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Global Convergence Analysis for the NIC Flow
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Abstract—Recently, a family of fast subspace tracking algo-
rithms based on a novel information criterion (NIC) has been
proposed and investigated. It is known that these new algorithms
are associated with a new kind of flow, which will be called the NIC
flow in this paper, as in the case of the conventional Oja subspace
algorithms with the Oja flow. In this paper, some fundamental
questions about this new NIC flow, such as its solution existence
and convergence, will be investigated. In addition, the convergence
domain will be characterized. Some important results on these
issues are obtained via manifold theory.

Index Terms—Global convergence, matrix differential equation,
novel information criterion, Oja flow.

I. INTRODUCTION

I T is well-known that the convergence analysis of a class of
two-layer linear neural networks is closely associated with

principal subspace analysis (PSA) [3]. Recently, the subspace
algorithm [4], [5], the symmetric error correction algorithm [6],
and the back propagation algorithm [7] have been individu-
ally investigated. It has been shown in [13] that all these algo-
rithms, which are collectively referred to as the Oja algorithm,
are closely related. Much attention has been paid to the initial
convergence analysis of the Oja algorithm and its flow [19],
[20]. The thorough analysis for this flow with its variants are
conducted in [10], [11], and [21] via differential Riccati equa-
tion.

In fact, a properly chosen criterion is a very important part in
developing new learning algorithms. The two well-known per-
formance functions associated with the subspace algorithm are
variance (VAR) function and mean-square-error (MSE) func-
tion, which are defined in the sequel. Both of these functions are
quadratic functions. A different version of Oja’s algorithm (the
least mean error algorithm) was presented in [13]. Recently, a
new algorithm based on the novel information criterion (NIC) is
proposed in [1]. In contrast with the previously mentioned algo-
rithms, the NIC is nonquadratic and has a steep peak around the
global maximum. Different algorithms based on the NIC also
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have been developed, and these algorithms have some advan-
tages over the Oja algorithm, as demonstrated in the simulations
of [1].

All the NIC-based algorithms share the same dynamic flow,
which will be called NIC flow in this paper. Although a few
properties for the NIC flow have been obtained in [1], some im-
portant convergence issues remain open. For example, the con-
vergence domain has not been clearly characterized in [1]. Ini-
tial convergence analysis has been done there via Lyapunov ap-
proach, and it is still not clear whether the NIC flow converges
to a point. In this paper, all of these issues will be investigated.
Moreover, the asymptotic convergence will also be addressed
when the flow approaches the center manifold. The machinery
used here is manifold theory, which is a powerful tool for ana-
lyzing nonlinear dynamic systems.

The rest of the paper is organized as follows: Section II intro-
duces some notations and problem formulation. In Section III,
we will present some basic knowledge on center manifold
theory used in the sequel. The main results will be given in
Section IV. Some discussions and conclusions are given in
Section V. An Appendix is attached to present some basic
concepts on topological space and smooth manifolds.

II. PRELIMINARIES

A. Notations and Acronyms

Some notational symbols and acronyms used in this paper are
listed below.

Expectation of a stochastic variable.
Set of all real matrices (-dimen-
sional real vectors).
Tranpose of a matrix .
Trace of .

rank Rank of .
Dimension of space .

Re Real part pf eigenvalues of matrix
.

Natural logarithm of a symmetric posi-
tive definite matrix .
Determinant of a matrix .
Difference matrix is positive
(nonnegative) definite.

identity matrix.
Null matrix or vector.

diag Diagonal matrix with diagonal elements
.

Tangent space to smooth manifoldat
point .

In addition, the following acronyms are used in this paper.
ODE Ordinary differential equation.
VAR Variance.
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MIC Mutual information criterion.
NIC Novel information criterion.
PSA Principal subspace analysis.
PCA Principal component analysis.
MSE Mean square error.
LMSE Least mean square error.

B. Problem Formulation

Suppose is a stationary random
vector sequences with zero mean and the covariance matrix

, where denotes expectation. is
assumed to be positive definite. Assume that the orthogonal
eigenvectors of are in such a way that the
corresponding eigenvalues, are in descending
order:

Usually, may be thought of consisting of independent
signal components embedded in an-dimensional noise signal
with , and the last eigenvalues are caused by noise.
The purpose of signal processing is to remove the signal from
noise via principle component analysis (PCA) or principal sub-
space analysis (PSA). The PSA will give an optimal solution
to this kind of problem in the sense that it minimizes the mean
square error (MSE) between and its reconstruction or equiv-
alently maximizes the variance of defined by

(1)

in the hope that the columns of the optimal weight matrix
span the same space as . Conventionally,

the PSA is formulated into either of the following two optimiza-
tion problems:

1) Solve the following maximization problem:

tr (2)

with an orthogonality constraint on

2) Solve the following minimization problem:

tr tr (3)

It is shown in [13] that these two approaches are actually
equivalent. The main advantage of PSA algorithms based on
these two approaches is that or has a global op-
timum at the principle subspace with all the other stationary
points being saddle ones. A disadvantage is its slow convergence
due to the slow stochastic gradient search. In order to overcome
this slow convergence, different nonsquare extensions for the
performance index function have been proposed, which gen-
erally produce robust PCA solutions totally different from the
standard ones [14]. One recent nonsquare NIC proposed in [1]

is as follows: Given in the domain , de-
fine

tr tr

(4)

where the matrix logarithm is defined in [12], and is
a semi-positive symmetric matrix with eigenvalues as follows:

It should be noted that defined in (4) is a negation
of the NIC defined in [1] since the minimization is used here
instead of maximization. This will not affect the correctness of
results in this paper. This criterion is different from all existing
criteria and is closely related to the mutual information criterion
(MIC), which is given by

tr tr

where is the variance of a Gaussian noise signal uncorre-
lated with [15], [16]. Although NIC and MIC are similar in
appearance, their significant difference has been shown in [1].
In addition, different versions of learning algorithms based on
the performance index (4) for minimizing the NIC are proposed
in [1]. The convergence of the proposed algorithms are closely
related to some convergence properties of their dynamic flow,
which is given by

(5)

The analysis for this flow given in [1] has not addressed sev-
eral important questions on the global property such as the solu-
tion existence of the flow, convergence set characterization, and
convergence domain characterization, etc.

To see the difference of the NIC flow and the Oja flow, let us
rewrite the NIC flow as

(6)

Comparing the above equation with the Oja flow, which is
given by

(7)

one can see that an extra factor

appeared in the right side of proposed differential (6). Later, we
will show that this term is bounded along the trajectory
of the NIC flow.

III. STABILITY ANALYSIS OF DYNAMIC SYSTEMS

The center manifold theory is used in this paper due to the
fact that the convergence analysis in [1] could not tell us under
what conditions the NIC flow will converge to a point. Further,
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the convergence domain characterization can be partly given via
center manifold theory here. It will be shown that the results here
are more profound and accurate theoretically compared with
those reported in [1]. Next, we will present some basic knowl-
edge on center manifold theory, which is a powerful tool for the
stability analysis of nonlinear dynamic systems. In order to ex-
plain the center manifold theory clearly, many concepts on topo-
logical space and smooth manifolds are needed. We put these
related knowledge in an Appendix for convenience. See [17],
[18], and references therein for more details.

Consider a nonlinear system

(8)

where is defined on an open set of . Let be a
point of equilibrium for (8), i.e., . Then, the local
asymptotic stability of this point can often be determined by its
Jacob matrix given by

...
...

The stability condition can be stated as follows.

i) If all the eigenvalues of are in the open left complex
plane, then is an asymptotically stable equilibrium
of (8).

ii) If one or more eigenvalues of are in the right half com-
plex plane, then is an unstable equilibrium of (8).

When matrix has some eigenvalues with zero real parts,
the system (8) is usually referred to as acritical casefor the
asymptotic stability analysis. In this case, the center manifold
defined below is a very useful tool to the stability analysis.

Suppose that matrix has eigenvalues with zero real parts
and the other eigenvalues with negative real parts. Then, it is
easy to see that the domain of the linear mappingcan be de-
composed into the direct sum of two invariant spaces, which are
noted as and with dimension and , respectively.
Regarding the linear mapping as a representation of the dif-
ferential of the nonlinear mapping: , then from Defi-
nition 6.7 in the Appendix, its domain is the tangent space
of at . Thus

(9)

Definition 3.1: Let be a smooth manifold with .
is said to be a center manifold for (8) at if it satisfies

the following two conditions.

i) The tangent space to at is exactly .
ii) For each , there exist such that the

integral curve of (8) satisfying will satisfy
for all .

In what follows, we will assume that the matrix has all
eigenvalues in the closed left half plane because otherwise,

must be unstable. In this case, one can choose coordinates in
such that system (8) can be decomposed into

(10)

where
stable matrix with dimension ;
matrix of dimension having all its eigenvalues
with zero real parts;

and functions vanishing at together
with all their first derivatives.

Actually, this can be done by linearizing (8) at and then
transforming the first order part via matrix transform.

Now, it is time to state the stability result based on center
manifold.

Lemma 3.1 [17]:

i) There exists a neighborhood of and a
mapping such that

is a center manifold for (10).
ii) Suppose is a center manifold for (10) at .

Let be a solution of (10). There exists a neigh-
borhood of and real numbers ,
such that if , then

as long as .
Remark 3.1:This lemma shows that any trajectory of the

system (10) starting at a point sufficiently close to con-
tained in the center manifold will converge to the center mani-
fold as with exponential decay.

Actually, a center manifold captures the behavior of a flow
near an equilibrium point, as reflected in the following reduction
principle.

With the center manifold defined above, let
and , where satisfies the ODE

(11)

Now, one can state the following reduction principle, which
is frequently used to decide the stability of an equilibrium for a
nonlinear dynamic systems.

Lemma 3.2 [17]: Suppose is a stable (resp. asymptotic
stable, unstable) equilibrium of (11). Then, is a
stable (resp. asymptotic stable, unstable) equilibrium of (10).

This lemma indicates that the behaviors of the flow on the
center manifold will decide the behavior of the flow on the
whole space. Combining Lemmas 3.1 and 3.2, one can obtain
the following remark, which will be used in the sequel.

Remark 3.2 [18]: Let be an equilibrium of point of
dynamic flow (8), where is a smooth manifold on which (8) is
defined, and let and denote the numbers of eigenvalues
of with Re and Re . Then , there exists a
homeomorphism from a neighborhood
of onto a neighborhood of such that maps integral
curves of flow (8) to integral curves of

Here, the flow of is equivalent to the flow of (8)
on a center manifold passing through.
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In the next section, we will use these center manifold results
to investigate the global convergence of the NIC flow.

IV. NIC FLOW CONVERGENCEANALYSIS

Before investigating some convergence properties for the NIC
flow (5), we present a lemma about the convergence property of

along the trajectory (5).
Let us define a region

The following lemma is directly from (42) in [1].
Lemma 4.1:Let be the solution of the NIC flow (5)

with initial condition . Then, for all , the
following holds:

(12)

as long as exists.
This lemma indicates that if the solution of the NIC flow ex-

ists, then the trajectory will converge to identity
matrix with exponential rate 2. However, the existence of the
NIC flow has not been confirmed in this lemma. The existence
of itself is theoretically important as in the case of the Oja
flow [11], [21]. On the other hand, this lemma implies that the
trajectory will converge to identity matrix with ex-
ponential rate 2, which is independent of the weight matrix.
This is different from the Oja flow in which the convergence
rate of the trajectory depends on [10].

In order to study the convergence property of the NIC flow,
the following facts concerning the NIC objective function

will be proved.
Lemma 4.2:

i) The gradient of is given by

ii) The set of stationary points of is a union of
disjoint compact sets, each of which has the form

(13)

where .
Proof: i) is direct from [1, Th. 3.1]. Now, we prove part

ii). It is known from [1, Th. 3.1] that the union of in (13) is
the set of stationary points of . Further, is compact
due to the fact that the set is compact. Next,
we prove the disjoint property.

Let

and

with . Denote

and

Suppose that there exist two square orthogonal matrixand
such that

where

Then

(14)

It can be seen from (14) that is not full
rank. This is contradictory to the fact that is full
rank.

Lemma 4.3:Any sublevel set of is compact,
namely, the set

is compact for any real number .
Proof: Obviously, it suffices to show that the set

is bounded from below and above. From the definition of
in (4), one can see that if is finite, then

. To prove the boundness of , it can be seen that

tr (15)

due to the fact that for . Fix
, and let be eigenvalues of

. Then, (15) implies that

Since for any , it follows that

As the function is unbounded in and
and reaches its minimum at , there exist and with

such that

Since is arbitrary in , therefore, is compact.
Now, the existence for the NIC flow (5) can be stated below.
Theorem 4.1:Consider the NIC flow (5) with an initial con-

dition . Then, the NIC flow (5) has a unique
solution defined for all .

Proof: Let us assume that the maximal escape time (which
is the time after which the NIC flow will not exist) of the ODE
(5) is , and we intend to prove that . From Lemma
4.1, one can see that

exists. Then, there exists a positive parametersuch that
for all , . From

Lemma 4.3, will be contained in a compact set for all
. This contradicts the maximality of the interval

. Therefore, .
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Now, it is clear that the NIC flow (5) always has solution with
an initial condition . This conclusion is quite optimistic
for the application of the NIC flow. In [1], the existence of the
NIC flow has not been discussed. The authors there only dis-
cussed the convergence property via Lyapunov approach with
assumption of its existence. Next, we can investigate the prop-
erty of along the NIC flow (5).

Lemma 4.4:

i) Given any initial condition

rank rank

ii) If , then

Proof:

i) It is true that

rank rank

According to Lemma 4.1, we have

rank

This completes the proof of part one.
ii) If , part two is the direct consequence of part one.

With , one can decompose into

where , and is an orthogonal matrix. Denote
, and decompose into

Then, and will satisfy
a reduced-order NIC flow equation with weight matrix

, which will be shown in the proof of Theorem 4.2 in
the sequel. This will guarantee that

The above lemma confirms that the trajectory will be in
if its initial condition is as well. Observing that the inverse of

appears in the NIC flow (5), we are motivated
to investigate the boundness of this factor along the trajectory

.
Theorem 4.2:Given any initial condition , there

exist two positive parameters and , depending
on the initial condition , such that

Proof: Assume that and can be decomposed into

where is an orthogonal matrix, and is a diagonal matrix
with

rank rank

Then

Letting

one has

where will satisfy the following ODE:

According to Lemma 4.1, is given by

(16)

With , one can deduce from
. Decompose into

...
...

...
...

with . Then, from (16), one can
obtain

...
...

...
...

with . Defining
and , one can

then prove

With and depending on the eigen-
values of , one can obtain the conclusion.

From Lemma 4.2 and Theorem 4.2, one can see that if
, the trajectory will be kept in where

is bounded. Recall that the convergence of the Oja flow has been
solved in [11] and [21] and that the NIC flow has only one extra
factor in the right side compared with the Oja
flow; one hopes that the convergence analysis for the NIC flow
can be done similarly. In order to solve this problem, we adopt
the center manifold theory, which is a powerful tool in the sta-
bility analysis of nonlinear dynamic systems. This approach can
give us some profound results on global convergence analysis.
First, we derive the Hessian matrix associated with the NIC per-
formance index.

Lemma 4.5:Let be a stationary point of . Then,
the Hessian of at is given by

tr

where .
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Proof: Regarding as a mapping from
to , then for a fixed , from

Definition 6.7 in the Appendix, the derivative of
will be a mapping from to , where
denotes the tangent space of the functionat . Following
this idea, it can be seen that will be a function
of a new variable . Fix , and let

. From Lemma 4.2, it follows that

tr

Therefore, we have

tr

The lemma immediately follows by substituting for
into the above and noting that

It should be noted that the Hessian matrix derived above
is different in form from that obtained in [1]. The formula for the
Hessian matrix here is very explicit, which is effective for
the NIC flow analysis. The same matrix was expressed by Kro-
neck product in [1], which is powerful for computation. Both
of these two forms have their own advantages in dealing with
different problems. Actually, they are same only with different
appearances.

Lemma 4.6:The set

(17)

is a center manifold for the flow

(18)

at any point in the set where

Proof: Obviously, is a smooth manifold. One can show
[18] that the tangent space for at is

In addition, is invariant under the flow (18) as any point in
the set is an equilibrium point of (18). According to Definition
3.1, it remains to be shown that for any fixed , the
Hessian vanishes if and only if . To do
this, assume that for some orthogonal , and let

diag

diag

Then, it is seen from Lemma 4.5 that

tr

tr

tr

tr

Using the inequality that tr for any square
matrix and , we infer from the above that

if and only if the following conditions hold:

tr AND

Let

tr

Then, will be a minimum value, and therefore

This indicates that

AND (19)

Let us prove that these conditions hold if and only if
, i.e.,

(20)

In fact, due to

the first equality in (19) can be obtained by multiplying (20)
by from the left and by from right, and the second
one can be obtained by multiplying (20) by from the right.
Conversely, (20) follows from (19) because

It is thus concluded that if and only if
.

Corollary 4.1: There holds

Theorem 4.3:Consider the ODE (5) with an initial condition
. Then, the following statements hold:

i) The solution converges to some set of the form

where .
ii) If converges to the principal eigenspace (17),

which has been proved to be a center manifold, then
must converge to a point in this eigenspace as
.
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iii) If converges to some point in , then it will con-
verge exponentially when it is near the center manifold.

Proof: The first statement follows from Lemma 4.2. To
prove the second statement, assume that converges to .
Then, there exists a sequence with such
that converges to a point . In view of Corollary
4.1 and Remark 3.2, there exists a homeomorphism

with

AND

from a neighborhood of onto a neighborhood of
such that maps solutions of (18) starting within

to solutions of

where is the dimension of , and is equivalent to the
dynamic flow on center manifold . Due to the fact that is
a set of equilibrium of the NIC flow, . Now, let be
such an integer that , and put

Since satisfies the above ODE for all , it

must converge to . Note that can be chosen to

be so large that is inside . Therefore,

converges to as . Obviously,

holds, which implies that . This

completes the proof of part 2.
As for part 3, if converges at some point called in
, then when is large enough, will be near the center

manifold . According to part two of Lemma 3.1 and Remark
3.1, there exists a neighborhood of in which the conver-
gence will be exponential.

The importance of this theorem are threefold.

1) The NIC flow may converge to a set of the stationary
points.

2) If converges to the principal eigenspace, then
it must converge to one point instead of possible multiple
points.

3) If converges to one point in the principal
eigenspace, then it will converge exponentially when it
reaches near enough to the center manifold, although the
convergence rate is unknown accurately.

The results in [1] only tell us the fact that the NIC flow converges
but without telling us whether it converges to a set or a point.
Of course, we are more interested in the case of the NIC flow
converging to a point. Thus, it is curious for us to know under
what conditions will converge to the principle eigenspace.
Theorem 4.3 did not answer this question directly. Next, we turn
out our attention to this important question.

Lemma 4.7:With the same notation as in Theorem 4.3

rank rank

holds, where is any eigenvector of .
Proof: Put . Then, it is obvious that

AND

By the uniqueness of solutions, it follows that
.
As a result of this lemma and the convergence theorem, the

following corollary is obtained, which identifies a domain of
attraction as well as a set of initial points that do not lead to the
principal eigenspace.

Corollary 4.2: With the same notation as in Theorem 4.3,
the solution will converge to a point in the principal
eigenspace if

Moreover, the solution cannot converge to the principal
eigenspace if for some between 1 and.

Proof: If

then from Lemma 4.7

(21)

and (21) indicates that will be in . By Theorem 4.3,
will converge to a point in .

If , then according to
Lemma 4.7. This implies that , which tells us
that the limit is not in .

Although we cannot characterize the convergence domain
completely, we specified some convergence and nonconver-
gence sets, which can be used effectively. Here, the word of
convergence indicates that converges to the principal
eigenspace. The attraction domain obtained in [1] includes the
domain that may lead to converging to a point as well as to a
set. The convergence domain given in Corollary 4.2 will lead
to converging to a point. Therefore, it is easy to understand
that the convergence domain obtained here is smaller than the
attraction domain in [1].

Finally, it can be seen that if we scale the matrixto
with any , the trajectory of the NIC flow (5) will
not change. This property is quite different from the Oja flow,
in which the flow depends on the weight matrixclosely.

V. DISCUSSIONS ANDCONCLUSIONS

In this paper, we investigated some basic problems on the
NIC flow, including the existence of its solution, convergence
analysis, and convergence domain characterization. These prop-
erties are very important to the analysis and application of the
NIC flow. Since a novel approach based on center manifold is
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adopted here, the results obtained here are more accurate com-
pared with those in [1] in the following aspects.

i) The existence of the NIC flow is addressed in this paper.
ii) The convergence analysis is investigated; specifically,

the convergence to a point rather than to a set is char-
acterized.

iii) The convergence rate is proved to be exponential when
the NIC flow reaches near enough to the center manifold.

iv) The convergence domain has been partly characterized.
Another interesting topic along this research direction is to in-

vestigate the convergence rate and convergence domain as [10]
and [11] for the Oja flow. Regarding to the convergence domain,
we propose the following conjecture.

Conjecture: converges to the principal eigenspace
if and only if is of full rank and .

We believe that the convergence rate for the NIC flow can be
estimated as the convergence analysis for the Oja flow in [21].
This is a topic of possible future research for us.

The NIC-based algorithms can be applied to many fields, as
discussed in [1]. We believe that the NIC flow and its related
algorithms will attract more attention in the future.

APPENDIX

In order to understand the center manifold theory better,
we will present some basic concepts on topological space and
smooth manifolds in this Appendix.

A. Topology Concepts

Letting be a set, atopologyon is a collection of subsets
of , called open sets, satisfying the following three axioms:

i) The union of any number of open sets is open.
ii) The intersection of any finite number of sets is open.
iii) The set and empty set are open.

Conventionally, we denote a topology as topological space.
A basisfor a topological space is a collection of open sets,

called basic open sets, with the following properties:

i) is the union of basic open sets.
ii) A nonempty intersection of two basic open sets is an

union of basic open sets.

A neighborhoodof a point for a topological space is any
open set that contains.

Next, we define the mapping between two topological spaces.
Let and be topological spaces, whereis a mapping from

to

The mapping is calledcontinuousif the inverse image of every
open set of is an open set of . The mapping is calledopen
if the image of an open set of is an open set of . The
mapping is called anhomeomorphismif it is a bijection and both
continuous and open.

Finally, a topological space is called aHausdorfftopolog-
ical space if any two different points and have disjoint
neighborhoods.

B. Smooth Manifolds

Definition 6.1: A manifold of dimension is a Haus-
dorff topological space with a countable basis such that for each

, there exists a homeomorphismmapping some open
neighborhood of onto an open set in .

Usually, the homeomorphism mapping is reflected by aco-
ordinate chartdefined on a manifold . Thiscoordinate chart
is a pair , where is an open set of , and is a homeo-
morphism of onto an open set of . Of course, on one mani-
fold, there can be two differentcoordinate charts. Let and

be two coordinate charts on manifoldwith .
Then, one can define

(22)

Roughly speaking, two coordinate charts and
are called smooth compatible if, whenever , the
coordinate transformation defined in (22) is smooth.

Now, it is time to define smooth manifolds.
Definition 6.2: A smooth manifold is a manifold equipped

with a collection of pairwise smooth-
compatible coordinate charts satisfying

On smooth manifolds, one can define smooth mappings as
follows.

Definition 6.3: Let and be smooth manifolds. A map-
ping is a smooth mapping if, for each ,
there exist coordinate charts of and of , with

and , such that the expression for in local
coordinates is smooth.

The submanifolds are defined as follows.
Definition 6.4: Let be a smooth mapping of

manifolds.

i) is animmersionif for all
ii) is a univalent immersionif is an immersion and

injective.
iii) is anembeddingif is an univalent immersion and the

topology induced on by the one of coincides
with the topology of as a subset of .

Definition 6.5: The image of a univalent immersion
is called an immersed submanifold of . The image of
an embedding is called an embedded submanifold of.

By the use of word of submanifold, we indicate that one can
equip with a coordinate chart structure from a smooth
manifold. A detailed description of the structure can be found
in [17].

C. Tangent Spaces

Let be a smooth manifold of dimension. A tangent vector
at point can be defined as usual with detailed definition
in [17]. Now, let us define tangent space.

Definition 6.6: Let be a smooth manifold. The tangent
space to at , which is denoted , is the set of all tangent
vectors at .

Now, one can define the differential for a mapping between
smooth manifolds.
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Definition 6.7: Assume that and are two smooth man-
ifolds. Let

be a smooth mapping. Then, the differential ofat is
defined as a linear map

such that for and
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