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Global Convergence Analysis for the NIC Flow

Wanquan Liu, Wei-Yong Yan, V. Sreeram, and Kok Lay T8enior Member, IEEE

Abstract—Recently, a family of fast subspace tracking algo- have been developed, and these algorithms have some advan-

rithms based on a novel information criterion (NIC) has been tages over the Oja algorithm, as demonstrated in the simulations
proposed and investigated. It is known that these new algorithms of [1].

are associated with a new kind of flow, which will be called the NIC . .
flow in this paper, as in the case of the conventional Oja subspace All the NIC-based algorithms share the same dynamic flow,

algorithms with the Oja flow. In this paper, some fundamental Which will be called NIC flow in this paper. Although a few
questions about this new NIC flow, such as its solution existence properties for the NIC flow have been obtained in [1], some im-
and convergence, will be investigated. In addition, the convergence portant convergence issues remain open. For example, the con-
domain will be characterized. Some important results on these yargance domain has not been clearly characterized in [1]. Ini-
issues are obtained via manifold theory. - . .
o _ _ tial convergence analysis has been done there via Lyapunov ap-
Index Terms—Global convergence, matrix differential equation, proach, and it is still not clear whether the NIC flow converges
novel information criterion, Oja flow. to a point. In this paper, all of these issues will be investigated.
Moreover, the asymptotic convergence will also be addressed
|. INTRODUCTION when the flow approaches the center manifold. The machinery
. . u§ed here is manifold theory, which is a powerful tool for ana-
T is well-known that the convergence analysis of a class Of . : .
&zmg nonlinear dynamic systems.

two-layer linear neural networks is closely associated wi . : ) . .
rincipal subspace analysis (PSA) [3]. Recently, the subspa él’he rest of the paper is organized as foIIow_s. Section II_mtro—
P ) ' Hifces some notations and problem formulation. In Section I,

algorithm [4], [5], the symmetric error correction aIgorithm[G]We will present some basic knowledge on center manifold

and_the b.aCk propagation algorithm_ [7] have been indi\/idlfheory used in the sequel. The main results will be given in
ally investigated. It has been shown in [13] that all these algg'ection IV. Some discussions and conclusions are given in

rithms, which are collectively referred to as the Oja algorith : S .
. : .. Section V. An Appendix is attached to present some basic
are closely related. Much attention has been paid to the initia . :
oncepts on topological space and smooth manifolds.

convergence analysis of the Oja algorithm and its flow [19?,
[20]. The thorough analysis for this flow with its variants are
conducted in [10], [11], and [21] via differential Riccati equa-
tion. A. Notations and Acronyms

developing new learning algorithms. The two well-known pefisied below.

Il. PRELIMINARIES

formance functions associated with the subspace algorithm agre Expectation of a stochastic variable.
variance (VAR) function and mean-square-error (MSE) fungwam(Rr) Set of allr x m real matrices#-dimen-
tion, which are defined in the sequel. Both of these functions are sional real vectors).
quadratic functions. A different version of Oja’s algorithm (they T Tranpose of a matrixt € R <™,
least mean error algorithm) was presented in [13]. Recentlytﬁ A) Trace ofA € R™*".
new algorithm based on the novel information criterion (NIC) iﬁank(A) Rank of A € R"™x™.
proposed in [1]. In contrast with the previously mentioned algghn(/\/) Dimension of space.
rithms, the NIC is nonquadratic and has a steep peak around A) Real part pf eigenvalues of matrig €
global maximum. Different algorithms based on the NIC also RIXT.
log(A) Natural logarithm of a symmetric posi-
Manuscript received December 22, 1999; revised May 30, 2001. This work tive definite matrixA.
was supported in part by a Research Fellowship Grant Scheme from the A&é‘b(A) Determinant of a matrid € R™*".
tralia Research Council. The associate editor coordinating the review of tfyls B Diff ix A B i .
paper and approving it for publication was Dr. Kenneth Kreutz-Delgado. > (—) ! erence. matrlx. - IS positive
W. Liu is with the School of Computing, Curtin University of Technology, (nonnegative) definite.
Perth, Australia (e-mail: wanquan@cs.curtin.edu.au). I. 7 X r identity matrix.
W.-Y. Yan is with the Department of Electrical and Computer En:’ Null .
gineering, Curtin University of Technology, Perth, Australia (e-mail* ull matrix or vector.
wyy@cs.curtin.edu.au). diag(d;,ds,...,d,) Diagonal matrix with diagonal elements
V. Sreeram is with the Department of Electrical and Electronic En- dy, do d,
) ) ) *

ineering, University of Western Australia, Perth, Australia (e-mail; .
greeram%ee.uwa,ednau), ( TN Tangent space to smooth manifold at

K. L. Teo is with the Department of Applied Mathematics and Center for point p.

Multimedia Signal Processing, Department of Electonic and Information Engi- |n addition, the foIIowing acronyms are used in this paper.

neering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (e—maibDE Ordi diff ial .

mateokl@polyu.edu.hk). rdinary differential equation.
Publisher Item Identifier S 1053-587X(01)07056-8. VAR Variance.

1053-587X/01$10.00 ©2001 IEEE

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 12, 2009 at 00:09 from IEEE Xplore. Restrictions apply.



LIU et al: GLOBAL CONVERGENCE ANALYSIS FOR THE NIC FLOW 2423

MIC Mutual information criterion. is as follows: GiverW in the domai{y W|WTRW > 0}, de-
NIC Novel information criterion. fine

PSA Principal subspace analysis. _ 1

PCA Principal component analysis. I%‘IIH{JNIC(W)} =Tin 5

MSE Mean square error.

tr(WTW) — tr [log(W'RW
LMSE Least mean square error. % { ( ) [Og( )]}

4
B. Problem Formulation : . : , . :
. _ where the matrix logarithm is defined in [12], aRde R"*"™ is
Suppose{xx,k = 1,2,...} is a stationary random g semi-positive symmetric matrix with eigenvalues as follows:
vector sequences with zero mean and the covariance matrix
R = &{x)x}} € R™ ", wheref denotes expectatioR is ALz Az A > A 22 A 20
assumed to be positive definite. Assume that the orthogona ) . . .
eigenvectors ot arews, ua....,w, in such a way that the St FETORC RENECH) TR D S B A TRRC
corresponding eigenvalues, : = 1,2, ...n are in descending . o O
order: instead of maximization. This will not affect the correctness of

results in this paper. This criterion is different from all existing
M>X > >AN 2 g1 > -2 A >0, criteria and is closely related to the mutual information criterion
(MIC), which is given by
Usually, x;, may be thought of consisting efindependent 1
signal components embedded insauimensional noise signal  Jyc(W) = = {tr [log(¢c>W"W)] — tr [log(W " RW)] }
with » < n, and the last. — r eigenvalues are caused by noise. 2
The purpose of signal processing is to remove the signal framhereo? is the variance of a Gaussian noise signal uncorre-
noise via principle component analysis (PCA) or principal sulated withx; [15], [16]. Although NIC and MIC are similar in
space analysis (PSA). The PSA will give an optimal solutiomppearance, their significant difference has been shown in [1].
to this kind of problem in the sense that it minimizes the medn addition, different versions of learning algorithms based on
square error (MSE) betweesy, and its reconstruction or equiv-the performance index (4) for minimizing the NIC are proposed
alently maximizes the variance gf, defined by in [1]. The convergence of the proposed algorithms are closely
T related to some convergence properties of their dynamic flow,
yi=Wxy which is given by
in the hope that the columns of the optimal weight ma¥xe
R™*" span the same spacefas, uy, .. . u, }. Conventionally,

the PSA is formulated into either of the following two optimiza- The analysis for this flow given in [1] has not addressed sev-

W(t) = RW(#) [WIHRWH)] " = W),  (5)

tion problems: eral important questions on the global property such as the solu-
1) Solve the following maximization problem: tion existence of the flow, convergence set characterization, and
1 convergence domain characterization, etc.
max{Jyar(W)} =max =€ {yiy; } To see the difference of the NIC flow and the Oja flow, let us
w w % rewrite the NIC flow as
=max ~tr(W'RW 2 : -
W@ W(t) =RW(H) [W(HRW ()]~ Wi
with an orthogonality constraint oW = [RW(t) - W)W (t)RW(¢)]
-1
WIW =L, x [WHHRW ()] . 6)
2) Solve the following minimization problem: Comparing the above equation with the Oja flow, which is
given by

. 1 2
s (WE =g g Elie = W W(t) = RW(1) - W(t) (W ORW ()] ()

1
=min 5 [tr(R) — tr2W'RW — WTRWW™W)]. (3) one can see that an extra factor

It is shown in [13] that these two approaches are actually [WT(t)RW(t)]_1

equivalent. The main advantage of PSA algorithms based on . . . : .
these two approaches is thatisp of JJvar has a global op- appeared in the right side of proposed differential (6). Later, we

timum at the principle subspace with all the other stationa}g\gl show that this term is bounded along the trajectdk()

points being saddle ones. A disadvantage is its slow converge éhe NIC fiow.
due to the slow stochastic gradient search. In order to overcome
this slow convergence, different nonsquare extensions for the
performance index function have been proposed, which gen-The center manifold theory is used in this paper due to the
erally produce robust PCA solutions totally different from théact that the convergence analysis in [1] could not tell us under
standard ones [14]. One recent nonsquare NIC proposed in\i#]at conditions the NIC flow will converge to a point. Further,

IIl. STABILITY ANALYSIS OF DYNAMIC SYSTEMS
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the convergence domain characterization can be partly given wibere

center manifold theory here. It will be shown that the results here A stable matrix with dimension—;

are more profound and accurate theoretically compared withB matrix of dimensiom" having all its eigenvalues
those reported in [1]. Next, we will present some basic knowl- with zero real parts;

edge on center manifold theory, which is a powerful tool for the G andh  functions vanishing afy,z) = (0, 0) together
stability analysis of nonlinear dynamic systems. In order to ex- with all their first derivatives.

plain the center manifold theory clearly, many concepts on top&etually, this can be done by linearizing (8)=at= 0 and then
logical space and smooth manifolds are needed. We put thesmsforming the first order part via matrix transform.
related knowledge in an Appendix for convenience. See [17],Now, it is time to state the stability result based on center
[18], and references therein for more details. manifold.

Consider a nonlinear system Lemma 3.1 [17]:

i) There exists a neighborhodd ¢ R™ of z = 0 and a

mappingr : V — R™ such that
wheref is defined on an open sét of R™. Letx® = 0 be a _ n= o
point of equilibrium for (8), i.e.f(x°) = 0. Then, the local S = {(y’z) ERT xViy= W(Z)}
asymptotic stability of this point can often be determined by its 5 3 center manifold for (10).

% = £(x) ®)

Jacob matrix given by ii) Supposey = = (z) is a center manifold for (10) 40, 0).
8 ... ONh Let(y(t), z(t)) be a solution of (10). There exists a neigh-
[af} oz O borhood?/° of (0,0) and real numberd/ > 0, K > 0
=15 =0 : : such that if(y(0), 2(0)) € U°, then
A (¥(0).2(0))
oo On mne Iy (t) — n(2(t)l| < Me™"|ly(0) — a(2(0))[l, ¢=0

The stability condition can be stated as follows.

i) If all the eigenvalues ofF are in the open left complex as long as{y(t)_, #(t)) € U°. _
plane, therx = 0 is an asymptotically stable equilibrium ~ Rémark 3.1: This lemma shows that any trajectory of the
of (8). sy_stem (10) starting at a point ;ufﬂmently close(®@0) con- _
ii) If one or more eigenvalues @ are in the right half com- tained in the cer_1ter manlfold. will converge to the center mani-
plex plane, therx = 0 is an unstable equilibrium of (g). fold ast — oo with exponential decay. ,
When matrixF has some eigenvalues with zero real parts, Actually, & center manifold captures the behavior of a flow
the system (8) is usually referred to asritical casefor the n€aran equilibrium point, as reflected in the following reduction

asymptotic stability analysis. In this case, the center manifdRiinciple.

defined below is a very useful tool to the stability analysis. ~ With the center manifold defined above, jett) = 7 (n(%))
Suppose that matri hasn® eigenvalues with zero real parts2ndz(t) = 7(t), wherer(t) satisfies the ODE
and the othen— eigenvalues with negative real parts. Then, itis i(t) = By + h(x(n),n) 11)

easy to see that the domain of the linear mapfngan be de-

composed into the direct sum of two invariant spaces, which aréNow, one can state the following reduction principle, which
noted asE® andE~ with dimensionn® andn—, respectively. is frequently used to decide the stability of an equilibrium for a
Regarding the linear mappirdg as a representation of the dif-nonlinear dynamic systems.

ferential of the nonlinear mappirfg U’ — R™, then from Defi- Lemma 3.2 [17]: Suppose = 0 is a stable (resp. asymptotic
nition 6.7 in the Appendix, its domain is the tangent sp&gé  stable, unstable) equilibrium of (11). Thely, z) = (0,0) is a
of U atz = 0. Thus stable (resp. asymptotic stable, unstable) equilibrium of (10).
This lemma indicates that the behaviors of the flow on the
LU = EO@E_- (9)  center manifold will decide the behavior of the flow on the

whole space. Combining Lemmas 3.1 and 3.2, one can obtain
the following remark, which will be used in the sequel.
Remark 3.2 [18]: Letp € A be an equilibrium of point of

Definition 3.1: LetS C U be a smooth manifold with € S.
S is said to be a center manifold for (8)=at= 0 if it satisfies

the_followmg two conditions, i o dynamic flow (8), whereV is a smooth manifold on which (8) is
1) The tangent space 8 at0 is exactlyE”. defined, and let.® andn— denote the numbers of eigenvalues
ii) For eachxg € S, there exist; < 0 <ty such tha_t the of F with Re(F) = 0 and RéF) < 0. Then , there exists a
integral curvex(t) of (8) satisfyingx(0) = xo will satisfy homeomorphisng : U — R™ from a neighborhood’ c A

x(t) € Sforallt € (t1,12). of p onto a neighborhood df € R™ such thatp maps integral
In what follows, we will assume that the mat has all . ;rves of flow (8) to integral curves of

eigenvalues in the closed left half plane because otherwise, ,
0 must be unstable. In this case, one can choose coordinates in x; =k(x1), x; €R"”
U such that system (8) can be decomposed into vy=—y, yeR".
vy =Ay +g(y.2) Here, the flow ofk; = k(x;) is equivalent to the flow of (8)
z =Bz + h(y, z) (10) on a center manifold passing through
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In the next section, we will use these center manifold resultsSuppose that there exist two square orthogonal m&iand

to investigate the global convergence of the NIC flow.

IV. NIC FLow CONVERGENCEANALYSIS

Q> such that

U, Q:=U;,Q

Before investigating some convergence properties for the N{fhere
flow (5), we present alemma about the convergence property of

WT ()W (t) along the trajectory (5).
Let us define a region

DE{W|WTRW > 0}.

The following lemma is directly from (42) in [1].

Lemma 4.1:Let W(¢) be the solution of the NIC flow (5)

with initial condition W(0) € D. Then, for allt € [0, ), the

following holds:
WHHW () — L, = ¢ [WT(0)W(0) — L] (12)

as long asW (¢) exists.

I, — [uil,...uiT], UJw = [lljl,...lljr].

Then

Ur, = U;,Q2Qf.

It can be seen from (14) thgly,,, Uz , Uy, ] is not full
rank. This is contradictory to the fact that;, ,...u,] is full
rank. O

Lemma 4.3:Any sublevel set ofJxi(W) is compact,
namely, the set

(14)

So £ {W | Jxic(W) < a}

This lemma indicates that if the solution of the NIC flow ex-

ists, then the trajectoryW ™ ()W () will converge to identity

matrix with exponential rate 2. However, the existence of the

is compact for any real number> 0.
Proof. Obviously, it suffices to show that the s&,

NIC flow has not been confirmed in this lemma. The existendg bounded from below and above. From the definition of
of W(#) itself is theoretically important as in the case of the Ojdnic(W) in (4), one can see that ifxic(W) is finite, then
flow [11], [21]. On the other hand, this lemma implies that th&V € D. To prove the boundness &%, it can be seen that

trajectoryW T (+)W (¢) will converge to identity matrix with ex-

ponential rate 2, which is independent of the weight maRix

Inic(W) > tr {(WTW) —In [A]det( WTW)]}  (15)

This is different from the Oja flow in which the convergencey e to the fact thatr(log(A)) = log(det(A)) for A > 0. Fix

rate of the trajectorfW ' (t)W(¢) depends oR [10].

W € S,,andletu; > ps > --- > pu,. > 0 be eigenvalues of

In order to study the convergence property of the NIC flowz Ty Then, (15) implies that
the following facts concerning the NIC objective function

Jnic(W) will be proved.
Lemma 4.2:

i) The gradient offxic(W) is given by
Vinic(W) =W — RW(W'RW) 1.

ii) The set of stationary points afxic(W) is a union of
disjoint compact sets, each of which has the form

Wé{W|W:[u“,uZT]Q, QTQ:I} (13)

wherel < i1 < -++ < 4 < n.

Proof: i) is direct from [1, Th. 3.1]. Now, we prove part

ii). It is known from [1, Th. 3.1] that the union af in (13) is
the set of stationary points dkc(W). Further W is compact
due to the fact that the s¢€ | QT Q = I} is compact. Next,
we prove the disjoint property.

Let

W2 {W|W=[u,. ulQ QTQ=I}

and

Wo 2 {W W =[w;,,...u;,] Q. Q"Q =T}
with {41, j2, ..., dr} # {é1,%2,...,%,}. Denote

Lo 2 {ir,i0, .00}, Jw = {1, d2,- - dn)
and

V21,03, 1,21,/V,, J,23,/V,.

az Inc(W) 2> (i —Ing) —rln iy,
=1

Sincex > Inx for anyx > 0, it follows that

i —Inp; <a4rlniy, 1=1,2,...,r

As the functionz — In « is unbounded irf0, 1] and[1, +oc)
and reaches its minimum at = 1, there existy and 8 with
0 < a < 1 < fsuch that

a<pu,<pB, 1=12 ... r

SinceW is arbitrary inS,,, thereforeS,, is compact. O

Now, the existence for the NIC flow (5) can be stated below.

Theorem 4.1:Consider the NIC flow (5) with an initial con-
dition W(0) = W, € D. Then, the NIC flow (5) has a unique
solutionW (¢) defined for allt > 0.

Proof: Letus assume that the maximal escape time (which
is the time after which the NIC flow will not exist) of the ODE
(5) istmax, and we intend to prove thét,,,. = co. From Lemma
4.1, one can see that

lim WHHW(t)
exists. Then, there exists a positive parametesuch that
Iniec(W(t)) < « for all W(t), t € [0,tmax). From
Lemma 4.3,W (¢) will be contained in a compact set for all
t € [0,tmax). This contradicts the maximality of the interval
[0, fmax ). Thereforet .. = co. O
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Now, itis clear that the NIC flow (5) always has solution withiThen
an initial conditionW, € D. This conclusion is quite optimistic

R, O
for the application of the NIC flow. In [1], the existence of the WHHRW(t) = W)Ut [ 01 0} UW (¢).
NIC flow has not been discussed. The authors there only dis-
cussed the convergence property via Lyapunov approach witH-€tting
assumption of its existence. Next, we can investigate the prop- J— g T
erty of W(¢) along the NIC flow (5). Uw() = [Wl (t), W3 (t)]

Lemma 4.4:
i) Given any initial conditionW, € D

one has

WE(HRW(t) = W (R Wi (t)
ranki¥ (¢t) = rankiV,, ¢t > 0.
whereW, (¢) will satisfy the following ODE:
Wi(t) = RyW(£)(W1(6) TRy W (£)) 7L — W (2).
According to Lemma 4.1W, (¢) YW (#) is given by
W) TW (1) =1, — ¢ 2L + W1 (0)TW(0).  (16)
With R; > 0, one can deducd;(0)*W(0) > 0 from

i) If WYRW, > 0, then
WL (#HRW(t) > 0

Proof:
i) Itis true that

rank[W(#)] = rank [W(£)"W ()] . W1 (0)TR; W1(0) > 0. DecomposéV, (0)TW,(0) into
According to Lemma 4.1, we have “(’)1 0 - 8
w2 ...
rank[W(t)TW(t)] =rank [(I, — G_QtIT) + WEWO] . W, (O)TWI(O) = l]()T : : : : Uo
This completes the proof of part one. 0 0 - ws
ii) If R > 0, part two is the direct consequence of part ongvith w;, > wy > --- > w, > 0. Then, from (16), one can
With R > 0, one can decompod® into obtain
0O --- 0
R:UT R1 0 U q1
0 0 - 0 @ - 0
Wi(t)"Wi(t)=| . . . .
whereR; > 0, andU is an orthogonal matrix. Denote - . .
W, = UTW, and decompos®,, into 0 0 - g
W, with ¢ = 1 — e 2" + wie ™, i = 1,2,---,s. Defining
W, = [WujJ . o min{l,w,} < 1andwg = max{l,w;} > 1, one can
’ then prove

Then,W,, 1(0)R;W,, 1(0) > 0andW,, ; (¢) will satisfy -
a reduced-order NIC flow equation with weight matrix wol;, < Wi (1) Wi(t) < wgl,..
R4, which will be shown in the proof of Theorem 4 2 '”W|th a1 2 waw, anday 2 wsw, depending on the eigen-

the sequel. This will guarantee tHa{ " (£)RW (¢) > values of WT'W,, one can obtain the conclusion. O

From Lemma 4.2 and Theorem 4.2, one can see th&kjfe
The above lemma confirms that the traject®¥(t) willbein D, the trajectoryW (¢) will be kept inD whereW T (1)RW (¢)
D ifits initial condition is as well. Observing that the inverse ofs hounded. Recall that the convergence of the Oja flow has been
WT(t)RW(t) appears in the NIC flow (5), we are motivatedsolved in [11] and [21] and that the NIC flow has only one extra
to investigate the boundness of this factor along the traject@ttor W™ (t)RW (¢) in the right side compared with the Oja
W(t). _ o - flow; one hopes that the convergence analysis for the NIC flow
Theorem 4.2:Given any initial conditionW, € D, there can be done similarly. In order to solve this problem, we adopt
exist two positive parameters, > 0 and, > 0, depending the center manifold theory, which is a powerful tool in the sta-
on the initial conditionW,, such that bility analysis of nonlinear dynamic systems. This approach can
T give us some profound results on global convergence analysis.
ol S WHHRW () < aalr, 120, First, we derive the Hessian matrix associated with the NIC per-

Proof: Assume thaR > 0 and can be decomposed into formance index.
Lemma 4.5: Let W be a stationary point afxic(W). Then,

R =UT |:R01 g} U the HessiarH ; of Jxic(W) at W is given by
_ _ o . Hw(X)Y) =tr [XTY L XTWYTW
whereU is an orthogonal matrix, anR is a diagonal matrix .
with - X* (I- WW?) RY (W'RW) |
rankR; = rank R. whereX,Y € R"*X",

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 12, 2009 at 00:09 from IEEE Xplore. Restrictions apply.



LIU et al: GLOBAL CONVERGENCE ANALYSIS FOR THE NIC FLOW 2427

Proof: Regarding Jxio(W) as a mapping from =tr[X"X + XTWX'W
g/’flé ﬁw |6v;7 E f}tzr:w(?g to R(,jthe?hforda flxe::lW ;D, I%I’;] _ XTVAQVTXQTAI_IQ]
efinition 6.7 in the Appendix, the derivative afyic B T T T T

will be a mapping fronT'wA to Ty, cw)R, whereTwAN =tr[(X ‘T)VW TX + XTWX ‘Z) —
denotes the tangent space of the functdérat W. Following +XTVVIX - XTVA, VIXQEATQ]
this idea, it can be seen thdt/nic(W) will be a function ot XTWIWTX 4 XTW) 4 XTVVTX
of a new variableX € R™*". Fix X € R™", and let 2tr ( T )+

Ja(W) = dInicow)(X). From Lemma 4.2, it follows that <

A;* 1) XTVVTX} .

Using the inequality that (A AT + AZ%) > 0 for any square
matrix A and A\.41/A,. < 1, we infer from the above that

Jo(W) =tr {X* [W —RW(WTRW)"!]}.

Therefore, we have

Hw(X,Y) =dJsw(Y) Hw (X, X) = 0if and only if the following conditions hold:
=tr{X*[Y - RY(W'RW)~"* tr [XTW(WTX + X"W)] = 0 AND X"V = 0.
+ RW(W'RW) "1 (Y'RW + W'RY) Let
x (WIRW)~1]}.
_ _ o J.(A) £t [A(AT + A)].
The lemma immediately follows by substitutiny for W
into the above and noting that Then,J,(A) = 0 will be a minimum value, and therefore
— — — —1 — A
RW (WIRW) ' =W. 0I(A) o L ALAT_o.

JA

. i - This indicates that
It should be noted that the Hessian maldxy derived above

is different in form from that obtained in [1]. The formula for the WX + XTW =0AND X'V = 0. (19)
Hessian matri¥w here is very explicit, which is effective for
the NIC flow analysis. The same matrix was expressed by Kr
neck product in [1], which is powerful for computation. Bot
of these two forms have their own advantages in Qealﬁng with XWT + WXT = 0. (20)
different problems. Actually, they are same only with different
appearances. In fact, due to

Lemma 4.6: The set

et us prove that these conditions hold if and onlyXf ¢
wM, i.e.,

WTW = I7 WTV = 0

A nxr _ Ty —
MEAWERTT W =U.Q Q' Q =1} @7 the first equality in (19) can be obtained by multiplying (20)
is a center manifold for the flow by WT from the left and byW from right, and the second
. one can be obtained by multiplying (20) By from the right.
W = —VInic(W) = RW(W'RW)™' =W  (18) Conversely, (20) follows from (19) because

at any point in the set where w7t

VT
_[WIX+XTW o0
- 0 0

} XWT +WXhH[W V]
Ur é {111, e 7u1‘}'

=0.
Proof: Obviously,M is a smooth manifold. One can show

[18] that the tangent space fdrt at W € M is It is thus concluded thalw (X, X) = 0 if and only if X ¢
TwM = {X e R | XW' + WXT =0}. TwM. =
Corollary 4.1: There holds
In addition, M is invariant under the flow (18) as any point in S
the set is an equilibrium point of (18). According to Definition Hw(X,X) 20, YWeM

3.1, it remains to be shown that for any fix8% € A, the  Theorem 4.3:Consider the ODE (5) with an initial condition
HessianHw (X, X) vanishes ifand only iX € TwAM.Todo () = W, € D. Then, the following statements hold:
this, assume thdlv = 1..Q for some orthogona}, and let i) The solutionW (¢) converges to some set of the form

‘A\/':(El,,_i_l’...’un]’ A1 Idlag{)\l’)\Q’...’)\,,} {W:[uil uzT]Q|QTQ:I}
2 =00 A1 Ay An wherel < i) < --- < i, < 7.
Then, it is seen from Lemma 4.5 that i) If W(¢) converges to the principal eigenspace (17),
- - - which has been proved to be a center manifold, then
Hw (X, X) :tr[X X+ X"WX'W W (t) must converge to a point in this eigenspace as
-~ X"I - WWHRX(W'RW)™'] t — oo.
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i) If W(¢) converges to some point i, then it will con- Lemma 4.7: With the same notation as in Theorem 4.3
verge exponentially when it is near the center manifold.
Proof: The first statement follows from Lemma 4.2. To rank[u; Wo] =0 = rank[u/W(t)] =0, V¢ >0
prove the second statement, assumeWaét) converges tou.
Then, there exists a sequengg } with lim;_, & = oo such holds, wheres; is any eigenvector oR.

that W (¢;) converges to a poirlV € M. In view of Corollary Proof: Putx(t) = ul W(t). Then, it is obvious that
4.1 and Remark 3.2, there exists a homeomorplismU —
R™>L with % =x [M(WTRW)~! —I] AND x(0) = 0.

By the uniqueness of solutions, it follows thaft) = 0, V¢ >
0. O
from a neighborhoo®y C R™*" of W onto a neighborhood of  As a result of this lemma and the convergence theorem, the
0 € R™>* such thatp maps solutions of (18) starting withinfollowing corollary is obtained, which identifies a domain of
U to solutions of attraction as well as a set of initial points that do not lead to the
. nax1 principal eigenspace.
).(_h(x)’ x€ Rnrfn l Corollary 4.2: With the same notation as in Theorem 4.3,
y=-y, YER ! the solutionW(¢) will converge to a point in the principal
eigenspaceM if

W)= |T], xeR™ANDy e R™ X!
y

wheren is the dimension ofM, andh(x) is equivalent to the
dynamic flow on center manifold1. Due to the fact that is
a set of equilibrium of the NIC flonh(x) = 0. Now, letm be
such an integer tha (¢,,) € U, and put

Wi ag --- u,]=0.

Moreover, the solutioW (¢) cannot converge to the principal

HW(2)) = x(t) ‘> eigenspaceM if Wlu; = 0 for somei between 1 and.
vy | = Proof: If
Since [;’(Eiﬂ satisfies the above ODE for all > ¢, it Wg[u,,ﬂ o oue]=0
must converge to{x(é’”)}. Note thatm can be chosen to then from Lemma 4.7
trn 1 H 1
be so large that{x(O )} is inside ¢(U). Therefore, W(¢) WHH [wy: - u,]=0 (21)
_ X(tm ) -
converges tap~* [ (0 )D ast — oo. Obviously,W = and (21) indicates thaV (o) will be in M. By Theorem 4.3,
T x(tm) S ~ 'W(¢) will converge to a point inM.
¢~ Q 0 D holds, which implies thak(¢,,) = 0. This If Wlu; = 0,1 <i <, thenWT(t)u; = 0 according to
complétes the proof of part 2. Lemma 4.7. This implies tha® ' (cc)u; = 0, which tells us
As for part 3, if W (t) converges at some point call8%, in  that the limit is not inM. u

M, then wher is large enoughW (¢) will be near the center ~ Although we cannot characterize the convergence domain
manifold M. According to part two of Lemma 3.1 and Remarikeompletely, we specified some convergence and nonconver-
3.1, there exists a neighborhood W, in which the conver- gence sets, which can be used effectively. Here, the word of

gence will be exponential. O convergence indicates thAV (¢) converges to the principal
The importance of this theorem are threefold. eigenspace. The attraction domain obtained in [1] includes the
1) The NIC flow may converge to a set of the stationar9°mai” that may lead to converging to a point as well as to a
points. Set. The convergence domain given in Corollary 4.2 will lead

2) If W(t) converges to the principal eigenspaté, then to converging to a point. Therefore, it is easy to understand

it must converge to one point instead of possible muItipFE'at th_e convergence domain obtained here is smaller than the
points. attraction domain in [1].

3) If W(t) converges to one point in the principal .Finally, it can be seen that if we scale the mafxto aR
eigenspace, then it will converge exponentially when With anya # 0, the trajectoryW (¢) of the NIC flow (5) will

reaches near enough to the center manifold, although {#& change. This property is quite different from the Oja flow,
convergence rate is unknown accurately. in which the flow depends on the weight matixclosely.

Theresultsin [1] only tell us the fact that the NIC flow converges
but without telling us whether it converges to a set or a point.
Of course, we are more interested in the case of the NIC flowIn this paper, we investigated some basic problems on the
converging to a point. Thus, it is curious for us to know undeMIC flow, including the existence of its solution, convergence
what conditiondW (¢) will converge to the principle eigenspaceanalysis, and convergence domain characterization. These prop-
Theorem 4.3 did not answer this question directly. Next, we tuamties are very important to the analysis and application of the
out our attention to this important question. NIC flow. Since a novel approach based on center manifold is

V. DISCUSSIONS ANDCONCLUSIONS
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adopted here, the results obtained here are more accurate d8BmSmooth Manifolds

pared with those in [1] in the following aspects. Definition 6.1: A manifold A" of dimensionn is a Haus-
i) The existence of the NIC flow is addressed in this papejorff topological space with a countable basis such that for each
II) The convergence analysis is investigated; Specifically, € N, there exists a homeomorphimapping some open
the convergence to a point rather than to a set is chageighborhood of onto an open set iR".
acterized. Usually, the homeomorphism mapping is reflected kyoa
iii) The convergence rate is proved to be exponential whejidinate chartdefined on a manifoldV". This coordinate chart
the NIC flow reaches near enough to the center manifol. a pair(U, 4), wherel is an open set ok, and¢ is a homeo-
iv) The convergence domain has been partly characterizeforphism off7 onto an open set g&™. Of course, on one mani-
Another interesting topic along this research direction is to ifield, there can be two differesbordinate chartsLet (I, ) and
vestigate the convergence rate and convergence domain as {19l,) be two coordinate charts on manifo\dwith UNV £ ().
and [11] for the Oja flow. Regarding to the convergence domaifihen, one can define

we propose the following conjecture. o
Conjecture: W (¢) converges to the principal eigenspake pod pUNV) = oInV). (22)

. P )
if and only if U, Wy is of full rank andW, € D. Roughly speaking, two coordinate chafts ¢) and (V, ¢)

We believe that the convergence rate for the NIC flow can t%\?e called smooth compatible if, whenevérn v = §, the
estimated as the convergence analysis for the Oja flow in [21},5dinate transformatiop o ¢— defined in (22) is smooth.

This is a topic of possible future research for us. Now. it is time to define smooth manifolds.
The NIC-based algorithms can be applied to many fields, aspefinition 6.2: A smooth manifold is a manifold equipped
discussed in [1]. We believe that the NIC flow and its relategith a collectionA = {(V;,¢;) : i € I} of pairwise smooth-

U
APPENDIX T Ui=N.
1€l

In order to understand the center manifold theory better,On smooth manifolds, one can define smooth mappings as
we will present some basic concepts on topological space E}Bﬁows ’

smooth manifolds in this Appendix. Definition 6.3: Let A" and.At be smooth manifolds. A map-

ping ' : N — M is a smooth mapping if, for eaghe N,
A. Topology Concepts there exist coordinate chari, ¢) of A" and(V, ¢) of M, with
Letting S be a set, aopologyon S is a collection of subsets p € U andF'(p) € V, such that the expression féf in local
of 8, called open sets, satisfying the following three axioms: coordinates is smooth. .
i) The union of any number of open sets is open. Thg s_gbmanlfolds are defined as follows. .
i) The intersection of any finite number of sets is open. De_flnltlon 6.4: Let /' : N — M be a smooth mapping of
iii) The setS and empty sef are open. manifolds.

Conventionally, we denote a topology as topological sgsce ..l) r 'S anlm_mersmryf mnk(.F). - diLm(N? for all pe N
. : : . i) F is aunivalent immersionf I’ is an immersion and
A basisfor a topological spacB is a collection of open sets,

called basic open sets, with the following properties: injective.
i ; g ; o g prop ' iii) Fisanembeddingf F is an univalentimmersion and the
i) S is the union of basic open sets. topology induced orF(A') by the one o\’ coincides

i) A nonempty intersection of two basic open sets is an with the topology ofF"(A) as a subset af.

union of basic open sets. Definition 6.5: The imageF'(N) of a univalent immersion
A neighborhoodf a pointp for a topological spacB is any s called an immersed submanifold.6f. The imageF'(\) of
open set that contains an embedding is called an embedded submanifoléof
Next, we define the mapping between two topological spaces By the use of word of submanifold, we indicate that one can
LetS; andS, be topological spaces, whefeis a mapping from equip /(A') with a coordinate chart structure from a smooth
S; to Sy manifold. A detailed description of the structure can be found
in [17].
F:81— S,
C. Tangent Spaces
The mapping is calledontinuousf the inverse image of every | et A" be a smooth manifold of dimensianA tangent vector
open set o is an open set d8,. The mapping is calledpen  at pointp € A can be defined as usual with detailed definition
if the image of an open set &, is an open set 08,. The in [17]. Now, let us define tangent space.
mapping is called ahomeomorphisiitis a bijection and both  Definition 6.6: Let A" be a smooth manifold. The tangent
continuous and open. space toV atp, which is denoted’,V, is the set of all tangent
Finally, a topological spac8 is called aHausdorfftopolog- vectors aip.
ical space if any two different pointg, andp; have disjoint Now, one can define the differential for a mapping between
neighborhoods. smooth manifolds.
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