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Abstract — On-road sensor systems installed on freeways are used 

to capture traffic flow data for short-term traffic flow predictors for 

traffic management, in order to reduce traffic congestion and 

improve vehicular mobility. This paper intends to tackle the 

impractical time-invariant assumptions which underlie the methods 

currently used to develop short-term traffic flow predictors: i) the 

characteristics of current data captured by on-road sensors are 

assumed to be time-invariant with respect to those of the historical 

data, which is used to developed short-term traffic flow predictors; 

and ii) the configuration of the on-road sensor systems is assumed to 

be time-invariant. In fact, both assumptions are impractical in the 

real world, as the current traffic flow characteristics can be very 

different from the historical ones, and also the on-road sensor 

systems are time-varying in nature due to damaged sensors or 

component wear. Therefore, misleading forecasting results are likely 

to be produced when short-term traffic flow predictors are designed 

using these two time-invariant assumptions. To tackle these 

time-invariant assumptions, an intelligent particle swarm 

optimization algorithm, namely IPSO, is proposed to develop 

short-term traffic flow predictors by integrating the mechanisms of 

particle swarm optimization, neural network and fuzzy inference 

system, in order to adapt to the time-varying traffic flow 

characteristics and the time-varying configurations of the on-road 

sensor systems. The proposed IPSO was applied to forecast traffic 

flow conditions on a section of freeway in Western Australia, whose 

traffic flow information can be captured on-line by the on-road 

sensor system. These results clearly demonstrate the effectiveness of 

using the proposed IPSO for real-time traffic flow forecasting based 

on traffic flow data captured by on-road sensor systems. 
Index Terms —  Neural networks, particle swarm optimization, fuzzy 
inference system, traffic flow forecasting, sensor systems, sensor data, 
time-varying systems, traffic contingency 

I. INTRODUCTION 

n-road sensor systems installed on freeways provide traffic 
flow data for the development and implementation of 

short-term traffic flow predictors, which aim to forecast 
likely traffic flow conditions in the short-term, typically within ten 
minutes ahead [42]. This short-term forecasting information can 

be used to assist proactive traffic control centers to anticipate 
traffic congestion and improve the mobility of transportation [48]. 

To develop short-term traffic flow predictors, historical traffic 
flow data is first collected using the on-road sensor systems 
installed on a section of the freeway under investigation. Then, the 
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short-term traffic flow predictors can be developed based on 
conventional statistical methods such as filtering techniques [37, 

41], autoregressive integrated moving average (ARIMA) methods 
[50], statistical regression [43] and k-nearest-neighbor approaches 

[10], as found in the past literature. With the developed short-term 
traffic flow predictors, future traffic flow conditions can be 
forecast based on the current traffic flow conditions, which are 

captured on-line using the on-road sensor systems.  
 Even if traffic flow predictors developed by such statistical 
methods can obtain reasonable prediction accuracy for future 

traffic flow conditions, the predictors developed by these methods 
may not be able to address the strongly non-linear characteristics 

of short-term traffic flow. In order to address this issue, another 
recently used modeling or prediction approach, namely support 
vector regression [17-20], have been applied to develop short-term 

traffic flow predictors, which can obtain forecasting results with 
better accuracies than ARIMA. Also, a lot of research has been 

conducted by applying the artificial intelligent approach, namely 
neural networks (NNs) [9, 32-34] to develop short-term traffic 
flow predictors [11, 12, 25], which can obtain forecasting results 

with better accuracies than can statistical methods. Recent 
research involving NNs has been focusing mainly on enhancing 
the generalization capability of NNs by developing hybrid NNs, 

which incorporate other artificial intelligence techniques or 
statistical forecasting methods, such as fuzzy systems [15, 40, 44, 

51], Kalman filter [37], fuzzy clustering method [45], and the 
autoregression moving average method [46] etc. These hybrid 
NNs can achieve more accurate predictions than those achieved by 

using NNs.  
However, the development of all these approaches is subject to 

two common but impractical assumptions: i) that the 
characteristics of collected historical traffic flow data are 
time-invariant with respect to the current traffic flow 

characteristics. In fact, the time-varying aspects of traffic flow are 
unavoidable. Therefore, they are likely to produce misleading 

traffic flow forecasting on current road conditions, if the 
characteristics of the historical traffic flow data are very different 
from those of the newly acquired traffic flow data captured on-line 

by the on-road sensor systems; and ii) that the configuration of the 
on-road sensor system is time-invariant; the configurations of the 
traffic flow predictors are pre-defined based on this assumption. In 

fact, this is not always true and it is unwise to assume that all 
on-road sensors can work properly all of the time, as the 

performance of the on-road sensors may deteriorate over time, due 
to component wear. Also, some on-road sensors are likely to be 
damaged in very poor weather conditions such as rainstorm or 

flood. Therefore, misleading forecasting results are likely to be 
produced by the traffic flow predictors, which are designed under 

these two time-invariant assumptions. 
 To tackle these two time-invariant assumptions, a hybrid NN 
approach integrated with the particle swarm optimization (PSO) 

approach, namely intelligent PSO (IPSO), is proposed. The IPSO 
uses the particles in the swarm to represent the neural networks 
which are used to forecast the short-term traffic flow, without 
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making these two time-invariant assumptions. The IPSO has the 
following three main features: 

1) Flexible neural network structure: In the IPSO, each particle 
is represented by a three-layer neural network, where switches are 
configured between links of neural nodes, in order to determine 

both the optimal NN structures and the parameters which vary with 
respect to time [26]. Each particle consists of two parts:  the 

integer string and the hierarchical string [47]. The integer string is 
used to represent the NN parameters. The hierarchical string is 
used to represent the NN structure. It is represented by the 

open/close actions of a number of switches which link the neural 
nodes. When the switch is opened, the link between the 

corresponding neural nodes exists. However, the link does not 
exist when the switch is closed. Based on this particle 
representation, both optimal NN structures and parameters can be 

adapted to newly-captured traffic flow data or time-varying 
configurations of on-road sensor systems. Also, the IPSO can 
automatically determine the optimal structures of NNs without 

involving trial and error methods. This is intended to overcome the 
limitations of the existing NN approaches [1, 11, 12, 25, 27] for 

traffic flow forecasting in which the NN structure has to be fixed 
and cannot be adapted with time. 

2) Active particle movement: In IPSO, the particle movement of 

classical particle swarm optimization [23], is used, inspired by the 
social behaviours of animals. The particle movement is used to 

adapt to the optimal NN parameters and structures for short-term 
traffic flow forecasting, which is time-varying, since the particle 
movement can effectively tune the real-time adaptive controllers 

for many time-varying systems, including the Maglev 
transportation system [53] and generator system for power 
applications [28]. This mechanism can also be applied for neural 

network design effectively [29-31]. Also, Chan et al. [8] 
demonstrated that the particle movement can effectively adapt 

optimal structures and parameters of time-varying systems, where 
the parameters and the structures of the systems vary with time. 
Based on the particle movement, the IPSO intends to 

automatically and effectively tune both the parameters and the 
structures of the NNs, in order to obtain an optimal short-term 

traffic flow forecasting, which is time-varying. 

3) Further enhancement of particle movement: In the classical 
PSO [23], the diversity of the solutions is likely to be lost when a 

solution with certain good quality is obtained. Hence, the classical 
PSO is likely to be trapped into this solution and no further 
progress in terms of better solutions can be made. To further assist 

the proposed IPSO to search for better solutions, activating 
components can be injected into the particles in order to increase 

the diversity of the particles [52]. In the IPSO, a mechanism based 
on a fuzzy intelligence system is designed, in order to maintain the 
diversity of particles by artificially injecting them with activating 

components. It monitors the traffic flow accuracies obtained by the 
IPSO and the changing rates of the traffic flow accuracies. When 

the traffic flow accuracy is low or the traffic flow accuracy 
decreases sharply, more activating components are injected into 
the particles. This is intended to prevent particles pre-maturely 

converging to solutions with poor traffic flow accuracies, and 
helps the IPSO to move the poor particles from a region with poor 

traffic flow accuracies to a better region. 
 Comparisons were conducted based on the IPSO and the 

other existing methods to develop NNs for short-term traffic flow 

forecasting on the Mitchell freeway in Western Australia, where 

an on-road sensor system with many on-road sensors has been 

installed to capture traffic flow data at different locations on the 

freeway. The results show that better accuracies in short-term 

traffic flow forecasting can be obtained by using the IPSO 

compared with those obtained by other tested methods. The rest of 

the paper is organized as follows. Section II shows the 

configuration of the NN for short-term traffic flow forecasting. 

Section III discusses the mechanisms of the IPSO. Section IV 

presents and discusses the results obtained by IPSO and the other 

tested algorithms for forecasting short-term traffic flow conditions 

on the Mitchell freeway in Western Australia. Section V concludes 

the paper. 

II. NNS FOR SHORT-TERM TRAFFIC FLOW FORECASTING 

To forecast future traffic flow conditions at location A illustrated 
in Figure 1, a short-term traffic flow predictor was developed 

based on traffic flow data collected by the n on-road sensors (D1, 

D2, …and  Dn). Di captures the traffic flow condition, ( )i
y t , at 

time t with a sampling time of 
s

T , where the traffic flow conditions 

can be reflected by average speed of vehicles. In general, the 
traffic flow on the freeway is smooth, if the average speed of the 

vehicles approximates the speed limit of the freeway and the 
density of vehicles is low. 

 
Fig. 1 A NN for short-term traffic flow forecasting on the freeway 

 

In this paper, a three-layer neural network is used to forecast 

future traffic flow conditions at location A, ( )ˆ
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where ( )W t  is the neural network parameters, denoted by 

equation (2) as follows: 
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( )k sy t i T− ⋅  is the traffic flow condition captured by Dk at time 

(t-i·Ts) with i=1, 2, …, p; ( )0 tα  denotes the weight of the bias of 

the output node at time t; ( )j
tβ  denotes the weight on the link 

from the j-th hidden node to the output node at time t; ( ),0j
tγ  

denotes the weight of the bias of the j-th hidden node at time t; 
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( ), ,j i k tγ  denotes the weight on the link from the input node for 

( )k s
y t i T− ⋅ to the j-th hidden node; ( ).Ψ  is the transfer function 

of the hidden node. Here, the sigmoid function is used, as it can 

achieve satisfactory results for traffic flow forecasting [1]; ( )0s t  

denotes the parameter for the link switch from the bias node to the 

output node; ( )j
s t  denotes the one from the j-th hidden node to 

the output node; ( ),0j
s t  denotes the one from the bias node to the 

j-th hidden node; and ( ), ,j i ks t  denotes the one from the input node, 

( )k s
y t iT− , to the j-th hidden node; ( )δ α  is a link switch between 

two nodes, which is defined by an unit step function as: 

 ( )
0 if 0

,  where R
1 if 0 

α
δ α α

α

<
= ∈

≥
.          (3) 

The use of these link switches overcomes the limitations of the 
commonly used fixed-connected neural networks, where all nodes 
are restricted by a fixed configuration, and the structure of the 

neural network cannot be adapted with respect to newly-captured 
data [26]. 

 As illustrated in Figure 2, the neural network parameters, ( )W t , 

are determined by two stages namely, off-line training and on-line 
adaption. Off-line training is defined for the time t before Toff-line 

(i.e. t<Toff-line) and on-line adaption is defined for the time t after 
Toff-line (i.e. t>Toff-line), where Toff-line is the switching time between 

the off-line training and the on-line adaption. For off-line training, 

( )W t is pre-determined based on the past collected traffic flow 

data. For on-line adaption, ( )W t  is adapted with the traffic flow 

data which is captured on-line from the freeway. Detailed 
description for off-line training, on-line adaption and the error 

function for both states are given as following. 
 

 
Fig. 2 Illustration of pre-determining and adapting the neural network 

parameters 

A. Off-line training 

For off-line training (i.e. t<Toff-line), ( )W t  is initialized by a set of 

collected Nhist pieces of historical traffic flow data, ( )hist
tΠ , where 

( ) ( )( ){  with hist t Y t iΠ = ( ) }1,2,...,   and hist off linei N t i T −= < , and 

( )( )Y t i  is the i-th piece of historical traffic flow data collected at 

the time ( )t i , which is given by: 
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− + ⋅ =  .  

 For t<Toff-line , the initial neural network parameters, ( )W t , are 

initialized by minimizing the following error function (4), which is 
an average of the absolute errors between real observations and 

estimates: 
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where ( )( )ny t i  is the traffic flow condition collected by the 

on-road sensor 
n

D  at the past time ( )it ; ( )( )ˆ
ny t i  is estimated 

based on equation (1) with respect to ( )W t ; and 
ny∂  is a very 

small value in order to avoid the denominator to be zero when 

( )( )n
y t i is equal to zero, but 

n
y∂  is small enough that it does not 

affect the calculation for the mean absolute error. 

B. On-line adaption 

For on-line adaption (i.e. t>Toff-line), ( )W t  varies by adapting m 

pieces of new traffic flow data, ( )adapt
tΠ , which are newly 

captured, where ( ) ( ){ } with 0,1,...,  and adapt s off linet Y t i T i m t T −Π = − ⋅ = > , 

and ( ) ( ) ( )( )1,  ,s n s sY t i T y t i T y t j m i T− ⋅ = − ⋅ − + + ⋅  

( )( ) ( )( )2 1, ..., with 0,  1,  ...,  .s n sy t j m i T y t j m i T j p−
− + + ⋅ − + + ⋅ = 

 For t>Toff-line , ( )W t  is determined by minimizing the following 

error functions (5): 
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where ( )n s
y t i T− ⋅  is the traffic flow condition captured by the 

on-road sensor 
n

D  at time ( )s
t i T− ⋅ ; ( )ˆ

n s
y t i T− ⋅  is estimated 

based on equation (1) with respect to ( )W t ; and 
n

y∂  is a very 

small value in order to avoid the denominator to be zero when 

( )ˆ
n s

y t i T− ⋅ is equal to zero, but 
n

y∂  is small enough that it does not 

affect the calculation for the mean absolute error. 

C. Error function for both off-line training and on-line adaption 

For all t, a time-varying error function, ( )J t , is formulated by 

combining the error functions (4) and (5). ( )J t  is denoted by: 

( )
( ) ( )( )
( ) ( )( )

,  for 
min min

,  for 

MAE

hist hist off line

MAE

adapt adapt off line

e W t t t T
J t

e W t t t T

−

−

 Π <
= 

Π >

   (6) 

 To solve the optimization problem (6), classical tools for 
nonlinear programming such as nonlinear branch-and-bound, 
sequential linearization, and Lagrangian relaxation methods can 

be used. However, their common shortcoming is that they cannot 
cope with significantly nonlinear functions, and time-varying 
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functions which the error function, ( )J t , may involve. The 

nonlinear characteristics of traffic flow are caused by the drivers’ 

behaviours or reaction times regarding current traffic flow [4]. For 

example, different drivers have different reaction times when 
having to apply their brakes to stop the vehicle when they 

encounter an obstacle in front. Also, they have different 
behaviours, when using their accelerators to control their car 
speeds, in order to match the current traffic flow conditions. Apart 

from this nonlinear characteristic, the time-varying characteristic 
also exists in traffic flow data.  It is caused by uncontrollable 

sequences of events for drivers using the roads, and contingent 
incidents on the roads. Also, the configurations of the on-road 
sensor systems are time-varying, due to component wear and 

unexpected damages of on-road sensors. 
Therefore, we propose to use the particle swarm optimization, 

to solve these optimization problems, as this method can obtain 
satisfactory solutions to such problems, which are nonlinear, and 
time-varying [38]. In the following section, an algorithm based on 

particle swarm optimization, namely intelligent particle swarm 
optimization IPSO, is developed, in order to determine the neural 

network parameters, ( )W t . 

III. INTELLIGENT PARTICLE SWARM OPTIMIZATION 

In the IPSO, a random initial swarm consisting of 
s

N  particles is 

first created, where the position of the l1-th particle at time t, 

( )
1l

P t , is used to represent the neural network parameters, ( )W t , 

formulated in equation (2). ( )
1l

P t  is denoted as follows: 

 ( ) ( ) ( ) ( )( ) ( )
1 1 1 1,1 ,2 ,, ,...,

pl l l l n
P t p t p t p t W t= =      (7) 
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n elements, ( )
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p
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p h
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within the domain ( ) { } { }
1 2, min max... 1...1
l l

p t p p∈ = − . Then, each 

particle, ( )
1l

P t , is evaluated based on the error function (6), and 

the error obtained by ( )
1l

P t  is denoted by ( )
1l

J t . ( )bestJ t  

represents the smallest error obtained by the best particle in the 

swarm, which is is denoted by 

  ( )
[ ]

( )
3

3

best

1,..,
min

s

l
l N

J t J t
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= ,             (8) 

where ( )best
J t = ( )

3l
J t < ( )

4l
J t  for 3 4l l≠ . The best particle in 

swarm is denoted by ( )bestP t , which can obtain the smallest error, 

( )bestJ t , in the swarm. 

The position of the particle, ( )
1 2,l l

p t , is updated based on 

equation (9) at time t: 

 ( ) ( ) ( )
1 2 1 2 1 2, , ,l l l l s l l

p t p t T v t= − +           (9) 

where ( )
1 2,l l s

p t T−  is the position of the particle at time, 

( )s
t T− , and ( )

1 2,l l
v t  is the velocity of the particle at time t. 

When the classical PSO [14] is used, the velocity, ( )
1 2,l l

v t , of the 

l2-th element on the l1-th particle at time t is given by: 

( ) ( ) ( ) ( )( )
1 2 1 2 1 2 1 2, , 1 1 , ,l l l l s l l l l s

v t t v t T r pbest p t Tω φ= ⋅ − + ⋅ − −

 

( )( )
2 1 22 2 ,           

l l l s
r gbest p t Tφ+ ⋅ − − ,     (10) 

where 
1 1 1 1,1 ,2 ,, ,...,

pl l l l n
pbest pbest pbest pbest =

 
 is the best 

position of the l1-th particle moved so far, and 

[ ]
pn

gbestgbestgbestgbest ,...,,
21

=  is the position of the best 

particle among all the particles; 1r  and 2r return a uniform random 

number between the range of [0, 1]; 1φ and 2φ  are acceleration 

constants; and ( )ω t  is the intelligent inertia weight, which is a 

constant between the range of [0.1, 1.1] for all t [13].  

 Initial studies of PSO show that the value of ( )tω  is important 

to ensure convergent behavior [13]. When ( )tω >1, ( )
1 2,l lv t  

increases with respect to time that cause divergent behavior.  

When ( )tω <0, particles decelerate until their velocities reach 

zero. It has been shown by [5] that a particular set for ( )ω t , 1φ

 and 2φ , can ensure that PSO can be rapidly converged, if the 

following condition is satisfactory: 

( ) ( )1 20.5 1tω φ φ> ⋅ + −              (11) 

 As the error function (6) has a time-varying characteristic, the 

landscape and the optima of the error function varies with respect 
to time. Therefore, it is not effective to use the classical PSO to 

solve the time-varying error function (6), as the swarm parameters 
such as inertia weight in the classical PSO is pre-defined based on 
the past experience. Even thought the pre-defined parameters work 

very well on forecasting future traffic flow conditions which have 
similar characteristic to past traffic flow conditions used for 

training, they may not work effectively on forecasting future traffic 
flow conditions which have different characteristic to those past 
conditions. The pre-defined parameters, which are time-invariant, 

may not be appropriate to optimize the time-varying error function 
(6), which varies with respect to time. To enhance the performance 
of the classical PSO, the IPSO is proposed by adapting the swarm 

parameters to the time-varying error function. 

A. Mechanisms of the IPSO 

For IPSO, the velocity of the element at time t is given by: 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2 1 2, , ,1
l l l l s l l s

v t t t v t T t v t Tω β β= ⋅ − ⋅ − + ⋅ −%

( )( ) ( )( )
2 1 2 2 1 21 1 , 2 2 , +

l l l s l l l s
r pbest p t T r gbest p t Tφ φ⋅ − − + ⋅ − −

                      

  (12) 

where the two components, ( )tω  and random velocity 

component, ( )
1 2,l l s

v t T−% , are used in order to obtain better 

solutions for the time-varying error function (6). 

 ( )tω  is used to create a dynamical balance between the 

exploration and exploitation characteristics of the IPSO. ( )tω  

changes dynamically by monitoring the error obtained by the 
particles at time t, in order to dynamically adjust the search 

capability between the exploration and exploitation. A large ( )tω  

facilitates an exploration which induces the particles to leave their 
current regions and pushes the particles to search in the other 

regions. A small ( )tω  facilitates exploitation, which refines the 



> IEEE Transactions on Industrial Electronics < 5

best solution of the particles by exploiting a small vicinity around 
this best solution. 

 To solve the time-varying error function (6), a large ( )tω  is 

required, when the error obtained by the IPSO is high, or the error 
obtained by the IPSO increases. The current traffic flow conditions 

are very different to those of the previous. Thus, a large ( )tω  is 

necessary to push the particles to explore the searching regions 

which have not been explored, and are likely to produce better 
solutions with lower forecasting errors. The reason is that refining 
the particles in a searching area with large errors does not 

effectively obtain a significant improvement. However, when the 

error is small, or decreases, a small ( )tω is used. The current 

traffic flow conditions are not significantly different to those of the 

previous. Small ( )tω  intends to let the particles exploit a small 

vicinity by refining the positions of the particles, as the solutions 

located by the particles are good enough to produce a better. It 
refines solution with a smaller forecasting error. 
 To further help the particles to search for good solutions with 

small errors, a random velocity component, ( )
1 2,l l s

v t T−% , is 

injected into the l2-th element on the l1-th particle. ( )
1 2,l l s

v t T−%  is 

determined based on equation (13), 

 ( ) ( ), 3 max mini j s
v t T r p pλ− = ⋅ ⋅ −% ,        (13)  

which is randomly generated and bound with λ of the range of the 

particle element, and  [ ]103 ∈r
 
is an uniform random number. 

More random components are introduced into the particle element, 

when large λ  is used. It intends to adapt traffic conditions which 

have large time-varying dynamics. Small λ  intends to adapt those 

with small time-varying dynamics.  0.25λ = is used in this 

research. Thus, 0.25 of the range of the particle element is used. 

The resulting velocity, ( )
1 2,l l

v t , in equation (10) is determined 

based on the weighted sum of ( )
1 2,l l s

v t T− , and ( )
1 2,l l s

v t T−% , where 

the intelligence weight factor, namely ( )tβ , is introduced. ( )tβ  

controls the amount of random velocity component, which is 

injected into the regular velocity component, in order to help the 
particles to escape the poor solutions with large errors. A large 

( )tβ  is required, when the forecasting error obtained by the 

IPSO is large, or the forecasting error obtained by the IPSO 

increases. Using large ( )tβ , the population diversity of the 

particles increases, and it allows the particles to have a greater 

chance of  exploring searching areas which have better solutions. 

A small ( )tβ  is used, when the forecasting error obtained by the 

IPSO is small, or the forecasting error obtained by the IPSO 

decreases. It allows the particles to refine their positions, in order 
to obtain a better solution by exploring search areas which are 
good enough to perform fine-tuning. 

 However, determining the appropriate ( )tω

 

and ( )tβ  for 

IPSO is not an easy task, as the landscape of the error function (6) 
is related to the traffic flow characteristics which are highly 

nonlinear, complicated and time-varying. It is impractical and 
almost impossible to mathematically model the search process of 

the IPSO, in order to determine the appropriate ( )tω

 

and ( )tβ , 

which vary with respect to the time-varying traffic flow 

characteristics. As both ( )tω  and ( )tβ  can be adjusted based 

on the linguistic understanding for minimizing the errors of traffic 

flow forecasting, the fuzzy inference system is used. It has rich 
literature in adjusting process parameters for performing process 
optimization. This linguistic understanding helps in the design of a 

fuzzy inference system, in order to dynamically vary both ( )tω  

and ( )tβ . Determining both ( )tω  and ( )tβ  based on the 

fuzzy inference system is discussed in the following sub-section 

III.B, and the operations of the IPSO are summarized as follows: 
  Step 1:  t←0. 

Step 2: Initialize 
S

N  particles ( )1P t , ( )2P t , ... , ( )
sN

P t  based 

on (7). 

Step 3: Evaluate the error ( )
1l

J t  of each particle, ( )
1l

P t , with 1l = 1, 

2,, …, 
s

N  based on the time-varying error function (6). 

Step 4: Return the best particle, ( )bestP t , with the smallest error, 

( )bestJ t , formulated by equation (8) as the outcome of the 

IPSO at time t. 
Step 5: Increment t by a sampling time, Ts, i.e. t←t+Ts. 

Step 6: Determine intelligence inertia weight, ( )tω , and  intelligence 

weight factor, ( )tβ , based on the fuzzy inference system 

discussed in Section III.B. 

Step 7: Generate the random velocity component, ( )
1 2,l l s

v t T−% , 

based on equation (13). 

Step 8:  Update the velocity, ( )
1 2,l l

v t , of the l1-th element of the l2-th 

particle based on (12). 

Step 9: Update each particle element ( )
1 2,l l

p t  based on (9). 

Step 10: Go to Step 3 if termination condition is not reached. 
Otherwise terminate. 

B. Fuzzy inference system 

The fuzzy inference system consists of two inputs and two outputs. 

The two outputs are the intelligence inertia weight, ( )tω , and the 

intelligence component factor, ( )tβ , which are used to governed 

the velocity of the particle element formulated in equation (12). 
These two outputs are adapted with respect to the two inputs, i) the 

smallest error, ( )best
J t , and ii) the change of the smallest errors, 

( )bestJ t∂ , which represents the mean difference between the 

smallest errors obtained by the best particles at time t and time 

( )w s
t n T− ⋅ . ( )bestJ t∂  is denoted by: 

( ) ( ) ( )( )best best best

s
J t J t J t T∂ = − −          (14) 

 When the error obtained by the IPSO is high, or the error 

obtained by the IPSO increases, a larger ( )tω  is required, in 

order to give the particles more energy to escape poor solutions 

with greater errors. Therefore, ( )tω is set to large, if ( )bestJ t  is 

large and ( )bestJ t∂  is large. However, when the error is small, or 

the error decreases, a large ( )tω  is not needed. Smaller ( )tω  is 

required, in order to fine tune the particles to better solutions with 

smaller errors. Therefore, ( )tω is set to small, if ( )bestJ t  is small 

and ( )best
J t∂  is small. Based on this linguistic understanding 
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regarding ( )tω , the following two basic principles, P1 and P2, for 

determining ( )tω  are used:  

 

P1: If ( )bestJ t  is large or ( )bestJ t∂ is large,

 

( )tω  is large. 

 P2: If ( )bestJ t  is small or ( )bestJ t∂ is small, ( )tω  is small. 

When ( )bestJ t  is large or ( )bestJ t∂  is large, large β(t) is 

required, in order to inject more random velocity components into 
the particles. With large β(t), the IPSO intends to move the poor 
particles with large errors to good solutions with small errors. 

When ( )best
J t  is small or ( )best

J t∂  is small, a small ( )tβ , is 

needed in order to refine the particles of the IPSO to slightly better 
solutions. Based on this linguistic understanding regarding β(t), 

the following two basic principles, P3 and P4, for determining β(t) 
are used: 

P3: If ( )best
J t  is large or ( )best

J t∂ is large,

 

β(t) is large. 

 P4: If ( )best
J t  is small or ( )best

J t∂ is small, β(t) is small. 

Using the four basic principles, P1, P2, P3 and P4, nine fuzzy rules 
embedded in the fuzzy inference system are developed: 

 Rule i: If ( )
bestbest J

j
J t M=  AND ( )

bestbest J

k
J t M ∂∂ = ,  

 THEN  ( ) ( ) ( )p i
t tω σ= AND ( ) ( ) ( )p i

t tβ χ=  

where i=1, 2…, 9; 
best

1

JM , 
best

2

JM , and 
best

3

JM  represent the 

memberships of ‘Small’, ‘Medium’, and ‘Large’ with respect to  

( )bestJ t respectively;  
best

1

JM ∂ , 
best

2

JM ∂ , and 
best

3

JM ∂ represent the 

memberships of ‘Small’, ‘Medium’, and ‘Large’ with respect to 

( )bestJ t∂  respectively; and ( ) 1 / 3 ,1 / 3 3p i i i i = + + − ⋅         is 

an array regarding the position of the fuzzy rule table, of which 

x    is defined by  the largest integer not greater than x. 

As recommended by Eberhart and Y. Shi [13], the range of the 

inertia weight, ( )tω , of the PSO is within the range between 0.1 

and 1.1. Hence, 
( ) ( )p i

tσ  which intends to determine ( )tω , is 

divided into three levels, ‘Small’, ‘Medium’ and ‘Large’, where 
‘Small’ is within the range between 0.1 and 0.3; ‘Medium’ is 
within the range between 0.3 and 0.8; and ‘Large’ is within the 

range between 0.8 and 1.1. Also, 
( ) ( )p i

tχ  which intends to 

determine ( )tβ , is divided into three levels, ‘Small’, ‘Medium’ 

and ‘Large’, where ( )tβ  is within the range between 0 and 1. 

‘Small’ is within the range between 0 and 0.33. ‘Medium’ is within 
the range between 0.33 and 0.66. ‘Large’ is within the range 

between 0.66 and 1.0. Figures 3(a) and 3(b) illustrate the fuzzy 

rule tables for 
( ) ( )p i

tσ

 

and 
( ) ( )p i

tχ  respectively, which have 

been implemented in this research. 

 
 

 
  Fig. 3(a) Fuzzy rule table for 

( ) ( )p i
tσ        Fig. 3(b) Fuzzy rule table for

( )p i
χ  

 The three fuzzy membership functions of ( )bestJ t  are denoted 

by ( )( )best

1 best

J
J tµ , ( )( )best

2 best

J
J tµ  and ( )( )best

3 best

J
J tµ with 

respect to 
best

1

JM , 
best

2

JM  and 
best

3

JM  respectively, where 
best

1

JM
best

2

JM  and 
best

3

JM  represents the ‘Small’, ‘Medium’ and 

‘Large’ memberships for the errors respectively. The error 

dominates the ‘Small’ membership, 
best

1

JM , when it is around 5%. 

When the errors are around 20% and 35%, they dominates the 

‘Medium’ membership, 
best

2

JM , and the ‘Large’ membership, 
best

3

JM  respectively. 
best

1

JM , 
best

2

JM , and 
best

3

JM ∂  are represented 

by the Gaussian form as illustrated in Figure 4(a). 

Also, the three fuzzy membership functions of ( )bestJ t∂  are 

denoted by ( )( )best

1 best

J
J tµ

∂
∂ , ( )( )best

2 best

J
J tµ

∂
∂  and 

( )( )best

3 best

J
J tµ

∂
∂ with respect to 

best

1

JM ∂ , 
best

2

JM ∂  and 
best

3

JM ∂  

respectively, where 
best

1

JM ∂ , 
best

2

JM ∂  and 
best

3

JM ∂ represent the 

‘Small’, ‘Medium’ and ‘Large’ memberships for the changes of 

errors respectively. The change of error dominates the ‘Small’ 

membership, 
best

1

JM ∂ , when the change of error is around 4%. 

When the changes of errors are around 10% and 18%, they 

dominate the ‘Medium’ membership, 
best

2

JM ∂ , and the ‘Large’ 

membership, 
best

3

JM ∂  respectively. 
best

1

JM ∂ , 
best

2

JM ∂ , and 
best

3

JM ∂  

are represented by the Gaussian form as illustrated in Figures 4 (b). 
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Fig. 4(a) Membership functions of ( )best
J t  Fig. 4(b) Membership functions ( )best

J t∂  

  The values of ( )tω  and ( )tβ are given by taking the weighted 

average with respect to the membership functions: 

( ) ( ) ( ) ( )
9

1

i p i
i

t m t tω σ
=

=∑ ,             (15) 

and  

( ) ( ) ( ) ( )
9

1

i p i
i

t m t tβ χ
=

=∑              (16) 

respectively, where 



> IEEE Transactions on Industrial Electronics < 7

 ( )
( )( ) ( )( )

( )( ) ( )( )

best best

best best

best best

3 3
best best

1 1

i i

J J

i
j k

J J
j k

J t J t
m t

J t J t

µ µ

µ µ

∂

∂
= =

× ∂
=

× ∂∑∑
.    (17) 

IV. TRAFFIC FLOW FORECASTING ON A FREEWAY 

In this section, the effectiveness of the IPSO for developing NNs 

for short-term traffic flow forecasting is evaluated based on the 
traffic flow data collected from a freeway in Western Australia.  

First, comparisons between the IPSO and the other algorithms 
are utilized based on the traffic flow data captured by the on-road 
sensors, where a traffic jam occurred and none of the on-road 

sensors used for capturing the data is damaged. The objective is to 
evaluate the adaptive capability of the IPSO switching from 
different traffic flow conditions, where all on-road sensors are able 

to work normally. Second, the performance of the IPSO is further 
evaluated based on the contingent cases, where some of the 

on-road sensors used for capturing the traffic flow conditions are 
damaged unexpectedly. The objective is to evaluate the adaptive 
capability of the IPSO from a proper on-road sensor configuration 

to a damaged on-road sensor configuration. 

A. Traffic flow data 

The traffic flow data was collected by fourteen on-road sensors 
(D1 to D14) installed along the Mitchell Freeway, Western 
Australia, which are illustrated in Figure 5. Three on-road sensors 

were installed near the off-ramp, near the on-ramp, as well as 
between the off-ramp and on-ramp, for the Reid Highway (D1 to 
D3), Karrinyup Road (D6 to D8), Cedric Street (D9 to D11) and 

Hutton Street (D12 to D14), respectively. On Erindale Road, two 
on-road sensors (D4 and D5) were installed near the off-ramp and 

near the on-ramp. The sampling time for all on-road sensors was 
half minute (or 30 seconds). The distance between Reid Highway 
and Hutton Street is about 7 kilometers, where the speed limit for 

these sections of the Mitchell Freeway is 100 km/hour. The NNs 
was developed to forecast future traffic flow conditions with five 

sampling times ahead. 
 The traffic flow data were collected over the 2-hour peak traffic 
period (7.30 – 9.30 am) on the Monday, which is the busiest 

business day of the week. All these traffic flow data were collected 
from the six weeks including weeks 6, 7, 8, 9, 11 and 12 in 2009. 

The proposed algorithm was evaluated by two different sets of 
training data, namely large training set and small training set, 
which involve larger and smaller numbers of training data 

respectively. 
For the large training set, more training data was used for 

developing the NNs. The data collected from the first five weeks, 
weeks 6 to 9 and week 11, was used for training the NNs. Hence, 
1200 pieces of data were used for training. For the small training 

set, less training data was used for developing the NNs. The data 
collected from weeks 6 to 9 was used as the training data. Hence, 
there were 960 pieces of training data. The second sub-set of 

traffic flow data, namely test data, collected from week 12, was 
used to evaluate the generalization capability of the developed 

NNs. Hence, 240 pieces of traffic flow data were used to validate 
the developed NNs. 
 

 

 
Fig. 5 On-road sensor configuration on the Mitchell Freeway 

B. Tested algorithms 

The following parameters were used in the IPSO: both the 

acceleration constants 1φ  and 2φ were set at 2.05, and the 

maximum velocity maxv  was 0.2, which can be found in reference 

[22, 23]; the number of particles in the swarm was 50; The specific 

number of hidden nodes, 
hN , used depends on the particular 

problem. However, no well-defined algorithm exists for 

determining the optimal 
hN . As determining the optimal number 

of hidden nodes is not the goal of this research, we used the one 

recommended by Mirchandani and Cao [36], where 

( )2loghN T≈  with T  be the number of training data. For both 

large and small training sets, 10hN = were used, where T  are 

equal to 1200 and 960 for large training set and for small training 

set respectively, and  ( ) ( )2 210 log 1200 log 960≈ ≈ . 

The termination conditions can be divided into two: 1) if 

t<Toff-line, the IPSO terminates, until the training errors are below 

10%; 2) if t>Toff-line, the IPSO terminates, until the on-road sensors 

stop capturing the traffic flow data for the IPSO. The performance 

of the IPSO is compared with the following population-based 

stochastic algorithms: 

a) Classical PSO [22] namely CPSO: the mechanisms and the 

parameters used in the CPSO are identical to those of the IPSO, 

except that IPSO utilizes equation (12) to update the velocity of 

each element of the particle, and CPSO utilizes equation (10) to 

update the velocity. 

b) Advanced particle swarm optimization [28], namely APSO, is 

identical to the CPSO except that APSO utilizes another 

mechanism for updating the positions of the particles. It includes 

the worst particle, in order to update the velocity of each element 

of the particle, while both CPSO and IPSO include only the best 

particle. We compare the IPSO with APSO, because APSO can 

obtain very good results when adapting the parameters of the 

fuzzy neural networks for on-line control of power converter 

[28]. 

c) Improved genetic algorithm [26] namely IGA: which has been 

used to optimize the NNs, where the structure of the NNs is 

identical to the one implemented by IPSO. IGA utilizes two 
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genetic operations, namely improved mutation and improved 
crossover, which outperforms several genetic algorithms 

developed for optimizing the generalization capability of the 
NNs [26]. 
Apart from those algorithms, two recent evolutionary algorithms 

[49] which have been developed for generating NNs for traffic 
flow forecasting, was used for comparing with the IPSO. The two 

evolutionary algorithms are described as following: 
d) First version of Vlahogianni’s genetic algorithm namely VGA-I: 

The NNs are trained with Levenberg-Marquardt algorithm [3, 16] 

using the training data. The genetic algorithm was used for 
determining the parameters of the Levenberg-Marquardt 

algorithm, namely step size for training the NNs, training 
momentum, and the number of hidden nodes of the NNs. 

e) Second version of Vlahogianni’s genetic algorithm namely 

VGA-II: The NNs are trained with Levenberg-Marquardt 
algorithm (LM) [16] using the training data, where the adaptive 

step size was used for training the NNs. The genetic algorithm 
was used for determining the optimal number of hidden nodes of 
the NNs. 

 Both VGA-I and VGA-II only use the training data to develop 
the NNs for traffic flow forecasting. The parameters and the 
configurations of the NNs are kept unchanged with respect to the 

newly captured data after t>Toff-line. Hence, the developed NN does 
not involve adaption with newly captured data. By comparing both 

VGA-I and VGA-II and the other algorithms involved adaption, 
the differences between the algorithms involved no adaption and 
those involved adaption can be indicated. 

The PSO parameters including acceleration constants and 
inertia weight used in CPSO and APSO are the same as those used 

in [13] and [28] respectively. The GA parameters including 
mutation rate and crossover rate used in IGA, VGA-I and VGA-II 
are same as those used in [26]. To make a fair comparison, the 

computational effects used in all these population-based stochastic 
algorithms, IPSO, CPSO, APSO, IGA, VGA-I and VGA-II are 
identical. The number of iterations was pre-defined as 200 and the 

population size was 50, when t<Toff-line. 

C. Simulation results 

After consulting with the engineering personnel from Mainroad, 
Western Australia (which supporting this research), the on-road 
sensors installed at some particular locations are not likely to work 

properly in very poor weather conditions such as rainstorms or 
floods. Hence, the following two contingencies were considered:  

Contingency 1:  The three on-road sensors installed at Hutton 
Street cannot work properly and no signal can be 
provided by the three on-road sensors, from 8.20 

am to 10.00 am. 
Contingency 2: The three on-road sensors installed at Karrinyup 

Road cannot work properly and they can generate 

only a random white noise signal of a value 
between zero to a hundred, from 9.00 am to 10.00 

am. 

Using these two contingencies, the following 4 Cases were built: 

Case 1: traffic flow forecasting without any damaged 

on-road sensors; 

Case 2: traffic flow forecasting under contingency 1 
considered only; 

Case 3: traffic flow forecasting under contingency 2 
considered only; and 

Case 4: traffic flow forecasting under both contingency 1 and 
contingency 2 considered. 

 Mean absolute error was used to evaluate the generalization 
capabilities of the NNs. 

 

( ) ( )

( )

14 14

1

14

ˆ
1

100%

m

s s

i

s

y i T y i T

MAE
m y i T

=

⋅ − ⋅

= ⋅
⋅

∑
,     (18) 

( )14 s
y i T⋅  is the i-th test data captured at the on-ramp of Hutton 

Street, at time ( )si T⋅ ; all ( )14 sy i T⋅  are larger than zero; 

( )14
ˆ

s
y i T⋅  is the estimate of traffic flow condition at the on-road 

sensor, 
14D , which is forecast by the NNs, and the traffic flow data 

were captured between time, ( ) si m p T− − ⋅ , to time, ( ) si m T− ⋅ , 

with 10p =  and 5m = . 

All these algorithms were implemented using Matlab 7.7 in a 
PC which has a CPU of Intel(R) Core(TM)2 Duo 2.66GHz and a 

memory of 7.99GB. As the algorithms are stochastic algorithms, 
different results can be obtained with different runs. Therefore, 
CPSO, APSO, IPSO, CGA, VGA-I and VGA-II, were run for 30 

times, and the results of the 30 runs were recorded. Table 1 shows 
the results obtained by the algorithms for large training set. The 

average of MAE and variance of MAE among the 30 runs of the 
algorithms are shown. For case 1, the table shows that the averages 
of mean test errors obtained by VGA-I and VGA-II, which 

involved no adaption of newly captured traffic flow data, were 
poorer than those of CPSO, APSO, IPSO and CGA, which 

involved adaption. For cases 2, 3 and 4, similar results can be 
illustrated that the results obtained by CPSO, APSO, IPSO and 
CGA are better than those obtained by VGA-I and VGA-II. These 

results clearly demonstrate the effectiveness of the algorithms 
involved adaption of newly captured traffic flow data. Also, 
among the four algorithms involved adaption, the results show that 

the results obtained by the IPSO is generally better than the other 
algorithms, CPSO, APSO, and CGA. 

In addition, the t-test [7] was used to evaluate the significance of 
the hypothesis that the sample means of the test errors obtained by 
the proposed IPSO are smaller than those obtained by the other 

algorithms (CPSO, APSO, IPSO, CGA, VGA-I and VGA-II). The 
t-values between IPSO and the other algorithms are also shown in 

Table 1. Based on the t-distribution table, if the t-value is higher 
than 1.699, the significance is 95% confidence, which means that 
the test errors obtained by the IPSO are smaller than those trained 

by the other algorithm with 95% confidence level. The t-value can 
be determined by: 

 2 1

2 2

2 2 1 1

-value
/ /

t
N N

µ µ

σ σ

−
=

+
, 

where 1µ  is the mean test error obtained by the IPSO and 2µ  is 

the one for the other compared algorithm; 2

1σ  is the variance of 

test errors obtained by the IPSO and 2

2σ  is the one for the other 

compared algorithm; 1N  and 2N  are the number of tests 

performed by IPSO and the other compared algorithm, 

respectively. In general, the results indicate that the significances 
of differences between IPSO to the non-adaptive algorithms (i.e. 

VGA-I and VGA-II) are large than those between IPSO to the 
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adaptive algorithms (i.e. CPSO, APSO and CGA). These finding 
illustrates the effectiveness of the adaptive algorithm. In general, 

IPSO can obtain significantly better results than those obtained by 
all other tested algorithms. Hence, the effectiveness of the IPSO 
can be further demonstrated. 

 Table 2 shows the results obtained by the algorithms which used 
small training set. In general, similar results can be found as those 

used large training set. The results obtained by the algorithms 
involved adaption are generally better than those involved no 

adaption. Also, the t-test shows that IPSO can obtain significantly 
better results than those obtained by the other tested algorithms. 
 

 

Table 1 Results obtained by the algorithms using large training set 

 IGA CPSO APSO VGA-I VGA-II IPSO 

Case 1 Mean errors 6.54 6.06 5.90 7.90 7.71 5.21 

Variance of errors 1.10 1.65 2.22 0.99 0.99 2.68 

T-values 3.75 2.24 1.71 7.70 7.16 Nil 

Case 2 Mean errors 7.55 7.21 6.69 8.91 8.31 6.28 

Variance of errors 1.65 2.28 2.51 1.07 1.04 2.38 

T-value 3.46 2.36 1.01 7.75 6.02 Nil 

Case 3 Mean errors 10.15 9.42 9.06 13.84 13.37 8.13 

Variance of errors 1.69 3.74 3.45 0.81 1.02 3.35 

T-values 4.93 2.65 1.95 15.33 13.73 Nil 

Case 4 Mean errors 11.57 10.81 10.52 14.24 14.99 9.52 

Variance of errors 2.68 3.64 3.97 1.14 1.342 3.66 

T-values 4.46 2.61 1.98 11.80 13.39 Nil 

 

Table 2 Results obtained by the algorithms using small training set 

 IGA CPSO APSO VGA-I VGA-II IPSO 

Case 1 Mean errors 7.27 7.03 6.66 8.49 7.91 5.85 

Variance of errors 1.16 1.76 2.44 1.03 1.04 2.71 

T-values 3.96 3.06 1.97 7.48 5.82 Nil 

Case 2 Mean errors 7.85 7.69 7.32 9.54 9.18 6.80 

Variance of errors 1.71 2.44 2.63 1.18 1.21 2.56 

T-value 2.76 2.17 1.23 7.77 6.69 Nil 

Case 3 Mean errors 10.47 9.98 9.90 14.08 13.93 8.98 

Variance of errors 1.76 3.81 3.70 1.00 1.27 3.27 

T-values 3.65 2.07 1.92 13.53 12.74 Nil 

Case 4 Mean errors 12.17 11.87 11.24 14.75 14.93 10.32 

Variance of errors 2.85 3.78 4.04 1.29 1.48 3.78 

T-values 3.94 3.09 1.80 10.78 11.01 Nil 

 
Also, Figure 6 shows the computational time used by each 

algorithm for each iteration in order to adapt the NN parameters. It 

shows that the computational time taken for each iteration when 
using the population-based stochastic methods (CPSO, APSO, 
IPSO and IGA), is about 1 to 2.5 seconds, while the computational 

time taken by the adapt-LM is less than 0.5 seconds. Therefore, the 
computational time taken by the adapt-LM is less than that taken 

when using the population-based stochastic methods. Even if the 
computational time taken by the adapt-LM is much less than that 
of the population-based stochastic methods, the accuracies in term 

of traffic flow forecasting conditions achieved by the adapt-LM 
are poorer than those obtained by the population-based stochastic 

methods. As accuracy in traffic flow forecasting is important, one 
may still use the population-based stochastic methods to conduct 
traffic flow forecasting. Figure 6 also shows that the computational 

time taken for all population-based stochastic methods, including 
the proposed IPSO is much less than the sampling time of 30 

seconds. Therefore, IPSO is implementable, in order to adapt 
traffic flow data which is captured with the sample time of 30 
seconds. The sample time of IPSO can be set smaller, if the 

computational time taken for the IPSO for one iteration is smaller. 
To achieve this, the following two approaches can be used: a) the 

IPSO can be implemented on a more powerful microprocessor, in 
order to reduce the computational time; b) the IPSO is currently 
implemented by Matlab, which is a high level programming 

language. If the IPSO is implemented by a lower level 
programming language, the computational time required by the 

IPSO is smaller, and thus, shorter sampling times can be used.  
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Fig. 6 Computational time used on each algorithm 

 

 For Case 1, the simulation results for Monday (week 12) in 
terms of average speeds of vehicles are depicted in Figure 7, when 

no contingency has occurred. It shows that from the 40th sample to 
the 150th sample (about 7.51-8.45 am), the average speeds of 
vehicles were about 50km/hours, which is far below the speed 

limit. Hence, the traffic flow was congested and there was a traffic 
jam during that time. From the 170th sample to the 210th sample 

(about 8.55-9.15 am), the average speeds of vehicles are about 90 
km/hr, which are nearer the speed limit. Hence, the traffic flow was 
smoother and there was no traffic jam during that period of time. 

The data being investigated contains traffic jam conditions. 
Figures 7 shows two results: the upper one shows the forecasting 
obtained by the NN without adaption, which is developed based on 

non-adapt-LM; and the lower one shows the forecasting obtained 
by the adaptive NN, which was generated by the IPSO. By 

comparing the results obtained by the IPSO and the non-adapt-LM, 
we can see that the better average speed estimates are produced by 
the IPSO rather than by the non-adapt-LM. In general, the results 

forecast by IPSO are more accurate than those forecast by 

non-adapt-LM. Therefore, the IPSO can obtain more accurate 
results for forecasting traffic flow conditions. 

 Figures 8, 9 and 10 show the results for Case 2, Case 3 and Case 
4, respectively, which involve the contingencies. For Case 2, the 
simulation results are depicted in Figure 8, where the on-road 

sensors, D12, D13 and D14, were damaged at 8.20 (at the 100th 
sample time). It can be clearly observed that relatively larger 

errors between the actual traffic flow and the estimated traffic flow 
were produced, when the non-adapt-LM was used to perform the 
forecasting. Hence, the non-adapt-LM performs poorly and only 

unacceptable estimates are generated. When the adaptive NN 
developed by the IPSO was used, relatively smaller errors 

occurred. For Case 3, the on-road sensors, D6, D7 and D8, were 
damaged at 9.00 (at the 160th sample time). Figure 9 shows similar 
results in that relatively smaller errors occurred, when the NNs 

developed by the IPSO were used to perform the forecasting. Case 
4 is the situation where there was the most serious damage,  since 

the on-road sensors, D12, D13 and D14, as well as the on-road 
sensors, D6, D7 and D8, were damaged at 8.20 (at the 100th sample 
time), as well as at 9.00 (at the 160th sample time), respectively. It 

can be observed from Figure 10 that a significantly greater 
forecasting error was produced by non-adapt-LM, while a much 
smaller forecasting error was produced by the IPSO. Although, 

small impulses with relatively large error were produced by the 
IPSO at the 100th sampling time and the 160th sample time, after 

the contingencies occurred, the forecasting errors immediately 
decreased to low levels after a short time. Therefore, these 
simulation results demonstrate the effectiveness of the IPSO since 

it can adapt to changing on-road sensor configurations, which are 
damaged from time to time. 
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Fig. 7 Forecasting results for Case 1 
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Fig. 8 Forecasting results for Case 2 
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Fig. 9 Forecasting results for Case 3 
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Fig. 10 Forecasting results for Case 4 

 

VI. CONCLUSION 

In this paper, an intelligent particle swarm optimization algorithm 
(IPSO) is proposed for the development of short-term traffic flow 

predictors, in order to tackle the time-varying assumptions 
underlying the currently used methods, where: i) the 

characteristics of current data captured by on-road sensors are 
assumed to be time-invariant with respect to those of the historical 
data which was used to developed short-term traffic flow 

predictors; and ii) the configuration of the on-road sensor systems 
is assumed to be time-invariant. By tackling these two 

time-varying assumptions, the IPSO is developed by integrating 
the mechanisms of particle swarm optimization, neural network 
and fuzzy inference systems, in order to develop short-term traffic 

flow predictors, which can adapt to the time-varying traffic flow 
data and the time-varying configurations of on-road sensor 

systems.  
 In the IPSO, the particle in the swarm is used to represent the 
neural network with a flexible structure, in order to forecast 

short-term traffic flow, without these two time-invariant 
assumptions. Then, the IPSO uses the mechanisms of particle 

movements, in order to locate with the time-varying optimum of 
the short-term traffic flow predictor. To further enhance the 
adaptive capability of the IPSO, the fuzzy inference system is used 

to inject activating components into the particles, in order to let the 
particles search for good solutions when the traffic flow accuracy 

obtained by the IPSO is low. 
 The effectiveness of the IPSO was evaluated by applying it to 
the development of short-term traffic flow predictors to forecast 
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traffic flow conditions on a section of freeway in Western 
Australia, whose traffic flow data was captured on-line by an 

on-road sensor system consisting of fourteen on-road sensors. The 
four cases, included one with traffic congestion, and three which 
involved on-road sensors damaged at different times and different 

locations, were considered. The forecasting results obtained by the 
short-term traffic flow predictor developed by IPSO were more 

accurate than those obtained by the other tested algorithms: the 
Levenberg-Marquardt approach, the genetic algorithm and 
particle swarm optimization approaches taken from the recent 

literature. These results clearly demonstrated the effectiveness of 
the proposed IPSO.  

 Future work will be carried out by further enhancing and 
evaluating the effectiveness of the proposed IPSO. Thus, it can be 
divided into two categories: a) Incorporation with the other 

heuristic algorithms may enhance the effectiveness of the 
proposed IPSO for short-term traffic flow forecasting. 

Investigation of the effectiveness of the incorporating ant colony 
algorithm, artificial immune systems or bee colony algorithm into 
IPSO will be conducted; and b) As manufacturing processes which 

involve control operations by sensor data are common [2, 6, 24], 
the effectiveness of the IPSO can be further evaluated by applying 
it to control manufacturing processes which are operated with 

sensor systems. 
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