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Abstract Standard least-squares collocation (LSC) assumes 2D stationarity and 3D

isotropy, and relies on a covariance function to account for spatial dependence in the ob-

served data. However, the assumption that the spatial dependence is constant through-

out the region of interest may sometimes be violated. Assuming a stationary covariance

structure can result in over-smoothing of, e.g., the gravity field in mountains and under-

smoothing in great plains. We introduce the kernel convolution method from spatial

statistics for non-stationary covariance structures, and demonstrate its advantage for

dealing with non-stationarity in geodetic data. We then compared stationary and non-

stationary covariance functions in 2D LSC to the empirical example of gravity anomaly

interpolation near the Darling Fault, Western Australia, where the field is anisotropic

and non-stationary. The results with non-stationary covariance functions are better

than standard LSC in terms of formal errors and cross-validation against data not

used in the interpolation, demonstrating that the use of non-stationary covariance

functions can improve upon standard (stationary) LSC.
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1 Introduction and Motivation

Modelling the spatial dependence structure of observed data is fundamental to the-

ory of spatial estimation, which is commonly called least-squares collocation (LSC)

in geodesy (e.g., Krarup 1969; Moritz 1980) and Kriging in geostatistics (e.g., Krige

1951; Matheron 1962). However, they are not exactly the same, so for details on the

differences and similarities between LSC and Kriging, please refer to, e.g., Dermanis

(1984) and Schaffrin and Felus (2005).

Ever since the conception of LSC in geodesy, 2D stationarity and 3D isotropy have

been routinely assumed (e.g., Tschernning and Rapp 1974). Stationarity in this context

means that the mean is constant and the covariance is position invariant, which is called

weak or second-order stationarity in the discipline of spatial statistics (e.g., Armstrong

1998). Isotropy means that the spatial dependence is independent of direction.

Remark 1: The terminology of non-homogenous covariance modelling, used by

Tscherning (1999), is the same as the non-stationarity terminology used in this paper.

We choose this because it is used much more widely in spatial statistics (e.g., Cressie

1999) and physical geodesy (e.g., Keller 1998, 2000, 2002, Kotsakis 2000).

Non-stationarity models of the spatial mean have been applied in spatial statis-

tics for many years (e.g., Deutsch and Journel 1998). Ordinary Kriging (OK) often

involves an unknown, but constant, mean (Chilès and Delfiner 1999). OK, as applied

within moving data neighbourhoods, is already a non-stationary algorithm in that it

corresponds to a non-stationary model with varying mean but stationary covariance

(Deutsch and Journel 1998). Reguzzoni et al. (2005) extended OK to general Kriging

(GK) in order to deal with the case where the data are not point values but rather

values of linear functionals of the unknown random field. More commonly, where the

mean is known to vary with location, it can be modelled with a trend, resulting in

Kriging with a trend (KT), also known as universal Kriging (UK) (Cressie 1993).

This paper investigates non-stationarity of covariances in standard 2D LSC. Sta-

tionary covariances previously led to almost exclusive reliance on models of the form
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Cov(si, sj) = C(r), which expresses the covariance of between locations si and sj in R2

(2D) as a function of Euclidean distance r. However, empirical covariances of gravity

anomalies (e.g., Goad et al. 1984; Schwarz and Lachapelle 1980; Knudsen 2005) show

large differences between the parameters of the covariance function for the whole re-

gion (based on a global covariance function) and sub-regions (based on local covariance

functions), which shows the inadequacies of using only stationary covariance functions.

On the other hand, there is a growing body of literature in spatial statistics on

methods for dealing with non-stationarity. The more common approaches are:

– Spatial deformation of the data: Sampson et al. (2001) review these deformation ap-

proaches. They act to distort the surface such that a stationary covariance function

results from the data in the transformed space. They need repeated measurements

that are suitable for temporally independent replications of space-time monitoring.

– Trend removal: The mean or median of the data and a linear polynomial are sub-

tracted from the data (Cressie 1993).

Remark 2: Deformation and trend removal techniques allow for a transformation

to a stationary covariance structure; they are not actually methods to model the

non-stationarity (Sampson and Guttorp 1992).

– Locally adaptive Kriging: This involves predicting and modelling the local co-

variances and using the coefficients of the locally fitted model in local Kriging

(Goovaerts 1997).

– Segmentation: Segment-based covariances (Atkinson and Lloyd 2007) divide the

region of interest into smaller sub-regions within which the covariance function can

be considered stationary.

– Kernel convolution: This provides an attractive way of practically introducing non-

stationarity, while retaining clear interpretation and permitting analytic calcula-

tion. There are two distinct approaches in the spatial statistics literature, one due

to Higdon et al. (1999) and the other to Fuentes (2001) and Fuentes and Smith

(2003). Kernel convolution provides a continuous way of non-stationary covariance

function modelling. Unlike locally adaptive Kriging or segmentation, it avoids the

need for patching at the borders. This is the method that we shall use in this paper.

Nevertheless, the issue of non-stationarity in geodetic data has already been recog-

nised, as follows:
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– Trend removal: One example is the remove-compute-restore technique in LSC-based

gravity field determination, where gravitational effects of a global geopotential

model and the topography are removed from the data and subsequently restored.

Another example is the prior removal of a bias and tilt before LSC is used, e.g., to

fit gravimetric quasi/geoid models to GPS-levelling.

– Segmentation: This was studied in Tscherning et al. (1987) for merging regional

geoids. However, segmentation methods need to subsequently patch the covariances

or results at the boundaries of the sub-regions (cf. Knudsen 2005).

– Wavelets: A multiresolution/wavelet framework for LSC has been suggested (Kot-

sakis and Sideris 1999; Kotsakis 2000; Keller 1998, 2000, 2002) because of the space-

localisation properties of wavelets, which makes them useful for spectral studies of

spatially varying (non-stationary) signals. Although the wavelet framework for LSC

has had a purely theoretical character in geodesy, it has been practically applied

in spatial statistics over independent replications of data in time (e.g., Nychka et

al. 2002; Paciorek 2003).

– Other examples: Tscherning (1991) proposed an approach based on mass-density

anomaly considerations, but it was not pursued due to the limited capability of

computers in the early 1990s. Tscherning (1999) suggested another possibility to

use Riesz representers, but which was not practically applicable because of the lack

of a sufficient numerical algorithm.

Moreaux et al. (1999) proposed three methods to construct positive-definite func-

tions with compact support for the approximation of harmonic covariance functions

on the sphere. While one of these non-harmonic locally supported functions was

not isotropic, similar results were obtained for different configurations of points.

Nevertheless, Moreaux et al. (1999) concluded that the most relevant method was

not a non-isotropic function.

The apparent lack of interest in non-stationary covariance modelling for LSC, in

comparison with other Earth-science-related disciplines, is possibly due to the insen-

sitivity of the LSC solution to the covariance parameters (e.g., Sansò et al. 2000 and

Xu 1991). Sansò et al. (2000) showed that in the limit of increasing data density, the

dependency of the LSC solution on the type of covariance function decreased.

However, in support of non-stationary covariance modelling for LSC:
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– the dependency of the error covariance matrices in the covariance function is evident

from the LSC formulation and literature (e.g., Tscherning 1975);

– stationary covariance functions that depend on only variance and correlation length

are not a good device with which to control the LSC results.

In this paper, we first demonstrate non-stationarity in gravity anomaly covariances

across Australia. We then borrow and apply the idea of kernel convolution from Higdon

et al. (1999), extended upon by Paciorek (2003), to create a class of non-stationary

covariance functions for use in standard 2D LSC. These convolution kernels are specified

at each (horizontal) location by an ellipse that is oriented and scaled depending on the

non-stationarity of the data.

As an example of the application of non-stationary 2D LSC, we consider the

problem of gravity anomaly interpolation around the near-north-south-trending Dar-

ling Fault in Western Australia (Lambeck 1987), where the anomalous field is non-

stationary from the west versus the east. A comparison is made between LSC predic-

tion errors using stationary and non-stationary covariance functions, showing that the

use of non-stationary covariance functions can improve upon standard LSC for gravity

anomaly gridding.

2 Invalidation of stationary covariances

2.1 Previous work by others

The assumption of a stationary gravity field over the Earth has been queried for as

long as covariance techniques have been discussed and used (e.g., Kearsley 1977). Rapp

(1964) investigated three different regions of the USA, and found significantly different

covariance functions for each. Gaposhkin (1973) analyzed subsets of data of oceanic and

continental gravity assuming isotropy, and found the differences between covariances

to be significant. They concluded that ”· · · gravity is not stationary”. Similarly, in a

statistical analysis of gravity over the then Czechoslovakia, Vyskočil (1970) investigated

the covariance functions for gravity anomaly ∆g means of 10′×15′ blocks and concluded

”· · · the theoretical assumption of homogeneity and isotropy· · · is basically only forced

and in reality it will probably not always be satisfied.”
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Schwarz and Lachapelle (1980) showed that some common characteristics exist

for a local covariance function over an area as large as Canada, excluding the Rocky

Mountains, which shows a compromise. In similar study by Goad et al. (1984), variances

and correlation distances were determined for complete/refined Bouguer anomalies

in 3030 arc-minute blocks covering the continental USA. Their analysis showed that

the correlation length is smallest in areas of high topography and large variances are

associated with the mid-continental gravity high and tectonic features on the USA

Pacific coast. Flury (2006) did the same analysis on covariances of topography-reduced

gravity anomalies, but in the frequency domain over 13 test regions in Europe, showing

that the covariance parameters are different in mountainous versus flat terrain.

Analogously, Atkinson and Lloyd (2007) studied local and global variograms in

Kriging for height data, showing them to vary markedly across their region of study.

2.2 Empirical proof across Australia

Gravity anomalies over the Australian continent offer a (convenient to us) sample to

test for non-stationarity in geodetic data. We analyzed free-air gravity anomalies to de-

termine to what extent the empirical covariances vary spatially. An irregularly spaced

data set of 1,106,662 point observations on land with average separation of mostly 11

km, but with some denser areas down to 30 m, were provided by Geoscience Aus-

tralia (Fig. 1). They were used to estimate local gravity anomaly covariance functions

following the approach in Schwarz and Lachapelle (1980).

Fig. 1 near here

Empirical covariance functions were computed in 39 5◦ × 5◦ sub-regions covering

the whole onshore gravity data set in Australia (Fig. 1). The terrestrial free-air gravity

anomalies are residual to the degree/order 360/360 EGM96 global geopotential model

(Lemoine et al. 1998). The parameters of the local covariance functions (variance C0

and correlation length d) for each sub-region were computed using Tscherning’s (1994)

EMPCOV routine, and are summarised in Table 1.

Table 1 near here

In Table 1, C0 is the prior variance and Ĉ0 is the variance estimated from EMP-

COV. It computes an empirical covariance function of scalar quantities on a sphere by
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taking the mean of product-sums of samples of scalar values (here ∆g):

cov(ψj) =
1

Nj

NjX
k,i

∆g(ϕk, λk)∆g(ϕi, λi) (1)

where ψj is the spherical distance and Nj is the number of pairs for each interval.

The difference between C0 and Ĉ0 in Table 1 is due the zero-mean assumption

implicit in LSC (Moritz 1980) and implemented in EMPCOV, but which is not satisfied

for most of the sub-regions over Australia (Table 1, third column). Ideally, it should

be the same if the mean value (m) of each subregion was included in Eq. (1):

cov(ψj) =
1

Nj

NjX
k,i

(∆g(ϕk, λk)−m)(∆g(ϕi, λi)−m) (2)

From Table 1, there is a significant difference in the Ĉ0 and d̂ values between

areas with rugged topography, like Tasmania (area 40), and those from flat regions in

central Australia (areas 16, 17 and 22). The areas with rugged topography show smaller

correlation lengths and larger variances, which agree with the findings in other parts of

the world (cf. Gaposchkin 1973; Schwarz and Lachapelle 1980; Goad et al. 1984; Flury

2006).

The different covariance parameters for different sub-regions shows that one sin-

gle stationary covariance function is an inadequate representation of localised non-

stationarities in Australia. Consequently, using a stationary LSC covariance model

would underestimate values at some points and overestimate others. Here, we have

essentially used the segmentation method (Atkinson and Lloyd 2007), but this is still

not satisfactory because the boundaries would still have to be patched (cf. Knudsen

2005, Tscherning et al. 1987). Therefore non-stationary covariance modelling becomes

an attractive alternative.

3 Non-stationary covariance functions using kernel convolutions

First, the formulation here is in Euclidean space when the vector locations of si have the

Euclidean coordinates of (xi, yi, zi). Although much of the LSC literature deals with

spherical covariance functions, this Euclidean formulation could be applied elsewhere

in physical geodesy if 3D coordinates are available or if a planar approximation is
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sufficient in 2D cases. In this paper, we consider the simplest 2D case of interpolation

under a planar approximation as a first start.

We describe the approach of Higdon et al. (1999) (henceforth HSK) for defining non-

stationary covariance functions in a geodetic context, which will later be implemented

in standard 2D LSC. HSK propose a non-stationary spatial covariance function, defined

by

C(si, sj) =

Z
R2

Ksi(u)Ksj (u)du, (3)

where si, sj , and s are locations in R2, and Ks is a kernel function centered at s. This

construction is the covariance function of a white noise process ω(.) (Appendix B),

convolved with the kernel function to produce the process, Z(.), defined by

Z(s) =

Z
R2

K(s− u)ω(u)du =

Z
R2

Ks(u)ω(u)du. (4)

One can avoid technical difficulties involved in defining such a white noise process

by using the definition of positive-definiteness (e.g., Cressie 1993; Moritz 1980) to

show that the covariance function is positive-definite in every Euclidean space, Rp;

p = 1, 2, · · · , n; this gives:Pn
i=1

Pn
j=1 aiajC(si, sj) =

Pn
i=1

Pn
j=1 aiaj

R
R2 Ksi(u)Ksj (u)du

=
R
R2

Pn
i=1

Pn
j=1 aiKsi(u)ajKsj (u)du

=
R
R2

Pn
i=1 aiKsi(u)

Pn
j=1 ajKsj (u)du

=
R
R2(
Pn

i=1 aiKsi(u))2du

≥ 0.

(5)

The key to achieving positive-definiteness is that each kernel K is solely a function of

its own location. Apart from this condition, the exact structure of the kernel can be

arbitrary.

Paciorek (2003) proved the closed form of the HSK covariance for Gaussian kernels

is:

C(si, sj) =
1

(2π)
P
2 |Σi + Σj | 12

exp(−1

2
(si − sj)

T (Σi + Σj)
−1(si − sj) (6)

Examining the exponential and its quadratic form in Eq. (6), it is a Gaussian

stationary covariance function, but in place of the squared Mahalanobis (1936) distance
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(si − sj)
T Σ−1(si − sj) for an arbitrarily fixed positive-definite matrix Σ, a quadratic

form with the average of the kernel matrices for the two locations is used.

In spatial statistics, the Mahalanobis (1936) distance is a distance measure based

on correlations between variables by which different patterns can be identified and

analysed. It is a useful way of determining similarity of an unknown sample set to a

known one. It differs from the Euclidean distance in that it takes into account the

correlations of the data set and is scale-invariant.

Formally, the Mahalanobis distance from a group of values with mean µ = (µ1, µ2, µ3, · · · , µp)T

and covariance matrix Σ for a multivariate vector s = (s1, s2, s3, · · · , sp)T is defined

as:

DM (s) =
q

(s− µ)T Σ−1(s− µ) (7)

The Mahalanobis distance can also be defined as a dissimilarity measure between

two random vectors si and sj of the same distribution with the covariance matrix Σ :

DM (si, sj) =
q

(si − sj)T Σ−1(si − sj). (8)

If the covariance matrix is the identity matrix Σ = I, the Mahalanobis DM distance

reduces to the Euclidean distance D:

D(si, sj) =
q

(si − sj)T (si − sj). (9)

If the kernel matrices are constant, we recover the special case of the Gaussian

covariance function based on the Mahalanobis distance. If they are not constant with

respect to s, the evolution of the kernel covariance matrices in R2 space produces a

non-stationary covariance function.

Remark 3: This generalised kernel convolution covariance model can be extended

for use on the sphere, S2, and other non-Euclidean spaces. On the sphere, the equiva-

lence of translation and rotation causes difficulty in defining kernels that produce cor-

relation behaviour varying with direction, i.e., modelling anisotropy (Paciorek 2003).

Now we consider the quadratic form

Qij = (si − sj)
T [

1

2
(Σi + Σj)]

−1(si − sj), (10)

which is at the heart of the covariance function in Eq. (6) constructed via the ker-

nel convolution method. The HSK non-stationary covariance function is the Gaussian
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covariance with this new quadratic form in place of the Mahalanobis distance. This

relationship raises the possibility of producing a non-stationary version of an isotropic

covariance function by using Qij in place of r2 = rT r.

Remark 4: Stationary and isotropic covariance functions can be generalised to

anisotropic covariance functions that account for directionality by using the Maha-

lanobis distance between locations si and sj ,

r(si, sj) =
q

(si − sj)T Σ−1(si − sj) (11)

where Σ is a positive-definite matrix, rather than Σ = I, which gives the Euclidean

distance and thus isotropy. For the anisotropic case,

Σ = Θ(α)∆(dmin, dmax)Θ(α)T (12)

where Θ(α) =

0@ cos(α) − sin(α)

sin(α) cos(α)

1A and ∆ = diag(d2
min, d2

max).

The direction of anisotropy is specified by an azimuth angle, α. The correlation

length in the horizontal maximum direction is specified by dmax. The range in the

perpendicular direction, or the horizontal minimum direction, is specified by dmin.

Anisotropic covariance functions have been used in Kriging software like GSLIB for

many years (e.g., Deutsch and Journel 1998; Chilès and Delfiner 1999). Also, Kearsley

(1977) and Duquenne et al. (2005) tried azimuth-dependent covariances in LSC.

Table 2 near here

In practice, one uses r
d =

p
Qij (cf. Table 2), since the correlation length d is

redundant and can be absorbed into the kernel matrices, Σi and Σj , which are allowed

to vary in size during the modelling. The non-stationary covariance is non-negative

and decays with distance, but can decay at a different rate in different parts of space,

thus allowing the degree of smoothing to vary (Paciorek 2003).

Table 3 near here

Table 3 compares distance measures for covariance functions in terms of station-

arity. The following general result applies in particular to covariance functions that

are positive-definite in the Euclidean space of Rn, in particular the exponential and

Gaussian covariance functions (Paciorek and Schervish 2006). Non-stationary versions

of the most commonly used covariance functions in planar LSC theory are illustrated

in Table 2.
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4 Implementation of non-stationary covariances in LSC

A key point in the kernel convolution method is how to define the kernels at each

point. Two different approaches have been proposed: one is eigendecomposition pa-

rameterisation (Paciorek 2003), and the other is to represent the Gaussian kernels as

ellipses of constant probability density (Higdon et al. 1999). Both are based on a fully

Bayesian model, with prior distributions on the kernel matrices that determine the

non-stationary covariance structure. The eigendecomposition approach extends more

readily to higher dimensions, which may be of interest for spatial data treatment in 3D

and more general nonparametric regression problems (Paciorek and Schervish 2006).

Here, however, we describe the representation of kernels as ellipses, similarly to

what HSK proposed. Instead of using Bayesian inference, which needs complicated

and somewhat unfamiliar numerical approaches like the Monte Carlo Markov Chain

method (e.g., Robert and Casella 2004), we specify parameters of the ellipses based

on empirical covariance functions that are already used in standard LSC theory. We

believe that this simpler strategy might make the approach more attractive to others

for practical implementation in existing LSC software.

The idea of modelling kernels as ellipses comes from the visualisation of a bivariate

Gaussian distribution in 3D. If we approach this distribution from above (from the

positive z-direction), any x− y plane that has constant z and intercepts the bivariate

normal distribution at any point, except the apex, will form an ellipse in the plane of

the bivariate kernel that it cuts. This allows us to use an ellipse (Fig. 2) as a way to

more intuitively parameterise Σ (cf. Higdon et al. 1999; Swall 1999).

Figure 2 near here

The location and geometry of the ellipse adopted here can be defined through

three parameters: its geometrical centre, major axis and minor axis. Since each ellipse

represents a kernel for a certain location, the centre of the ellipse is at the point s. In

order to allow the ellipses to vary in size, shape and orientation, we can manipulate

the major a and minor b axes and azimuth angle α;

Swall (1999) found over-fitting and mixing problems when the ellipse’s area (i.e.,

πab) was allowed to vary, so HSK fixed the ellipse’s area at a constant value common

to all locations, but instead applied a scaling factor τ for each ellipse to vary at each
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location:

Σ
1
2 = τ

0@ a 0

0 b

1A0@ cos α sin α

− sin α cos α

1A (13)

where τa and τb are the semi-axes of the ellipse and α is the direction angle (measured

anticlockwise from the x-axis) of the major axis of the ellipse.

Equation (13) provides the correspondence between ellipses and the bivariate Gaus-

sian kernels that they aim to represent. The stationary and non-stationary covariance

structures based on elliptical kernels are illustrated schematically in Fig. 3.

Figure 3 near here

Finally, for practical application of the kernel convolution method based on ellipses

centred at each location using empirical covariance functions, we propose the following

general sequence that can be to applied other cases.

– Partition the non-stationary study area into smaller parts that are as stationary as

possible (e.g., east and west for the Darling Fault case)

– Estimate the empirical covariance functions in each partition, including empirical

covariance map and directional empirical covariance functions;

– Set Σi = ΣA(i), where A(i) denotes the region in which location i falls and ΣA(i)

is constructed for each region from the parameters, {α, a, b}A(i), of the anisotropic

correlation structure estimated for the region;

– Having the parameters for the ellipses at each location, the kernels are then esti-

mated from Eq. (13);

– Based on the kernels at each location, the covariances between any two points are

estimated from the non-stationary covariance models in Table 2

In the next section, we will explain how to define the parameters of the elliptical

kernels for each location based on empirical covariances for our chosen example of

gravity anomaly interpolation by non-stationary 2D LSC.
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5 Case-study: stationary versus non-stationary covariances

5.1 The Darling Fault’s gravity field

This case-study refers to a standard interpolation problem, namely the construction of

a gravity anomaly grid from point data. We have narrowed our focus to a reasonably

small regular grid of data, where a planar approximation is sufficient (cf. Moritz 1980).

Gravity observations over the Darling Fault near Perth in Western Australia (cf. Lam-

beck 1987; Kirby 2003) provide a nice illustration of the application of non-stationary

covariance functions in 2D LSC gridding. To a first approximation, this region is di-

vided between low free-air gravity anomalies in the west, and high free-air gravity

anomalies in the east (Fig. 4), which shows the non-stationarity in this case-study data

set. These are residual free-air gravity anomalies based on the degree/order 360/360

expansion of EGM96 (Lemoine et al. 1998).

Figure 4 near here

We acknowledge that terrain-reduced gravity data are normally used for gridding

because they are generally smoother (cf. Goos et al. 2003). We have deliberately chosen

to use residual free-air anomalies here because they are clearly non-stationary, thus

posing more of a challenge to LSC. However, applying terrain reductions to the Darling

Fault gravity data will still not make them stationary. In this area, the Bouguer slab

reduction is around 30 mGal over the fault and the terrain correction is less than 2

mGal east of the Fault (Kirby and Featherstone 2002). Compared to the 100 mGal

difference in free air gravity anomalies (Fig. 4), terrain reductions will not remove the

non-stationarity in this case.

Our residual free-air gravity anomaly prediction used the eight nearest neighbouring

points with stationary and non-stationary covariance functions. This choice of nearest

points is consistent with many other LSC-based predictions. However, the mean value of

the LSC observation vector in each neighbourhood is different in this dataset (cf. Fig. 4).

This violates the LSC assumption of a zero mean (Moritz 1980).

As mentioned in the Introduction, OK or GK consider non-stationarity of the mean,

but this is not the subject of this paper, which instead focuses on non-stationarity via

the covariance function. As such, we deliberately added 100 mGal to all the residual
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free-air anomalies to make them positive over the whole region, giving an always-

positive mean value of the observation vector in each neighbourhood.

Therefore, all points tested are affected approximately equally by non-stationarity

of the mean. This strategy allows us to examine the non-stationarity of covariances

in LSC, where the non-stationarity of mean is approximately equal, thus not contam-

inating our interpretations, as would be the case for spatially varying means for each

neighbourhood. For a study of non-stationarity of the mean, see the GK approach

(Reguzzoni et al. 2005).

5.2 Global stationary covariances

We start with an analysis of a stationary global empirical covariance function using the

whole data-set (cf. Sect. 2) in Fig. 4. A stationary Cauchy covariance model was fitted

to the empirical covariances using EMPCOV. Because of the large systematic difference

between free-air gravity anomalies in the east and west, the correlation length is 0.3◦

(cf. Fig. 5 and Table 4). As such, a stationary global empirical covariance function is

clearly inappropriate for this non-stationary test data-set.

Figure 5 near here

5.3 Segmented stationary covariances

Next, we used the segmentation approach, where the data were divided between eastern

and western sections separated along the well-defined Darling Fault (cf. Fig. 4). Figure

6 shows the stationary Cauchy covariance models and empirical covariances in the east

and west. The objective of presenting each covariance is to evaluate (and visualise) the

extent to which the covariance function varies locally (i.e., non-stationarity of the data

set versus when treated as a whole; Fig. 5). The key point is that the covariances vary

markedly either side of the Fault (cf. Fig. 4). From Fig. 6, the western region has the

greater variance and correlation length.

Figure 6 near here

These significant differences show further that a global stationary covariance func-

tion is an inadequate representation of the spatial variations across this case-study
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region. Also, recall that the use of segmented stationary covariance functions will intro-

duce the problem of how to subsequently patch them. While this segmented approach

delivers some improvement over the use of global variances, it will be shown that the

non-stationary approach is better still.

Table 4 near here

The parameters of the empirical Cauchy covariance functions for each of the global,

and east and west segments are summarised in Table 4. We will use them later to

help design the elliptical kernels at each location for the non-stationary covariance

modelling.

5.4 Anisotropy

We now attempt to detect anisotropy in the case-study region using empirical co-

variances in different azimuths (0◦, 45◦, 90◦, 135◦) (Fig. 7). The method developed by

Forsberg (1986), using the Fourier transform and the so-called anisotropy index, could

be used. Instead, however, we used the more simple and straightforward methods that

are popular in geostatistics (e.g., Chilès and Delfiner 1999, Deutsch and Journel 1998,

Goovaerts 1997).

Usually the covariances are calculated in several different directions, which are

displayed separately. Sometimes the lines of constant covariation are graphed in 2D.

This representation of the covariances in all directions can be a useful visual tool

to highlight possible anisotropy in the data, which is called a covariance map (i.e.,

empirical covariances in 2D) (Fig.8). The principle is to define a grid such that the

origin of the space is located at the centre of this grid. Each pair of samples corresponds

to a distance and a direction, which can be attributed to a grid cell, and thus to a

variability.

From Figure 8, there is anisotropy approximately in the north-south direction (az-

imuth 20◦). Figure 7 also demonstrates that, except for α = 20◦, the empirical covari-

ances are largely similar in terms of variance and correlation length.

Figure 7 near here

Figure 8 near here
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5.5 Non-stationary covariances

To construct the elliptical kernels at each location (cf. Fig. 2), we first fixed α parameter

to 20◦ for the entire region because of the anisotropy detected from Fig. 8. From the

estimated correlation lengths in Table 4), we chose a = 0.3◦ =
√

dmax and b = 0.2◦ =
√

dmin to elongate the elliptical kernels in the α = 20◦ azimuth. Based on our numerous

empirical tests (and Paciorek and Schervish 2006, Swall 1999), we shrink the size of

elliptical kernels from east to west by decreasing the τ scale factor from 1 to 0.6. The

resulting elliptical kernels are plotted in Fig. 9.

Figure 9 near here

For this non-stationary case, the Cauchy non-stationary model of Table 2 was

applied. As seen in Table 2, unlike stationary covariance models that are a function

of d and C0, the non-stationary covariance model is a function of the elliptical kernels

Σ at each location (Eq. 13). In our case, these kernels have the elliptical forms in

Fig. 9. For estimation of covariances between two points i and j, we insert the ellipse

parameters for each point from Fig. 9 into Eq.(13) and then the non-stationary Cauchy

model from Table 2.

5.6 Interpolation error estimates

Two types of error were computed to assess the accuracy of the gravity anomaly inter-

polation using stationary and non-stationary covariances in 2D LSC.

1. The first is the formal standard (or internal) error of LSC as obtained from the

error covariance matrix; this is:

(σF
∆g)2 = C0 − CPQ(CPP ′)−1(CPQ)

′
(14)

where C0 is the signal variance, CPQ is the cross covariance of the predicted point Q

and the observation point P , and CPP ′ is the auto-covariance of observation points

(Moritz 1980).

2. The second is the prediction error estimated from cross-validation (Featherstone

and Sproule 2006), where one point is omitted from each LSC prediction, then the

predicted value at that point is compared with the observed value via:

σE
∆g = ∆gobs −∆gpred (15)
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That is, each test point used is not used in each LSC prediction, and the statistics

computed for all data points in the test area. While time-consuming, this does give an

external error estimate.

Figures 10 and 11 compare the internal errors from LSC covariance propagation

and the external errors from cross-validation for stationary and non-stationary LSC

prediction, respectively, of the residual free-air gravity anomalies. Note the different

scales in each panel. Tables 5 and 6 give a summary of the respective statistics for all

points in the test data-set.

Figures 10 and 11 near here

Tables 5 and 6 near here

Firstly, Tables 5 and 6 and Figs. 10 and 11 together illustrate the advantage of using

non-stationary covariances over the stationary covariances for our test region, which

has already been shown to be anisotropic and non-stationary. Clearly, the application

of non-stationary covariances to non-stationary data is more appropriate (and better)

than assuming a stationary covariance.

Another key observation from Tables 5 and 6 and Figs. 10 and 11 is that the

internal errors from LSC are smaller than the external errors from cross-validation. In

particular, note the need to use different scales in the left and right panels of Figs. 10

and 11. This is of some concern, showing that the internal LSC error propagation may

be far too optimistic by nearly an order of magnitude. However, there is a marginally

better agreement between the internal and external errors for the non-stationary case.

In Fig. 11, the magnitude of errors (both internal and external) increase along the

Fault (cf. Fig. 4), which shows that the non-stationary covariance modelling (especially

for the internal errors) better reflects the difficulty in accurately interpolating data

in areas of steep gradients. Basically, the internal error estimates, even though too

optimistic in relation to the external error estimates, do reflect the worse prediction

that is intuitively expected along the Darling Fault. On the other hand, the stationary

covariance modelling tends to ’smear out’ the error estimates, thus not reflecting the

Fault’s location.

Finally, the internal errors in both non-stationary and stationary cases are larger

along the borders (Figs. 10 and 11), showing an edge effect in the latter that this is not

reflected in the former. Therefore, LSC internally propagated errors, while also being

too optimistic, are less reliable at the edges of the areas used. This could cause further
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problems if trying to patch segmented stationary LSC solutions based on internally

propagated errors.

6 Conclusions and Recommendations

We have introduced the kernel convolution method, borrowed from the discipline of

spatial statistics (Higdon et al. 1999), to provide non-stationary covariance functions

for geodetic 2D LSC. Conceptually, these are elliptical kernels that orient and scale

according to the level of anisotropy and non-stationarity in the data.

As an example, non-stationary and stationary 2D LSC were used to interpolate

residual (to EGM96) free-air gravity anomalies over the Darling Fault in Western

Australia, where this particular gravity field functional is highly anisotropic and non-

stationary. From internal and external error estimates, the non-stationary covariance

models in LSC were consistently better than stationary LSC for interpolation; they

also gave more realistic error estimates in areas where the field varies rapidly.

While we have considered the rather simple case of 2D LSC interpolation and pre-

diction, it is clear that non-stationary covariance modelling shows great promise, which

might be beneficial for other geodetic applications. However, there is often the need to

ensure that the covariance functions are harmonic for, e.g., geoid field modelling. There

are numerous other LSC applications in geodesy where non-stationarity should not be

ignored, such as the treatment of satellite altimeter data (e.g., Fieguth et al. 1995) and

fitting quasi/geoids to GPS-levelling data.

We therefore recommend that non-stationarity in geodetic data is given more con-

sideration than at present.

Although in Paciorek (2003) there is a possible development of kernel convolution

approach for non-stationary covariances on the sphere, the harmonicity of this method

should be studied further for expansion of non-stationary covariances for different quan-

tities of gravity field for points having the spherical coordinates (ϕ, λ, h).

Also, non-stationary covariance functions provide a more flexible tool to study

density-gravity covariance functions (Tscherning 1991), which leads to the solution of

the inverse gravimetric problem in geophysical exploration because a non-stationary

mass density distribution is more realistic than a stationary one.



19

Acknowledgements We wish to thank Dr Chris Paciorek for his many valuable comments

and advice, and for providing his PhD thesis on non-stationary covariance functions. We also

thank the reviewers C.C. Tscherning, F. Sansó and one anonymous for their constructively
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were merged) 5◦ × 5◦ blocks used to estimate local empirical covariances (bottom) [Mercator
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Fig. 2 Geometry and parameters of the ellipse used to parameterise the non-stationary kernels
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Fig. 3 Different forms of the kernels defined by Eq.(13): identical isotropic kernels repre-

senting stationary covariance functions (top-left); identical anisotropic kernels representing

stationary anisotropic covariance functions (top-right); kernels varying in orientation repre-

senting non-stationary covariance functions (bottom-left); kernels varying in orientation and

size representing non-stationary covariance functions (bottom-right) (adapted from Swall 1999)
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Fig. 6 Segmented stationary Cauchy empirical covariances for the eastern (left) and western

(right) parts of the Darling Fault test area
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left), 135◦ (lower right)
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from internal LSC covariance propagation (right) [Mercator projection]
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Table 1 Local empirical covariance parameters from EMPCOV of free-air gravity anomalies

over Australia residual to EGM96; cf. Fig. 1

Area No. of data Mean (mGal) C0 (mGal2) Ĉ0 (mGal2) d̂ (◦)

prior variance variance from

EMPCOV

1 10409 8.62 501.1 541.98 0.76

2 13559 7.69 397.7 458.32 0.59

3 16371 6.38 1590.5 1465.58 0.81

4 18726 -17.49 753.7 1848.09 1.11

5 92340 10.66 347.4 345.02 0.95

6 33636 7.45 292.5 208.75 0.53

7 28234 1.01 219.3 211.97 0.74

8 21759 -6.69 205.9 285.58 0.64

9 34166 -5.45 213.0 246.63 0.84

10 1764 -0.81 250.2 181.59 0.63

11 29508 -3.88 347.6 224.72 0.69

12 12846 -9.40 430.4 913.79 0.94

13 11191 -7.66 477.1 571.12 0.84

14 2343 -29.36 320.0 1497.23 1.00

15 14452 2.07 340.6 320.93 0.56

16 33486 0.02 1305 1226.73 1.41

17 26635 -23.89 1188.6 2200.58 1.20

18 26819 7.74 97.9 130.40 0.90

19 5908 1.70 144.1 67.76 0.53

21 127460 -1.18 238.1 169.16 0.58

22 57644 4.10 348.5 903.50 1.01

23 16194 6.12 242.8 310.62 0.79

24+25 8065 4.76 164.8 233.62 0.78

26 77915 10.83 307.1 520.43 0.68

27 80582 9.40 733.6 1461.37 1.04

28 27397 1.86 124.0 115.47 0.87

29 18778 -0.34 345.3 309.21 0.88

30 13407 -4.59 379.3 440.55 1.29

31 3070 21.12 353.3 1282.11 0.90

32 43637 3.79 920.2 434.98 0.75

33 49176 -0.14 191.8 90.27 0.62

34 23626 -5.26 188.6 217.84 0.76

35 27423 -0.40 130.8 89.04 0.74

37 4641 12.49 738.1 1293.03 0.52

38 16144 4.21 369.1 345.40 0.75

39 4155 -1.35 278.7 332.60 0.49

40 61084 33.12 547.2 1793.10 0.59
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Table 2 Non-stationary versus stationary covariance functions

Name stationary non-stationary

Cauchy (e.g., Moritz 1980) C(r) = C0
1+( r

d
)2

C(si, sj) = C0|Σi|
1
4 |Σj |

1
4

��� |Σi|+|Σj |
2

���− 1
2
�

1
1+Qij

�
Gaussian (e.g., Kearsley 1977) C(r) = C0 exp

�
− r2

d2

�
C(si, sj) = C0|Σi|

1
4 |Σj |

1
4

��� |Σi|+|Σj |
2

���− 1
2

exp(−Qij)

Table 3 Comparison of distance measures for covariance functions in terms of their station-

arity

Covariance function Distance measure Parameter

stationary isotropic r2 = (si − sj)
T Σ−1(si − sj) Σ = I

stationary anisotropic r2 = (si − sj)
T Σ−1(si − sj) Σ = Θ(α)∆(dmin, dmax)Θ(α)T

non-stationary Qij = (si − sj)
T [ 1

2
(Σi + Σj)]

−1(si − sj) Σi, Σj

Table 4 Cauchy model parameter estimates for the global and east-west segmented stationary

covariances

mean (mGal) var (mGal2) d̂ (◦)

global 85.008 2287.889 .3

west 41.665 186.964 .09 (dmax)

east 134.386 100.088 .04 (dmin)

Table 5 Statistics from the external cross-validation of the differences between observed and

predicted residual free-air gravity anomalies (units in mGal)

No. points Min Max Mean STD RMS

stationary covariance 529 -6.343 8.063 -0.165 1.180 1.192

non-stationary covariance 529 -6.191 5.827 -0.018 1.130 1.131

Table 6 Statistics of internal errors from LSC covariance propagation (units in mGal)

No. points Min Max Mean STD RMS

stationary covariance 529 0.369 1.347 0.412 0.115 0.428

non-stationary covariance 529 0.001 0.302 0.015 0.033 0.087


