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Abstract  

Electrochemistry at liquid-liquid interfaces, or at interfaces between two immiscible electrolyte 

solutions (ITIES), provides a basis for the non-redox detection of biological molecules, based on ion-

transfer or adsorption processes. The electroactivity of myoglobin at an array of micron-sized liquid-

organogel interfaces was investigated. The µITIES array was patterned with a silicon membrane 

consisting of an array of eight pores with radii of ~12.8 µm and a pore to pore separation of ~400 µm. 

Using cyclic voltammetry at the ITIES, the protein was shown to adsorb at the interface and facilitate 

the transfer of the organic phase electrolyte anions to the aqueous side of the interface. The 

electrochemical current response was linear with concentration in the range of 1 – 6 µM, with 

corresponding surface coverage of 10 – 50 pmol cm
-2

. The reverse peak currents was found to be 

proportional to the voltammetric scan rate, indicating a desorption process. The detection of the protein 

was only possibly when the pH of the aqueous phase solution was below the pI of the protein. The 

steady-state simple ion transfer behaviour of tetraethylammonium cation was decreased on the forward 

sweep, providing a qualitative indication of the presence of adsorbed protein at the interface. 

Increasing the ionic strength of the aqueous phase resulted in enhanced peak currents, possibly due to 

aggregation of protein precipitates in the aqueous solution. UV/Vis absorbance spectroscopy was used 

                                                             
1
 ISE Member. 

mailto:d.arrigan@curtin.edu.au


2 | P a g e  
 

to investigate the effects of various aqueous electrolyte solutions on the structure of the protein, and it 

was shown that at low pH the protein is at least partially denatured. These results provide the basis for 

label-free detection of myoglobin at the ITIES. 

Keywords: myoglobin, voltammetry, ITIES, liquid-liquid interface, adsorption. 

 

1. Introduction  

In this report, the electroactivity of myoglobin (Mb) at the interface between two immiscible 

electrolyte solutions (ITIES) [1] is presented. Mb is a globular protein containing a haem group, 

comprised of a single chain of 153 amino acids with a molecular mass of 16.7 kDa and an iso-electric 

point of ~7.3 [2].  It was the first protein to have its 3D crystal structure determined, in 1958 [3]. Mb is 

an oxygen-binding protein used in the transportation and storage of 02  in muscle cells [4]. The 

detection of Mb may be a route to the diagnosis of acute myocardial infarction (AMI), as elevated 

concentrations of Mb are present in the blood following the onset of the disease [5, 6]. Elevated 

concentrations of Mb (4 – 11 nM) are present as early 1-3 hours after AMI [7], which implies that a 

rapid, accurate and reliable testing method is needed. The detection of Mb within these first few hours 

allows Mb to be used as an early confirmation of AMI and has the potential to impact fundamentally 

on medical therapy [8].  

Electrochemistry at the ITIES provides a strategy for the label-free detection of molecules that are not 

easily detected by conventional redox methods at solid electrodes [9, 10]. To improve the performance 

characteristics of electrochemistry at the ITIES, the miniaturisation of the interface has been a topic of 

interest since the report of the first micron-sized ITIES by Taylor and Girault in 1986 [11]. The use of 

µITIES minimises problems occurring at larger (mm or cm) interfaces such as charging current and 

ohmic potential drop while also significantly increasing mass transport rates [12, 13]. The 

development of nanoscale interfaces has received much attention recently, in an attempt to further 

improve the electrochemical response at the ITIES [13-15]. Methods for development of the 
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micro/nano ITIES vary from pulled glass pipettes [11], laser ablation of a substrate [16] to various 

chemical etching methods [17]. The results reported here utilised a µITIES array fabricated from a 

silicon membrane containing an array of micropores [18]. In recent years there have been many reports 

on the behaviour and detection of biomolecules at the ITIES. The detection of a range of biomolecules 

including  amino acids[19], heparin[20, 21], protamine[22, 23], haemoglobin[24, 25], lysozyme[26, 

27], insulin[28], dopamine[29-31], noradrenaline[31] and DNA[32] have been reported at the ITIES. 

Osakai et al. used surfactants in the organic phase as the basis for protein detection and found that 

cytochrome c could be transferred across the ITIES [33-35]. A range of proteins have been studied at 

the ITIES in the absence of surfactants and it was found that the proteins did not transfer across the 

ITIES but adsorbed there and facilitated the transfer of the organic anion to the aqueous phase [24, 26-

28]. The effect of varying the organic phase anion on the electrochemistry of protamine at the ITIES 

was extensively studied by Trojanek et al. using  conductometry, voltammetry and quasi-elastic light 

scattering [22]. The interactions of cationic proteins with the hydrophobic anions has been verified 

also by on-line acoustic sensor[36] and mass spectrometric[37] methods. 

The aim of the work presented in this paper was to investigate the behaviour of Mb at the µITIES array 

and to make comparisons to previous work. In particular, it was of interest to see if the previously 

proposed mechanism for protein detection was generic: the adsorption of protein and facilitated ion-

transfer of hydrophobic anion applies to haemoglobin[24, 25], lysozyme[26, 27, 37] and insulin[28] 

[27]; will it also apply to Mb? Although some behaviour of Mb at the ITIES was reported[35], that 

work was based on experiments in the presence of organic phase surfactant. In the present work, the 

behaviour of Mb was characterised by cyclic voltammetry at the interface between the liquid aqueous 

phase and the gelled organic phase. The organogel was located within the pores of the silicon 

membrane used, so that the interface was inlaid. This arrangement results in radial diffusion to the 

interface from the aqueous side of the interface and linear diffusion from the organic side of the 

interface [18, 38]. 
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2. Experimental details 

2.1 Reagents. All the reagents were purchased from Sigma-Aldrich Australia Ltd. and used as 

received, unless indicated otherwise. The gelled organic phase was prepared using 

bis(triphenylphosphoranylidene) tetrakis(4-chlorophenyl)borate (BTPPA
+
TPBCl

-
, 10 mM) in 1,6-

dichlorohexane (1,6-DCH) and low molecular weight poly(vinyl chloride) (PVC) [39]. The organic 

phase electrolyte salt BTPPA
+
TPBCl

-
 was prepared by metathesis of 

bis(triphenylphosphoranylidene)ammonium chloride (BTPPA
+
Cl

-
) and potassium tetrakis(4-

chlorophenyl) borate (K
+
TPBCl

-
)[40]. Aqueous stock solutions of Myoglobin (from equine heart) were 

prepared in 10 mM HCl or in mixtures of 1, 10 or 100 mM LiCl in 10 mM HCl (pH 2) on a daily basis 

and stored at +4 ºC. For variable pH experiments, the pH was adjusted using solutions of 10 mM HCl 

and 10mM LiOH. Tetraethyl ammonium (TEA
+
) chloride solutions were prepared in a background 

electrolyte of 10 mM HCl. All the aqueous solutions were prepared in purified water (resistivity: 18 

MΩ cm) from a USF Purelab Plus UV.  

2.2 Apparatus. All electrochemical experiments were performed using an Autolab PGSTAT302N 

electrochemical analyser (Metrohm Autolab, Utrecht, The Netherlands), controlled by the NOVA 

software supplied with the instrument. The micropore arrays were fabricated from silicon membranes 

using photolithographic patterning and a combination of wet and dry silicon etching [18]. The 

fabrication procedure provided hydrophobic micropore walls allowing the organic phase to fill the 

pores. The micropore array consisted of eight micropores in a hexagonal close-packed arrangement, 

each with a diameter of 12.8 µm and a pore centre-to-centre distance of 400 µm. The microporous 

silicon membranes were sealed onto the lower orifice of a glass cylinder using silicone rubber (Acetic 

acid curing Selleys glass silicone). The gelled organic phase solution was introduced into the silicon 

micropore arrays via the glass cylinder, and the organic reference solution was placed on top of the 

gelled organic phase. The silicon membrane was then inserted into the aqueous phase (10 mM HCl, 

Myoglobin in 10 mM HCl or 1, 10 or 100 mM LiCl and/or TEA
+
 in 10 mM HCl). Voltammetric 

experiments were performed next, as previously described [26]. Ultraviolet/visible (UV/vis) 
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absorbance spectroscopy was carried out using a Perkin-Elmer Lambda 35 instrument. The instrument 

was scanned in the wavelength range of 250 nm to 500 nm at the rate of 480 nm min
-1

. The slit width 

was 1 nm with a resolution of 1 nm. The sample was run in a 1 x 1 cm quartz cuvette. 

2.3 Electrochemical cell. The setup used for the experiments comprised of a 2 electrode cell [41], 

with one Ag|AgCl electrode in the organic phase and one in the aqueous phase. The cell utilised in 

these experiments is shown in Scheme 1, where x refers to the concentration of Mb or TEA
+
. All 

potentials are reported with respect to the experimentally-used reference electrodes.  

 

3. Results and discussion 

3.1 Cyclic voltammetry of Myoglobin.  

The electrochemical behaviour of Mb at the ITIES was investigated using cyclic voltammetry. Figure 

1(a) shows the voltammograms obtained when scanning from 0.0 V to 1.0 V relative to the Ag|AgCl 

electrodes. The protein’s iso-electric point is 7.3 [2] and hence it is positively charged at pH 2 and 

assumed to be fully protonated, in which case it has a charge of +32, based on its amino acid sequence.  

The forward scan shows an increase in current (at ca. +0.75 V) in the presence of the protein as the 

scan approaches the end of the electrochemical window. This is a feature of facilitated transfer of the 

organic phase anion in the presence of adsorbed positively-charged protein at the ITIES [27, 28]. 

Although it is difficult to distinguish a transfer wave from background electrolyte transfer so close to 

the limit of the potential window, it can still be seen that the forward-scan current increases with the 

concentration of Mb present in the aqueous phase. The reverse scan shows a well-defined peak at 0.68 

V, which is attributed to desorption of the protein from the interface, as seen in previous studies with 

other proteins [27]. Figure 1(b) shows the peak currents from the reverse peaks in the concentration 

range 1 – 6 µM Mb. Blank scans (i.e. zero Mb present in the aqueous phase) were recorded in between 

scans with Mb present in order to ensure that no protein remained absorbed on the interface and 
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carried over from one experiment to the next. These blank scans were featureless in the potential 

regions where Mb exhibited voltammetric behaviour. In the 1 – 6 µM concentration range there was a 

linear response between the reverse peak current and the concentration of Mb (correlation coefficient 

R = 0.9968). The surface coverage of Mb at the µITIES array can be determined from the charge under 

the reverse scan peaks using equation 1 [42].  

       (1) 

Here, Q is the charge corresponding to the desorption peak (C),  is the charge on the protein, F is 

Faraday’s constant (C mol
-1

), A is the total geometric area of the microinterfaces (cm
2
) in the array, 

and  is the surface coverage. The charges for the reverse peaks in Figure 1(a) correspond to surface 

coverages in the region of 10 - 50 pmol cm
-2

. The surface coverage varied with aqueous phase 

concentration of Mb similar to that of the peak current, in that no saturation effect was observed in the 

concentration range studied. The adsorption of Mb at the ITIES was investigated previously by 

Girault’s group using optical second harmonic generation [43]. The surface area occupied by a single 

Mb molecule was taken from its crystallographic data and assumed to be 10 nm
2
 [44]. It was shown 

that a full monolayer coverage corresponds to 10
17

 molecules/m
2
 (or 1.66 x 10

-11
 mol cm

-2
). The 

surface coverage data obtained from Figure 1(a) thus correspond to between 0.6 of a monolayer (10 

pmol cm
-2

) and 2.9 monolayers (50 pmol cm
-2

).  These results are consistent with the finding that a 

multilayer of haemoglobin was formed at the liquid-liquid interface during the course if a single cyclic 

voltammetric scan [38]. It should be noted also that the experimental data obtained from cyclic 

voltammetry are not obtained at equilibrium, unlike the optical SHG studies[43] and much longer 

adsorption times may be needed to achieve surface saturation and equilibration.  

 

3.2 Scan rate studies. 



7 | P a g e  
 

To investigate the nature of the processes (diffusion, adsorption) occurring at the interface, cyclic 

voltammetry at a fixed Mb concentration (5 µM) was carried out with varying scan rates, in the range 

5 – 75 mVs
-1

 (Figure 2). The reverse peak current showed a linear response to scan rate (R = 0.997). 

This dependence of the reverse peak current on scan rate indicates that the behaviour is not diffusion-

controlled but is due to desorption of the protein from the interface. Although the peak current 

increased with scan rate, at the higher scan rates the peaks became broader and less distinguishable 

from the background electrolyte transfer and capacitive charging current and hence was more difficult 

to measure the peak magnitude. As a result, the current versus scan rate plot exhibited a large intercept 

on the current axis, of ca. 1 µA. These results agree with the previous model proposed for a facilitated 

ion transfer (FIT) mechanism for protein detection at the ITIES [26, 27]. The protein adsorbs to the 

interface and facilitates the transfer of the organic phase anion resulting in the broad forward wave and 

the formation of a protein-organic phase anion complex at the aqueous side of the interface. On the 

reverse scan, the complex dissociates, with accompanying protein desorption and anion reverse 

transfer to the organic phase, resulting in the reverse peak recorded in the voltammogram.   

  

3.3 Influence of the aqueous phase ionic strength. 

The effects of varying ionic strength on the voltammetry of Mb at a fixed concentration (5 µM) was 

investigated. The ionic strength was varied by changing the concentration of LiCl in the aqueous phase 

from 1 mM to 10 mM to 100 mM. The aqueous phase was maintained at pH 2 by using 10 mM HCl in 

addition to the variable LiCl concentrations. The ionic strengths were calculated from equation (2), 

where   is the total ionic strength of the electrolyte solution (M),  is the molar concentration of the 

ion  (M), and  is the charge on that ion i. The sum is then taken over all ions in solution. 

       (2) 
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The corresponding ionic strengths for 1, 10 and 100 mM LiCl solutions in a background of 10 mM 

HCl were 0.011, 0.02 and 0.11 M, respectively.  Figure 3 shows the resulting cyclic voltammograms 

related to increasing ionic strength of the aqueous phase. Previous work at the ITIES indicated that 

increasing ionic strength results in a marked decrease in the magnitude of peaks due to the presence of 

a protein [26], in that case hen egg white lysozyme. It was suggested that the protein was further 

solvated by the ions in solution and this caused a decrease in protein concentration available to adsorb 

at the interface. Interestingly, the results presented here show that as the ionic strength increases 

(Figure 3(a-c)), the peaks attributed to protein adsorption/desorption become sharper and better 

defined as well as producing greater currents. A possible reason for the increase in the peak currents is 

the salting out effect [45]. This effect is used to precipitate proteins in solutions by adjusting the salt 

concentration. The effects of various ions on protein stability is characterised by the Hofmeister series 

[46]. Salt ions are categorised according to whether they denature or stabilise a protein [47]. At high 

salt concentrations, protein-protein interactions become favourable over electrostatic repulsion and this 

is the driving force for precipitation [48, 49] and aggregation [50]. It has also been reported that at low 

pH, protein-protein interactions become more favourable [51]. It is likely that this combination of 

effects served to pre-concentrate the protein at or near the interface at the highest LiCl concentration. It 

was noted that during the preparation of the LiCl/Mb solutions at higher concentrations of LiCl, the 

protein tended to form a precipitate and aggregate in the aqueous solution. While this may improve the 

qualitative ability to detect Mb at the ITIES, it has implications for using the data obtained as a 

quantitative measurement of the protein present. As the protein solution is no longer homogeneous, 

representative sampling becomes a problem. 

    

3.4 Effects of the aqueous phase pH. 

The mechanism of FIT of the hydrophobic organic phase anion by the cationic protein species in the 

aqueous phase can be further validated by investigating the influence of the aqueous phase pH. Figure 
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4 shows the cyclic voltammetry of 9 µM Mb when the aqueous phase is adjusted to pH  values of 7, 12 

and 2, (Figures 4 (a), (b) and (c), respectively). The voltammograms show that the ion transfer process 

only occurs when the protein is in a cationic state (in an aqueous phase whose pH is lower than the 

protein’s pI); no ion-transfer response was seen at the pI or above. This trend is typical of what has 

been seen in previous studies at the ITIES [26, 28]. Although the CVs in the absence and presence of 

Mb at aqueous phase pH values greater than the protein’s pI are similar, there is a slight shift in the 

capacitive current (Figure 4(b)) which may be a result of adsorption. But no peaks that can be 

associated with cation or anion transfer within the available potential window were observed. 

 

3.5 Influence of Myoglobin on TEA
+ 

transfer at the µITIES array. 

Further evidence for adsorption/desorption of Mb at the interface can be seen by comparing 

voltammograms in the presence and absence of the tetraethylammonium (TEA
+
) cation.  Simple ion 

transfer of an ion such as TEA
+
 at the µITIES array results in a steady-state current on the forward 

sweep and a peak-shaped current on the reverse sweep. The asymmetric voltammograms are the result 

of radial and linear diffusion profiles during the forward and reverse scans, respectively [38, 52, 53]. 

Figure 5(a) shows the voltammogram for TEA
+
 transfer in the absence of Mb. The steady-state current 

for TEA
+
 is 1.8 nA, with a half-wave potential of 0.68 V. The steady-state forward response results 

from radial diffusion to the interface from the aqueous phase and the peak-shaped reverse response is 

due to linear diffusion of the analyte molecules, from the organic phase held within the membrane 

micropores, back to the aqueous phase. In the presence of aqueous phase Mb, the steady-state response 

to TEA
+
 is disrupted on the forward scan (Figure 5(b)) once a potential has been reached that is 

sufficient to induce adsorption of the protein (> 0.6 V). This results in a decreased steady state current 

for TEA
+
 transfer of 0.7 nA. This drop in current indicates that the transfer of the TEA

+
 is affected by 

protein adsorbed at the interface, but also that Mb adsorption is less disruptive than lysozyme [27, 54]. 

The reverse peak current for TEA
+
 back-transfer was decreased in the presence of Mb from 1.8 nA to 
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1.5 nA, indicating that less TEA
+
 was transferred into the organic phase due to adsorbed Mb. When the 

voltammogram for TEA
+
 transfer (Figure 5(a)) is compared to the analogous voltammogram in the 

presence of protein (Figure 5 (b)) it can clearly be seen that the steady-state current on the forward 

sweep is diminished, while the reverse peak current is also decreased, albeit less substantially. This 

indicates that although the adsorbed Mb disrupts ion transfer at the interface, it does not however stop 

ion transfer completely, unlike the case observed with lysozyme [27,54]. This phenomenon may be a 

result of different adsorptive strengths for different proteins at the gelled ITIES.    

 

3.6 Effect of aqueous solution on Myoglobin conformation.  

UV/Vis absorbance spectroscopy was used to investigate whether there were any conformational 

changes within the Mb structure due to the effects of the aqueous phase solutions used in the above 

studies. UV/Vis absorbance spectroscopy can be used to investigate directly the effect of the 

environment on Mb tertiary structure because the absorbance spectrum of the haem group is directly 

affected by its physical environment [55]. Five different aqueous solutions were used in the 

preparation of sample solutions: purified H2O, 10 mM LiCl, 10 mM PBS, 10 mM HCl and 10 mM 

LiCl at pH 2. The wavelength range scanned in the UV/Vis absorbance experiments was chosen to 

include the Soret band at ca. 410 nm [56], which is due to the haem centre, and also the band at 280 

nm, which is due to the aromatic amino acids [57]. It can be seen from Figure 6 that the Soret band is 

diminished in the presence of an acid solution (10 mM LiCl at pH 2 and 10mM HCl). However, in the 

higher pH solutions (no added acid), the Soret band remains unaffected. This is indicative of some 

denaturation/unfolding of the protein tertiary structure by the acidic aqueous phase electrolyte solution 

[55], although the extent of this process cannot be known from the UV/Vis spectra alone. The band 

due to the aromatic amino acids remains relatively unaffected in all aqueous solutions studied.  

 

4. Conclusions 
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The aim of this work was to investigate whether myoglobin was electroactive at the µITIES array, to 

characterize its behaviour and to compare it to the behaviour of other proteins at this interface. The 

results indicate that the peak currents produced for myoglobin have a linear response to concentration 

in the range of 1 – 6 µM. The basis of the detection mechanisms was investigated by varying the 

voltammetric scan rate, the aqueous phase pH and by examining the influence of the presence of 

myoglobin on the ion transfer voltammetry of TEA
+
. Based on the results obtained, the detection of 

Mb is attributed to an interfacial adsorption/desorption process accompanied by organic phase anion 

transfer and association with the cationic protein. It was shown that the behaviour of myoglobin was 

similar to previously studied proteins, lysozyme, haemoglobin and insulin, in terms of its FIT 

mechanism and dependence on the cationic state of the protein in the aqueous phase. The reverse 

voltammetric peak showed a dependence on scan rate which indicates a desorption process. The 

appearance of a peak is dependent on the aqueous phase pH in that the protein needs to be in a charged 

state below the pI for detection to be possible. However, the need for the positively-charged protein 

species in the present system requires the use of low pH aqueous solutions, which have been shown, 

by the UV/Vis spectrophotometry of the myoglobin solutions, to denature the protein structure. The 

increased peak currents observed with increased LiCl concentration can best be explained if viewed as 

a type of pre-concentration step, with the formation of protein aggregates that accumulate on the 

interface. The results provide the basis for label-free detection of proteins at liquid-liquid interfaces by 

electrochemical methods. 

 

Acknowledgements 

This work was supported by Curtin University and the Western Australian Nanochemistry Research 

Institute. SOS thanks Curtin University for the award of a PhD scholarship via the Curtin Strategic 

International Research Scholarships scheme. The silicon microporous membranes used were a gift 

from Tyndall National Institute, Cork, Ireland. 



12 | P a g e  
 

 

 

References 

[1] Z. Samec, Pure Appl. Chem., 76 (2004) 2147. 
[2] E. Blanco, J.M. Ruso, J. Sabin, G. Prieto, F. Sarmiento, Journal of Thermal Analysis and Calorimetry, 87 
(2007) 211. 
[3] J.C. Kendrew, G. Bodo, H.M. Dintzis, R.G. Parrish, H. Wyckoff, D.C. Phillips, Nature, 181 (1958) 662. 
[4] T.D. Paulo, I.C.N. Diogenes, H.D. Abruna, Langmuir, 27 (2011) 2052. 
[5] Rajesh, V. Sharma, V.K. Tanwar, S.K. Mishra, A.M. Biradar, Thin Solid Films, 519 (2010) 1167. 
[6] E. Suprun, T. Bulko, A. Lisitsa, O. Gnedenko, A. Ivanov, V. Shumyantseva, A. Archakov, Biosens. Bioelectron., 
25 (2010) 1694. 
[7] B. McDonnell, S. Hearty, P. Leonard, R. O'Kennedy, Clinical Biochemistry, 42 (2009) 549. 
[8] S.F. Melanson, M.J. Tanasijevic, Cardiovasc. Pathol., 14 (2005) 156. 
[9] G. Herzog, S. O' Sullivan, J.S. Ellis, D.W.M. Arrigan, Sensor Letters, 9 (2011) 721. 
[10] D.W.M. Arrigan, Analytical Letters, 41 (2008) 3233. 
[11] G. Taylor, H.H.J. Girault, J. Electroanal. Chem., 208 (1986) 179. 
[12] B. Liu, M.V. Mirkin, Electroanalysis, 12 (2000) 1433. 
[13] S.J. Liu, Q. Li, Y.H. Shao, Chem. Soc. Rev., 40 (2011) 2236. 
[14] M.D. Scanlon, D.W.M. Arrigan, Electroanalysis, 23 (2011) 1023. 
[15] M.D. Scanlon, J. Strutwolf, A. Blake, D. Iacopino, A.J. Quinn, D.W.M. Arrigan, Anal. Chem., 82 (2010) 6115. 
[16] J.A. Campbell, H.H. Girault, J. Electroanal. Chem., 266 (1989) 465. 
[17] V.J. Cunnane, D.J. Schiffrin, D.E. Williams, Electrochim Acta, 40 (1995) 2943. 
[18] R. Zazpe, C. Hibert, J. O'Brien, Y.H. Lanyon, D.W.M. Arrigan, Lab on a Chip, 7 (2007) 1732. 
[19] G. Herzog, D.W.M. Arrigan, Analyst, 132 (2007) 615. 
[20] J.D. Guo, Y. Yuan, S. Amemiya, Anal. Chem., 77 (2005) 5711. 
[21] P. Jing, Y. Kim, S. Amemiya, Langmuir, 25 (2009) 13653. 
[22] A. Trojánek, J. Langmaier, E. Samcová, Z. Samec, J. Electroanal. Chem., 603 (2007) 235. 
[23] Y. Yuan, S. Amemiya, Anal. Chem., 76 (2004) 6877. 
[24] G. Herzog, V. Kam, D.W.M. Arrigan, Electrochim. Acta, 53 (2008) 7204. 
[25] G. Herzog, P. Eichelmann-Daly, D.W.M. Arrigan, Electrochem. Commun., 12 (2010) 335. 
[26] M.D. Scanlon, E. Jennings, D.W.M. Arrigan, Phys. Chem. Chem. Phys., 11 (2009) 2272. 
[27] M.D. Scanlon, J. Strutwolf, D.W.M. Arrigan, Phys. Chem. Chem. Phys., 12 (2010) 10040. 
[28] F. Kivlehan, Y.H. Lanyon, D.W.M. Arrigan, Langmuir, 24 (2008) 9876. 
[29] G. Herzog, B. McMahon, M. Lefoix, N.D. Mullins, C.J. Collins, H.A. Moynihan, D.W.M. Arrigan, J. 
Electroanal. Chem., 622 (2008) 109. 
[30] A. Berduque, R. Zazpe, D.W.M. Arrigan, Analytica Chimica Acta, 611 (2008) 156. 
[31] J.A. Ribeiro, I.M. Miranda, F. Silva, C.M. Pereira, Phys. Chem. Chem. Phys., 12 (2010) 15190. 
[32] F. Kivlehan, M. Lefoix, H.A. Moynihan, D. Thompson, V.I. Ogurtsov, G. Herzog, D.W.M. Arrigan, 
Electrochim Acta, 55 (2010) 3348. 
[33] M. Shinshi, T. Sugihara, T. Osakai, M. Goto, Langmuir, 22 (2006) 5937. 
[34] T. Osakai, A. Shinohara, Anal. Sci., 24 (2008) 901. 
[35] T. Osakai, Y. Yuguchi, E. Gohara, H. Katano, Langmuir, 26 (2010) 11530. 
[36] J.S. Ellis, S.Q. Xu, X. Wang, G. Herzog, D.W.M. Arrigan, M. Thompson, Bioelectrochemistry, 79 (2010) 6. 
[37] R.A. Hartvig, M.A. Mendez, M. van de Weert, L. Jorgensen, J. Ostergaard, H.H. Girault, H. Jensen, Anal. 
Chem., 82 (2010) 7699. 
[38] J. Strutwolf, M.D. Scanlon, D.W.M. Arrigan, Analyst 134 (2009) 148. 
[39] M.D. Scanlon, G. Herzog, D.W.M. Arrigan, Anal. Chem., 80 (2008) 5743. 
[40] H.J. Lee, P.D. Beattie, B.J. Seddon, M.D. Osborne, H.H. Girault, J. Electroanal. Chem., 440 (1997) 73. 



13 | P a g e  
 

[41] T. Osakai, T. Kakutani, M. Senda, B Chem Soc Jpn, 57 (1984) 370. 
[42] J. Wang, Analytical electrochemistry, 2nd ed (2000) 209. 
[43] J. Perrenoud-Rinuy, P.F. Brevet, H.H. Girault, Phys Chem Chem Phys, 4 (2002) 4774. 
[44] R. Maurus, R. Bogumil, N.T. Nguyen, A.G. Mauk, G. Brayer, Biochemical Journal, 332 (1998) 67. 
[45] Y.F. Yano, T. Uruga, H. Tanida, Y. Terada, H. Yamada, J. Phys. Chem. Lett., 2 (2011) 995. 
[46] R.A. Curtis, J. Ulrich, A. Montaser, J.M. Prausnitz, H.W. Blanch, Biotechnol. Bioeng., 79 (2002) 367. 
[47] R.L. Baldwin, Biophysical Journal, 71 (1996) 2056. 
[48] D.E. Kuehner, J. Engmann, F. Fergg, M. Wernick, H.W. Blanch, J.M. Prausnitz, J. Phys. Chem. B, 103 (1999) 
1368. 
[49] A.C. Dumetz, A.M. Snellinger-O'Brien, E.W. Kaler, A.M. Lenhoff, Protein Sci., 16 (2007) 1867. 
[50] Y.J. Zhang, P.S. Cremer, Proc. Natl. Acad. Sci. U. S. A., 106 (2009) 15249. 
[51] A.C. Dumetz, A.M. Chockla, E.W. Kaler, A.M. Lenhoff, BBA-Proteins Proteomics, 1784 (2008) 600. 
[52] J.A. Campbell, A.A. Stewart, H.H. Girault, Journal of the Chemical Society, Faraday Transactions 1: Physical 
Chemistry in Condensed Phases, 85 (1989) 843. 
[53] Y. Shao, M.D. Osborne, H.H. Girault, J. Electroanal. Chem., 318 (1991) 101. 
[54] E. Alvarez de Eulate, D.W.M. Arrigan, Anal. Chem., 84 (2012) 2505. 
[55] A.B. Anderson, C.R. Robertson, Biophysical Journal, 68 (1995) 2091. 
[56] C. Rimington, Biochem J, 75 (1960) 620. 
[57] C.M. Jones, Chem. Educator, 4 (1999) 94. 
 

 



14 | P a g e  
 

 

 

 

Scheme 1: electrochemical cell employed in these experiments 
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Figure 1. (a) CVs of 1, 3 and 6 µM Mb, scan rate 5 mVs
-1

. (b) Plot of reverse peak current versus 

myoglobin concentration. The electrochemical cell is as outlined as in scheme 1.  
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Figure 2. CVs of 5 µM Mb, scan rates of 5, 10, 15, 25, 50 and 75 mVs
-1

. The electrochemical cell is as 

outlined in scheme 1. 
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Figure 3. CV of 5 µM Mb with increasing ionic strength of the aqueous phase. (a) (b) and (c) 

correspond to 1, 10 and 100 mM LiCl in 10 mM HCl, respectively. The electrochemical cell is as 

outlined in scheme 1. 
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Figure 4. CV of 9 µM Mb in (a) pH 7, (b) pH 12, (c) pH 2 aqueous phase, scan rate 5 mVs
-1

. The 

blank scan (absence of Mb) is represented by the dashed line and the 9 µM Mb by the solid line. The 

electrochemical cell is as outlined in scheme 1.  
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Figure 5. (a) CV of 15 µM TEA
+
, (b) CV of 15 µM TEA

+
 plus 9 µM Mb, and (c) CV of 9 µM Mb, 

scan rate 5 mVs
-1

. On the voltammograms, the labels TEA
+
 and Mb indicate features attributed to 

TEA
+
 transfer and Mb adsorption/desorption, respectively. The electrochemical cell is as outlined in 

scheme 1. 
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Figure 6. UV/Vis absorbance spectra of 10 µM Mb in (a) H20, (b) 10 mM LiCl and (c) 10 mM 

phosphate buffered saline (PBS). (d) and e) correspond to 10 µM Mb in aqueous solutions of 10 mM 

LiCl pH 2 and 10 mM HCl.  

 


