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Abstract 12 

This study investigated the effects of nano-silica on flowability, strength development, 13 

sorptivity and acid resistance properties of fly ash geopolymer mortars cured at 20oC. The 14 

changes in mass, compressive strength and microstructure of the specimens after immersion 15 

in acid solutions for different durations were determined. The microstructures were studied 16 

by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray 17 

diffraction (XRD) analysis. It was found that addition of nano-silica in geopolymer mortars 18 

based on fly ash alone or fly ash blended with 15% GGBFS or 10% OPC improved the 19 

compactness of microstructure by reducing porosity. Thus, the nano-silica reduced sorptivity 20 

and increased compressive strength of the mixes. The average mass loss after 90 days of 21 

immersion in acid solutions reduced from 6.0% to 1.9% by addition of 2% nano-silica. 22 

Similarly, significant reduction in strength loss after immersion in acid solution was observed 23 

in the specimens by using nano-silica.  24 
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1. Introduction  29 

Works on the development of geopolymer binder as an alternative to traditional cement has 30 

been considerably increased in the recent years. This is because of the numerous benefits of 31 

geopolymers over traditional cement binder such as lower CO2 emission [1], requirement for 32 

less processing of the raw materials [2] and development of desired strength and structural 33 
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properties [3, 4, 5]. Geopolymerization is a process where the glassy constituents of the 34 

aluminosilicate source materials are transformed into a compact binder [6]. Several factors 35 

such as reactivity of the source materials [7], curing temperature, alkaline activator to source 36 

material ratio [3, 8, 9] and the type of alkaline activator play important roles in the 37 

geopolymerization process. Selection of the binder compositions is an important factor 38 

affecting the properties of fresh and hardened geopolymers [8, 9].  Geopolymers based on 39 

low-calcium fly ash cured at ambient temperature takes very long time to set and it develops 40 

relatively low strength as compared to those cured at elevated temperature such as at 60 oC. 41 

Previous studies [3, 9] showed that the setting and strength development of low-calcium fly 42 

ash geopolymers can be improved by a small percentage of ground granulated blast furnace 43 

slag (GGBFS) or ordinary Portland cement (OPC) in the binder.  44 

Improvements in the mechanical properties of a cementitious matrix by the addition 45 

of nano materials were reported by numerous studies [10-13]. It was observed that a small 46 

percentage of nano-silica in the cementitious system can result in a considerable strength 47 

improvement with a denser microstructure. However, the performance of nano-silica in 48 

cementitious materials is dependent on its morphology, method of preparation and its 49 

uniform dispersion in the mixture [14, 15]. It was reported by Adak et al. [16] that addition of 50 

6% nano-silica increased compressive strength of fly ash geopolymers. Gao et al. [17] 51 

showed that nano-silica increased the strength of alkali activated slags. These studies focused 52 

on the improvements of strength properties of alkali activated binders by using nano-silica. 53 

Studies on the durability of fly ash geopolymers in aggressive chemical environment are 54 

scarce in literature. Especially, it is necessary to study if the durability properties of 55 

geopolymers can be improved by using nano-silica. Concrete structures are often exposed to 56 

acidic environment such as in ground water, industrial effluents and acid rains. Therefore, 57 

acid resistance of concrete is an important property for its performance in aggressive 58 

environment. 59 

Mehta [18] observed that acid attack on a cementitious binder caused decalcification 60 

and formation of soluble products. Chindaprasirt et al. [19] noted that the high strength loss 61 

by the acid exposure of alkali activated fly ash-silica fume composites was due to the low 62 

initial strength of the mortar and the favourable dissolution of excess silica in the acid 63 

solution. However, Bakharev [20] observed better resistance of geopolymers than OPC 64 

binders in exposure to aggressive environment. Breck [21] noted that polymer structures with 65 

a Si/Al ratio of 1 are more easily attacked by the acid than more siliceous polymers. Ismail et 66 

al. [22] found that the H+ from H2SO4 ionization could destroy the alumino-silicate network 67 

http://www.sciencedirect.com/science/article/pii/S0950061814008551
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in geopolymer and yielded silicic acid (Si (OH) 4) and aluminium ions (Al3+) from the gel 68 

polymer. 69 

It was shown that addition of nano-silica in OPC or other cementitious binders 70 

significantly enhanced the compressive strength along with its durability properties. Addition 71 

of a small percentage of nano-silica could be a potential way to improve the strength and 72 

durability properties of low-calcium fly ash geopolymers cured at ambient temperature. Thus 73 

a comprehensive study is required to understand the possible beneficial effects of nano-silica 74 

in fly ash geopolymers cured at room temperature. This study investigated the effects of the 75 

addition of 0-3% nano-silica on the flowability, strength and porosity of geopolymer mortars 76 

based on fly ash only and fly ash blended with GGBFS or OPC. The durability properties 77 

such as sorptivity and resistance to acid were studied by determining the changes in mass and 78 

strength after immersion in an acid solution. The microstructural changes were studied by 79 

using SEM, EDS and XRD analysis to obtain an insight into the observed strength and 80 

durability properties. 81 

2. Experimental work 82 

2.1. Materials  83 

Low-calcium fly ash was used as the main aluminosilicate source for all geopolymer mortars. 84 

Commercially available GGBFS and OPC were blended with fly ash to accelerate the setting 85 

of geopolymers for curing at room temperature. Commercially available nano-silica (NS) 86 

with average particle diameter of 15 nm was used as an additive to improve the properties of 87 

fresh and hardened properties of geopolymer mortars. The chemical compositions of these 88 

materials are given in Table 1.   The blaine’s fineness of the regular fly ash, OPC and GGBFS 89 

were 340 m2/kg, 370 m2/kg and 450 m2/kg respectively. 90 

The activating chemicals were sodium silicate with a chemical composition of (wt. 91 

%): Na2O = 11.5, SiO2 = 30.0 and water = 58.5, and 8M sodium hydroxide solution prepared 92 

from analytical grade sodium hydroxide pellets. The fine aggregate was natural sand with a 93 

nominal maximum size of 1.18 mm. 94 

2.2. Geopolymer mixtures 95 

The mix proportions of geopolymer mortars were designed taking the final unit weight as 96 

2200 kg/m3.The composition of the geopolymer mortar mixtures were calculated based on 97 

the authors’ previous works [3, 4, 15] on geopolymers cured at room temperature. The mix 98 

proportions are given in Table 2. The mixtures are classified into three groups named as fly 99 

ash only, GGBFS blended fly ash and OPC blended fly ash series. Mixture FA-NS0, without 100 
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nano-silica, was the control mixture designed with fly ash alone as the binder for the fly ash-101 

only geopolymer series. Similar control mixtures were prepared for GGBFS (FA-S-NS0) and 102 

OPC (FA-PC-NS0) blended fly ash geopolymer mortars. The mixtures are designated based 103 

on the constituents of the binder. For example, the designation FA-S-NS3 represents a 104 

geopolymer mixture having 3% nano-silica (NS) in the GGBFS (S) blended fly ash (FA) 105 

geopolymer mortar. The percentages of GGBFS and OPC were fixed at 15% and 10% of the 106 

binder respectively. The binder to alkaline liquid ratio and the molarity of NaOH were fixed 107 

at 0.4 and 8M respectively. These proportions were used based on authors’ previous studies 108 

[3, 8, 9]. 109 

2.3.   Mixing of geopolymer mortars and the test methods 110 

The alkaline activator was a combination of sodium silicate and sodium hydroxide solutions 111 

with a mass ratio of 2.0. The nano-silica particles were dispersed in the silicate solution by 112 

using ultra-sonication prior to mixing of the mortar [15]. The fly ash and the fine aggregates 113 

were first mixed together in a Hobart mixer. This was followed by addition of the activator 114 

solution to the dry materials. The mixing was then continued further for about 3-5 minutes to 115 

produce fresh geopolymer mortar. Flow test of fresh geopolymer mortar was conducted in 116 

accordance with ASTM C1437-13 standard [23]. Cube mortar specimens of size 50 × 50 × 50 117 

mm were cast for compressive strength tests and 100 × 50 mm cylinder specimens were cast 118 

for sorptivity tests. The specimens were demolded at 24hrs after casting and then cured at 119 

room temperature (20±2°C) at a relative humidity of 70±10%. Compressive strength tests of 120 

the specimens were performed at 7, 28, 56 and 90 days in accordance with the ASTM C109 121 

[24] Standard. 122 

The morphology of the hardened samples was examined by a MIRA3 TESCAN using 123 

a scanning electron microscope (SEM). X-ray diffraction (XRD) experiments were conducted 124 

on a Siemens D500 Bragg–Brentano diffractometer in a 2h-range of 5–80Ɵ. Operating 125 

conditions for the XRD were set a 40 kV and 30 mA using a Cu ka X-ray source. Crystalline 126 

phases of the geopolymers were identified by comparison with a Powder Diffraction File 127 

(PDF). 128 

Resistance to sulfuric acid was determined by the modified test method B of the 129 

ASTM C 267 Standard [25]. The geopolymer cube mortar specimens were fully immersed in 130 

3% sulfuric acid solution at the age of 28 days for 12 consecutive weeks. The acid solution 131 

was replaced weekly and the pH level was monitored regularly to maintain the designated pH 132 

of 3.0.The specimens were removed from the acid solution after the exposure period and 133 

brushed carefully to remove the loose particles from its surface. They were then left for 134 
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drying under room temperature for 1hr before recording the mass changes. Strength and 135 

microstructure of the geopolymer specimens were also investigated after different exposure 136 

periods. Sorptivity tests were conducted with 100 mm diameter and 50 mm height specimens 137 

in accordance with ASTM C1585-13 [26]. The sides of the specimens were coated with 138 

epoxy to allow free water movement only through the bottom face. 139 

3. Results and discussion 140 

 141 

3.1. Flow behaviour of fresh geopolymer mortar 142 

The effects of the percentage of nano-silica on the flow of fresh geopolymer mortars are 143 

shown in Fig. 1. It can be seen that the flow values of the mixes containing GGBFS and OPC 144 

were less than those of the fly ash only mixes. The decrease in flow is because of the early 145 

reaction of the calcium contained in GGBFS and OPC. The trend is similar to the 146 

observations in previous works [3, 4, 8, 9]. Nath and Sarker [9] and Provis et al. [27] reported 147 

that the flow of fly ash geopolymer mortars decreased with the increase of calcium bearing 148 

components in the binder. Gao et al. [17] noted that lower slag content provided a better 149 

flowability due to their morphological differences. It can be seen from Fig.1 that the flow of 150 

geopolymer mortars gradually decreased with the increase of nano-silica. The flow of fly ash 151 

only geopolymer mortars decreased from 135% (FA-NS0) to 115% (FA-NS3) with the 152 

addition of 3% nano-silica. The flow decreased from 98% to 64% by the addition of 3% 153 

nano-silica in the GGBFS blended fly ash geopolymer mortar. Similarly, flow decreased from 154 

80% to 50% by 3% nano-silica in the OPC blended fly ash geopolymer mortar. The decrease 155 

of flow in the mixes of all three series by the inclusion of nano-silica is attributed to the 156 

increased liquid demand and accelerated reaction because of its high specific surface. The 157 

geopolymer mortars based on GGBFS and OPC blended fly ash containing 3% nano-silica 158 

were relatively stiff in nature and showed low workability.  159 

3.2. Compressive strength  160 

The compressive strength developments of the fly ash geopolymer mortars with 0%, 1%, 2% 161 

and 3% nano-silica are shown in Fig. 2. Each value is an average of the results obtained from 162 

3 identical specimens. The coefficients of variation of the results were mostly within 5%. For 163 

example, the coefficients of variation of the 28 day-compressive strengths all the geopolymer 164 

mixtures were in the range of 0.38% to 5.1%. 165 
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It can be seen from the figure that the rate of strength development slowed down significantly 166 

after 28 days and it was negligible after the age of 56 days.  Noticeable increase of strength 167 

can be seen in the fly ash geopolymer mixtures containing nano-silica. The extent of the 168 

increase in strength is dependent on the percentage of nano-silica. The highest strengths at all 169 

ages up to 90 days were found in the mixes with 2% nano-silica. While the strength of the 170 

mix with 3% nano-silica was higher than that of the control mix (FA-NS0), it was less than 171 

that of the mix with 2% nano-silica.  Fernandez and Palomo [28] reported that the fineness of 172 

the source material played an important role in the strength development of geopolymer 173 

binders. Temuujin et al. [29] also showed that the reduction of particle size and change in 174 

morphology increase the dissolution rate which eventually increased the compressive strength 175 

of geopolymer binder. 176 

It was shown in previous works [3, 8, 9] that curing temperature, molarity of sodium 177 

hydroxide and the reactivity of the source materials played crucial roles on the strength 178 

development of fly ash geopolymers. Generally, geopolymers based on fly ash only and 179 

cured at room temperature showed low compressive strength because of the slow 180 

geopolymerization process. The strength development in the specimens of the mixes without 181 

nano-silica showed similar trend in Fig.2. The nano-silica takes part in the reaction process 182 

from an early age because of its high specific surface. A greater degree of reaction of the 183 

aluminosilicate source materials is expected to give higher strength [30]. However, the results 184 

of this study suggest that there is a limiting value on the percentage of nano-silica beyond 185 

which no further strength increase is obtained. Thus, the optimum dosage of nano-silica for 186 

this mix series is found to be 2%. Belkowitz et al. [31] noted that the unreacted nano-silica 187 

caused an excessive self-desiccation and cracking in the matrix that eventually reduced the 188 

strength. Therefore, the less strength of the mix with 3% nano-silica than that of the mix with 189 

2% nano-silica is attributed to the presence of unreacted particles acting as defect sites.  190 

The strength developments of OPC and GGBFS blended series with the different 191 

amounts of nano-silica are shown in Figs. 3 and 4. As mentioned earlier, low-calcium fly ash 192 

was blended with either 10% OPC or 15% GGBFS in order to accelerate the setting of these 193 

mixes. As other ingredients remained constant, Figs. 3 and 4 show the influence of nano-194 

silica addition on the strength development.  195 

It is noteworthy that inclusion of nano-silica from 0 to 3% in the OPC and GGBFS 196 

blended series increased compressive strength by 40 to 64% as compared to the 197 

corresponding control mixes. Chindaprasirt et al. [32] and Somna et al. [33] reported that 198 

larger surface area of the source materials increased the geopolymerization process and 199 
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eventually increased the strength. It is noted from Fig.4 that mixes with 1%, 2% and 3% 200 

nano-silica, in the OPC blended series exhibited 41%, 63% and 50% higher strength 201 

respectively than the mix without nano-silica. Similar trend was also observed for GGBFS 202 

blended geopolymer mortars. The pore refinement process of nano-silica has resulted in 203 

higher strength of the geopolymer mixes. The addition of nano-silica increases the supply of 204 

the Si required for the geopolymerization process. It is noteworthy that due to its very large 205 

specific surface, nano-silica is highly reactive as compared to that of other cementitious 206 

materials such as fly ash, OPC and GGBFS. The main effect of the nano-silica addition in 207 

OPC and GGBFS blended series was the acceleration of the interconnected structure growth 208 

due to higher geopolymerization process that eventually resulted in higher compressive 209 

strength. The effect of nano-silica on strength development was similar in all the three series 210 

of mixes and the optimum percentage of nano-silica was found as 2%.  211 

3.3. Sorptivity 212 

Sorptivity tests were conducted for the mortar mixes without nano-silica and with 2% nano-213 

silica. Nano-silica dosage of 2% was selected for the sorptivity and acid resistance tests since 214 

this percentage was found to maximise the compressive strength. The sorptivity coefficients 215 

of the fly ash only, OPC and GGBFS blended fly ash geopolymer mortars are given in Fig.5. 216 

As shown by the results, sorptivity coefficient of the mixes without nano-silica was in the 217 

range of 3.575 ×10-3 mm/s1/2 to 3.980×10-3 mm/s1/2 and that of the mixes with 2% nano-silica 218 

was in the range of 1.247×10-3 mm/s1/2 to 2.157×10-3 mm/s1/2. Thus, it is apparent from the 219 

results that the sorptivity coefficient decreased with 2% nano-silica in the mortar mixes of all 220 

the three series. For example, sorptivity coefficient decreased from 3.575×10-3 mm/s1/2 to 221 

1.247 ×10-3 mm/s1/2 by 2% nano-silica in the fly ash only geopolymer mortar. Sorptivity 222 

reduced by nano-silica in the GGBFS and OPC blended fly ash geopolymer mortars in a 223 

similar way. The decrease in sorptivity of the specimens indicates a reduction in the porosity 224 

by inclusion of nano-silica. The effect of nano-silica on the improvement of porosity is 225 

attributed to two reasons. Firstly, the particle packing of nano-silica in the wide distribution 226 

of binder particle sizes resulted in a denser matrix. Secondly, the reaction of nano-silica in 227 

geopolymerization process produced further amount of aluminosilicate gel along with the 228 

reaction products from the main source materials. It is likely that additional reaction product 229 

precipitated in the available pore structures. As described by Law et al. [34], an increase in 230 

SiO2 increases the density of the matrix. Therefore, the combined filling effect of nano-silica 231 

by the improved particle packing and the additional reaction product produced a denser 232 
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binding matrix that reduced the porosity and increased compressive strength as seen in Figs. 233 

2 to 4.  234 

3.4 Resistance to attack by sulfuric acid  235 

 236 

3.4.1. Change in mass 237 

The geopolymer mortar specimens were immersed in 3% sulfuric acid solution for 90 days 238 

and the changes in mass were determined on a weekly basis. The change in mass of a 239 

specimen was calculated by comparing mass measured after exposure to acid solution to the 240 

initial mass before the exposure. The specimens were visually inspected for any deterioration 241 

by the exposure to acid solution. Photographs of the specimens without and with 2% nano-242 

silica after 90 days immersion in the acid solution are shown in Fig.6. Photographs of the 243 

specimens before acid exposure are also shown in this figure for comparison. Generally, 244 

some minor erosion could be observed in all the specimens by the acid attack. Also, there 245 

were relatively more damages, especially at the corners of specimens without nano-silica and 246 

those containing OPC and GGBFS. 247 

Changes in mass for specimens of all the geopolymer mixes are presented in Fig 7. The 248 

results show that mass of the geopolymer specimens gradually decreased with exposure time. 249 

It can be seen that the mass loss after 90 days of acid exposure for fly ash only geopolymer 250 

mix without nano-silica was 5.41% as compared to 1.9% for the mix with 2% nano-silica. 251 

After the same exposure period, the mass loss of the OPC blended fly ash geopolymer mixes 252 

without nano-silica (FA-PC-NS0) and with 2% nano-silica (FA-PC-NS2) were 6.0% and 253 

2.3% respectively. Similarly, the 90-day mass losses for the GGBFS blended fly ash 254 

geopolymer mortars were 5.8 % without nano-silica (FA-S-NS0) and 1.5% with 2% nano-255 

silica (FA-S-NS2). Overall, the mass loss varied from 1.9% to 6.00% for all the geopolymer 256 

mixes. These mass losses of the nano-silica incorporated fly ash geopolymer mortars are very 257 

small as compared to the mass losses usually shown by OPC based cementations materials 258 

[35, 36]. Previous studies [36, 37] on OPC based binders showed that sulfuric acid has a 259 

highly deleterious effect on mass loss. This is because sulfuric acid causes decomposition of 260 

the Ca(OH)2 and forms gypsum that deteriorates the matrix by scaling and softening. Though 261 

the penetration of sulfuric acid can be reduced, the formation of gypsum in the regions close 262 

to the surface causes progressive disintegration of the matrix [37]. Therefore, the mass losses 263 

observed in the geopolymer specimens without nano-silica were much smaller than that can 264 

be expected in OPC based binders under the same exposure condition. However, addition of 265 
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2% nano-silica has further reduced the mass loss of geopolymer specimens. The effect of 266 

nano-silica on the changes in strength and microstructures by the exposure to sulfuric acid are 267 

studied in the following sections. 268 

3.4.2. Change in compressive strength 269 

The 28-day compressive strength of each geopolymer mix before exposure to acid solution is 270 

used as a benchmark to calculate the strength loss after each exposure period of 28, 56 and 90 271 

days. The compressive strengths of the mortar specimens from 6 mixes are presented in Fig. 272 

8. It can be seen from the figure that loss of strength occurred in all the geopolymer mixes 273 

and it increased with the increase of exposure period. It is noteworthy from Fig.8 that fly ash 274 

only, OPC and GGBFS blended fly ash geopolymer specimens without nano-silica exhibited 275 

higher strength loss as compared to those with nano-silica. The strength loss in the specimens 276 

without nano-silica ranged from 30% to 41% while that in the specimens with nano-silica 277 

ranged from 9% to 11%. For example, the strength value of mix FA-NS2 (2% nano-silica) 278 

after 90 days of sulfuric acid exposure was 54.0 MPa, as compared to 60.0 MPa prior to acid 279 

exposure. Whereas, the compressive strength of mix FA-NS0 (0% nano-silica) reduced from 280 

29.0 MPa to 19.1 MPa after 90 days of immersion in sulfuric acid. Bakharev [20] showed 281 

that depolymerisation of the aluminosilicate polymers in acidic media resulted in a significant 282 

strength loss of alkali activated binders. Chindaprasirt [38] noted that the oxy-aluminium 283 

bridge (–Al–Si–O) of geopolymeric gel probably gets destroyed in acidic environment and 284 

leads to strength reduction of alkali activated binders. Reduction of permeability helps reduce 285 

the ingress of acid in to geopolymer matrix and thus improves the resistance to acid attack 286 

[35]. It is apparent from Fig.8 that incorporation of 2% nano-silica in fly ash based 287 

geopolymer can effectively reduce the rate of acid attack expressed in terms of strength loss. 288 

Belkowitz et al. [31] noted that the pore refinement process by nano-silica usually prevents 289 

the passage of aggressive elements into the deeper layers of hydrated gel structure. It means 290 

that the optimum amount of nano-silica present in the geopolymer mixes produces a denser 291 

structure that reduces the degradation by an acid. The results of the present study are also 292 

supported by the findings of Fattuhi and Hughes [36], and Israel et al. [37] that the lower 293 

porosity improved the acid resistance of hydrated gel. 294 

Also, as expected, the strength loss in OPC blended fly ash based geopolymer mortar 295 

without nano-silica is greater than that of with 2% nano-silica incorporated samples (FA-PC-296 

NS2). The strength loss reduced from 11.5 MPa (FA-PC-NS0) to 6.5 MPa (FA-PC-NS2) by 297 

2% nano-silica in the OPC blended geopolymer mix (Fig.8). This highlights the poor 298 
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resistance of mix FA-PC-NS0 (without nano-silica) against a highly corroding and aggressive 299 

environment as compared to mix FA-PC-NS2 (with nano-silica). Incorporation of 2% nano-300 

silica leads to a denser and less permeable pore structure prolonging the negative effects of 301 

acid attack. This observations correlates well with the findings of Hartman and Fogler [39] 302 

which showed that the increased amount of soluble silica produces a denser layer and helps to 303 

reduce the extent of damage in the aluminosilicate structure with the removal of each of the 304 

aluminium atoms under acid attack. 305 

Similarly, In the GGBFS blended mix, the strength loss after 90 days of immersion 306 

reduced from 7.5 MPa (FA-S-NS0) to 4.0 MPa (FA-S-NS2) by 2% nano-silica. The results of 307 

this study show that inclusion of 2% nano-silica in all geopolymer series made a significant 308 

improvement in the strength loss as compared to that of the mix without nano-silica.  309 

3.4.3. Change in microstructure 310 

The SEM images of the fly ash only, OPC and GGBS blended fly ash based geopolymer 311 

mortars with and without nano-silica after 90 days exposure to sulfuric acid are presented in 312 

Figs. 9(a) to 9(f). Images of the specimens before acid exposure are also shown in the figure. 313 

Significant differences in microstructure were observed in all the specimens after 90 days of 314 

sulfuric acid exposure. It can be seen that the relatively compact microstructure of 315 

geopolymers before the acid exposure became more porous after the exposure to sulphuric 316 

acid. However, geopolymer mortar with nano-silica showed less deterioration than the fly ash 317 

geopolymer mortar without nano-silica. It is noted from Fig 9(a) that fly ash only geopolymer 318 

mortar without nano-silica (FA-NS0) immersed in sulfuric acid for 90 days exhibited porous 319 

and disintegrated gel clusters (point 2) around the unreacted particles (point 1). Similar 320 

observations can also be noted in the microstructures of the OPC and GGBFS blended fly ash 321 

geopolymer mortars. More compact and less porous structures can be observed in the mixes 322 

with nano-silica when comparisons are made between the microstructure of Fig. 9(d) to that 323 

in Fig. 9(c) and the microstructure of Fig. 9(e) to that in Fig. 9(f). Bakharev [20] pointed out 324 

that disintegration of microstructure along with significant loss of strength in geopolymer 325 

materials is due to low inter crystalline bond strength. In a similar study, Ismail et al. [22] 326 

also noted that the presence of H+ could destroy the alumino-silicate network of geopolymer 327 

materials and eventually lead to disintegration of the polymer gel. The findings of Lloyd et al. 328 

[35] concluded that H3O+ and HSO4
- ions from the sulfuric acid could diffuse into the gel 329 

phase, where H3O+ attacks the gel and severely damage the gel network. However, Fig 9(b) 330 

indicates that inclusion of 2% nano-silica in the fly ash only geopolymer reduced acid 331 
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aggravation due to its additional reaction products. The mechanisms involved in the process 332 

are related to mechanical percolation along with pore filling effects of nano-silica. It appears 333 

that the aluminosilicate gel of the mix with 2% nano-silica (FA-NS2, Fig. 9(b)) was more 334 

compact than that of the control mix (FA-NS0, Fig. 9(a)). Similar differences are also 335 

observed in the mixes of the other two series. This observation on the differences in 336 

microstructures is consistent with the less strength loss of the mixes with 2% nano-silica, as 337 

shown in Fig. 8. It suggests that the introduction of 2% nano-silica reduced the porosity and 338 

increased the acid resistance in terms of strength loss and disintegration of the microstructure.  339 

The dense microstructure formed by nano-silica provides resistance to the penetration of 340 

acidic ions reducing the extent of disintegration in the microstructure and eventual less 341 

strength loss.  342 

The energy dispersive X-ray patterns for fly ash only, OPC and GGBFS blended fly 343 

ash based geopolymers without nano-silica are shown in Figs. 10(a) to 10(c). Notable traces 344 

of silicon, sodium, aluminium and calcium elements were observed in the EDX patterns of 345 

the OPC and GGBFS blended fly ash geopolymers. Presence of the first three elements is 346 

from the sodium aluminosilicate gel, whereas the calcium is from gypsum formed in OPC 347 

and GGFBS blended geopolymers. Strong peaks of calcium were observed in the OPC and 348 

GGBFS blended geopolymers without nano-silica (Figs. 10(b) and 10(c)). These phenomena 349 

agreed well with the studies reported by other researchers [35, 41]  that the exchanged 350 

calcium ions diffusing toward the acid solution react with the counter-diffusing sulfate anions 351 

resulting in the formation and deposition of gypsum crystals inside the corroding layer. The 352 

XRD patterns (Figs. 11(b) and 11(c)) also suggest a possible alteration and restructuring of 353 

the polymer network in the OPC and GGBFS blended geopolymers without nano-silica. 354 

The XRD spectra of the samples after 90 days exposure to acid solution are shown in 355 

Figs. 11(a) to 11(c). It is confirmed from the XRD spectrum that the formation of gypsum 356 

takes place in both OPC and GGBFS blended fly ash geopolymers without nano-silica. The 357 

traces of gypsum are likely due to the reaction between available depleted calcium from the 358 

OPC and GGBFS with sulphur ions from the sulfuric acid. However, it is noted from Figs. 359 

11(b) and 11(c) that the traces of gypsum entirely disappeared for both OPC and GGBFS 360 

blended geopolymers with 2% nano-silica. It seems Ca 2+ that was released from the 361 

dissolution of OPC and GGBFS interacted with silicate ions and formed calcium silicate 362 

oligomers. However, no peaks of gypsum traces were observed for fly ash only geopolymers 363 

with and without nano-silica. Bakharev [20] and   Lloyd et al. [32] noted that the acid 364 

resistance kinetics of polymer modified mortars depends on its material composition. In the 365 



12 
 

previous study [15] formation of aluminosilicate and CSH gel as final hydrated products were 366 

observed in GGBFS and OPC blended fly ash geopolymers. The presence of calcium silicate 367 

hydrate (CSH) in mixes FA-PC-NS0 and FA-S-NS0 might have reacted with H2SO4 and 368 

disintegrated in the form of calcium sulfate or as an amorphous silica gel at the end [39, 40]. 369 

Puertas et al. [41] and Wallah and Rangan [42] also concluded that the higher calcium 370 

content in the alkali activated binder generates greater amounts of gypsum during acidic 371 

exposure and might precipitate into and cover the pores of the mortar. 372 

4.  Conclusions 373 

The effects of nano-silica on the flowability, compressive strength and acid resistance of 374 

ambient-cured geopolymer mortars were investigated. The geopolymer binders were based 375 

on fly ash alone or that blended with small proportions of GGBFS (15%) or OPC (10%).The 376 

following conclusions are drawn from the results obtained in this study: 377 

• Inclusion of nano-silica improved the early-age strength of geopolymer mortars based 378 

on fly ash alone or that blended with OPC or GGBFS. Flow of the freshly mixed 379 

mortars gradually decreased with the increase of nano-silica because of its high 380 

specific surface. The compressive strength of the ambient-cured geopolymer mortars 381 

varied from 17 to 19 MPa at 7 days and from 29 to 60 MPa at 28 days. Strength 382 

development in ambient condition continued to the age of 90 days, however at slower 383 

rates after 56 days. The optimum dosage of nano-silica for maximum compressive 384 

strength was found to be 2% of the binder. 385 

• Sorptivity of the specimens with 2% nano-silica was less than that of the control 386 

specimen. All the specimens remained intact after 90 days of immersion in 3% 387 

sulfuric acid solutions with some erosion on the surface of the specimens containing 388 

OPC. The average mass loss of the specimens of three series decreased from 2.6% to 389 

1.8% after 90 days of immersion. The strength loss of the specimens without nano-390 

silica ranged from 30% to 41% while that of the specimens with 2% nano-silica 391 

ranged from 9% to 11% after 90 days of immersion. Therefore, the acid resistance of 392 

geopolymer mortars significantly improved with the inclusion of 2% nano-silica. 393 

• After 90 days of immersion in acid solutions, the microstructures of the specimens 394 

with nano-silica were found to be more compact as compared to the specimens 395 

without nano-silica. The combined effects of the nano-silica as a filler and enhanced 396 

reactivity of the aluminosilicate source materials refined the pore structure to develop 397 

a more compact microstructure. This reduced the porosity and sorptivity of the binder 398 
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matrix. As a result there was less damage in the matrix after immersion in acid 399 

solution and hence reduced loss of mass and strength in the specimen’s containing 400 

nano-silica.  401 
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 508 
 509 
 510 
 511 
 512 
 513 
 514 
 515 
 516 
Table 1. Chemical compositions of fly ash, OPC and GGBFS (% mass) 517 
 518 

     a Loss on ignition 519 
 520 

Table 2. Mix proportions of geopolymer mortars (Kg/m3) 521 

 aSodium hydroxide, bSodium silicate 522 

 523 

Material SiO2 Al2O3 Fe2O3 CaO MgO MnO K2O Na2O P2O5 TiO2 SO3 LOIa 

Fly ash  46.69 29.14 13.81 3.29 1.4 0.16 0.72 0.86 1.63 1.34 0.43 - 

OPC 21.1 4.7 2.7 63.6 2.6 - - - - - 2.5 2 

GGBFS  29.96 12.25 0.52 45.45 - - 0.38 0.31 0.04 0.46 3.62 2.39 

Nano-silica  99.5 0.001 0.001 - - - - - - - - - 

Mix Fly ash only OPC blended Fly ash GGBFS blended Fly ash 

ID FA-
NS0 

FA-
NS1 

FA-
NS2 

FA-
NS3 

FA-PC-
NS0 

FA-PC-
NS1 

FA-PC-
NS2 

FA-PC-
NS3 

FA-S-
NS0 

FA-S-
NS1 

FA-S-
NS2 

FA-S-
NS3 

Sand 1173 1173 1173 1173 1173 1173 1173 1173 1173 1173 1173 1173 
Fly 
ash 734 726 718 711 660 652.67 645.33 638.00 623.33 616.00 608.67 601.33 

GGBFS - - - - - - - - 110.00 110.00 110.00 110.00 

OPC - - - - 73.33 73.33 73.33 73.33 - - - - 

SHa 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 97.78 

SSb 195.56 195.56 195.56 195.56 195.56 195.56 195.56 195.56 195.56 195.56 195.56 195.56 
Nano 
silica - 7.33 14.67 22.00 - 7.33 14.67 22.00 - 7.33 14.67 22.00 
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 524 

 525 

 526 

Fig. 1. Change in flow of geopolymer mortars with nano-silica. 527 

 528 
Fig. 2. Strength development of fly ash based geopolymer mortars with nano-silica 529 
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 531 

Fig. 3. Strength development of OPC blended fly ash based geopolymer mortar with nano-532 
silica 533 

 534 

Fig. 4. Strength development of GGBFS blended fly ash based geopolymer mortar with 535 
nano-silica 536 
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 539 

Fig. 5. Sorptivity coefficient of geopolymer mortars with nano-silica. 540 
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      551 
 552 

          553 
 554 

Fig. 6. Visual appearance of geopolymer specimens before acid submerged (A-0: FA-NS0, 555 
B-0: FA-PC-NS0, C-0: FA-S-NS0)  and after 90 days acid exposure (A) A-1: FA-NS0, A-2: 556 
FA-NS2 (B) B-1: FA-PC-NS0, B-2: FA-PC-NS2, (C) C-1: FA-S-NS0, C-2: FA-SNS2. 557 

 558 

 559 
Fig. 7. Change in mass of mortar specimens after immersion in 3% sulfuric acid solution. 560 
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 561 
Fig. 8. Change in compressive strength of geopolymer mortars in sulfuric acid exposure. 562 
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          565 

          566 

Fig. 9. SEM images of geopolymer mortars before acid submerged (A-0: FA-NS2, B-0: FA-567 
PC-NS2, C-0: FA-S-NS2) and after 90 days acid exposure (a) FA-NS0, (b) FA-NS2, (c) FA-568 

PC-NS0, (d) FA-PC-NS2, (e) FA-S-NS0 and (f) FA-S-NS2 569 
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   574 

Fig.10. EDX spectra of geopolymers mortar without nano-silica under acid exposure (a) Fly-575 
ash only, (b) OPC blended fly-ash and (c) GGBFS blended fly-ash 576 

577 

 578 

Fig. 11. X-ray diffraction patterns of geopolymers mortar under sulfuric acid exposure: (A) 579 
fly ash only with 0% and 2% nano-silica. (B) OPC blended fly ash with 0% and 2% nano-580 

silica (C) GGBFS blended fly ash with 0% and 2% nano-silica. 581 
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