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Abstract: Carrier phase ambiguity resolution is the key to precise positioning with GNSS, therefore quite a few 

ambiguity resolution methods have been developed in the past two decades. In this paper, a new ambiguity searching 

algorithm by treating part of normal equations as constraints is developed. The process starts with the truncation of the 

terms with respect to the small eigenvalues from the normal equations of least squares estimation problem. The 

remaining normal equations are employed as the constraint equations for the efficient searching of integer ambiguities. 

In the case of short single baseline rapid GNSS positioning with double differenced phase measurements, there are 

only three real parameters of position to be estimated. Therefore three terms of the normal equations should be 

truncated off due to the fact that there is a large difference between the last three eigenvalues of the normal matrix of 

float solution and the others, and then the remaining ambiguities can be trivially solved with three independent 

ambiguities by means of the remaining normal equations. As a result, only three independent ambiguities are 

necessarily searched and the searching efficiency is dramatically enhanced. Moreover, a new indicator of minimizing 

the conditional number of the sub-square matrix of the remaining normal equations is introduced to select three 

independent ambiguities. Once the correct integer values of the selected three independent ambiguities are applied to 

solve the remaining ambiguities, the estimated real-valued solutions are very close to their integers, which can be 

applied as additional strong constraints to further improve the searching efficiency. Finally, two case studies, from real 

dual-frequency GPS data of about 10 km baseline and random simulations respectively, are carried out to demonstrate 

the efficiency of new algorithm. The results show that the new algorithm is efficient, especially for the scenarios of 

high-dimensional ambiguity parameters. 

Keywords: GNSS; ambiguity resolution; fast positioning; ill-posed equation; singular value decomposition; normal 

equation. 
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Introduction 

The precise positioning and navigation by using Global Navigation Satellite Systems (GNSS) must employ the phase 

measurements with correctly fixed ambiguities. The purpose of ambiguity resolution (AR) is to determine the integer 

cycle unknowns in phase measurements, which can lead to recover the millimeter precision of ranging measurements 

between a satellite and a receiver, making precise determination of the user coordinates and tropospheric and 

ionospheric delays if possible. We refer to some early publications, such as Frei and Beutler (1990), Hatch (1990), 

Euler and Landau (1992), Chen (1993), Teunissen (1994), Park et al. (1996), Xu (1998, 2001) and Shen and Li (2007), 

for the detailed arguments. In general, an AR process comprises the three procedures: (i) estimate the float 

(real-valued) ambiguities  with a sufficient accuracy; (ii) search over the integer candidates with an efficient 

searching technique; and (iii) fix the float ambiguities to their integer values of being considered correct according to 

an appropriate criterion, for instance, ratio indicator. In this paper, we will confine ourselves to the second procedure, 

which is the most important for efficient AR. 

In the fast relative positioning of single short baseline, it is crucial to find an appropriate algorithm to reliably 

determine the integer ambiguities only with a few epochs of phase measurements, even on the fly. Since the 

covariance matrix of the estimated float ambiguities is highly correlated, the decorrelation technique has been 

employed to make the covariance matrix minimally correlated, thus improving the efficiency of ambiguity searching. 

Although extensive studies have been made towards the ambiguity decorrelation (Teunissen 1994; Liu et al. 1999; 

Grafarend 2000; Xu 2001; Shen and Li 2007), numerical investigations by Xu (2001) and Lou and Grafarend (2003) 

have shown that all decorrelation algorithms cannot enhance the efficiency of AR in the case of high-dimensional 

ambiguity parameters. 

In the kinematic GPS positioning, Hatch (1990) developed a so-called least squares ambiguity search technique to 

fix the ambiguities instantaneously, where the double differenced (DD) observables for each epoch are separated into 

two groups. In the primary group, there are three well-conditioned DD observables, and if their ambiguities are 

correctly fixed, the position can be trivially determined. For each integer candidate of three DD measurements in the 

primary group, the corresponding potential position can be uniquely determined. Furthermore, the remaining 

ambiguities can be individually achieved by substituting the solved potential position into the DD measurements of 

the secondary group. If the estimated ambiguities of the secondary group are not within their confident intervals 

previously determined by the code measurements, they would be directly rejected and thus their corresponding 

potential integer candidate of the primary group are excluded as well. Through this process, all potential integer 
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candidates of the primary group are validated and only correct one is reserved to determine the precise position (Hatch 

1990). ARCE (Ambiguity Resolution using Constraint Equation) algorithm proposed by Park et al. (1996) is 

essentially identical to the Hatch‟s method, where the coordinate parameters are primarily eliminated epoch by epoch 

and the transformed equations for ambiguities are of rank defect with the number of three, which are used as the 

constraint equations in searching integer ambiguities. 

In this paper, we will propose a new method using the constraints conveniently derived from the normal equations 

that are primarily obtained along with the float solution. The process starts with the truncation of the terms with 

respect to the smaller eigenvalues from the normal equations, and the remaining normal equations are of rank defect 

and thus employed as the constraint equations for efficiently searching the integer ambiguities. In the case of only 

three real coordinate parameters to be estimated, there is a large difference between the last three eigenvalues of the 

normal matrix for float solution and the others, therefore three terms of the normal equations with respect to the small 

eigenvalues should be truncated off. In new algorithm, only three independent ambiguities are necessary to be 

searched. Consequently the searching efficiency can be significantly enhanced. In addition, a new indicator of 

minimizing the conditional number of the sub-square matrix of the remaining normal equations is introduced to select 

three independent ambiguities. Once the correct integer values of the selected three independent ambiguities are 

substituted into the constraint equations to determine the remaining ambiguities, the estimated values are always 

rather close to their integers, which can be, in turn, applied as additional strong constraints to further improve the 

searching efficiency. 

  The rest of the paper is organized as follows. “Least Squares Ambiguity Search Technique” will briefly review the 

least squares ambiguity search technique from the point of view of the mixed integer least squares model, as was first 

set in this mathematical terminology by Xu et al. (1995) and Xu (1998, 2006). The new algorithm for AR by treating 

part of the normal equations as constraints is developed in “Ambiguity Resolution with Constraints from Normal 

Equations”, and its difference from the currently existing related techniques as well as its benefits are discussed. In 

“Numerical Experiments and Analysis”, two case studies, from real dual-frequency GPS data of about 10 km baseline 

and random simulations respectively, are carried out to demonstrate the performance and efficiency of the proposed 

algorithm. Finally, the research findings are given to conclude the paper. 

Least Squares Ambiguity Search Technique 

The unwanted real-valued parameters of biases, such as the satellite and receiver clock errors, are often first 

eliminated by using double difference technique, which is mathematically justified by the equivalence theorem in the 
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case of GPS (see e.g., Schaffrin and Grafarend 1986; Shen and Xu 2008; Shen et al. 2008). In addition, the DD 

ambiguities are specified to integer and the equivalence theorem holds true only for the real-valued parameters and 

cannot be used to eliminate the integer parameters (Xu 2006). Therefore, the DD model is preferred in the real GPS 

applications. The DD observational equation is described by 

orb tro ion N                                               (1) 

where Δ denotes the double difference operation product. Δφ is the DD measurement in cycle; Δρ is DD geometric 

distance from satellite to receiver antenna; Δδorb is DD satellite orbital error in meter; Δδtro is the DD tropospheric 

propagation delay with free of frequency influence in meter; Δδion is the DD ionospheric delay with an inverse 

proportion to the squared frequency; ΔN is the DD integer ambiguity and λ is its corresponding wavelength; Δε is DD 

random noise. For a short baseline, all of the remaining systematic biases of Eq. (1), such as orbital error, tropospheric 

and ionospheric effects, can be basically ignored. If there are (m+1) satellites are simultaneously tracked, the 

linearized DD observation model for one epoch reads, 

  y Ax z ε                                            (2) 

where y is an m-dimensional column vector of DD measurements; x is 3-dimensional column vector of coordinates; z 

is m-dimensional column vector of integer ambiguities, respectively. A is the m×3 design matrix with full column rank. 

ε is an m-dimensional column vector of observation noises. It is noticed that the DD ionospheric delay would be still 

significant for short baseline in the case of severe sunspot activity and should be carefully considered for reliable AR 

and precise positioning (see e.g., Abdullah et al. 2009). 

In the least squares ambiguity search technique, all DD observables of one epoch are separated into two groups, and 

three well-conditioned observables are classified into the primary group and the others into the secondary group, 

namely, 
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. Here, the subscripts P and S denote the primary and secondary 

groups, respectively. For each potential integer candidate zP in the primary group, the corresponding potential position 

ˆPx  is uniquely determined by 

 1ˆP P P P x A y z                                          (3) 

By use of the sequential least squares adjustment, the remaining ambiguities of the secondary group with respect to 

the potential position solution ˆPx  is trivially solved by 

 ˆˆS S S P  z y A x                                          (4) 
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In principle, all elements of the vector ˆSz  should be within their confident intervals that could be previously defined 

by the code measurements. If all the elements are really of a very small variance, they can be directly rounded off to 

their nearest integers, otherwise the float solution ˆSz  and its corresponding potential position ˆPx  as well as the 

potential integer candidate zP will be excluded. By this way, all potential integer candidates in the primary group are 

validated via substituting them into Eqs. (3) and (4). If there are still more than two admissible integer ambiguity sets 

after the above validation, the ratio indicator will be further applied to pick out the final solution of the current epoch. 

The validation will be continuously performed over the next a few epochs until the final solution becomes reliably 

available. Furthermore, inserting Eq. (3) into Eq. (4), the direct relationship between zP and zS of two groups can be 

obtained, which is the essence of the ARCE algorithm (Park et al. 1996). Obviously, the ARCE algorithm is exactly 

equivalent to the least squares ambiguity search technique. 

We would like to give some comments on the least squares ambiguity search process here. First of all, this method 

is, in general, suboptimal and thus we cannot guarantee to achieve the largest success probability of AR. Additionally, 

all formulae are derived on the basis of the single epoch observables because of the fact that the observation equations 

with carrier measurements are of rank defect with number of three only for the single epoch observation model. In 

other words, it is originally developed for kinematic positioning where the position is variable epoch by epoch. 

Admittedly, it can also be applied in the static scenario and the desired results could be obtained. However, the latent 

assumption that the different positions are defined for different epochs is utilized, which obviously loses the promising 

information that the unique position should be defined for all epochs in the case of static applications. 

Ambiguity Resolution with Constraints from Normal Equations 

Mathematical Model for Ambiguity Resolution with Constraints from Normal Equations 

Without loss of the generality, the observation equations are newly symbolized to include the measurements of 

multiple epochs by 

  y Ax Bz ε                                           (5) 

where x, z, A, y and ε have the same meanings as those of Eq. (2) except for multiple epochs; B is the newly 

introduced design matrix of full column rank for ambiguity parameters of multiple epochs. The Eq. (5) has been also 

known mathematically as the mixed integer linear model (see e.g., Xu et al. 1995; Xu 2006), and the least squares 

criterion is often applied to solve it by 

   
T

min:      y Ax Bz P y Ax Bz                               (6) 
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Here P is the positive weight matrix of observation vector y. The essential difference of Eq. (6) from the traditional 

purely real-valued least squares model is that the integer constraint is imposed to z. According to the rigorous 

derivation of Xu et al. (1995), we can only differentiate Ф with respect to real-valued parameter x and equate the 

differential to zero since z is not continuous and cannot be differentiated. Therefore, the estimate of x can be expressed 

in terms of the estimate of z. Then by substituting the estimate of x back into Eq. (6), the integer least squares problem 

is alternatively reduced to 

   1
ˆˆ ˆmin: =

T

LS LS
  Zz z Q z z                                    (7) 

where ˆLSz  is the least squares float ambiguity solution of the following normal equation, 

Nz w                                           (8a) 

with 

 

T
1

T
1

1
T T

1
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

 

N B P B

w B Pl

P P PA A PA A P

                                 (8b) 

The covariance matrix 2 1
ˆ  ZQ N  with ζ2

 being the prior variance of unit weight. Since the discrete property of 

integer ambiguities, they are determined necessarily by searching technique based on the criterion (7). 

In the fast GPS positioning, the normal matrix N is severely ill-conditioned, refer to e.g., Xu et al. (1999); Shen and 

Li (2007) and also see Fig. 2, which means that the covariance matrix 
ẐQ  is highly correlated and small noises in 

observation vector y will lead to large errors in ˆLSz . In the both static and kinematic GPS applications, the 

decorrelation technique is usually employed to make 
ẐQ  minimally correlated by conducting unimodular 

transformation on it (see e.g., Teunissen 1994; Xu et al. 1995; Liu et al. 1999; Grafarend 2000; Xu 2001, 2006). 

Nevertheless, the decorrelation cannot guarantee to improve the searching efficiency in the scenario of the 

high-dimensional integer searching as recognized by Xu (2001) and Lou and Grafarend (2003). In fact, the 

high-dimensional integer searching problem would become crucial when the number of integer unknowns becomes 

extremely large due to the use of multiple satellite systems and multiple frequency signals (Feng 2008; Li et al. 2009), 

with which we have to be confronted in the next few years. Therefore, we will attempt to develop an innovative 

method for more efficient AR comparing with the existing methods in the case of high-dimensional integer searching, 

which will bring some benefits to the applications of the future multiple frequency and satellite systems. 

In the fast GPS positioning of single baseline model with either pure carrier measurements or carrier and code 
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measurements, there is often high correlation between three coordinate parameters and ambiguities, so that the normal 

equations are severely ill-posed. Even if the coordinate parameters are eliminated, this nature of high correlation will 

be, to a hair, translatablely imposed to the ambiguities and the reduced normal equations (8a) remains similarly 

ill-posed. In the single baseline solution, there is, in fact, a large difference between the last three eigenvalues of the 

coefficient matrix N of normal equations and the others, and there are three extremely small eigenvalues (see e.g., Fig. 

3). 

Applying Singular Value Decomposition (SVD) to the symmetric positive normal matrix N in Eq. (8a), we have 

TN VΛV                                              (9) 

where V is an normalized orthogonal eigenvector matrix satisfied with T T
m VV V V I . Im denotes the 

m-dimensional identity matrix, and Λ is an m-dimensional diagonal matrix of eigenvalues of N, whose non-zero 

diagonal elements λ1, λ2, …., λm are, without loss of the generality, assumed to be arranged in the decreasing order, i.e. 

1 2 0m     . Substituting Eq. (9) into Eq. (8a) and considering the property of orthogonal matrix V, the 

alternative form of the normal equations (8a) reads, 

T TΛV z V w                                          (10) 

For the derivation of the following context, the matrices Λ and V are expressed with sub-matrices as follows, 

         

 

3

11 121
3 3 33 3

21 222
3 3 3 33 3

,   
m m mm m

m

     

  

  
   
  

   

V VΛ

Λ V
V VΛ

                           (11) 

where Λ2 is the diagonal matrix comprising only three extremely small eigenvalues and diagonal matrix Λ1 all the 

other eigenvalues. Substituting Eq. (11) into Eq. (10), we obtain the following equations, 

1 11 1 21 11 21

2 12 2 22 12 22

T T T T
D D I

T T T T
I D I

    
    

    

ΛV ΛV z V w V w

zΛV ΛV V w V w
                         (12) 
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 
 

w

w
w

. Truncating off the last three normal equations of Eq. (12) with respect to three 

extremely small eigenvalues, the remaining (m-3) normal equations are further employed as the constraint equations 

among ambiguities to alleviate the burden of ambiguity searching. Multiplying V11 right to the remaining equations, 

the alternative form of constraint equations is obtained, 

 11 1 11 11 1 21 11 11 11 21
DT T T T

D I
I

 
  

 

z
V ΛV V ΛV V V w V V w

z
                       (13) 

Apparently, the constraint equations (13) are of rank defect with the number of three, therefore only three ambiguities 
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are independent. Some discussions on the constraint equations are expanded as follows. If one of three extremely 

small eigenvalues is grouped into the diagonal matrix Λ1, its corresponding normal equation is no longer truncated off 

but reserved. As a result, the number of remaining normal equations becomes (m-2), and then the remaining equations 

will be ill-posed and cannot be used as the constraint equations anymore, because the ambiguity solution is very 

sensitive to the observation noises in this ill-posed model. Oppositely, if the part of large eigenvalues is grouped into 

the diagonal matrix Λ2, more than three equations will be truncated off and the number of constraint equations is 

reduced. In general, the number of the independent ambiguities is equal to that of rank defect of constraint equations. 

In other words, the number of independent ambiguities will be increased with the decrease of the number of constraint 

equations. Therefore, the searching efficiency would be relatively somewhat faded when the part of large eigenvalues 

is truncated off. Fortunately, we can guarantee to separate all the terms with respect to the large eigenvalues into the 

matrix Λ1 and the others into the matrix Λ2 by means of SVD. Thus, the normal equations only with respect to the 

extremely small eigenvalues can be successfully separated and truncated off. In addition, the algorithm can be easily 

expanded to include more parameters, such as tropospheric and ionospheric biases, in the observation model (1). In 

that situation, we can also use our algorithm to efficiently determine and truncate off the terms with small eigenvalues. 

Without loss of the generality, we assume that zI consists of three independent ambiguities, and once they are 

correctly fixed to their integers, the remaining ambiguities zD can be trivially solved as, 

   
1

11 1 11 11 11 21 1 21ˆ T T T T
D D I I



  z V ΛV V V w V w ΛV z                        (14) 

In principle, whatever three independent ambiguities are chosen, the corresponding matrix T
11 1 11V ΛV  is well 

conditioned because three extremely small eigenvalues have been primarily excluded and their corresponding normal 

equations also have been truncated off. Thus, the solved float ambiguities ˆDz  are rather reliable and close to integers. 

Their integer solutions can be simply obtained by, 

 ˆroundD Dz z                                      (15) 

where round(·) is rounding operator to map a real-valued number into its nearest integer. The key of the new algorithm 

is that all potential candidates are composed not of all ambiguities, but only of three independent ambiguities zI 

around their least squares float solutions within their confident intervals. Therefore, the number of potential candidates 

can be dramatically reduced and then the searching efficiency is significantly enhanced. It is important to emphasize 

that the new method is also of sub-optimality similar to the least squares ambiguity searching technique since the 

rounding method is applied to fix the integers. 
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New Indicator for Efficient Ambiguity Searching 

We have understood well that the better condition of the square matrix T
11 1 11V ΛV  can derive the more precise float 

ambiguities zD by Eq. (14), because observation noises in both wD and wI will be enlarged in the solved float 

ambiguities if the worse condition is assigned to T
11 1 11V ΛV . Therefore, the choice of three independent ambiguities for 

well conditioned T
11 1 11V ΛV  is very crucial. For this reason, an indicator named “ICOND” for determination of three 

independent ambiguities is defined to minimize the effects of observation noises on the estimator Dẑ  as follows, 

 T
11 1 11ICOND = cond V ΛV                                (16) 

where cond(·) is the operation product for calculating the conditional number of a matrix. The conditional numbers of 

all (m-3)(m-3) sub-square matrices from the normal matrix N should be calculated, and three independent 

ambiguities vector zI, corresponding to minimal “ICOND”, is accepted as the final three independent ambiguities. 

Once the correct integer values of the selected three independent ambiguities based on the new indicator are used to 

determine the remaining ambiguities ˆDz , the estimated float ambiguities are, in principle, rather close to integers just 

because of the influence of the observation noise. In other words, any integer candidate zI can obtain the unique 

estimate ˆDz  by Eq. (14) and the difference between the estimates and their nearest integers should be smaller than a 

fraction, for instance 0.1 cycles (see e.g. Fig. 3). If any of the difference is beyond the given fraction, this integer 

candidate should be directly rejected, which can be, in turn, applied as an additional constraint to further reduce 

searching burden. 

The extensive experiments carried out by the authors show that this additional constraint is strong and can be used 

to exclude quite a few integer candidates, and thus significantly improve the searching efficiency. After filtering out 

the unacceptable candidates with this additional constraint, just several integer candidates are reserved even only one. 

If there are two or more reserved integer candidates, additional test, such as ratio statistic, should further be used to 

pass the final solution, 

sec

min

ratio r



                                       (17) 

where min  and sec  are the minimal and the second minimal statistics computed by Eq. (7). r is a threshold and 

always determined empirically more than theoretically. For more rigorous and efficient indicator, one can be referred 

to Han (1997). 

  We would also like to highlight the benefits of the new algorithm. First of all, all the formulae are derived just based 
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on the normal equations for AR, nothing else necessary, and in some senses it is suitable for both single epoch and 

multiple epoch solutions in the either static or kinematic models. Secondly, the new indicator “ICOND” can guarantee 

that the solved remaining ambiguities are rather close to their integers, and thus the additional strong constraint is 

introduced in the new algorithm for faster searching. 

Numerical Experiments and Analysis 

The flowchart of performance of the new algorithm is presented in Fig. 1. In the whole process, the inputs are just the 

normal equation information, i.e. normal matrix N and constant vector w, for the both single epoch and multiple epoch 

solutions in either static or kinematic positioning applications, and no any other information necessary. In terms of the 

flowchart, the program was written in Matlab7.4 language for the postprocessing. In this section, two case studies, 

from real dual-frequency GPS data of about 10 km baseline and random simulations respectively, are carried out to 

demonstrate the successful performance of the new algorithm and its efficiency. 

Case 1: Performance of New Algorithm for 10 km Baseline with Dual-frequency Data 

The dual-frequency data of about 10 km baseline was collected by two dual-frequency Ashtech geodetic GPS 

receivers equipped with choke ring antennas for mitigating the effect of multipath. The sample interval is 5 seconds, 

and the cut off elevation angle of all observables is set to 15 degrees. Total 600 epochs are adopted in the experiment, 

and in the whole observation series, there are common 6 satellites above the cut off elevation and thus total 10 DD 

ambiguities at two frequencies. The DD ambiguities are primarily fixed to their integer values and then the precise 

baseline is also determined with all data, which serve as actual values in the whole experiments. 

We study the rapid AR using 10 epoch data from 600 epochs for each performance. Starting with the first 10 epoch 

data, each new performance updates the last epoch with one new epoch data, there are total 591 sets. For each 

performance, one conditional number and 10 eigenvalues of the normal matrix N are calculated, and the results for all 

591 performances are illustrated in Figs. 2 and 3. As Fig. 2 shown, the conditional numbers are about 10
6
, and the 

normal equations for AR are severely ill-posed. Fig. 3 illustrates the fact that there is indeed a large difference with 

magnitude order of about 10
5
 between the last three eigenvalues and the others, and the last three eigenvalues are 

extremely small. We can clearly see that all eigenvalues in the first seven subplots are between about 10
-0.882

 and 

10
-0.078

, and all in the last three subplots between about 10
-6.5

 and 10
-4.0

. In addition, the eigenvalues in each subplot 

for all performances are rather stable with a slight variation. 

After three independent ambiguities are chosen by means of the indicator defined by Eq. (16) for minimizing the 

effects of observation noises, the remaining ambiguities can be calculated by Eq. (14). In principle, if the correct 
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integer values of three independent ambiguities are substituted into Eq. (14), the computed remaining float 

ambiguities will be very close to their integers, and consequently their differences from their integers for all 

performances are very small as shown in Fig. 4. The differences for all remaining ambiguities are smaller than 0.1 

cycles, and apparently the solved ambiguities can be successfully fixed. Oppositely, if one candidate of three 

independent ambiguities is used to determine the remaining ambiguities and the estimated ambiguities are biased from 

their nearest integers by 0.1 cycles, it can be directly excluded. Finally, the residuals of three coordinate components 

of the baseline are calculated using the fixed ambiguities. As Fig. 5 illustrated, all residuals are smaller than 3.5 cm, 

which in turn verifies the correctness of AR. 

Case 2: Random Simulations for Assessment of Efficiency 

The random simulation technique was firstly proposed by Xu (2001) to numerically compare the performance of 

different decorrelation methods, and it is employed to assess the efficiency of the proposed algorithm for the different 

dimensional integer parameters by comparing with LAMBDA method that is currently the most popularly used AR 

method. 

  The random simulations were implemented in this paper mainly according to Xu (2001) and Chang et al. (2005). 

The float ambiguity vector ẑ  is primarily constructed as 

 ˆ 100 randn ,1n z                                     (18) 

where randn(n,1) is a MATLAB built-in function to generate a vector of n random elements that are normally 

distributed with mean zero and variance one. The normalized orthogonal matrix V is computed by factorization of a 

random square matrix, and the eigenvalues λi (i=1, 2, …, n) of the diagonal matrix Λ are the positive simulated 

random numbers. Then the simulated normal equations consisting of N and w can be trivially determined by 

TN VΛV  and ˆw Nz  with the added normally distributed errors. For more details on random simulation, the 

reader is referred to Xu (2001) and Chang et al. (2005). 

It is crucial to apply a scale factor, for instance 10
-5

, to the last three eigenvalues for obtaining three extremely small 

eigenvalues and thus a gap between them and the others. Furthermore, we should also notice that the ill-posed degree 

for the fast AR would be no longer so serious due to more measurements being simultaneously used but the number of 

coordinate parameters being still three in the future multiple GNSS system and multiple frequency applications, 

although the dimension of the integer unknowns is increased. Therefore, in order to demonstrate the full performance 

of the new algorithm for the future high dimensional AR, four scale factors, i.e., 10
-2

, 10
-3

, 10
-4

 and 10
-5

 are 

individually applied to describe the ill-posed degree of simulated normal equations. 
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Table 1. Average running time for different dimensions with scale factors of 10-2 and 10-4 (unit: seconds) 

Scale factors 
Dimensions 

10 15 20 25 30 35 40 

10-2 0.084 0.122 0.272 0.705 1.554 3.289 6.807 

10-4 0.195 0.253 0.432 1.222 2.376 4.478 6.871 

 

All of the computation schemes were performed with MATLAB7.4 programs on a Pentium D, 2×1.86GHz PC with 

2GB memory running Windows XP professional 2002. We simulate the dimension of integer ambiguities as 

n=6,7,…,40 for each scale factor, and perform 20 runs for each dimension. The average running time for each 

dimension with different scale factor is presented in Fig. 6, where the column axis stands for the common logarithm of 

average running time in seconds. Subplots a, b, c and d illustrate the running time for the scale factors of 10
-2

, 10
-3

, 

10
-4

 and 10
-5

, respectively. Tables 1 present the comparison of average running time for some given dimensions with 

scale factors of 10
-2

 and 10
-4

. In general, the more running time is needed when the dimension is higher and the scale 

factor smaller. It is important to notice that the running time is still modest and acceptable in high dimensional cases, 

e.g., the running time is just about 6.8 seconds for all 40 dimension experiments. Moreover, we confirm that the 

running time can never increase dramatically with the higher dimensional integer parameters because only three 

integer parameters are necessary to be searched in whatever situations. However, the running time is several hundred 

seconds for LAMBDA algorithm in the 40 dimension case due to the inefficient decorrelation processing, referring to 

Chang et al. (2005). To sum up, the new algorithm can be efficiently applied for integer ambiguity searching, 

especially in the high-dimensional cases. 

Concluding Remarks 

We have proposed to truncate the terms of the normal equations for AR with respect to three extremely small 

eigenvalues in the cases of three real coordinate parameters to be estimated, and then use the remaining normal 

equations as constraints in efficiently searching integer ambiguities. In this way only three independent ambiguities 

need to be searched and the number of searching integer candidates is dramatically reduced. In addition, the new 

indicator has been introduced to determine three independent ambiguities, and the conditional number of the 

sub-square matrix corresponding to the selected three independent ambiguities is minimum, which can guarantee that 

the computed remaining ambiguities are so close to their integers that they can be directly rounded off. Since the 

normal equations are always primarily formed along with the float ambiguity solution, the new algorithm is rather 

convenient and efficient to obtain the constraint equations, and in some senses suitable for both single epoch and 

multiple epoch solutions in the either static or kinematic models. The results from two case studies have demonstrated 
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that new algorithm is very efficient, especially for high-dimensional cases. It is worthy to point out that this approach 

is easy to be extended in the medium or long baseline cases, where more real parameters except for 3 coordinates need 

to be estimated, such as zenith tropospheric delay. 

This research finding would become more important to the fast GNSS positioning situations using multiple satellite 

systems with multiple frequencies, such as modernized GPS, GALILEO, COMPASS and others, where the number of 

ambiguity parameters would be huge. In general, the new algorithm has shown computational advantages in dealing 

with high dimensional integer estimation, and would be a preferred approach for future GNSS AR. 
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Fig. 1. Flowchart of the new algorithm 

Fig. 2. Conditional number with 10 epoch data 

Fig. 3. Eigenvalues of normal equation calculated with 10 epoch data 

Fig. 4. Difference between float ambiguities solved by Eq. (14) and their nearest integers 

Fig. 5. Baseline residuals with fixed ambiguities 

Fig. 6. Comparison between new algorithm and LAMBDA 
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