
Does genetic distance between parental species influence
outcomes of hybridization among coral reef
butterflyfishes?

STEFANO R. MONTANARI , *† JEAN-PAUL A. HOBBS,‡ MORGAN S. PRATCHETT,§
LINE K. BAY¶ and LYNNE VAN HERWERDEN† **

*AIMS@JCU, Australian Institute of Marine Science, School of Marine and Tropical Biology, James Cook University,

Townsville, Qld 4811, Australia, †Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University,

Townsville, Qld 4811, Australia, ‡Department of Environment and Agriculture, Curtin University, Perth, WA 6845,

Australia, §ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia,

¶Australian Institute of Marine Science, PMB 3, Townsville MC, Townsville, Qld 4810, Australia, **School of Marine

and Tropical Biology, James Cook University, Townsville, QLD 4811, Australia

Abstract

Christmas Island is located at the overlap of the Indian and Pacific Ocean marine prov-

inces and is a hot spot for marine hybridization. Here, we evaluate the ecological

framework and genetic consequences of hybridization between butterflyfishes Chaeto-
don guttatissimus and Chaetodon punctatofasciatus. Further, we compare our current

findings to those from a previous study of hybridization between Chaetodon trifascia-
tus and Chaetodon lunulatus. For both species groups, habitat and dietary overlap

between parental species facilitate frequent heterospecific encounters. Low abundance

of potential mates promotes heterospecific pair formation and the breakdown of assor-

tative mating. Despite similarities in ecological frameworks, the population genetic sig-

natures of hybridization differ between the species groups. Mitochondrial and nuclear

data from C. guttatissimus 3 C. punctatofasciatus (1% divergence at cyt b) show bidi-

rectional maternal contributions and relatively high levels of introgression, both inside

and outside the Christmas Island hybrid zone. In contrast, C. trifasciatus 3 C. lunula-
tus (5% cyt b divergence) exhibit unidirectional mitochondrial inheritance and almost

no introgression. Back-crossing of hybrid C. guttatissimus 3 C. punctatofasciatus and

parental genotypes may eventually confound species-specific signals within the hybrid

zone. In contrast, hybrids of C. trifasciatus and C. lunulatus may coexist with and

remain genetically distinct from the parents. Our results, and comparisons with hybrid-

ization studies in other reef fish families, indicate that genetic distance between

hybridizing species may be a factor influencing outcomes of hybridization in reef fish,

which is consistent with predictions from terrestrially derived hybridization theory.
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Introduction

Hybridization is often a significant evolutionary force

that can erode genetic diversity in natural populations

(Abbott et al. 2013), but can also contribute to creating

and maintaining genotypic novelty (Seehausen 2004;

Mallet 2007; Nolte & Tautz 2010; Abbott et al. 2013).

Hybridization challenges the assumptions of the

biological species concept: to provide a suitable frame-

work for the interpretation of natural hybridization

(Frankham et al. 2012), we define species as separate
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‘genotypic clusters’ that remain stable in the face of

gene flow (Mallet 2007). Hybridization can increase

genotypic variation, which may be significant in

enhancing adaptation to altered or novel environments

(e.g. Darwin finches – Grant & Grant 2002). Further,

hybridization can have significant effects on evolution

through the formation of hybrid swarms (e.g. stickle-

backs – Taylor et al. 2006) and stable hybrid lineages,

which coexist in sympatry with parental species (e.g.

sparrows – Hermansen et al. 2011). Albeit well under-

stood in terrestrial and freshwater systems, the role of

hybridization in shaping the evolution of marine organ-

isms remains, with a few exceptions (e.g. corals – Willis

et al. 2006), in need of thorough evaluation.

Several ecological and behavioural processes promote

natural hybridization (Willis et al. 2013). Closely related

species often share similar ecological niches (habitat,

diet), and this can increase the frequency of heterospeci-

fic encounters (e.g. fire-bellied toads – MacCallum et al.

1998). Species in low abundance may choose to mate

with close relatives when conspecific partners are not

available; thus, rarity of one or both species within the

contact zone might result in the formation of hetero-

specific social groups (e.g. Grant & Grant 2008), the

breakdown of assortative mating (Arnold 1997) and

hybridization. Through ecological observations, the

abovementioned studies have identified conditions that

favour hybridization in terrestrial systems, but quantita-

tive ecological data are scarce in the marine hybridiza-

tion literature (Montanari et al. 2012).

Studies have shown a negative correlation between

frequency of hybridization and evolutionary divergence

(Edmands 2002; Mallet 2005, 2007): genetic distance,

with some exceptions (Edmands 2002), is considered a

good predictor of reproductive isolation (Singhal & Mo-

ritz In press). Further, interspecific gene flow mediated

by hybridization (introgression) can occur between spe-

cies with varying levels of divergence, but appears to

be strongest in more closely related species (Mallet

2005). The evolutionary proximity of the parental spe-

cies facilitates hybridization because closely related spe-

cies are more likely to be genetically compatible and

therefore capable of producing viable hybrids (Mallet

2005). Conversely, if divergence is too extensive, suc-

cessful hybridization might not be possible due to

genetic incompatibility (Mallet 2005; Abbott et al. 2013).

Geographical locations where hybridization is most pre-

valent are ideal to investigate the outcomes of hybrid-

ization in taxa with varying degrees of relatedness,

because these narrow areas allow controlling for envi-

ronmental variation that may influence patterns of

hybridization (Avise 2000).

Suture zones are geographical locations where hybrid

zones naturally cluster (Swenson & Howard 2004) and

were defined by Remington (1968) as ‘[bands] of

geographical overlap between major biotic assemblages,

including some pairs of species or semi-species which

hybridize in the zone’. In terrestrial suture zones, the

extent of divergence and reproductive isolation between

hybridizing species can vary greatly and influence the

evolutionary consequences of hybridization (Moritz

et al. 2009): here, we propose to test this terrestrially

derived notion in marine species.

The best-known tropical marine suture zone is

located at the Indo-Pacific biogeographical border, in

the eastern Indian Ocean (Hobbs et al. 2009). Here, the

fish fauna is characterized by an admixture of Indian

and Pacific Ocean taxa (Hobbs & Salmond 2008). Typi-

cally allopatric sister species make secondary contact at

this border, where they form the highest number of reef

fish hybrids reported from any marine location (Hobbs

et al. 2009). Christmas Island, Australia, is an oceanic

seamount located on the Indo-Pacific biogeographical

border (Allen et al. 2007), and its reefs provide a unique

location to apply terrestrially derived theory to test eco-

logical frameworks and evolutionary consequences of

hybridization in a tropical marine suture zone.

Butterflyfishes inhabit coral reefs worldwide, are

dependent on live coral for food (Cole et al. 2008) and

shelter (Wilson et al. 2013), readily respond to changes

in reef environments (Pratchett et al. 2008) and thus are

ideal candidates to examine effects of hybridization on

adaptation (Grant & Grant 2002). Butterflyfishes are

well known for their propensity to hybridize, with more

than 50% of species in the family involved in hetero-

specific pairing and/or interbreeding (Hobbs et al.

2013). Hybrids occur mostly along zones where major

biogeographical provinces overlap (Hobbs et al. 2013),

including at least eight butterflyfish species that form

hybrids at Christmas Island (Hobbs et al. 2009, 2013).

Chaetodon butterflyfishes are an ideal system to investi-

gate reef fish hybridization because many species are

monogamous (Yabuta 1997; Pratchett et al. 2006a). Fur-

ther, even though there may be instances where hybrids

go undetected (Hobbs et al. 2013), butterflyfish hybrids

are generally easy to recognize through intermediate

coloration (McMillan et al. 1999; Montanari et al. 2012;

Hobbs et al. 2013).

In a previous study of hybridization between Chaeto-

don trifasciatus and Chaetodon lunulatus at Christmas

Island (Montanari et al. 2012), we hypothesized that the

magnitude of divergence between hybridizing parents

might influence patterns of introgression in reef fishes

based on comparisons of our results to those from the

literature (incorporating several geographical locations

and reef fish families). By examining hybridization

between Chaetodon guttatissimus Bennett, 1832 and Chae-

todon punctatofasciatus Cuvier, 1831 at the Indo-Pacific
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marine suture zone, the present study allows us to con-

trol for taxon- and location-specific factors that may

influence patterns of introgression in reef fishes. There-

fore, the aims of this article are to (i) determine the eco-

logical and behavioural context of hybridization

between C. guttatissimus and C. punctatofasciatus by

assessing abundance, spatial and dietary overlap, and

breeding pair formation in parental species and

hybrids; (ii) investigate the genetic mechanisms and

evolutionary consequences of hybridization between

these species through analyses of mitochondrial (mt)

and nuclear microsatellite DNA; (iii) discuss similarities

and differences in ecology, genetics and potential evolu-

tionary trajectories of C. guttatissimus 9 C. punctatofasci-

atus and C. trifasciatus 9 C. lunulatus (Montanari et al.

2012) at the Indo-Pacific suture zone. Specifically, we

evaluate whether genetic distance between hybridizing

species influences maternal inheritance and introgres-

sion in tropical marine fish.

Material and methods

Study location and species

This study was conducted in October–November 2010 at

Christmas Island, Australia, in the northeastern Indian

Ocean (10°250–10°340S, 105°320–105°420E) (Fig. 1, inset).

The peppered butterflyfish, Chaetodon guttatissimus

(Fig. 2A), is wide-ranging in the Indian Ocean, occurring

from the East coast of Africa to the Indo-Pacific biogeo-

graphical border at Christmas and Cocos (Keeling) Islands

(Allen et al. 1998) (Fig. 1). The spot-band butterflyfish,

Christmas Island

0 2 Km

N

Zanzibar

Guam

Marshall Is.

Cocos (Keeling) Is.

Fig. 1 Map showing the distribution of Chaetodon guttatissimus (solid line) and Chaetodon punctatofasciatus (dashed line), in the Indian

and Pacific Oceans, respectively. Asterisks represent sampling locations outside the Christmas Island hybrid zone (detailed sample

sizes are given in Material and Methods). The star symbol identifies the position of Christmas Island within the area of overlap (dar-

ker shade of grey) between the two species. Inset shows details of the Christmas Island study sites used for the distribution surveys

(black circles) and north coast area covered during the Global Positioning System-assisted surveys (thicker grey line).

(A) (B)

CG CG

CP

GPHYB

Fig. 2 (A) Chaetodon guttatissimus (CG) and Chaetodon punctatofasciatus (CP) observed in a heterospecific pair at Christmas Island. (B)

A hybrid (GPHYB) of this species complex, paired with C. guttatissimus (CG) at Christmas Island: the circle highlights the distin-

guishing maze-like dorsal pattern (cf the clear, straight lines of C. punctatofasciatus in photograph A). Maze-like patterns, such as

these, have been shown to be characteristic of natural fish hybrids (Miyazawa et al. 2010).
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Chaetodon punctatofasciatus (Fig. 2A), is distributed

throughout the Western Pacific Ocean, from Indonesia to

the Line Islands and from the Ryukyu Islands to the

Great Barrier Reef (Allen et al. 1998) (Fig. 1). Christmas

Island is the edge of the respective distributions of these

butterflyfishes (Allen et al. 1998; Hobbs & Salmond 2008)

(Fig. 1), which form heterospecific pairs at this location

(Hobbs et al. 2009) (Fig. 2A). Importantly, putative hybrids

with coloration intermediate to C. guttatissimus and

C. punctatofasciatus (Fig. 2B) are seen at Christmas Island.

Hybrid zone ecology

Abundance, depth distribution, and diet surveys. To assess

the abundance of all taxa, underwater visual censuses

(UVCs) were conducted at nine sites along the accessi-

ble coasts (Fig. 1). In face of the relative rarity of the

focal species, transect size was increased (Thompson

2004) during additional abundance surveys along the

north coast (Fig. 1). Transect length varied (ranging

from 162.1 to 580.5 m), but all data were standardized,

with densities presented as the number of fishes per

3000 m2. Surveyors swam unidirectionally along depth

contours while towing a body board fitted with a Glo-

bal Positioning System (GPS) receiver. The total area

sampled for each of 14 replicate transects was calcu-

lated based on independent measures of each GPS track

(see Data S1, Supporting Information); t-tests were used

to assess significant differences in abundance between

parental species and hybrids.

To assess depth distribution of the parent species and

hybrids, the depth at which individual fishes were first

sighted was recorded during UVCs (n = 30 individuals

for all taxa). Depth data were examined using a one-

way analysis of variance (ANOVA), comparing the mean

depth occupied by parent species and hybrids.

In situ 3-minute feeding observations (following

Pratchett 2005) were conducted for all individuals

recorded during the depth distribution UVCs. To exam-

ine dietary overlap between parent species and hybrids,

we recorded the number of bites taken from different

benthic prey or substrates. Prey items included predom-

inantly scleractinian corals that were categorized based

on genus and growth form sensu Montanari et al. (2012).

Dietary composition was analysed using a multivariate

analysis of variance (MANOVA), comparing the pro-

portion of bites taken from each prey category by the

parents and hybrids. Feeding rates (number of bites

over 3 min) were compared between parents and

hybrids using a one-way ANOVA, to further identify

differences (if any) in feeding behaviour.

Pairing behaviour surveys. During UVCs along the north

coast, pair composition was recorded to determine the

frequency of assortative pairing behaviour in the

C. guttatissimus group. Pairings were noted for all focal

fishes encountered, regardless of whether both partners

were within the transect area, and therefore included in

the abundance counts. Unpaired fishes were small

(<70 mm TL) and most likely juveniles. For each parent

species and hybrids, expected pairing frequencies were

calculated by multiplying the proportional observed

abundances by the number of paired individuals, and

observational data were analysed for departures from

expectations using a chi-square-test.

Hybrid zone genetics

Sampling and DNA extraction. Samples of C. guttatissi-

mus (n = 25), C. punctatofasciatus (n = 18) and C. gutta-

tissimus 9 C. punctatofasciatus hybrids (n = 16) were

collected within the Christmas Island hybrid zone.

Chaetodon guttatissimus samples from outside the hybrid

zone were collected at Cocos (Keeling) Islands (n = 18)

and Zanzibar (n = 1). Similarly, putative purebred

C. punctatofasciatus were collected from the Marshall

Islands (n = 7) and Guam (n = 1) in the Pacific Ocean.

Individual fish were speared whilst SCUBA diving and

fin clips were preserved in 80% ethanol for later

genetic analysis. Purebred parental species from loca-

tions as far as 7500 km away from the hybrid zone

were useful in phylogenetic analyses, to tease apart

species-specific genetic signals from the signal obtained

from the hybrid zone. Chaetodon citrinellus from Lizard

Island were used to root all phylogenetic analyses

described below (Fessler & Westneat 2007). DNA was

extracted from fin clips using 5% Chelex-100 (Walsh

et al. 1991).

MtDNA sequences and microsatellite genotypes. Mitochon-

drial cytochrome (cyt) b primers (McMillan & Palumbi

1995), previously utilized in hybridization studies of

Chaetodon butterflyfishes (Montanari et al. 2012), were

used to amplify 566 bp of the cyt b gene in all samples.

Sequences from Montanari et al. (2012) were also used

to redraw the relevant haplotype network. Polymerase

chain reactions (PCR), PCR evaluation, product purifica-

tion, sequencing, alignment and manual editing were

conducted as described in Montanari et al. (2012).

Twenty microsatellite markers developed for C. puncta-

tofasciatus (Montanari et al. 2013) were used to further

examine hybridization in the C. guttatissimus 9 C. punc-

tatofasciatus group. PCR and genotyping were per-

formed as described in Montanari et al. (2013).

Phylo- and population genetic analyses. To identify spe-

cies-specific and hybridization signals, phylogenetic

relationships were inferred using four approaches:

© 2014 John Wiley & Sons Ltd
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neighbour-joining (NJ), maximum parsimony (MP),

Bayesian inference (BI) and maximum likelihood (ML).

All phylogenetic model parametrizations and cyt b hap-

lotype network constructions were carried out following

Montanari et al. (2012) to allow direct comparisons and

minimize model-related variation (see Data S1, Support-

ing Information). Population genetic analyses followed

the same protocols as described in Montanari et al.

(2012) and did not include Zanzibar C. guttatissimus

(n = 1) or Guam C. punctatofasciatus (n = 1), due to

small sample sizes (see Data S1, Supporting Informa-

tion).

Microsatellite genotypes were partitioned into clus-

ters assuming an admixture model with independent

allele frequencies between populations, using STRUC-

TURE v2.3.4 (Pritchard et al. 2000). Each value of k (set

from 1 to 10) was independently evaluated 20 times,

with 1 500 000 iterations following a 100 000-long burn-

in (Gilbert et al. 2012). The best fit model was chosen

with the Evanno method (Evanno et al. 2005) imple-

mented in STRUCTURE HARVESTER v0.6.93 (Earl &

vonHoldt 2012), and values of Dk plotted and presented

as Supporting Information. Admixture coefficients (Q),

averaged over the 20 independent runs, were visualized

by means of a barplot with credibility regions for k = 2

(corresponding to the parental species irrespective of

geographical origin). Posterior probabilities, based on

microsatellite genotypes, of individuals belonging to six

classes (pure parental species, F1 or F2 hybrids and

backcrosses in either direction) were calculated using

NEWHYBRIDS (Anderson & Thompson 2002). Popula-

tions outside the hybrid zone were designated as pure

parental species as prior information, and the chain was

run for 1 500 000 iterations, after 150 000 burn-ins.

Probabilities were subsequently averaged at population

level. A discriminant analysis of principal components

(DAPC) (Jombart et al. 2010) was run on all loci to

investigate the relationship between the sampled popu-

lations.

The STRUCTURE, NEWHYBRIDS and DAPC analy-

ses described above were also run on genotypes from

Montanari et al. (2012) and added as Supporting Infor-

mation. By choosing a number of PCs equal to the num-

ber of individuals divided by three and a number of

DA eigenvectors corresponding to the number of popu-

lations minus one in both analyses, the genotypic vari-

ability retained in DAPC was similar between the two

hybridizing butterflyfish groups. This allowed direct

comparisons, thus highlighting key differences in the

evolutionary consequences of hybridization in the two

Chaetodon species groups at the Christmas Island suture

zone.

Results

Hybrid zone ecology

Abundance, depth distribution and diet. Hybrid Chaetodon

guttatissimus 9 Chaetodon punctatofasciatus were rela-

tively common at Christmas Island (2 � 0.47 SE indi-

viduals per 3000 m2) and at least as abundant as the

least common parental species, C. punctatofasciatus

(2 � 0.47 SE) (t(26) = 0.42, P = 0.68) (Table 1). Chaetodon

guttatissimus was significantly more abundant (40 � 4.5

SE) than C. punctatofasciatus (t(13) = 8.32, P < 0.0001)

(Table 1).

The ecology (specifically habitat use and dietary com-

position) of C. guttatissimus, C. punctatofasciatus and

their hybrids was very similar. There was no significant

difference in depth distribution between C. guttatissimus

(average depth 16.6 m � 0.49 SE) and C. punctatofascia-

tus (15.5 m � 0.49 SE) (F1,89 = 3.14, P = 0.08) (Table 1).

Table 1 Qualitative summary of ecological and behavioural conditions conducive to hybridization in two pairs of allopatric Chaeto-

don sister species in secondary contact at the Christmas Island suture zone in the Indo-Pacific. Data for the Chaetodon trifasciatus

group are summarized from Montanari et al. (2012) and presented here for comparison

Chaetodon guttatissimus group C. trifasciatus group

Parental species abundance One parent rare (2 individuals per 3000 m2) Both parents rare (<2 individuals per 3000 m2)

Hybrid abundance As abundant as rare parent Rarer than both parents

Parental depth distribution Range: 13–17 m; largely overlapping (>93%) Range: 5–8 m; largely overlapping (>98%)

Hybrid depth distribution Overlapping (>99%) with parents Overlapping (83%) with parents

Parental species diet Generalist corallivores; largely overlapping

(>73%)

Generalist corallivores; largely overlapping

(>77%)

Hybrid diet Generalist corallivore; overlapping (>76%) with

parents

Generalist corallivore; overlapping (>81%) with

parents

Parental species pairing

behaviour

Nonassortative Nonassortative

Hybrid pairing behaviour Pairing with both parents; nonassortative Pairing with both parents; nonassortative

© 2014 John Wiley & Sons Ltd

REEF FISH COMPARATIVE HYBRIDIZATION 2761



The parental species occupied relatively narrow, largely

overlapping, depth ranges (Table 1). The depth distri-

bution of the hybrids (16.2 m � 0.50 SE) was not statis-

tically different from that of either parent species

(F2,29 = 1.47, P = 0.235). Similarly, dietary composition

was not significantly different between parent species

(Pillai’s Trace(34) = 0.51, P = 0.085) (Table 1). Both

parental species most frequently fed on encrusting Mon-

tipora and massive Porites, which are among the most

common coral genera at Christmas Island. The hybrids

fed largely on the same prey as their parental species

(Pillai’s Trace(34) = 0.51, P = 0.085) (Table 1). The feed-

ing rates (number of bites per 3 min observation) of

parent species and hybrids were not significantly differ-

ent (F2,29 = 2.03, P = 0.14).

Pairing behaviour. The relative number of individuals

that paired with conspecifics, heterospecifics or hybrids

was generally proportional to the abundance of these

individuals (Fig. 3A, Table 1). The pairing behaviour of

C. punctatofasciatus did not significantly deviate from

the frequencies expected based on abundances

(v2ð2;n¼30Þ = 2.89, P > 0.24), indicating that this species is

pairing nonassortatively under these conditions

(Fig. 3A, Table 1). Chaetodon guttatissimus appeared to

actively choose to pair heterospecifically (disassortative

mating) (v2ð2;n¼ 264Þ = 14.91, P < 0.001), but this may be a

statistical artefact of the large sample size for this spe-

cies (Fig. 3A). Hybrids were never observed paired

together and formed pairs with the parental species

nonassortatively (v2ð2; n¼ 26Þ = 3.25, P > 0.19) (Fig. 3A).

This indicates that hybrids are likely choosing partners

based on their prevalence rather than phenotype.

Hybrid zone genetics

Five hundred and sixty-six base pairs (bp) of the mito-

chondrial cyt b region were resolved for a total of 86

individuals in the C. guttatissimus group. The alignment

contained 92 parsimony informative sites and identified

49 discrete haplotypes (Fig. 3B). Twenty microsatellite

loci reliably amplified and were scored in 83 individu-

als: one C. punctatofasciatus from Christmas Island was

excluded due to >20% missing data. Population level

tests showed significant departures from HWE in 26 of

100 tests after sequential Bonferroni correction

(a = 0.01) (Table S1, Supporting information). Eighteen

(69%) of these HWE departures were concentrated at

five loci (Cpun3, 4, 7, 9 and 13) (Table S1, Supporting

information). Null alleles contributed to departures

from HWE in all abovementioned loci. Chaetodon punc-

tatofasciatus from Christmas Island had the most private

alleles (17) compared with all other taxa in this group

(Table S1, Supporting information).

Phylogenetic relationships

Congruent phylogenetic relationships were inferred

with four methodologies (NJ, MP, BI and ML), and a

clear separation between the two parental clades was

strongly supported by all analyses (Fig. 3B). Six fixed

nucleotide changes (1% divergence at cyt b) separated

the two parental species, despite evidence of some

interspecific mtDNA exchange (Fig. 3B). All C. punctato-

fasciatus individuals and three of 44 individuals (7%)

identified in the field as C. guttatissimus based on color-

ation were contained in a single clade (Fig. 3B). Two of

these individuals were from Cocos (Keeling) Islands,

outside the hybrid zone of Christmas Island (Fig. 3B).

Hybrids in the C. guttatissimus group shared haplotypes

with both parental clades, indicating a bidirectional

maternal contribution to hybridization (Fig. 3B). This

contrasts with the Chaetodon trifasciatus group, where

redrawn haplotype relationships from Montanari et al.

(2012) show 5% divergence between the parent species

at cyt b, and all hybrids occur in only one of the two

parental clades (unidirectional maternal contribution –

Fig. S1B, Supporting information).

Population genetic structure

Cytochrome b haplotype (h) and nucleotide (p) diversi-

ties, as well as gene diversity based on microsatellites

(1-Q inter) within the Christmas Island hybrid zone,

were high for all taxa in the C. guttatissimus group

(Table S2, Supporting information). The AMOVA fixa-

tion index for mtDNA cyt b was Φst = 0.48 P < 0.0001.

Microsatellites indicated a clear separation between

parental species and hybrids and had raw Fst = 0.038,

P < 0.0001, Dest = 0.115 and ENA-corrected values that

were comparable to raw values, indicating low con-

founding effects from null alleles (Table S4, Supporting

information). Nearly all pairwise Fst tests were signifi-

cant for mitochondrial and nuclear markers, and this

was further confirmed with Dest (Table S3, Supporting

information). Genetic structure was evident between

parental species irrespective of geographical location

(Tables S3, Supporting information). Analyses of cyt b

did not detect significant intraspecific structure between

populations of either C. guttatissimus or C. punctatofasci-

atus (Table S3A, Supporting information). Microsatel-

lites indicated weak intraspecific structure between

C. guttatissimus populations, but not between C. puncta-

tofasciatus populations (Table S3B, Supporting informa-

tion), possibly due to small sample size of the Marshall

Island population. The hybrid population significantly

differed from all other populations (Table S3, Support-

ing information). Mitochondrial data indicated that

hybrids are less differentiated from the parental species

© 2014 John Wiley & Sons Ltd
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Fig. 3 (A) Pairing frequencies of Chaetodon guttatissimus (yellow), C. guttatissimus 9 Chaetodon punctatofasciatus hybrids (orange) and

C. punctatofasciatus (red). All three taxa are colour-coded according to the legend below. Bars represent observed pairings from

Christmas Island, and dots represent expected pairing frequencies based on observed taxon abundance. Observed pairing does not

statistically deviate from expectations, indicating that taxa are pairing nonassortatively. (B) MST showing haplotype relationships in

the C. guttatissimus group. Each circle represents one individual and is colour-coded for taxon and geographical origin. Each black

dot on connecting branches represents one substitution (bp). Bootstrap support values for phylogenetic relationships inferred by NJ,

MP, maximum likelihood and posterior probabilities from BI are shown for the partition between the two major clades in the species

group. (C) Scatterplot of DAPC (Jombart et al. 2010) performed on 20 microsatellite loci for five populations of the C. guttatissimus

group. Populations are shown by colours and 95% inertia ellipses, squares represent individual genotypes. Axes show the first two

discriminant functions, and eigenvalues the genetic information retained by discriminant functions. (D) Barplot of STRUCTURE

admixture coefficients based on 20 microsatellite loci in five populations of the C. guttatissimus group. Bars represent individuals,

black lines are 90% credibility regions, and subdivisions show the genotypic admixture between clusters (k = 2, representing the par-

ent species). Colour coding as well as taxon and geographical location abbreviations are valid throughout all panels: CG, C. guttatissi-

mus; CP, C. punctatofasciatus; GPHYB, C. guttatissimus 9 C. punctatofasciatus; CK, Cocos (Keeling) Islands; GUA, Guam; RMI,

Republic of Marshall Islands; XMAS, Christmas Island; ZAN, Zanzibar.
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within the hybrid zone (Table S3A, Supporting informa-

tion). However, microsatellite data showed that the

hybrids are less differentiated from C. punctatofasciatus

within the hybrid zone, but more from C. guttatissimus

(Table S3B, Supporting information).

STRUCTURE identified two clusters (Fig. S2A, Sup-

porting information): some admixture was detected

between parental species (Fig. 3D), both outside and

within the hybrid zone – consistent with previous

mtDNA and microsatellite analyses. Interestingly, the

C. guttatissimus population from Cocos (Keeling)

showed a slightly higher level of admixture with

C. punctatofasciatus than the Christmas Island popula-

tion (Fig. 3D). Most notably, the C. punctatofasciatus

population in the contact zone showed greater levels of

admixture than C. guttatissimus (Fig. 3D), but with high

levels of variability in the estimates. The hybrids’ inter-

mediacy was evident compared to both parental spe-

cies, particularly C. guttatissimus (Fig. 3D). Two clusters

were also identified in the C. trifasciatus group (Monta-

nari et al. 2012) (Fig. S2B, Supporting information): this

data set shows lower levels of parental admixture (par-

ticularly in the Chaetodon lunulatus populations) and

hybrid intermediacy is clear in this group (Fig. S1D,

Supporting information). In both butterflyfish groups,

however, STRUCTURE lacks the resolution to reliably

detect backcrossing and hybrid classes (possibly as a

result of the small sample sizes and limited number of

molecular markers).

NEWHYBRIDS assigned over 95% of C. guttatissimus

individuals to their pure species, in both populations of

origin (Fig. 4). As also suggested in STRUCTURE, the

Cocos (Keeling) population had a somewhat greater

probability of introgression than the Christmas Island

population (Fig. 4). The hybrids were clearly intermedi-

ate and were mostly either assigned to C. guttatissimus

or designated as F2 hybrids (Fig. 4). Likewise, a similarly

high probability of being F2 hybrids (almost 30%) was

assigned to the Christmas Island population of C. punc-

tatofasciatus, consistent with the suggested pattern of

introgression observed in the STRUCTURE analysis

(Figs 3D and 4). This contrasts with the C. trifasciatus

group (Montanari et al. 2012), in which both parental

species were assigned to their respective pure clusters

with >92% probability irrespective of geographical loca-

tion (Fig. S3, Supporting information). The hybrids in

this group had a range of probabilities of being assigned

to either parental cluster, F1, F2 or either backcross (10–

25%) (Fig. S3, Supporting information). Moreover,

approximately 60% of assignments were to interparental

crosses, the remainder being to pure parental clusters

(Fig. S3, Supporting information). In both NEWHY-

BRIDS analyses, the standard deviation around the mean

posterior probabilities was negligible for all taxa, except

for the hybrids, underlining the uncertainty associated

with assigning these intermediate individuals.

DAPC examined the relationship between clusters,

predefined as combinations of taxon and geographical

location (Fig. 3C). The hybrid population was distinct

from all others, and hybrid genotypes were intermedi-

ate between parental species’ genotypes (Fig. 3C). Little

partitioning was evident between populations of the

same species (Fig. 3C), consistent with other analyses.

Chaetodon guttatissimus 9 C. punctatofasciatus hybrids

occupied a broad parameter space close to their paren-

tal clusters, and confidence ellipses were shared in

seven of 16 individuals (Fig. 3C). In contrast, microsat-

ellite data from Montanari et al. (2012), presented in a

reparametrized DAPC (see Material and Methods),

show almost no overlap of hybrid and parental geno-

types in the C. trifasciatus group (Fig. S1C, Supporting

information).
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Fig. 4 Posterior probabilities, based on

microsatellite data, of individuals of the

Chaetodon guttatissimus group belonging

to six classes: pure parental species, F1 or

F2 hybrids and backcrosses (Bx) in either

direction. Individual data were averaged

within population of origin. Colour codes

for the six classes are given in the legend.

Each bar represents one population and

is designated by species and geographi-

cal location (for sample sizes refer to

Material and Methods). CG, C. guttatissi-

mus; CP, Chaetodon punctatofasciatus;

GPHYB, C. guttatissimus 9 C. punctatofas-

ciatus; CK, Cocos (Keeling) Islands; RMI,

Republic of Marshall Islands; XMAS,

Christmas Island.
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Discussion

Hybrid zone ecology

Chaetodon guttatissimus and Chaetodon punctatofasciatus

as well as Chaetodon lunulatus and Chaetodon trifasciatus

(Montanari et al. 2012) have come into secondary con-

tact at the tropical marine suture zone of Christmas

Island. Our results highlight several ecological factors

that are likely to contribute to the propensity of these

species to hybridize. Some degree of habitat overlap is

a necessary precursor to hybridization in sexual verte-

brates (e.g. Bombina toads – Vines et al. 2003). The distri-

butions of C. guttatissimus, C. punctatofasciatus and their

hybrids largely overlap at Christmas Island: all taxa

occupy sites with similar exposure (north coast) and

have relatively narrow and consistent depth ranges.

Habitat overlap was also reported between C. lunulatus

and C. trifasciatus (Montanari et al. 2012) and has been

documented for a large number of hybridizing marine

fishes (Nichols 1918; Norman 1934; Schultz & Smith

1936; Gosline 1948; Randall 1956; Feddern 1968; Hettler

1968; Fischer 1980; Rao & Lakshmi 1993; Frisch & van

Herwerden 2006; Yaakub et al. 2006, 2007; Marie et al.

2007; Hobbs et al. 2013). Such overlap increases the

chance of heterospecific encounters between hybridizing

butterflyfishes at the Indo-Pacific suture zone.

Chaetodon guttatissimus, C. punctatofasciatus, C. trifasci-

atus and C. lunulatus are relatively specialized obligate

corallivores (Cole et al. 2008; Pratchett 2013), and their

feeding mode has been confirmed through both gut

content analyses (Harmelin-Vivien 1989; Sano 1989) and

direct observations (Pratchett 2005). This study and data

from Montanari et al. (2012) indicated that, in each

hybridizing group, the two parental species and their

respective hybrids fed on the same suite of coral prey.

Further, gut content analyses and direct feeding obser-

vations in tropical marine fishes belonging to the Acan-

thuridae (Randall 1956), Pomacanthidae (Feddern 1968)

and Serranidae (Fischer 1980) showed, in all cases, that

the diets of hybridizing parents and hybrids were

essentially the same. In synergy with overlap in habitat

use, dietary overlap further increases encounter proba-

bility between hybridizing butterflyfishes at Christmas

Island.

Rarity of conspecific mates is considered a promoting

factor in hybridization among terrestrial organisms (e.g.

Darwin finches – Grant & Grant 2002) and reef fishes

(Randall et al. 1977; Pyle & Randall 1994; van Herwer-

den et al. 2002; Maruska & Peyton 2007; Hobbs et al.

2009). Although C. guttatissimus is relatively common at

Christmas Island, its sister taxon, C. punctatofasciatus, is

rare. At Christmas Island, C. punctatofasciatus occurs

in densities 40–100 times lower than those found at

locations near the centre of its distribution range (e.g.

Indonesia and Palau – Findley & Findley 2001). The

local rarity of C. punctatofasciatus may explain why

many of these individuals are found in heterospecific

pairs. Chaetodon trifasciatus and C. lunulatus are both

rare at Christmas Island (Montanari et al. 2012), and

their abundances are one to three orders of magnitude

lower compared with any other location for which

abundance data are available (Adrim & Hutomo 1989;

Findley & Findley 2001; Pratchett et al. 2004, 2006b;

Pereira & Videira 2005).

The frequency of heterospecific pair formation was

proportional to the abundance of parent species in both

the C. guttatissimus and C. trifasciatus (Montanari et al.

2012) hybrid groups at Christmas Island. This supports

the hypothesis that rare species (and hybrids) are form-

ing heterospecific pairs based on encounter rates and

that a rare species (or hybrid) will choose a partner

based on availability rather than the phenotypic identity

of the individual. A breakdown in assortative mate

choice has been reported for other pair-forming Chaeto-

don butterflyfishes that are known to hybridize (McMil-

lan et al. 1999; Hobbs et al. 2013). The parent species

and hybrids examined in this study and in Montanari

et al. (2012) belong to subgenera thought to be exclu-

sively monogamous (Pratchett et al. 2006a; Craig et al.

2010), and indeed, examination of the gonads of hetero-

specific pairs at Christmas Island revealed that these

pairs always comprised a mature male and a mature

female (Hobbs unpublished data). Therefore, the

observed heterospecific breeding pairs are likely pro-

ducing the hybrids seen at Christmas Island. Overall,

our observations indicate that the ecological and

behavioural processes that set the scene for hybridiza-

tion are similar across Chaetodon butterflyfish hybrid

groups at Christmas Island and probably explain the

onset of hybridization in pair-forming butterflyfishes

elsewhere (Hobbs et al. 2013).

Hybrid zone genetics

Mitochondrial and nuclear DNA analyses confirmed

hybridization in both the C. guttatissimus and C. trifasci-

atus (Montanari et al. 2012) groups. However, despite

similarities in the ecological context of hybridization in

the two complexes, the genetic mechanisms are clearly

different. In C. guttatissimus – C. punctatofasciatus, which

are 1% divergent at cyt b as measured in this study,

hybrids shared mtDNA with both parental clades, indi-

cating bidirectional maternal contribution to hybridiza-

tion, a mode previously reported in reef fishes

(McMillan et al. 1999; van Herwerden and Doherty

2006). This is consistent with field observations of het-

erospecific pairs in which females were identified as
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either C. guttatissimus or C. punctatofasciatus, but in con-

trast with unidirectional mitochondrial inheritance in

C. trifasciatus 9 C. lunulatus, 5% divergent at cyt b

(Montanari et al. 2012). In previous studies of reef fish

hybridization, most or all hybrids reportedly shared

haplotypes with the more abundant parental species,

suggesting sneak mating by males of the rare species

with females of the common species, likely due to rarity

of conspecifics (van Herwerden et al. 2006; Yaakub et al.

2006; Marie et al. 2007). In both cases of Chaetodon

hybridization examined here and in Montanari et al.

(2012), hybrids shared most (or all) haplotypes with the

rarest of contributing parents. Although this could be

an artefact of small samples sizes (inherent to hybrid-

ization studies, where hybrid taxa are often rare),

females of the rare parent species appear to actively

choose to mate with males of the more abundant sister

species, probably due to the lack of conspecific males.

To discriminate whether these results are consistent

with female-mediated partner choice (Wirtz 1999), or

represent selection against offspring that result from the

opposite cross, further enquiry should be directed

towards hybrid fitness in Chaetodon butterflyfish.

Mitochondrial introgression was detected in Christ-

mas Island C. guttatissimus individuals, which shared

haplotypes with C. punctatofasciatus. This supports back-

crossing of hybrid females with C. guttatissimus males.

Microsatellite analyses also showed nuclear introgres-

sion in either direction, but mostly towards C. punctato-

fasciatus. The detection of both mtDNA and nDNA

introgression in this group is perhaps not surprising,

given the close genetic proximity of the parent species

(Mallet 2005). Introgressed individuals were all identi-

fied as pure parents based on coloration, indicating that

assessment of hybrid abundance based on coloration

alone can lead to underestimation (Hobbs et al. 2013).

Some ‘purebred’ C. guttatissimus from Cocos (Keeling)

Islands also had C. punctatofasciatus mtDNA and nDNA

even though hybrids have never been observed at this

location. Larval dispersal from Christmas to Cocos

(Keeling) Islands (facilitated by westward flowing sur-

face currents) might explain the presence of these indi-

viduals (Yaakub et al. 2006; Craig 2008). Previous

studies of reef fish hybridization showed that gene flow

between the parent species was either bidirectional or

directed from the abundant maternal species to the rare

paternal species (McMillan et al. 1999; van Herwerden

et al. 2006; Yaakub et al. 2006; Marie et al. 2007). Unidi-

rectional mtDNA introgression (or lack thereof, as in

the C. trifasciatus group – Montanari et al. 2012) indi-

cates that a partial barrier to gene flow is still present,

perhaps due to assortative mating or selection against

hybrids (Rhymer & Simberloff 1996). Assortative mating

is unlikely, because our observations indicate that, in

both groups, pairs are formed bidirectionally, and

hybrids pair with either parental species, providing the

opportunity for backcrossing. Further, the admixture

detected in nDNA shows that the historic hybridization

suggested by the mtDNA introgression is ongoing and

that hybrids are still contributing to interspecific gene

flow.

An alternative interpretation of our detection of

mtDNA and nDNA introgression between C. guttatissi-

mus and C. punctatofasciatus is incomplete lineage

sorting. Recent and robust phylogenies of the Chae-

todontidae based on two mtDNA and rRNA markers

unequivocally partition the two sister species, suggest-

ing that the lineages have sorted completely (Littlewood

et al. 2004; Hsu et al. 2007). Moreover, our phylogenetic

analyses have shown that C. guttatissimus and C. punc-

tatofasciatus populations sampled from locations most

distant from the hybrid zone have distinct, species-spe-

cific mtDNA haplotypes. However, detection of intro-

gressed individuals outside the hybrid zone points to

possible incomplete lineage sorting, because allopatric

populations of these species show some degree of

admixture, irrespective of the geographical distance

between them. To discriminate between this scenario

and introgressive hybridization, further studies should

include more samples across the distribution ranges of

these species and apply genotyping-by-sequencing tech-

niques to increase resolution.

Consequences of hybridization

Contrary to what has been observed in the Solomon

Islands-Papua New Guinea hybrid zone involving

C. punctatofasciatus and Chaetodon pelewensis (McMillan

et al. 1999) and in another hybridizing fish, Acanthurus

leucosternon, at Christmas Island (Marie et al. 2007), the

introgressive hybridization between C. guttatissimus and

C. punctatofasciatus is not strong enough to swamp spe-

cies-specific signals. Although this pattern could be the

result of chance given the small sample size, our data

suggest that divergence between C. guttatissimus and

C. punctatofasciatus is decreasing within the hybrid zone

and gene flow mediated by the hybrids appears to be

ongoing. Persistence of hybrids and introgressed indi-

viduals at Christmas and Cocos (Keeling) Islands may

eventually confound species signals in the C. guttatissi-

mus hybrid group, resulting in a hybrid swarm (sensu

Taylor et al. 2006). Alternatively, the presence of novel

genotypes (and the high genetic diversity) in the hybrid

population at Christmas Island may one day enable

hybrids to exploit niches not occupied by parent

species. This process was documented in terrestrial

(Geospiza Darwin finches – Grant & Grant 2002) and

freshwater environments (cichlids – Seehausen 2004)
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and can lead to the formation of new species (Seehau-

sen 2004). Long-term monitoring of the reef fish suture

zone at Christmas Island (Hobbs et al. 2009; Arnold &

Martin 2010), through regular assessment of hybrid

prevalence and genotypic make up across a wide range

of taxa, could further elucidate the ecological and evo-

lutionary relevance of hybridization in reef fishes.

The scenario emerging from the C. trifasciatus hybrid

group (Montanari et al. 2012) appears different to that of

the C. guttatissimus group. Lack of introgression, evident

both in mtDNA and in microsatellites, and unidirec-

tional mtDNA inheritance in the C. trifasciatus group

indicate that interspecific gene flow mediated by hybrids

is minimal at Christmas Island. Even though failure to

detect significant levels of introgression in this group

could be due to sample size, the sample sizes in the two

groups were similar, leading us to expect similar power

of detection in both hybridizing groups. Interestingly, in

the C. trifasciatus group, a Zanzibar individual identified

in the field as C. trifasciatus showed almost 2% diver-

gence at cyt b from its putative species clade (Montanari

et al. 2012): this could be a rare backcross with a hybrid

formed between C. trifasciatus and other members of

Corallochaetodon that occur in that area (e.g. C. melapte-

rus – B. Bowen, pers. comm.). This needs further work

to be confirmed, but if found to be true could indicate

that barriers to gene flow are permeable in Corallochae-

todon, despite the apparent lack of backcrossing at

Christmas Island (Montanari et al. 2012).

The rarity of both parent species and hybrids in the

C. trifasciatus group may prevent detection of introgres-

sion and bidirectional maternal contribution at Christ-

mas Island (Montanari et al. 2012). In this group, the

measured 5% divergence at cyt b (Montanari et al.

2012) appears to be large enough to generate genotypic

novelty in the form of a persistent sympatric hybrid

taxon, albeit small enough to warrant successful

hybridization (Mallet 2005). Nuclear microsatellite

DNA data were particularly informative for this group,

confirming the hybrids’ status as hybrids rather than

aberrant colorations of C. lunulatus, a possibility not

ruled out by previous mtDNA analyses (Montanari

et al. 2012). Microsatellites further showed that hybrid

genotypes are intermediate and different to those of the

parent species, even within the hybrid zone, thus main-

taining their genotypic identity despite extensive eco-

logical, behavioural and reproductive contact with

parental species. Hybrid genotypes or hybrid species

sometimes colonize environments distinct to those of

their parents, as observed for example in cichlids and

sculpins (Seehausen 2004; Nolte et al. 2006). However,

sympatric hybrid coexistence with parental forms does

occur (sparrows – Hermansen et al. 2011; swallowtail

butterflies – Kunte et al. 2011), and this could be the

case for C. trifasciatus 9 C. lunulatus hybrids at Christ-

mas Island.

The apparent negative interaction between extent of

divergence and introgression highlighted in this study

finds further validation when data from other hybridiz-

ing reef fishes are examined. As noted in Montanari

et al. (2012), for example, in the Solomon Islands,

hybridization between C. punctatofasciatus and C. pelew-

ensis (McMillan et al. 1999), divergent by 0.7% at cyt b

(McMillan & Palumbi 1995), results in extensive bidirec-

tional introgression (McMillan et al. 1999). This interac-

tion holds true even in families other than the

Chaetodontidae. In the Labridae, bidirectional introgres-

sion was detected in hybridizing Thalassoma jansenii and

T. quinquevittatum (Yaakub et al. 2006), divergent by

<2% at cyt b (Bernardi et al. 2004). Conversely, in Hali-

choeres garnoti and H. bivittatus, divergent by >5.5%
based on three mtDNA markers (Barber & Bellwood

2005), hybridization did not result in introgression (Ya-

akub et al. 2007). In the Acanthuridae, hybridization

between A. leucosternon and Acanthurus nigricans, 1%

divergent at mtDNA COI, was introgressive and bidi-

rectional (Marie et al. 2007). In hybridizing Serranids

Plectropomus leopardus and Plectropomus maculatus, 1%

divergent based on two nuclear and two mtDNA mark-

ers (Craig & Hastings 2007), hybridization was highly

introgressive, but the maternal contribution was unidi-

rectional (van Herwerden et al. 2006).

Further enquiry should be aimed at evaluating the

relative importance of divergence levels in shaping the

evolutionary outcomes of reef fish hybridization, and to

test whether reef fish have a threshold of divergence

beyond which their ability to hybridize is lost, as sug-

gested for terrestrial species (Mallet 2005). Given their

position at the Indo-Pacific marine suture zone, Christ-

mas and Cocos (Keeling) Islands could provide an ideal

location for these future studies. Further, application of

genomic tools may identify adaptive genes that are dif-

ferentiated between hybridizing reef fish species, which

will provide insights into adaptation and selection for

hybrid genotypes in environments that are novel com-

pared with those inhabited by the parental species out-

side the hybrid zone.
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