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ABSTRACT

The temporal smearing of impulsive radio events at cosmological redshifts probes the properties of the ionized
intergalactic medium (IGM). We relate the degree of temporal smearing and the profile of a scattered source to the
evolution of a turbulent structure in the IGM as a function of redshift. We estimate the degree of scattering expected
by analyzing the contributions to the scattering measure of the various components of baryonic matter embedded
in the IGM, including the diffuse IGM, intervening galaxies, and intracluster gas. These estimates predict that the
amount of temporal smearing expected at 300 MHz is typically as low as ∼1 ms and suggests that these bursts may
be detectable with low-frequency widefield arrays. A generalization of the dispersion-measure–scattering-measure
relation observed for Galactic scattering to the densities and turbulent conditions relevant to the IGM suggests that
scattering measures on the order of 10−6 kpc m−20/3 would be expected at z ∼ 1. This scattering is sufficiently
low enough that its effects would not, for most lines of sight, be manifested in existing observations of the
scatter broadening in images of extragalactic compact sources. The redshift dependence on the temporal smearing
discriminates between scattering that occurs in the host galaxy of the burst and the IGM, with τhost ∝ (1 + z)−3 if
the scattering probes length scales below the inner scale of the turbulence or τhost ∝ (1 + z)−17/5 if the turbulence
follows a Kolmogorov spectrum. This differs strongly from the expected IGM scaling τIGM ∼ z2 for z � 1 and
(1 + z)0.2−0.5 for z � 1.
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1. INTRODUCTION

There have been seven recent detections of transient radio
bursts whose dispersion measures (DMs) are so large that
their emission has been suggested to originate at cosmological
distances (Lorimer et al. 2007; Keane et al. 2011; Thornton et al.
2013). A substantial fraction of the DMs of these bursts are
attributed to baryons in the diffuse intergalactic medium (IGM),
heralding the possibility of probing the entire baryonic content
of the universe where these bursts can be detected. Measurement
of the dispersion delay as a function of frequency enables direct
measurement of the total electron column along the line of
sight; and for z � 0.2, the contribution of the IGM is expected
to dominate the total DM of objects viewed through lines of
sight off the Galactic plane (Ioka 2003; Inoue 2004).

The existence of such bright, short-duration transients makes
it possible to probe the ionized IGM at cosmological distances
in exquisite detail. Impulsive extragalactic radio bursts offer
the prospect of measuring the turbulent properties of the IGM.
Turbulent plasma along the line of sight can scatter the radiation,
which alters the temporal profile of the burst as it propagates
through intergalactic plasma. The effect of temporal smearing
caused by scattering potentially reveals information on the IGM
on exquisitely fine scales, down to lengths as small as ∼1010 m.
Temporal smearing arises due to multipath propagation as
the radiation travels through inhomogeneities in the turbulent
plasma. Radiation scattered back into the line of sight is delayed
relative to radiation that arrives along the direct line of sight to a
source, with the amount of radiation scattered depending on the
typical angle through which it is scattered. This angle, and hence
the amount of delayed radiation, increases with the strength
of the scattering. Thus, both the apparent angular diameter and

the temporal profile of a compact transient source depend on the
amount and distribution of turbulent intergalactic plasma along
the line of sight.

There is strong evidence that the radiation from these extra-
galactic bursts is subject to scattering at intergalactic distances.
In two out of the seven reported cases the burst duration increases
sharply with wavelength across the observing band, scaling as
λ4.0 ± 0.4 (Lorimer et al. 2007; Thornton et al. 2013). This scal-
ing is characteristic of radiation subject to temporal broadening
caused by turbulent plasma. The reported smearing times are
of the order of milliseconds, much larger than the microsecond
timescales expected of temporal smearing due to the turbulence
in our own Galaxy along the lines of sight on which these bursts
are observed. The expected smearing time of the Lorimer burst,
if due to Galactic scattering alone, is ∼0.5 μs, far smaller than
the observed width of ∼5 ms. This raises the prospect that ra-
diation from these bursts contains information on turbulence in
the ionized IGM and even in the host galaxy.

There are two main reasons to compute the effect of temporal
smearing due to the IGM. Firstly, it affects searches for short-
duration transients at sufficiently low frequency. The steep scale
of the temporal smearing timescale with frequencies raises the
possibility that searches for transients at low frequencies are par-
ticularly susceptible to the effects of temporal smearing. Unlike
dispersion smearing, temporal smearing due to multipath prop-
agation results in an irretrievable loss of sensitivity to transients
when the smearing time exceeds the intrinsic burst duration,
with the observed signal-to-noise ratio (S/N) decreasing by the
square-root of the factor over which the smearing time exceeds
the intrinsic pulse duration.

Secondly, at higher frequencies, where temporal smearing
is a smaller hindrance to the detection of transient sources
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but is still measurable, the effect affords a means of probing
the evolution of the IGM itself. This is attractive because it
furnishes a means of probing the history of energy deposition
in the IGM. The sources invoked to explain reionization of the
universe and feedback associated with galaxy formation inject
energy into the IGM on large scales, driving a turbulent cascade
that should drive the evolution of inhomogeneity in the IGM.
Sources of energy input include the radiative and mechanical
energy of active galactic nuclei (AGNs) and their jets, the UV
and X-ray emission, and stellar winds from young stars and the
flows driven by supernovae (Cen & Ostriker 2006 and references
therein).

The subject of intergalactic scattering is coming to the fore
with the inevitability of detecting many more extragalactic
transients in the near future. Several radio arrays with wide
fields of view (�10 deg2), ideally suited to the detection of
large numbers of short-duration transient sources, are currently
entering operation or being planned. These telescopes span
the frequency range 30 MHz–3 GHz and include LOFAR,
the Murchison Widefield Array (MWA; Tingay et al. 2013),
ASKAP (Johnston et al. 2007), MeerKAT, and, eventually, the
SKA. Specific surveys for fast transients are planned on many
of these, including the LOFAR Transients Key Project (Stappers
et al. 2011), the Commensal Real-time ASKAP Fast Transients
survey (Macquart et al. 2010), and the Transients and Pulsars
with MeerKAT survey (PIs: Stappers and Kramer).

The Parkes High Time Resolution Universe Legacy survey
(Keith et al. 2010), even with a comparatively small field of view,
has shown that the rate of impulsive radio extragalactic transient
events is large. The detection of the four high-DM pulses so
far implies an event rate ∼100006000

−5000 sky−1day−1 at 1.4 GHz
above 1 Jy (Thornton et al. 2013). The high luminosity of the
events detected so far, from inferred redshifts of 0.2 � z � 0.6,
suggests that it is relatively easy to detect bursts out to redshifts
with lookback times to a significant fraction of the age of the
universe. This rate may be augmented from other types of yet-
undetected events, such as those postulated to be generated by
coherent radio emission associated with the initial explosions of
gamma-ray bursts (Usov & Katz 2000; Sagiv & Waxman 2002;
Moortgat & Kuijpers 2004).

Should they be detected in great enough numbers, the combi-
nation of DM and scattering information gleaned from transients
may enable tomographic reconstruction of the structure and tur-
bulent properties of the baryonic component of the universe.
This is akin to the manner in which pulsar measurements have
been used to map out the structure of our Galaxy’s own interstel-
lar medium (ISM; e.g., Armstrong et al. 1995; Taylor & Cordes
1993; Cordes & Lazio 2002, NE2001).

In this paper, we relate the temporal smearing of radio
transients to the underlying properties of the IGM. In Section 2,
we outline the relationship between angular broadening and
temporal smearing due to scattering to the turbulent properties
of a plasma located at cosmological distances. The aim of
this section is to furnish the means by which future transients
detections may be used to reverse engineer the structure of the
IGM. In Section 3, we explore simple models for turbulence
in the IGM and show how the magnitude of scattering effects
would be expected to scale with redshift under several simple
scenarios. In Section 4, we discuss existing limits and properties
of IGM turbulence based on measurements to date. We conclude
in Section 5 with a summary of the means by which these effects
may be used as a cosmological tool to probe the history of energy
deposition into the IGM.

2. SCATTERING IN CURVED SPACETIME

We consider the effects of scattering under the simplifying as-
sumption that the inhomogeneities associated with the plasma
are confined to a single plane. The thin-screen approximation
provides an accurate description of the scattering properties
if the line of sight is dominated by a single turbulent region.
However, the range of validity of this commonly-used approx-
imation extends further because it is often possible to model
the effects of an extended medium in terms of an equivalent
thin-screen after appropriate adjustment of simple parameters,
such as the screen distance and scattering strength (see Tatarski
& Zavorotnyi 1980 and Lee & Jokipii 1975 in the context of
temporal smearing). The thin-screen formalism elucidates the
essential physics of the scattering without the hindrance of the
extra mathematical formalism required to exhaustively treat a
scattering in an extended medium.

The observed wavefield of a point-like source of unit ampli-
tude emanating at cosmological distances with angular diameter
distance DS and subject to phase fluctuations on a plane located
an angular diameter distance DL from an observer is (Schneider
et al. 1992; see also Macquart 2004),

u(X) = e−iπ/2

2πr2
F

∫
d2x exp

[
i

2r2
F

(
x − DLS

DS

X
)2

+ iφ(x)

]
, (1)

r2
F = DLDLSλ0

2πDS(1 + zL)
, (2)

where rF is the Fresnel scale, X is a coordinate in the plane of
the observer, zL is the redshift of the scattering material, λ0 is
the wavelength in the observer’s frame, DLS �= DS − DL is the
angular diameter distance from the source to the phase plane,
and φ represents the phase delays imparted to the radiation on
this plane by the IGM. Equation (1) is the generalization of the
Fresnel–Kirchhoff integral to curved spacetime geometries; it
retains the same form as in Euclidean space, but with the details
that embody the curved geometry of the universe contained
within the calculation of the angular diameter distance.4 In
the formalism used in the treatment of gravitational lensing
which, like the current situation, involves optics at cosmological
distances, the Fresnel–Kirchhoff integral is often written in
the alternate form which makes explicit the time delay of the
radiation, td (x, X):

u(X) = e−iπ/2

2πr2
F

∫
d2x exp [2πiνtd (x, X)] ,

td(x, X) =
[

DS(1 + zL)

2cDLDLS

(
x − DLS

DS

X
)2

+
φ(x)

2πν

]
. (3)

In order to compute quantities involving phase fluctuations, a
model is needed to specify the electron density fluctuations. In
a wide variety of turbulent astrophysical plasmas, the electron
density power spectrum, ΦNe

, is taken to follow a power law
between some inner and outer scales l0 and L0, respectively. The

4 The angular diameter distance at a redshift z is given by the integral
D(z) = cH−1

0 (1+z)−1
∫ z

0 [ΩΛ+(1−Ω)(1+z′)2+Ωm(1+z′)3+Ωr (1+z′)4]−1/2dz′,
where H0 is the Hubble constant, and Ω = ΩΛ + Ωm + Ωr and ΩΛ, Ωm, and Ωr

are, respectively, the ratios of the dark energy density, matter density, and
radiation density to the critical density of the universe. Throughout this paper
we take Ω = 1 and Ωr = 0.
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amplitude of the turbulence per unit length, C2
N , is parameterized

in terms of distance along the ray path, l, so that the power
spectrum takes the form,

ΦNe
(q; l) = C2

N (l) q−βe−(ql0)2
, q >

2π

L0
. (4)

The specific choice of index β = 11/3 corresponds to the
value associated with Kolmogorov turbulence; this index is
approximately consistent with interplanetary and interstellar
plasma measurements (Armstrong et al. 1995). We confine our
results to the regime β < 4, which pertains to most astrophysical
plasmas.

A useful related quantity is the phase structure function,
which measures the square phase difference between two points
separated by a displacement r on the phase screen,

Dφ(r) = 〈[φ(r + r′) − φ(r′)]2〉 (5)

= 2 r2
e λ2

0

(1 + zL)2

∫ l+ΔL

l

dl

∫
d2q (1 − eiq·r)ΦNe

(q, ql = 0; l),

(6)

where ΔL is the (small) thickness of the phase screen. For a
power law spectrum of density inhomogeneities, it is convenient
to write the phase structure function in the form Dφ(r) =
(r/rdiff)β−2 with

rdiff =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
πr2

e λ2
0

(1+zL)2 SM l
β−4
0

β

4 Γ
(
− β

2

)]−1/2
, rdiff < l0,[

22−β πr2
e λ2

0β

(1+zL)2 SM
Γ
(
− β

2

)
Γ
(

β

2

)
]1/(2−β)

, rdiff 	 l0.

(7a)

In the thin-screen approximation one assumes C2
N (l) to be

nonzero across the depth, ΔL, of the phase screen and zero
elsewhere. The quantity SM = ∫ l+ΔL

l
C2

Ndl is identified as the
scattering measure.5 This means of calculating the SM is often
appropriate for calculating the scattering properties of turbu-
lence inside our Galaxy and, by extension, turbulence in other
gravitationally collapsed objects, such as the host galaxy of a
transient. However, the foregoing definition of the SM is inap-
propriate for objects that are part of the Hubble flow, where the
Friedmann–Lemaı̂tre–Robertson–Walker metric applies. For a
scattering medium that is extended along the line of sight, but in
which the thin-screen formalism (i.e., Equation (1)) still applies
in an approximate sense (see the discussion in Codona et al.
1986), the redshift of the scattering, zL, changes continuously,
and Equation (7) needs to be generalized to take this into ac-
count. Furthermore, the integral over path length, ΔL, needs to
be specified in such a way that it accounts for the geometry of
the universe. In defining the effective scattering measure, SMeff ,
for a medium that extends between redshifts z and z + Δz, it is
useful to absorb the denominator (1 + zL)2 into the definition
of the scattering measure and refer all quantities back to the
observer’s frame so that,

SMeff =
∫

C2
N (l)

(1 + z′)2
dl =

∫ z+Δz

z

C2
N (z′)dH (z′)
(1 + z′)3

dz′, (8)

5 Throughout this text we have opted to express the scattering measure in the
units of m−17/3 rather than the conventional but more cumbersome units of
kpc m−20/3, which are more appropriate in the context of scattering within the
Galaxy.

where we measure distances in terms of light travel time so that
dl = cdt = −dH (z)dz/(1 + z) and where,

dH (z) = cH−1
0 [ΩΛ + Ωm(1 + z)3]−1/2, (9)

is the Hubble radius for a Ω = 1 universe. In this manner,
one can still use Equation (7) provided that one makes the
replacement, SM/(1 + zL)2 → SMeff .

For the purposes of numerically computing the magnitude
of angular and temporal broadening, we provide numerical
expressions for rdiff for β = 11/3:

rdiff =⎧⎨
⎩

8.0 × 109
(

λ0
1 m

)−1 ( SMeff
1012 m−17/3

)−1/2 (
l0

1 AU

)1/6
m, rdiff < l0,

3.7 × 109
(

λ0
1 m

)−6/5 ( SMeff
1012 m−17/3

)−3/5
m, rdiff > l0.

(10a)

2.1. Angular Broadening

The effect of angular broadening due to plasma turbulence is
deduced from the average visibility of the scattered radiation,
〈V (r)〉 = 〈u(X′ + r)u∗(X′)〉, where the angular brackets denote
an average over the ensemble of phase fluctuations. Using
Equation (1) and averaging over the phase fluctuations, the
average visibility for a point source of flux density I0 is (Fanté
1975; Macquart 2004),

〈V (r)〉 = I0(
2πr2

F

)2

∫
d2x d2x′ exp

[
i

2r2
F

(
x − DLS

DS

(X′ + r)

)2

− i

2r2
F

(
x′ − DLS

DS

X′
)2

]

× exp〈[iφ(x) − iφ(x′)]〉. (11)

Using the result 〈exp[−φ]〉 = exp[−〈φ〉2/2], and making the
change of variable R = x − x′ and s = (x + x′)/2, the average
visibility reduces to,

〈V (r)〉 = I0 exp

[
−1

2
Dφ

(
DLS

DS

r
)]

. (12)

The visibility is related to the image brightness distribution via
a Fourier transform, from which we deduce that the angularly
broadened image has a radius (half-width at half maximum),

θscat = f
DLS

DS k rdiff
, (13)

where f is a constant of order unity and k = 2π/λ0 is the
wavenumber in the observer’s frame. (One has f = 1.18 if
rdiff < l0 or β = 4 and f = 1.01 for β = 11/3 and rdiff > l0.) A
source intrinsically smaller than θscat is scatter-broadened to this
angular size, whereas the angular sizes of sources intrinsically
larger than θscat are largely unaltered by scatter broadening.

2.2. Temporal Smearing Due to Multipath Propagation

Multipath propagation of radiation through a turbulent plasma
also causes the signal to be temporally smeared. Because the
Fresnel–Kirchhoff integral in Equation (1) retains the same
form as in Euclidean space, it follows that the form of the
expression for the temporal smearing time is identical to that
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derived in the Euclidean spacetime. Thus, the solution for
the smearing timescale proceeds analogously to the Euclidean
solution presented in Goodman & Narayan (1989, GN89).
Specifically, since Equation (1) can be cast in an identical form
to GN89’s Equation (2.1.3), the solution for the decorrelation
bandwidth proceeds according to the treatment outlined in
Section 3.3 of GN89. Thus, we find that the scattering timescale
associated with a thin screen of scattering material at an angular
diameter distance DL is,6

τ = 1

ck

(
rF

rdiff

)2

= DLDLSλ0

2π c k DS(1 + zL)r2
diff

. (14)

An impulsive signal of duration shorter than τ is smeared by
multipath propagation to a timescale of duration τ .

Combining relations (13) and (14) links the angular size of a
scattered source to the temporal smearing timescale:

τ = DL DS θ2
scat

c DLS (1 + zL)
. (15)

This demonstrates that observations of the angular sizes of
radio sources at high redshift either determine or place upper
limits on the temporal smearing timescale depending on whether
the observed source size represents the scatter-broadening size
(when θsrc < θscat) or the intrinsic source size (when θsrc > θscat).
The temporal smearing timescale for a given θscat depends
additionally on the location of the scattering plasma along the
line of sight to the source which is, a priori, unknown.

Numerically, one may express the temporal smearing
timescale in terms of the ratio of angular diameter distances,
Deff = DLDLS/DS , and the parameters of the turbulence:

τ = 4.1 × 10−5 (1 + zL)−1

(
λ0

1 m

)4 (
Deff

1 Gpc

)

×
(

SMeff

1012 m−17/3

)(
l0

1 AU

)1/3

s, rdiff < l0, (16a)

τ = 1.9 × 10−4 (1 + zL)−1

(
λ0

1 m

)22/5 (
Deff

1 Gpc

)

×
(

SMeff

1012 m−17/3

)6/5

s, rdiff > l0. (16b)

3. THE SCATTERING MEASURE OF THE
INTERGALACTIC MEDIUM

One may regard the theory of angular broadening and
temporal smearing at cosmological distances presented in the
previous section primarily as a means to reverse-engineer the
structure of the turbulent IGM. However, it is instructive to
consider the relative contribution that various scattering regions
embedded in the IGM may make to the overall amplitude of the
scattering. It is also illuminating to compare these estimates to
the amplitude of the scattering implied by the temporal smearing
observed in the seven Lorimer bursts detected to date.

6 Note that a rigorous derivation of Equation (14) is also presented in
Section 4 of Macquart (2004) where the result is discussed in the context of
gravitational lensing. The solution is equally applicable to intergalactic
scattering since both the lensing and plasma scattering formalisms are founded
upon identical propagation equations, as discussed in the context of that work.

There are four obvious components that contribute to the
overall SM: (1) the diffuse IGM, (2) the turbulent plasma
associated with intervening galaxies, (3) plasma associated with
intervening galaxy clusters, and (4) intervening Lyα systems.
We consider contributions from each of these in turn below in
terms of their differential contribution to the SM as a function
of redshift. To be explicit, we consider the contribution each
makes to the quantity C2

N (z) (i.e., the differential contribution
to the SM as a function of redshift).7

3.1. The Diffuse Ionized Intergalactic Medium

Here we consider the contribution that the diffuse ionized
IGM makes to the SM. Because the mean baryonic density of
the IGM is well known (Hinshaw et al. 2013), it is possible to
make a relatively simple model that describes the effect of the
diffuse IGM on the SM.

The variance of the electron density fluctuations depends on
the amplitude of C2

N and the outer scale of the turbulent medium,
L0 = 2πq−1

min. For an electron density power spectrum of the
form given in Equation (4), the variance in the electron density is,

〈
δn2

e(z)
〉 = C2

N

∫ ∞

qmin=2π/L0

q−βd3q (17)

≈ 2(2π )4−β

β − 3
C2

NL
β−3
0 , L0 	 l0. (18)

Therefore, the root-mean-square (rms) electron density depends
only weakly (∝ L

1/3
0 for Kolmogorov turbulence) on the outer

scale. However, this parameter is uncertain by many orders of
magnitude. It is plausibly between 0.001 pc, a scale typically
observed in interstellar turbulence (Armstrong et al. 1995), and
0.1 Mpc, the scale of the AGN jets that deposit energy into
the IGM.

One can obtain an initial rough estimate of the amplitude
of C2

N by relating the turbulence to the average free electron
density of the IGM. The mean baryonic density of the universe
is

ρ(z) = 3H 2
0 Ωb(1 + z)3

8πGmp

= 2.26 × 10−7 (1 + z)3

(
Ωb

0.04

)
cm−3,

(19)

for H0 = 71 km s−1 Mpc−1, and if we take 〈δn2
e〉1/2 ∼ f 〈ne(z)〉

this implies, for a Kolmogorov spectrum of turbulence (β =
11/3),

C2
N (z) = β − 3

2(2π )4−β
L

3−β

0 f 2〈ne(z)〉2 = 9.42 × 10−14 (1 + z)6 f 2

×
(

Ωb

0.04

) (
L0

1 pc

)−2/3

m−20/3. (20)

The scattering measure along the line of sight is then
conventionally found by integrating C2

N along the line of sight,

SM(z) =
∫

C2
Ndl =

∫ z

0
C2

N (z′)
dH (z′)
1 + z′ dz′. (21)

7 Note that in this paper the quantity z is always interpreted as redshift, rather
than distance, along the line of sight.
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Figure 1. Plots of SM and SMeff as a function of redshift for a ΩΛ = 0.7, Ωm = 0.3 universe. SM measures the total electron density variance along the line of sight,
whereas SMeff corrects for the changing wavelength of the radiation as a function of redshift to determine the equivalent phase variance that would be deduced at a
redshift of zero on the basis of the density fluctuations along the line of sight. In scattering theory, the latter is the relevant quantity.

(A color version of this figure is available in the online journal.)

For a concordance universe in which Ω = 1, with the radiation
contribution Ωr assumed negligible, one can use Equation (20)
to predict the scattering measure associated with the diffuse
IGM:

SM(z) = 2.73 × 1012 f 2 Ω−2
m {3ΩΛ − 1

+ [1 − 3ΩΛ + Ωm((1 + z)3 − 1)]
√

(1 + z)3Ωm + ΩΛ}

×
(

Ωb

0.04

) (
L0

1 pc

)−2/3

m−17/3. (22)

While the foregoing definition of the SM is a good indicator of
the total electron density variation along the line of sight, it is
not useful in evaluating the strength of the scattering because
the wavelength of the radiation changes along the ray path,
and therefore, so does the amplitude of the phase perturbation
for a given density fluctuation. The correction for this effect is
straightforward if the scattering takes place in a narrow range
of redshift along the line of sight. However, the correction
is nontrivial if the scattering takes place across a range of
redshifts in the IGM. To take the changing wavelength of the
incident radiation into account, it is useful to define an alternate
scattering measure, SMeff , for which the phase perturbations are
referred to a standard wavelength (see the discussion following
Equation (7) above). In this manner, the SM can then be used
to determine the cumulative phase variance due to scattering
through an extended patch of the IGM. It is convenient to refer
to quantities in the observer frame, for which the wavelength
of the observed radiation is denoted λ0. Because the phase
perturbation δφ is proportional to λ = λ0(1 + z)−1, we therefore
have SM ∝ δφ2 and obtain the effective scattering measure of
(cf. Equation (8)),

SMeff(z) =
∫ z

0

C2
N (z′)dH (z′)
(1 + z′)3

dz′. (23)

We have evaluated this integral numerically for ΩΛ = 0.7 and
Ωm = 0.3, and the results are shown in Figure 1. We have not
found a simple analytic solution for this integral to be valid
over the whole range of z. However, one may expand the
integrand to the second order in z to find an approximation that is
correct to within 10% at z < 0.7 or approximate the denominator
of the integrand as (1 + z)3/2Ω1/2

m to find an approximation that

is correct to within 10% for z > 2.5:

SMeff(z) ≈ 1012f 2

(
Ωb

0.04

) (
L0

1 pc

)−2/3

m−17/3

×
{

3.07z [Ωm(4 + 3z) + ΩΛ(4 + 6z)] z � 1,

4.91 Ω−1/2
m [(1 + z)5/2 − 1] z 	 1.

(24)

The contribution to the scattering measure for a slice of the IGM
between redshifts z and z + Δz is,

SMeff(z) ≈ 1012f 2

(
Ωb

0.04

)(
L0

1 pc

)−2/3

m−17/3

×
{

3.07Δz [Ωm(4 + 3Δz + 6z) + 2ΩΛ(2 + 3Δz + 6z)] z � 1,

4.91 Ω−1/2
m [(1 + z + Δz)5/2 − (1 + z)5/2] z 	 1.

(25)

3.1.1. Scattering from a Clumpy IGM

We have considered above the contribution of a diffuse, homo-
geneously distributed IGM. However, scattering measurements
from the turbulence in our own Galaxy suggests that this is likely
to be too simple a model to adequately capture the full breadth
of scattering phenomena likely to be present in the IGM. Both
pulsars and intra-day variable quasars reveal that the turbulent
ISM in our own Galaxy is highly inhomogeneously distributed
(Cordes & Lazio 2002) and intermittent (Kowal et al. 2007;
Falgarone et al. 2006, and references therein). There is increas-
ing evidence that many lines of sight are, in fact, dominated
not by the diffuse ISM, but instead by single patches of intense
turbulence whose SMs exceed the expected value from the dif-
fuse ISM by several orders of magnitude; evidence for this is
gleaned from so-called anomalous scattering regions (Cordes
& Lazio 2001), from the “secondary arcs” observed in pulsar
secondary spectrum, and in extreme scattering events (Putney &
Stinebring 2006; Fiedler et al. 1987). The occurrence of local-
ized pockets of extreme turbulence appears to be a widespread
property of turbulent plasmas; some analogous effects appear to
occur in terrestrial environments, manifest in the phenomenon
of traveling ionospheric disturbances (He et al. 2004).

The physical origin of anomalously strong scattering regions
in the ISM is not understood, rendering it unclear how one
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should extrapolate its properties from the interstellar environ-
ment to intergalactic plasmas. However, the widespread nature
of this phenomenon in the ISM suggests that this phenomenon
may be too important to ignore when considering possible mod-
els of intergalactic turbulence. To this end, our objective here
is to construct a model which phenomenologically captures the
effects of anomalous scattering without recourse to a detailed
physical model of its origin.

Therefore, we consider a model that computes the incidence
of large (but possibly rare) overdensities as a function of redshift
and then determine how many such regions are likely to exist
along a given line of sight. We start by positing a simple
but generic model for the turbulent density fluctuations that
enables us to calculate the frequency of overdense regions.
Our basis for the model is a log normal distribution of density
fluctuations, whose long tail permits the existence of large high-
density deviations from the mean. Furthermore, simulations
and in situ measurements argue that the distribution of density
fluctuations in turbulent media is usefully modeled by a log-
normal distribution (e.g., Vázquez-Semadeni 1994; Hopkins
2013 and references therein). The probability of encountering a
clump with a density greater than Ne is

P (X > Ne) = 1 − 1

2
erfc

[
ln μ0 − 1

2 ln(f 2 + 1) − ln X√
2 ln(f 2 + 1)

]
,

(26)

and the expected number of clumps whose density exceeds some
threshold, X, for such a distribution is (see Appendix B) given
by,

N (X > Ne; z) = c

L0H0

×
∫ z

0

1 − 1
2 erfc

[
ln[μ0(1+z)3]− 1

2 ln(f 2+1)−ln X√
2 ln(f 2+1)

]
(1 + z)

√
ΩΛ + Ωm(1 + z)3

dz, (27)

where μ0 is the mean baryon density, the root-mean-square
density is a factor f times the mean, and we use the fact that the
mean density of the IGM increases as (1 + z)3.

To illustrate the behavior of N, we evaluate Equation (27) for a
specific instance. We set the mean density, μ0, equal to the mean
baryonic density as a function of redshift as per Equation (19),
and take f = 1. Figure 2 shows the cumulative number of
regions whose typical density exceeds various threshold values
as a function of redshift.

Having calculated the number of regions with densities
greater than a certain threshold, it remains to compute their
contribution to the SM. We approximate the SM contribution
associated with each overdense region as ∼C2

N 0L0 = (β −
3)L4−β

0 N2
e /(2 (2π )4−β )). In this expression for C2

N , we are
implicitly treating the outer scale L0 as a proper distance.
This is justifiable in the sense that the outer scale depends
only on conditions set by local physics, which is to say that
the physics of the turbulence does not evolve with redshift. It
is, of course, possible that even the proper distance L0 does
change slowly with redshift if there is some evolution in the
overall development of the turbulence throughout the IGM.
However, an investigation of the possible scenarios under which
L0 might evolve is beyond the scope of the simple calculations
presented here. Given these provisions, the scattering measure
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Figure 2. Cumulative number of scattering regions exceeding the threshold
density, Ne, along the line of sight as a function of redshift. The y-axis is
normalized to a turbulence outer scale length of L0 = 1 pc; the number of
regions encountered is inversely proportional to L0, so that an outer scale of 1
Mpc would result in a factor of 106 reduction in N. The mean density scales
as (1 + z)3 as a function of redshift, per Equation (19), and we assume that
f = 1, which is to say that the amplitude of the rms density fluctuation at a
given redshift is equal to the mean density at that epoch. The black horizontal
line denotes N = 1, below which encountering an overdensity of a given Ne is
improbable.

(A color version of this figure is available in the online journal.)

and effective scattering measures are,

SM =
∫ z

0
C2

N 0L0

⌊
P (z′)dH (z′)
L0(1 + z′)

⌋
dz′, and (28a)

SMeff =
∫ z

0

C2
N 0L0

(1 + z′)2

⌊
P (z′)dH (z′)
L0(1 + z′)

⌋
dz′. (28b)

We take the integer floor of the quantities inside the symbols
� � because these expressions denote countable quantities (i.e.,
the number of scattering clouds); the integral picks up an integral
amount of scattering, C2

N 0L0, only each time one encounters a
new cloud in the IGM.

The quantity inside the integrand in Equation (28b) may be
considered an effective incremental element of SM as function
of redshift, which we denote dSM′

0. We plot the value of both
dSM′

eff and SMeff in Figure 3. The behavior of the curves of
dSMeff in this figure may be understood as follows. At low
redshifts only moderate density clouds, Ne ∼ 10−5 cm−3, are
common enough to make a substantial contribution to the SM.
However, as the mean density of the IGM increases as (1 + z)3,
larger and larger overdensities gradually become more probable.
As the increment of SM associated with denser clouds is larger,
there comes a point at which their contribution to dSMeff
dominates over that from the more numerous but less dense
clouds. Thus, at low redshifts, clouds of densities ∼10−5 cm−3

dominate, but at z ∼ 3 clouds of densities ∼10−5 cm−3 dominate
the contribution to dSMeff , and at z ∼ 8 clouds of densities
∼10−3 cm−3 begin to dominate the contribution to dSMeff .

3.2. The Contribution of Galaxies and Intracluster Gas

We now consider scattering by intervening gravitationally
bound objects, namely the intracluster medium (ICM) of rich
clusters of galaxies, as well as the ISM of other galaxies. We
assume that the electron densities and turbulent properties of
these objects are constant (with no evolution) across the redshifts
of interest. Therefore the values of C2

N for these objects are
independent of redshift, and are given by:

C2
N,gal = 1.8 × 10−3

( ne

10−2 cm−3

)2
(

L0

0.001 pc

)−2/3

m−20/3

(29)
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Figure 3. Left: the differential contribution to the effective scattering measure as a function of redshift from clouds of various densities in the IGM. Right: the integral
effective scattering measure from these same clouds. Here we assume f = 1 and that the mean density of the IGM, μ0, scales as (1 + z)3, per Equation (19).

(A color version of this figure is available in the online journal.)
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Figure 4. Number of galaxies and clusters of galaxies intersecting a source at a redshift of z (left panel), as well as the scattering measure as a function of z (right
panel). The black lines give the mean values, while the colored curves show the 95th percentile based on Poisson statistics. We have used the parameters in Table 1.

(A color version of this figure is available in the online journal.)

for scattering through a spiral galaxy similar to the Milky Way,
and

C2
N,icm = 8.4 × 10−13

( ne

10−4 cm−3

)2
(

L0

0.1 Mpc

)−2/3

m−20/3

(30)
for scattering through the ICM. Kolmogorov turbulence is
assumed, and the parameters L0 and ne are normalized by values
appropriate for galaxies and the ICM, respectively.

The SM is obtained simply by multiplying C2
N,obj with the

thickness of the object (ΔL) and number of objects (Nobj)
intersecting the line-of-sight to the background source:

SM = C2
N,obj ΔLNobj, (31)

where C2
N,obj can be C2

N,gal or C2
N,icm. Note also that the effective

scattering measure, SMeff , is dependent on the redshifts of the
intervening objects, so that:

SMeff = SM
Nobj∑
i=1

(1 + zL,i)
−2. (32)

Table 1
Parameters Used for Galaxies and the ICM

Parameter Symbol Galaxy ICM

Mean electron density ne 10−2 cm−3 10−4 cm−3

Outer scale of turbulence L0 0.001 pc 0.1 Mpc
Proper radius r 10 h−1 kpc 1 h−1 Mpc
Proper number density n0 0.02 h3 Mpc−3 10−5 h3 Mpc−3

The mean number of objects intersecting a background source
at a redshift of z is given by Padmanabhan (2002) as:

Nobj(z) =
∫ z

0

πr2n(z′)dH (z′)
(1 + z′)

dz′, (33)

where r and n(z) are the typical proper radius and proper number
density of the object, respectively.

We evaluate the SM for galaxies and the ICM, assuming
that their sizes do not evolve, and that their number densities are
conserved over the redshifts of interest, so that n(z) = n0(1+z)3,
where n0 is the number density at the present epoch. We used
typical values for the various parameters, listed in Table 1. Both
the mean N (z) and SM(z) for galaxies and the ICM are shown
as black curves in Figure 4. We also evaluate the probability of
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intersecting N = 0, 1, 2, . . . objects at each redshift, taking the
statistics of object counts to follow a Poisson distribution.

The value of C2
N for individual galaxies is relatively large,

typically ∼1.8×10−3 m−20/3, thus their SM is at least ∼2 orders
of magnitude larger (depending on source redshift) than that
predicted for the diffuse IGM. However, due to their scarcity
and smaller sizes, their contribution is unlikely to dominate for
most sight-lines, since the mean number of intersecting galaxies
is �1 up to z ∼ 4, and particularly at z � 1.5 where there is
a 95% chance that the source is not intersected by a galaxy,
following Poisson statistics. In the event that a transient source
is indeed intersected by an intervening galaxy, the SMeff would
then depend on where the scattering galaxy is located along the
line-of-sight, zgal, and thus be reduced by a factor (1 + zgal)2.
The ISM of such intervening galaxies, especially those located
at z ∼ 0, would then dominate the SM toward the transient
source.

While the chances of intersecting a galaxy cluster are higher
due to its larger size, approaching an average of one intervening
cluster for a source at z ∼ 4, the typical value of C2

N,icm is
much lower, ∼8.4 × 10−13 m−20/3, due to the lower electron
densities and the larger outer scales of turbulence used in the
approximations. Therefore, the ICM also does not contribute
much to the overall SM on average, unless the L0 of the ICM is
of the order ∼1pc, at which the contribution to the SM will be
comparable to that shown in Figure 3.

Thus, we conclude that the ISM of intervening galaxies and
the ICM are important if they do intersect sight-lines toward
transient sources, but do not contribute significantly to the total
SM for most sight-lines. However, the statistics used do not
account for the fact that extragalactic transient sources are more
likely to be detected within a large cluster of galaxies, or that
searches for extragalactic transients will most likely be directed
toward galaxies or galaxy clusters.

3.3. The Contribution of Lyα Systems

The ionized material associated with Lyα systems potentially
contributes to the scattering of extragalactic sources. The mag-
nitude of this contribution was investigated by Rickett et al.
(2007), whose results we briefly summarize for completeness
here. They used the Haardt–Madau cosmological model for
reionization by the UV background (Haardt & Madau 1996)
and assume reionization equilibrium to infer the electron densi-
ties of photoionized gas associated with Lyα clouds, whose H i
column densities are well studied over a wide range of redshifts
(Prochaska et al. 2005; Janknecht et al. 2006). As with our mod-
els, these clouds are assumed to have fully developed turbulence
with a Kolmogorov spectrum. Applying the thin-screen scatter-
ing model, and summing over the scattering contributions of
all clouds in the line of sight, they predict angular broadening
of the order ∼1 μas up to z ∼ 5 at 5 GHz, for cloud sizes of
the order ∼10 kpc. Based on the relation in Equation (15), this
translates to temporal smearing timescales of the order ∼1 to
10μs at 5 GHz, depending on the locations of the scattering
clouds, and ∼1 ms to 10 ms at 1 GHz, which are comparable to
that of the other components already discussed, as well as the
limits imposed by the Lorimer bursts, which we discuss below.

3.4. An Empirical Estimate of the DM–SM Relation

To supplement the foregoing estimates, we also consider an
alternate empirical approach based on attempts to relate DM and
SM. An empirical relation between DM and SM is observed in

turbulent astrophysical plasmas in the ISM (Bhat et al. 2004).
Therefore, it useful to consider how this relationship might
relate to turbulence in intergalactic plasmas. This approach holds
practical appeal because the DM is a fundamental measurable
of any impulsive cosmological transient, and a relation between
SM and DM would suggest a characteristic DM out to which
scattering may begin to assert its importance in limiting the
detectability of extragalactic transients.

Following the formalism of Cordes et al. (1991) and Bhat
et al. (2004), one may consider the IGM to be comprised of a
collection of scattering clouds in which the respective DM and
SM increments associated with a scattering cloud of depth δs
are

δDM = neδs and (34)

δSM = CSMFcn
2
eδs, (35)

where CSM takes the value 1.84 m−20/3 cm6 if we assume a
Kolmogorov spectrum of turbulence, and where δs is expressed
in kpc, ne in cm−3, DM in kpc cm−3, and SM is expressed
in its usual units of kpc m−20/3. The dimensionless fluctuation
parameter is defined by

Fc = ζ ε2

η

(
L0

1 pc

)2/3

(36)

where L0 is the outer scale of the turbulence, η is the volume
filling factor of the turbulent medium, ε = 〈(ne − n̄e)2〉/〈ne〉2

measures the amplitude of density fluctuations within the cloud
relative to its mean value, and ζ = 〈n2

e〉/〈ne〉2 is a measure of
fluctuations in the mean density between clouds.

This implies the following relation between increments in
DM and SM,

δSM

δDM
= 1.84〈ne〉Fc (37)

where the fluctuation parameter is found to lie in the range
0.20–110 for turbulence in the ISM of our Galaxy (NE2001).

The extension of this formalism to an intergalactic context
involves two modifications which alter the ratio of the SM to the
DM. (1) The mean density of the IGM (2.3×10−7(1+z)3 cm−3)
is much lower relative to the ISM (0.02 cm−3), so that a given
DM variation is expected to produce an SM contribution that
is a fraction 10−5(1 + z)3 of that expected in the ISM. (2) The
characteristic cloud thickness and outer turbulent scale may be
much larger in the IGM than in the ISM. If we associate the outer
scale of intergalactic turbulence with the scale of sources likely
to inject turbulent power, such as AGN jets, it may be more
plausible to identify the outer scale for intergalactic turbulence
with scales L0 ∼ 0.1 Mpc, in which case the fluctuation
parameter, Fc, would be a fraction 5 × 10−4 that of the ISM.
However, we caution that the effective outer scale may be lower
by many orders of magnitude, as it may instead be dictated by
microphysical properties of the turbulence (i.e., it may be as low
as 1 pc), in which case one might expect values similar to those
encountered in the ISM. Given these considerations, one expects
δSM/δDM ∼ 4.2×10−7(1 +z)3Fc. With δDM expressed in the
more conventional units of pc cm−3 and SM in units of m−17/3,
one finds

δSM ∼ 1.3 × 1013 (1 + z)3 Fc

(
δDM

1000 pc cm−3

)
m−17/3. (38)
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While this approach presents only a crude means of estimating
the relationship between DM and SM in the IGM, due to the
inherent uncertainty in the estimate of Fc in a plasma whose
turbulent properties may qualitatively differ from the ISM, it
does demonstrate two important properties of the turbulence.
Firstly, the nature of the δDM–δSM relationship is not constant,
but is expected to increase sharply with redshift, scaling as
(1 + z)3. Secondly, it demonstrates that the amount of scattering
expected per unit of DM is likely to be several orders of
magnitude lower than that found in the ISM. The range of
values implied by this approximation is consistent with the order
of magnitude of the SM computed by other means in previous
subsections. The lower amplitude of scattering per unit DM
suggests that the level of temporal smearing experienced by
extragalactic bursts is substantially lower than may be expected
on the basis of extrapolation from the DM–SM relationship
observed in the ISM, and therefore, are excellent prospects of
detecting extragalactic bursts out to high redshifts.

The SM estimate based on the detection of temporal smearing
in FRB 110220, as discussed above, may be used to provide a
tentative estimate of Fc in the IGM. For this burst, we use
z = 0.81 (Thornton et al. 2013) to find Fc = 1.3 × 102. This
value is similar to that obtained in highly turbulent regions of
the ISM, and it suggests that the outer turbulent scale may not
be dissimilar from that found in interstellar environments.

4. EXISTING SCATTERING LIMITS AND THE REDSHIFT
DEPENDENCE OF TEMPORAL SMEARING

4.1. Comparison with Existing Angular Broadening Limits

It is worth considering whether high resolution very long
baseline interferometry (VLBI) images of high redshift radio
sources pose any additional constraints on the angular broad-
ening, and hence temporal smearing. In terms of the quantities
derived in this paper, the angular size of the source is

θ =

⎧⎪⎨
⎪⎩

4.8
(

λ
1 m

)2
(

DLS

DS

)( SMeff
1012 m−17/3

)1/2 (
l0

1 AU

)−1/6
μas, rdiff <l0,

8.9
(

λ
1 m

)11/5
(

DLS

DS

)( SMeff
1012 m−17/3

)3/5
μas, rdiff >l0.

(39a)

The largest values of SMeff indicated by our various models
are of the order of 3 × 1013 m−17/3 for z < 1 and 1015 m−17/3

for z < 5, indicating that a conservative upper bound on the
expected scattering broadening size is ∼100λ2 μas for z � 1
and ∼600λ2 μas for z � 5.

The most stringent observational limits come from VLBI
and from the minimum source angular sizes of sources as
deduced by interstellar scintillation at centimeter wavelengths.
The strongest VLBI limits are at the lowest frequencies since the
expected angular broadening size increases quadratically with
wavelength but the resolution of an interferometer degrades only
linearly with wavelength. However, the limit on IGM angular
broadening at z � 1 is well beyond the resolving capabilities
of VLBI: baselines larger than 2.0 × 106 km are required at
300 MHz to access sources at the angular resolutions relevant
to IGM angular broadening. At higher frequencies constraints
from interstellar scintillation (ISS) are more stringent.

Scintillation studies of intra-day variable sources yield source
lower limits on the source size of ∼10 μas (e.g., Rickett et al.
2002; Macquart & de Bruyn 2007) at 5 GHz. However, the
predicted upper limit on angular broadening by the IGM at this

frequency is ∼0.4 μas, far lower than the lower limits deduced
from ISS.

We may also utilize the angular sizes of intra-day variable
sources to place upper limits on the effective SM in the IGM
at moderate redshifts. The z = 0.54 source J1819 + 3845,
contains components between 9 and 26 μas in size at 5 GHz
(Macquart & de Bruyn 2007). The smallest of these components
therefore implies SMeff < 9.8 × 1016 m−17/3, where we assume
DLS/DS = 0.5. Similarly, the smallest component size deduced
for the quasar PKS 0405−385 is 9 μas (Rickett et al. 2002),
which places an identical limit on the effective SM at z = 1.285.

4.2. Comparison with Existing Burst Characteristics

The temporal characteristics of the six extragalactic bursts
reported by Lorimer et al. (2007), Keane et al. (2011) and
Thornton et al. (2013) may be used to further constrain the
properties of scattering over cosmological distances. Temporal
smearing was detected in only two bursts, and only the detection
of the highest S/N event reported by Thornton et al. (2013) was
not of marginal significance: this burst, FRB 110220, possessed
a (smearing-dominated) duration of 5.6 ± 0.1 ms duration at
1.3 GHz. No significant detection of scattering was made in
other bursts, placing limits on the smearing timescale between
<1.1 ms and <4.3 ms at the same frequency. Moreover, we
note that the upper limit on the DM = 1072 pc cm−3, <4.3 ms
duration burst (FRB 110703) is smaller than the duration of FRB
110220, despite occurring at the lower DM of 910 pc cm−3.
This indicates that there is appreciable variation in the smearing
timescale of extragalactic bursts between different lines of sight.

We use Equations (16a) and (16b) to determine the effective
SM implied by these durations. The frequency dependence of
the temporal smearing observed in FRB 110220, τ ∝ ν−4.0±0.4

is consistent with both scattering in which rdiff < l0 (τ ∝ ν−4) or
in which rdiff > l0 (τ ∝ ν−4.4). Since the observed pulse shape
is the convolution of the intrinsic pulse shape with the pulse
broadening kernel, we attribute 4 ms to the temporal smearing
timescale in FRB 110220, which implies the following

SMeff = (1 + zL)

(
Deff

1 Gpc

)−1

×
{

3.4 × 1016
(

l0
1 AU

)−1/3
m−17/3, rdiff < l0,

1.8 × 1016 m−17/3, rdiff > l0.
(40)

This may be regarded as an upper limit on the effective SM
of the IGM in the sense that some component of the temporal
smearing may originate in the ISM of the host galaxy. More
generally, the absence of broadening in the other bursts implies

SMeff < (1 + zL)
( τ

1 ms

) (
Deff

1 Gpc

)−1

×
{

8.6 × 1015
(

l0
1 AU

)−1/3
m−17/3, rdiff < l0,

4.7 × 1015 m−17/3, rdiff > l0.
(41)

The scattering is particularly constraining for FRBs 110627 and
120127, with durations of <1.4 ms and <1.1 ms respectively
(Thornton et al. 2013).

4.3. The Distinction between Scattering Due
to the Host Galaxy and the IGM

The extension of the scattering theory above to cosmological
distances allows us to immediately address an important issue

9



The Astrophysical Journal, 776:125 (13pp), 2013 October 20 Macquart & Koay

related to the origin of scattering in high-DM Lorimer-like
bursts. Specifically, in several high-DM bursts, the pulse width is
observed to increase as λ4.0±0.4, which suggests that these pulses
are broadened by multipath propagation by an inhomogeneous
plasma along the lines of sight to the objects. For the case of
the Lorimer burst itself, the predicted temporal smearing time
due to our Galaxy’s ISM is 0.6 μs at 1.4 GHz (Cordes & Lazio
2002), which is much smaller than the observed ≈5 ms pulse
duration. Thus, the scattering occurs either in the IGM or in the
host galaxy of the burst itself. There is currently considerable
debate about whether the observed temporal smearing is caused
by the IGM, or whether it can be fully attributed to turbulence
in the ISM of the galaxy in which the burst occurred (the host
galaxy).

The foregoing theory makes a strong prediction about the
redshift dependence of the scattering at cosmological distances.
This potentially enables us to distinguish between temporal
smearing predominately due to the host galaxy or as a result of
the IGM itself. If the scattering is dominated by turbulent plasma
inside the host galaxy, the SM will reflect local conditions within
those galaxies and will be decoupled from the Hubble expansion
that affects the density of the diffuse IGM. We discuss the effect
of temporal smearing in relation to Equation (14). For scattering
occurring at the host galaxy, there is an excellent approximation,
DL/DS = 1 so,

τhost = DLSλ
2
0

4πc (1 + zL) r2
diff

. (42)

Thus, if one were to suppose that the values of SM of the
various host galaxies are comparable between different bursts,
since they reflect the intrinsic properties of the environments of
the host galaxies rather than the evolving density of the IGM
with redshift, then one has rdiff ∝ (1 + zL) and τ ∝ (1 + zL)−3

under the assumption that the diffractive scale is smaller than the
inner scale of the turbulence.8 If, instead, the diffractive scale is
larger than the inner scale of the turbulence, rdiff > l0, one has
τ ∝ (1 + z)(2+β)/(2−β). Thus, objects in which the scattering is
dominated by the ISM of the host galaxy leads to the surprising
result that the temporal smearing time will decrease as a steep
function of redshift!

This result is in stark contrast to the redshift dependence of
the temporal smearing time expected of scattering in the IGM.
Equation (24) shows that, for z � 1, the effective SM scales
linearly with redshift, while for z 	 1 it scales proportional
to (1 + z)2.5. Using Equation (14), we can derive the redshift
dependence of the scattering time in terms of the redshift of the
burst, zS :

τIGM ∝ DLDLS

DS

{
zS zS � 1,

(1 + zS)3/2 zS � 1.
(43)

This result is subject to the assumption that the diffractive
scale is smaller than the inner scale of the turbulence; this
assumption is supported by the observed frequency dependence
of the temporal smearing of the FRBs observed so far. For
completeness, however, we also quote the results for the case
in which the diffractive scale exceeds the inner scale of the

8 The temporal smearing timescale scales as τ ∝ λ4 if the diffractive scale is
smaller than the inner scale of the turbulence. In the opposite regime,
rdiff > l0, one has τ ∝ λ2β/(β−2). The observed λ4 dependence of temporal
smearing of the high-DM pulses suggests that rdiff < l0.
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Figure 5. Ratio ξ = DLDLS/DS as a function of the source redshift, zS , and
the effective redshift of the scattering material, zL = ξzS .

(A color version of this figure is available in the online journal.)

turbulence:

τIGM ∝ DLDLS

DS

{
z

2/(β−2)
S zS � 1,

(1 + zS)(7−β)/(β−2) zS � 1.
(44)

The redshift dependence of the ratio ζ = DLDLS/DS must also
be taken into account when examining the temporal smearing
time. However, at zS � 1, this ratio generally exhibits only a
weak dependence on source redshift, and therefore, does not
strongly alter the redshift dependence of the temporal smearing
timescale.

Figure 5 shows the evolution of the ratio ζ as a function of the
source redshift, zS , and the effective location of the scattering
material, whose redshift we parameterize in terms of the fraction
ξ of the source redshift, zL = ξzS . It is evident that, for most of
the range of effective screen distances (i.e., 0.3 � ξ � 0.9), the
ratio ζ turns over and is nearly flat in the range 1 � zS � 2 and
then declines slowly to higher redshifts. For z � 3, the decline
in ζ with source redshift scales as (1 + zS)−α , with the index
α increasing from ≈0.5 at ξ = 0.3 to a value of α ≈ 1.3
for ξ = 0.9. In the regime of very small source redshifts,
zS � 1, in which redshift is approximately linearly proportional
to the angular diameter distance, we obtain the simple result,
ζ ≈ cH−1

0 zL(zS − zL)/[zS(1 + zL)] ≈ zL(1 − zL/zS).
Combining the redshift scaling of ζ with the scaling expected

of IGM turbulence in Equation (43), we obtain an overall redshift
dependence of,

τIGM ∝
{
z2
S zS � 1,

(1 + zS)0.2−0.5 zS � 1.
(45)

Thus, we see that at low redshifts, the temporal smearing time is
expected to increase quadratically with redshift, but turns over
and only increases weakly with source redshift beyond zS ∼ 1.

The foregoing results present a definitive statistical means of
determining the origin of the scattering observed in high-DM
bursts. There is a strong difference in the redshift dependence
of scattering due to the ISM of the burst’s host galaxy and when
it is due to the IGM. The scattering timescale of bursts that are
scattered predominately by the host galaxy scales as (1+zhost)−3,
whereas the timescale of bursts scattered by the IGM increases
as z2

S for low redshifts, and in the range (1 + zS)0.2 to (1 + z)0.5

for bursts at zS � 1.
It should be emphasized that this distinction applies only

in a statistical sense, in that there is likely to be considerable
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variation between the scattering properties of bursts. For in-
stance, one expects some variation in the SM of the host galaxy
depending on its orientation relative to the line of sight. The
scattering of the host galaxy is more likely to dominate over the
IGM contribution on occasions when the burst is viewed edge-
on through the host galaxy. However, the fraction of bursts in
which orientation plays a strong role is likely to be small. Ex-
perience in our own Galaxy reveals that interstellar scattering
decreases sharply at Galactic latitudes |b| � 15◦ so that, in a
galaxy with scattering properties similar to the Milky Way, only
3% of bursts would be viewed at the galactic disk sufficiently
inclined for it to contribute substantially to the scattering.

5. CONCLUSIONS

Our conclusions are summarized as follows:

1. We have generalized the theory of scattering to take into
account the curved geometry of spacetime at cosmological
distances. In curved spacetime, the temporal smearing
timescale can be expressed in the form

τ = Deffλ

2πck(1 + z)r2
diff

, (46)

where Deff = DLDLS/DS is the effective scattering dis-
tance expressed in terms of angular diameter distances be-
tween the observer and the medium (DL), the observer and
the source (DS), and the medium and the source (DLS), and
rdiff is the diffractive scale of the scattering medium, which
is a function of the SM. Numerically, one has

τ = (1 + zL)−1

(
Deff

1 Gpc

)(
SMeff

1012 m−17/3

)

×
{

4.1 × 10−5
(

λ0
1 m

)4 (
l0

1 AU

)1/3
s, rdiff < l0,

1.9 × 10−4
(

λ0
1 m

)22/5
s, rdiff > l0.

(47)

Therefore, the estimated amplitude of this effect depends on
the effective SM. This equation furnishes a means to deduce
the SM of the IGM from measurements of temporally
smeared impulsive events.

However, we caution that the effective SM differs from
the usual (Euclidean space) definition in terms of an integral
of C2

N over path length in two respects. (i) The wavelength
of radiation from a redshifted source is larger when it
reaches the observer than when it was scattered by an
object at high redshift, say at zL, so that the observed
SM is a factor (1 + zL)2 smaller than the correct SM. (ii)
For scattering that occurs in the Hubble flow in which the
Friedmann–Robertson–Walker metric applies (i.e., not in
gravitationally collapsed objects), the integral over path
length, dl, must be corrected for the curvature of spacetime
and is replaced by an integral over redshift: dH (z)dz/(1+z).

2. For the purpose of completeness, we have attempted to esti-
mate the expected effective SM associated with the objects
at cosmological distances. A simple estimate suggests that
the effective SM is of the order of 5 × 1013 m−17/3 at z < 1
and 5 × 1015 m−17/3 at (z < 10) for the diffuse IGM. The
contribution from collapsed systems such as intervening
galaxies and cluster gas will dominate the effective SM for
sightlines through which they intersect, but is unlikely to
occur; there is only a 5% chance that a source at z � 1.5 and
z � 0.5 will intersect a galaxy or a galaxy cluster, respec-
tively. An extrapolation of the DM–SM relation observed

in our Galaxy and modified to the densities applicable in
the IGM yields an estimate of the expected SM that is also
comparable to the two foregoing estimates.

These estimates are compatible with existing limits on
the angular broadening of compact sources at cosmological
distances. The deduced angular sizes of intra-day variable
quasars only limit the effective scattering measure to
SMeff < 1017 m−17/3 at z ∼ 1.

The absence of detected temporal smearing in several of
the extragalactic transients detected by Keane et al. (2011)
and Thornton et al. (2013) limits the effective SM of the
IGM to values below ∼5 × 1015 m−17/3 at z � 1, while
the corresponding limit for the transient in which temporal
smearing is detected is ∼2 × 1016 m−17/3; this value is a
limit in the sense that it is unclear whether the host galaxy
makes a substantial additional contribution to the temporal
smearing of the signal.

Lorimer et al. (2013) make use of an empirical DM–SM
relation in their consideration of event rates for FRBs at
frequencies relevant to the MWA and LOFAR. They note
that the amount of scattering observed in FRBs, detected
so far, falls considerably below the empirical DM–SM
relation observed in the Milky Way. The rederivation of the
DM–SM relation for the physical conditions of the IGM,
in Section 3.4, shows why this is the case. One expects the
amount of scattering expected per unit of DM to be several
orders of magnitude lower than that found in the ISM.
Moreover, one predicts that the constant of proportionality
between DM and SM will change with redshift as (1 + z)3.

3. These estimates of the SM at z � 3 suggest that temporal
smearing may, on average, be less than ∼1 ms for obser-
vations at frequencies above 300 MHz. However, if the
IGM is clumpy, one may expect variations between differ-
ing lines of sight through the IGM in much the same way
that large sight-line variations are observed in our Galaxy’s
turbulence ISM.

4. The effects of scattering in the IGM and that in the host
galaxy of a bright transient event are strongly distinguished
by their dependence on redshift. This is because the baryon
density in the IGM increases sharply (∝ (1 + z)3) whereas
the baryon density in the gravitationally collapsed systems
(e.g., galaxies and clusters) is decoupled from the Hubble
flow.

For decoupled systems one has τ ∝ (1 + zL)−3

if the diffractive scale is smaller than the inner scale of
the turbulence and τ ∝ (1 + z)(2+β)/(2−β) if it exceeds the
inner scale; one expects τ ∝ (1 + z)−17/5 if the turbulence
follows the Kolmogorov value of β = 11/3. In the IGM,
the redshift dependence of the scattering depends on both
the redshift dependence of the effective SM and on the red-
shift dependence of the lever arm effect associated with the
effective distance Deff . We find τIGM ∼ z2 for z � 1 and
(1 + z)0.2−0.5 for z � 1.

Parts of this research were conducted by the Australian
Research Council Centre of Excellence for All-sky Astrophysics
(CAASTRO), through project No. CE110001020.

APPENDIX A

SUMMARY OF PARAMETERS USED

We present here Table 2 summarizing the most common
symbols and parameters used throughout the text.
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Table 2
Table of Symbols

Symbol Meaning First Relevant Equation

β Power-law index of the spectrum of turbulent density inhomogeneities 4
C2

N Amplitude of the density power spectrum 4
C2

N,gal Contribution to the density power spectrum from a galaxy 29
C2

N,icm Contribution to the density power spectrum from the intracluster medium 30
C2

N,obj Contribution from either C2
N,gal or C2

N,icm 31
C2

N0 Contribution to the density power spectrum from a turbulent clump in the IGM 28a
dH Hubble radius 9
DLS Angular diameter distance between the scattering region and the source 2
DL Angular diameter distance between the observer and the scattering region 2
DS Angular diameter distance between the observer and the source 2
Deff DLDLS/DS 16
ΔL Scattering region depth 6
Fc Turbulence fluctuation parameter 36
k Wavenumber 13
λ0 Wavelength in the frame of the observer 2
l0 Turbulence inner scale 4
L0 Turbulence outer scale 4
rdiff Diffractive scale length 7
rF Fresnel scale, DLDLSλ0/(2πDS (1 + zL) 2
SM Scattering measure 7
SMeff Effective (redshift-corrected) scattering measure 8
τ Temporal broadening time 14
τIGM Temporal broadening time associated with IGM scattering 43
τhost Temporal broadening time associated with scattering in the host galaxy 42
zL Redshift of the scattering region 2
zS Redshift of the transient event (i.e., source) 43

APPENDIX B

THE CONTRIBUTION FROM A CLUMPY IGM

In this appendix we consider in detail the contribution of
a collection of clouds embedded in the IGM whose density
fluctuations follow a log-normal probability distribution. The
form of the distribution is,

p(x = ne) = 1√
2πxσ

exp

[
− (μ − ln x)2

2σ 2

]
, x > 0, (B1)

where μ is the mean density and σ is the standard deviation of
the associated normal distribution. The mean of a lognormal
distribution is exp(μ + σ 2/2) and its variance is exp(2μ +
σ 2)(eσ 2 − 1), so if the root-mean-square density is a factor f
times the mean density, and the mean is μ0, one has

μ = ln μ0 − 1

2
ln(f 2 + 1), (B2)

σ =
√

ln(f 2 + 1). (B3)

Thus, the corresponding probability of obtaining a density
greater than Ne is,

P (X > Ne) = 1 − 1

2
erfc

[
ln μ0 − 1

2 ln(f 2 + 1) − ln X√
2 ln(f 2 + 1)

]
.

(B4)

This probability indicates the chance of obtaining an overdensity
greater than some value, Ne, in a given cell of turbulence.
Now, if the turbulence has an outer scale L0, the fluctuations
between adjacent cells of length L0 can be taken to be mutually

independent, and thus each L3
0-sized volume in the IGM contains

an independent realization of the stochastic turbulence. For any
wavefront propagating through a path length L through the IGM,
the radiation will encounter ∼L/L0 independent turbulent cells.

We can use these arguments to determine the rate per unit
length of encountering a region of overdensity, Ne: if the
probability per unit cell is P, then the rate per unit length of
encountering an overdensity region is P/L0. Now, in general,
P will depend on the redshift, because the mean density of the
IGM scales as (1 + z)3. Therefore, we write the mean density
as μ0(1 + z)3 and, since the variance is a multiple f 2 of the
mean-squared, it follows that the standard deviation increases
like μ0(1 + z)3f . Other scalings of σ with redshift may be
feasible, but we expect σ to depend on the microphysics of the
turbulence, which should be redshift-independent, so we adopt
the foregoing assumption as a conservative approach. So we
can now compute the mean number of overdensitites that the
radiation will encounter as,

N =
∫ L

0

P (z)

L0
dl =

∫ L/c

0

P (z)

L0
cdt. (B5)

Thus, one obtains

N (X > Ne; z) = c

L0H0

×
∫ z

0

1 − 1
2 erfc

[
ln[μ0(1 + z)3]− 1

2 ln(f 2 + 1)−ln X√
2 ln(f 2 + 1)

]
(1 + z)

√
ΩΛ + Ωm(1 + z)3

dz. (B6)

A value of N much smaller than one signifies that it is improbable
that a line of sight up to a redshift z intersects any clouds above
a density X = Ne.
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