algorithm [25]
as implemented in the SciPy libraries [21]. Once at

a sensible scale, the structure is fully optimised us-
ing the same L-BFGS algorithm described previously
[17, 18, 19, 21]. Both the scaled and fully optimised
structures are stored and the associated atomic co-
ordinates can be output to file. The scaled struc-
tures are useful for the construction of concentric
carbon fullerenes (carbon onions) or capped multi-
walled carbon nanotubes, as they allow for a uniform
interlayer separation within the spherical regions.

10. Output and Analysis

At any time during a NanoCap session, structures
can be saved to disk. The dual lattice, constrained
carbon lattice and fully optimised carbon lattice can
be saved in the common .xyz file format along with
information relating to the structure, such as the ring
statistics. In addition, if the GUI version of NanoCap
is used, the Schlegel diagram can be saved as an im-
age along with a isometric view of the structure. Out-
putted images can be encoded with software such as
FFMpeg to produce animations of the structure.

10.1. Ring Counting

Ring counting is carried out using the approach
outlined by Franzblau [26]. The method is centred
around identifying all shortest path (SP) rings in a
network where the connectivity is known. For each
atom i in the constructed fullerene or capped nan-
otube, a neighbour list is generated and all rings in-
volving atom i are identified. For each ring, a distance
is computed between each vertex in terms of the num-
ber of intermediate vertices. If these distances do not
correspond to the true distances in the full network,
then the ring is not an SP ring and is discarded. Im-
portantly, after all SP rings have been determined for
atom i, it is removed from the full network of atoms.
This removes all rings associated with atom i and
eliminate the possibility for double counting. The
application of this method is made possible using re-
cursive algorithms, for both the generation of all rings
containing vertex i and for the determination of SP
rings.

10.2. Schlegel Transformation

In additional to the 3D rendering of the final struc-
tures NanoCap also includes the option to render the
2D Schlegel diagram. This represents the projection
of the 3D network onto a plane and is particularly
useful for the examination of the topology of capped

8



nanotubes. By default projection is carried out into
the xy plane, inline with the nanotube orientation
along the z axis. The projected 2D position r′i of
each atom or point i is then given by:

ri = (xi, yi, 0)

r′i = ri + γsr̂i
(23)

where γs controls the extent of the projection in the
plane with a value of γs=0 resulting in a direct pro-
jection. A cutoff along the z axis, rs is also incor-
porated which determines which points or atoms are
used in the Schlegel construction. This is useful when
only the capped region of a nanotube is required. Ex-
amples of a Schlegel diagrams for a range of capped
nanotubes are shown in Fig 6.

(a) (7,7)

(b) (10,3)

(c) (23,17)

Figure 6: Fully optimised 3D isometric and 2D Schlegel views
of a range of capped nanotubes. (a) The (7,7) nanotube with
a 44 atom cap. (b) A capped (10,3) nanotube containing 50
carbon atoms. (c) The (23,17) nanotube with a cap containing
444 carbon atoms which includes heptagon ring structures.

11. Implementation and Source Code

The NanoCap framework is implemented in Python,
with computationally expensive algorithms written in
C and compiled as shared libraries. NanoCap is de-
signed to be used as both a standalone application
complete with a GUI and with 3D rendering capabil-
ities and also as libraries to be used in Python scripts.
To achieve this, the code takes advantage of the ver-
satile object orientated nature of Python with core
classes and routines separated from GUI and render-
ing elements. In addition, as Python is an interpreted
language with relatively simple syntax, users with lit-
tle programming experience can quickly produce cus-
tom scripts that access the complete functionality of
the NanoCap libraries.

11.1. Core classes

The core classes and routines in NanoCap

(nanocap.core, nanocap.structures,
nanocap.ext) contain the main functionality
for fullerene or capped nanotube construction. These
modules can be used as libraries in Python scripts
to produce structures quickly or in bulk. Only the
NumPy [20] and SciPy [21] packages are required
when using NanoCap as a library. An example script
that uses the libraries to produce capped (10,10)
nanotubes can be found in Figure 7. This script
could readily be modified to run in parallel either
locally on multiple threads or distributed to separate
cpu nodes using MPI (or a Python wrapper such as
MPI4Py [27]).

11.2. GUI and rendering

The NanoCap graphic user interface (GUI) is imple-
mented using the Qt framework [28], using PySide

bindings. Rendering is carried out using the Visu-
alisation Toolkit (VTK) [29] which again is accessed
through Python wrappers. The main advantage of us-
ing the GUI enabled version of NanoCap is the ability
to visual inspect each new structure during genera-
tion. As a new structure is found, the user is pre-
sented with a 3D visualisation which can be inter-
active manipulated whilst the structure search con-
tinues. Each structure is dynamically entered into a
structure table, which the user can view and use to
load previously found structures.

9



Figure 7: Example Python script that uses the NanoCap libraries
to create and save 5 capped (10,10) nanotubes of around 10 Å in
length.

11.3. External libraries

Currently, the only external library included in
NanoCap is EDIP. Other libraries such as the
LAMMPS Python [24] module will be implemented
in future releases. The Fortran source code for EDIP
is compiled as a shared object and imported into
Python using the ctypes library. To access the in-
ternal force and position arrays in EDIP, additional

Fortran modules were written to serve as an inter-
face. These access points are used by a Python in-
terface that contains routines for EDIP initialisation,
passing atomic coordinates and retrieving forces and
energies. All external libraries are stored in the ext

directory of the source.

12. Summary

NanoCap is a simple and generic application for the
construction of low energy fullerene and capped nan-
otube structures. It provides an ideal tool to accom-
pany the study of finite carbon molecules using atom-
istic computer simulation. The implementation in-
volves a standalone application which includes a GUI
and allows for dynamic visual inspection through 3D
rendering. In addition, the NanoCap libraries can be
used in custom Python scripts that enabled the user
to produce structures in bulk or to include the struc-
ture generation routines into pre-existing code.
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[10] A. Pérez-Garrido and M. A. Moore, Phys. Rev. B 60,

15628 (1999).
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