

 NOTICE: this is the author’s version of a work that was accepted for
publication in Applied Mathematics and Computations. Changes
resulting from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes may
have been made to this work since it was submitted for publication.
A definitive version was subsequently published in Applied
Mathematics and Computations, 217, 1, 2010 DOI
10.1016/j.amc.2010.05.009

ACCEPTED MANUSCRIPT

A Critical Review of Discrete Filled Function Methods in

Solving Nonlinear Discrete Optimization Problems

Siew Fang Woon ∗, Volker Rehbock †

Abstract

Many real life problems can be modeled as nonlinear discrete optimization problems. Such

problems often have multiple local minima and thus require global optimization methods.

Due to high complexity of these problems, heuristic based global optimization techniques

are usually required when solving large scale discrete optimization or mixed discrete op-

timization problems. One of the more recent global optimization tools is known as the

discrete filled function method. Nine variations of the discrete filled function method in

literature are identified and a review on theoretical properties of each method is given.

Some of the most promising filled functions are tested on various benchmark problems.

Numerical results are given for comparison.

Keywords: Discrete filled function; discrete global optimization; nonlinear discrete opti-

mization; heuristic.

1 Introduction

Many real life applications, such as production planning, finance, scheduling, and opera-

tions involve integer valued decision variables. We distinguish between discrete optimiza-

tion problems, where all decision variables are integer valued, and mixed discrete optimiza-

tion problems, where only some of the decision variables have integer values. The latter

type are often decomposed into purely discrete and continuous subproblems, respectively,

and hybrid algorithms for their solutions are developed on this basis. The discrete parts of

these hybrid algorithms are similar in nature to the purely discrete algorithms, which we

address in this paper. Most practical discrete and mixed discrete optimization problems

∗Department of Mathematics and Statistics, Curtin University of Technology, Bentley, Western Aus-

tralia 6102, Australia; Physical Science, College of Arts and Sciences, Universiti Utara Malaysia, 06010

Sintok, Kedah, Malaysia. Email: woonsiewfang@yahoo.com
†Department of Mathematics and Statistics, Curtin University of Technology, Bentley, Western Aus-

tralia 6102, Australia. Email: rehbock@maths.curtin.edu.au;

1

http://ees.elsevier.com/amc/viewRCResults.aspx?pdf=1&docID=19187&rev=1&fileID=190626&msid={2D1A48C1-8A1A-4679-96C1-B774B89E5009}

ACCEPTED MANUSCRIPT

are nonlinear and known to have more than one locally optimal solutions. This suggests

the need for global optimization techniques which seek the best solution amongst multiple

local optima. Global optimization problems may be unconstrained or constrained, and

different algorithms have been developed, depending on whether constraints are present

as well as on the nature of these constraints.

The challenge in global optimization is to avoid being trapped in the basins surround-

ing local minimizers. Several global methods have been proposed for solving discrete

optimization problems. These techniques can be classified into two main categories: exact

methods and heuristic methods. The branch and bound method [18, 20, 21], the cutting

plane method [7,10,45], Lagrangian relaxation [9,13], the nonlinear Lagrangian relaxation

method [40,41], the discrete Lagrangian method [38,39], dynamic programming [22], and

relaxation techniques [3, 17, 29] are popular exact methods. These exact methods can

ensure that a global solution is found when solving small size discrete optimization prob-

lems. However, such methods require excessive computational time when solving large

scale problems. Furthermore, only well-structured problems with good analytical proper-

ties can be solved efficiently using these exact methods.

Since nonlinear discrete optimization problems are generally NP-hard, there are no

efficient exact algorithms with polynomial-time complexity for solving them. Hence, a

heuristic computational approach is required, especially for high-dimensional problems.

The heuristic methods include greedy-search [1, 4, 6, 8], simulated annealing [24, 30], ge-

netic algorithm [2, 34, 37], tabu search [14, 23], and filled function techniques. Though

these methods cannot guarantee a global solution, satisfactory results can often be found

for high dimensional nonlinear discrete optimization problems in a reasonable amount of

computational time.

The discrete filled function method is one of the more recently developed global opti-

mization tools for discrete optimization problems. Once a local minimum has been deter-

mined by an ordinary descent method, the discrete filled function approach introduces an

auxiliary function to avoid entrapment in the basin associated with this minimum. The

local minimizer of the original function becomes a local maximizer of the auxiliary func-

tion. By minimizing the auxiliary function, the search moves away from the current local

minimizer in the hope of escaping the basin associated with this minimizer. Note that

2

ACCEPTED MANUSCRIPT

the auxiliary function is defined in terms of one or more parameters and needs to possess

certain properties, details of which are discussed in Section 3. The first filled function

was introduced by Ge in the late 1980s [11] in the context of solving continuous global

optimization problems. In [12], Ge and Huang extended the continuous filled function

concept to solve nonlinear discrete optimization problems, where a continuous global opti-

mization problem is formulated to approximate the discrete global optimization problem,

before solving it by the continuous filled function method. When a global minimizer of the

continuous approximation is found, the nearest integer point is used to approximate the

global solution of the discrete problem. However, the approximating continuous optimiza-

tion problem always generates more local minimizers than the original discrete one, thus

making it more difficult to determine a global solution. Numerical results reported in [26]

have shown that the true global minimizer is difficult to determine using this approach.

A detailed analysis of the continuous filled function can also be found in [26].

Zhu [46] is believed to be the first researcher to introduce a discrete equivalent of the

continuous filled function method in late 1990s. Such an approach is now known as a dis-

crete filled function method or discrete global descent method. A discrete filled function

method is able to overcome the difficulties encountered in using a continuous approxi-

mation, as discussed above. However, the filled function proposed by Zhu contains an

exponential term, which consequently makes it difficult to determine a point in a lower

basin [26,27]. Since then, several types of discrete filled functions with improved theoret-

ical properties have been proposed in [16, 27, 28, 32, 33, 42–44] to enhance computational

efficiency.

The discrete filled function approach can be described as follows. An initial point is

chosen and a local search is applied to find an initial discrete local minimizer. Then,

an auxiliary function, called a filled function, is constructed at this local minimizer. By

minimizing the filled function, either an improved discrete local minimizer is found or

the boundary of the feasible region is reached. The discrete local minimizer of the filled

function usually becomes a new starting point for minimizing the original objective with

the hope of finding an improved point compared to the first local minimizer. A new

filled function is constructed at this improved point. The process is repeated until no

improved local minimizer of the earlier filled function can be found. The final discrete

3

ACCEPTED MANUSCRIPT

local minimizer is then taken as an approximation of the global minimizer.

If a local minimizer of the filled function cannot be found after repeated searches ter-

minate on the boundary of the box constrained feasible region, the parameters defining

the filled functions are adjusted and the search is repeated. This adjustment of the param-

eters continues until the parameters reach their predetermined bounds; the best solution

obtained so far is then taken as the global minimizer. Note that some filled functions have

one parameter (such as those in [16,32,43]), while the rest are equipped with two parame-

ters. The latter filled functions often have one parameter which is partially dependent on

the other and this requires additional steps when tuning the parameters in order to satisfy

the required convergence criteria. Note that each filled function discussed here has unique

characteristics. The complexity of each filled function is also dependent on its associated

algorithm, as discussed in detail in the following sections.

Consider the following nonlinear discrete optimization problem:

min f(x), s.t. x ∈ X, (1)

where X = {x ∈ Z
n|xi,min ≤ xi ≤ xi,max}, Z

n is the set of integer points in R
n, and

xi,min, xi,max, i = 1, . . . , n, are given bounds. Let x1 and x2 be any two distinct points

in the box constrained set X and observe the following assumptions:

Assumption 1 There exists a constant K satisfying

1 ≤ max
x1,x2∈X
x1 6=x2

‖ x1 − x2 ‖≤ K < ∞,

where ‖ · ‖ is the Euclidean norm.

Assumption 2 There exists a constant L, 0 < L < ∞, such that

|f(x1) − f(x2)| ≤ L ‖ x1 − x2 ‖ .

Most discrete filled function methods are designed to solve box constrained problems.

Unconstrained and more generally constrained problems may be converted into an equiv-

alent box constrained form. For example, consider the following unconstrained discrete

4

ACCEPTED MANUSCRIPT

optimization problem,

min f(x), s.t. x ∈ Z
n. (2)

If f is coercive, i.e., f(x) → +∞ as ‖ x ‖→ +∞, then there exists a box which contains

all discrete minimizers of f . Hence, the formulation in (2) can be transformed into an

equivalent formulation in (1) and thus can be solved by any discrete filled function method.

Many discrete filled function algorithms in the literature, such as those in [16, 27, 28, 44],

are also directly applicable to linearly constrained problems as long as the resulting feasible

region is convex and pathwise connected.

As for generally constrained problems, the nonlinear constraints are usually handled

with a penalty method. Consider the following general nonlinear constrained discrete

optimization problem,

min g0(x), s.t. x ∈ Λ, (3)

where Λ = {x ∈ Z
n : gi(x) ≤ 0, i = 1, . . . ,m} and Z

n is the set of integer points in

R
n. In [26], the constrained problem (3) is converted into an equivalent box constrained

problem by adding a penalty term to the objective function f , i.e.,

f(x) = g0(x) + α0

m
∑

i=1

max{0, gi(x)} (4)

or

f(x) = g0(x) + α0

m
∑

i=1

[max{0, gi(x)}]2, (5)

where α0 is a sufficiently large parameter. Note that it is difficult to determine an ex-

act penalty parameter when solving these NP-hard problems and thus only approximate

solutions can be determined. Note also that the discrete filled function method in [43]

takes a different approach and incorporates constraints directly into the formulation of

the filled function. The purpose of this paper is to review several discrete filled functions

and their associated algorithms as proposed in the literature. The remainder of this paper

is organized as follows. We review the basic discrete optimization concepts and present a

generic discrete filled function algorithm in the following section. Then, we discuss several

individual discrete filled function formulations, their properties, and particulars of their

associated algorithms in Section 3. The performances of selected filled function algorithms

5

ACCEPTED MANUSCRIPT

when applied to several test problems are compared in Section 4.

2 Discrete Optimization: Concepts & Approach

2.1 Preliminary Concepts

We recall some definitions and concepts used in the discrete optimization area.

Definition 1 A sequence {x(i)}k+1
i=0 between two distinct points x∗ and x∗∗ in X is a

discrete path in X if x(0) = x∗, x(k+1) = x∗∗, x(i) ∈ X for all i, x(i) 6= x(j) for i 6= j, and

‖ x(i+1) − x(i) ‖= 1 for all i. If such a discrete path exists, then x∗ and x∗∗ are pathwise

connected in X. If every two distinct points in X are pathwise connected in X, then X is

a pathwise connected set.

Definition 2 For any x ∈ X, the neighbourhood of x is defined by N(x) = {w ∈ X| w =

x ± ei : i = 1, 2, . . . , n}. Here, ei denotes the i-th standard unit basis vector of R
n, with

the i-th component equal to one and all other components equal to zero.

Definition 3 The set of all feasible directions at x ∈ X is defined by D(x) = {d ∈ R
n :

x + d ∈ N(x)} ⊂ E = {±e1, . . . ,±en}.

Definition 4 d ∈ D(x) is a descent direction of f at x if f(x + d) < f(x).

Definition 5 d∗ ∈ D(x) is a discrete steepest descent direction of f at x if it is a descent

direction and f(x + d∗) ≤ f(x + d) for any d ∈ D(x).

Definition 6 x∗ ∈ X is a local minimizer of X if f(x∗) ≤ f(x) for all x ∈ N(x∗). If

f(x∗) < f(x) for all x ∈ N(x∗) \ x∗, then x∗ is a strict local minimizer of f .

Definition 7 x∗ is a global minimizer of f if f(x∗) ≤ f(x) for all x ∈ X. If f(x∗) < f(x)

for all x ∈ X \ x∗, then x∗ is a strict global minimizer of f .

Definition 8 x is a vertex of X if for each d ∈ D(x), x + d ∈ X and x− d /∈ X. Let X̃

denote the set of vertices of X.

Definition 9 B∗ ⊂ f is a discrete basin of f corresponding to x∗ if it satisfies the follow-

ing conditions:

6

ACCEPTED MANUSCRIPT

• It is pathwise connected.

• It contains x∗.

• For each x ∈ B∗, any connected path consisting of descent steps and starting at x

converges to x∗.

Definition 10 Let x∗ and x∗∗ be two distinct local minimizers of f . If f(x∗∗) < f(x∗),

then the discrete basin B∗∗ of f associated with x∗∗ is said to be lower than the discrete

basin B∗ of f associated with x∗

Definition 11 Let x∗ be a local minimizer of −f . The discrete basin of −f at x∗ is called

a discrete hill of f at x∗.

Definition 12 Let SL = {x ∈ X : f(x) < f(x∗)} and SU = {x ∈ X : f(x) ≥ f(x∗)}.

A discrete filled function is defined as an auxiliary function constructed at a local

minimizer of the original function f , where the local minimizer of f becomes a local

maximizer of the auxiliary function. By minimizing the auxiliary function, the search

moves away from the current local minimizer in the hope of escaping the basin associated

with this minimizer. Note that the auxiliary function is defined in terms of one or more

parameters and needs to possess certain properties, details of which are discussed in the

next section.

2.2 Generic Discrete Filled Function Approach

We present the generic framework of a discrete filled function algorithm. The main algo-

rithm requires repeated searches for a local minimum. We thus state the local search as a

separate algorithm (see Algorithm 1). The global algorithm involves repeated construction

of an auxiliary function in the hope of escaping basins associated with local minimizers.

Algorithm 1 Discrete Steepest Descent Method

1. Choose an initial point x ∈ X.

2. If x is a local minimizer of f , then stop. Otherwise, find the discrete steepest descent

direction d∗ ∈ D(x) of f .

7

ACCEPTED MANUSCRIPT

3. Set x := x + d∗. Go to Step 2.

Remark 1 Note that some methods in the literature, such as [32, 46], merely require a

discrete descent direction at Step 2, rather than a discrete steepest descent direction.

Algorithm 2 Discrete Filled Function Method

1. Initialization.

Set the bounds of each parameter in the formulation of the discrete filled function.

Initialize the parameters.

Identify suitable reduction or increment strategies for each parameter.

Choose an initial starting point x0 ∈ X.

2. Local search of the original function.

Starting from x0, minimize f(x) using Algorithm 1 to obtain a local minimizer x∗

of f .

3. Neighbourhood search.

(a) Identify the neighbourhood of x∗ as N(x∗) = {w1,w2, . . . ,wq}, where q is the

total number of points in N(x∗), q ≤ 2n. Set ℓ = 1.

(b) Define the current point, xc := wℓ.

4. Local search of discrete filled function.

Let Gx
∗ denote the discrete filled function associated with x∗.

Minimize Gx
∗ using Algorithm 1 starting from xc.

Let x́ be the obtained local minimizer of Gx
∗.

5. Checking the status of x́.

If f(x́) < f(x∗), set x0 := x́ and go to Step 2. Otherwise, go to Step 6.

6. Checking other search directions.

At this point, the algorithms in [27, 28, 44] will adjust the parameters of the filled

function and return to Step 4 if x́ ∈ X\X̃.

Otherwise, along with most of the remaining algorithms, they set ℓ := ℓ + 1.

If ℓ ≤ q, all of the algorithms return to Step 3(b).

Otherwise, the parameters of the filled function are adjusted before returning to

8

ACCEPTED MANUSCRIPT

Step 3(a).

If all the parameters of the filled function exceed their prescribed bounds anywhere

in this step, the current value of x∗ is taken as the global minimizer.

Remark 2 Some methods in the literature, such as [32, 33, 44], replace N(x∗) in Step 3

with M = {w1,w2, . . . ,wq}, where wi, i = 1, . . . , q, are randomly chosen from X. Also,

q needs to be chosen by the user in this case.

Remark 3 Some algorithms [16, 27, 28, 33, 42] do not require a local minimizer of Gx
∗

in Step 4. Instead, in the attempt to reduce Gx
∗ , if any point xk is found such that

f(xk) < f(x∗), they set x0 := xk and go back to Step 2.

Remark 4 Both functions f and Gx
∗ are minimized subject to X, except in [43]. The

feasible regions of f and Gx
∗ are defined by Λ and X, respectively, in [43].

Remark 5 Note that the methods in [16,27,28,44] define X via upper and lower bounds

on the variables as well as a set of linear inequality constraints.

Remark 6 A slightly different approach is proposed in [27] for Step 4. If f and Gx
∗ share

at least one common descent direction, the authors choose a steepest descent direction

which results in the maximum reduction for f + Gx
∗ . If such a direction does not exist,

the method reverts to find a steepest descent direction for Gx
∗ only.

For a clearer picture on how the filled function algorithm works, we consider an illus-

trative example in the next subsection.

2.3 Illustrative Example

min f(x) = 2x2
1 − 1.05x4

1 +
1

6
x6

1 − x1x2 + x2
2, (6)

s.t. xi =
yi

1000
, −2000 ≤ y1 ≤ 2000, −1500 ≤ y2 ≤ 1500, y1, y2 integers.

Problem (6) is the 3-hump back camel function proposed in [5] which has 1.2007001×

107 feasible points. This box constrained problem has a global minimum solution at

x∗
global = [0, 0]⊤ with f(x∗

global) = 0. The discrete filled function method in [27] is used to

9

ACCEPTED MANUSCRIPT

−2000−1000010002000
−2000 −1000 0 1000 2000

0

2

4

6

8

10

Figure 1: The 3-hump Back Camel Function.

solve this problem. The algorithm begins with a point x0 = [1.500, 1.500]⊤ with f(x0) =

1.0828125. By using the discrete steepest descent method, an initial local minimizer of

x∗
1 = [1.748, 0.874]⊤ is found with f(x∗

1) = 0.2986396. Next, a discrete filled function, G
x
∗
1
,

is constructed at x∗
1. Starting with a point in N(x∗

1), xc = [1.749, 0.874]⊤ , Algorithm 1 is

used to minimize G
x
∗
1

and a local minimizer, x́ = [0.302, 0.535]⊤ , with f(x́) = 0.2984554,

is found. Since f(x́) < f(x∗
1), the original function f is minimized once more, starting at

x0 = x́, and the second local minimizer x∗
2 = [0, 0]⊤, with f(x∗

2) = 0, is obtained. Next,

a new discrete filled function G
x
∗
2

is constructed at x∗
2 = [0, 0]⊤. A neighbourhood point

of x∗
2 = [0, 0]⊤, namely xc = [1, 0]⊤, is chosen, and G

x
∗
2

is minimized starting at xc. The

local minimizer of G
x
∗
2

is a vertex, x́ = [2.000, 1.500]⊤ , but f(x́) > f(x∗
2). Other searches

for a minimum of G
x
∗
2

in a lower basin are then carried out, starting from [0, 1]⊤, [−1, 0]⊤,

and [0,−1]⊤, respectively. Since none of these yield an improved point, the parameter of

G
x
∗
2

is adjusted. The revised G
x
∗
2

is then minimized once more starting from each of these

neighbourhood points in turn. When no local minimizer of G
x
∗
2

in a lower basin is found

and the termination criteria is met, x∗
2 = [0, 0]⊤ is taken to be the global solution.

In the next section, we discuss and analyze various discrete filled function methods

from the literature.

10

ACCEPTED MANUSCRIPT

3 Discrete Filled Function Methods

3.1 Discrete Filled Function in Zhu [46]

Zhu is believed to be the first researcher to adapt the continuous filled function approach

directly for solving discrete optimization problems. Let x∗ denote the current discrete

local minimizer. A filled function dependent on parameters θ and p is defined as

Gθ,p,x∗(x) =
1

θ + f(x)
exp

(‖ x− x∗ ‖2

−p2

)

. (7)

Assuming that p and θ are chosen so that

0 < θ + f(x∗) < h

and

p2 ln
(θ + f̄

θ + f(x∗)

)

< 1,

where f̄ is an upper bound of f over X and h ≤ min{|f(x1)−f(x2)| : f(x1) 6= f(x2), xj ∈

X, j = 1, 2}, the filled function (7) has the following properties:

� Gθ,p,x∗(x∗ + d) < Gθ,p,x∗(x∗), for all d ∈ D(x∗).

� Given f(x1) ≥ f(x∗), f(x2) ≥ f(x∗), and ‖ x2−x∗ ‖2<‖ x1−x∗ ‖2, Gθ,p,x∗(x1) <

Gθ,p,x∗(x2) (i.e. if f increases, Gθ,p,x∗ decreases).

� For any x ∈ X,

• Gθ,p,x∗(x) < 0 ⇐⇒ f(x) < f(x∗);

• Gθ,p,x∗(x) > 0 ⇐⇒ f(x) ≥ f(x∗).

� Let x1 ∈ X such that f(x1) ≥ f(x∗).

• If there exists d ∈ D(x1) such that Gθ,p,x∗(x1 + d) < 0; or

• If |{d ∈ D(x1) : x1 + d ∈ X}| = n and there exists d ∈ D(x1) such that

Gθ,p,x∗(x1 + d) < Gθ,p,x∗(x1); or

• If |{d ∈ D : x1 + d ∈ X}| > n;

11

ACCEPTED MANUSCRIPT

then there exists some d ∈ D(x1) such that Gθ,p,x∗(x1 + d) < Gθ,p,x∗(x1) <

Gθ,p,x∗(x∗).

� Any discrete local minimizer of the discrete filled function Gθ,p,x∗ must be in the

set SL or X̃ .

Zhu suggests that the algorithm should stop when all searches for a minimum of Gθ,p,x∗

starting in N(x∗) terminate at vertices without finding an improved point of f . Note that

the algorithm in [46] does not require updating of the parameters θ and p. Thus, the final

x∗ is assumed to be the global minimum. Two numerical examples are demonstrated to

test the efficiency of this filled function. However, the disadvantage of his method is that

it is almost impossible to find a negative filled function value that would indicate that

a point in a lower basin exists. This is because the discrete filled function contains an

exponential term, making it ill conditioned and also leading to poor efficiency as noted

in [27]. In addition, it is difficult to determine suitable values of h and f̄ , thus making it

difficult to find suitable values for parameters θ and p.

3.2 Discrete Filled Function in Ng, Zhang, Li & Tian [28]

A new discrete filled function with improved theoretical properties was proposed in [28]

several years later. Recall that B∗ denotes a discrete basin of f that contains the current

discrete local minimizer x∗. According to [28], a function Gµ,ρ,x∗ is defined to be a discrete

filled function of f at x∗ if it satisfies the following:

� x∗ is a strict local maximizer of Gµ,ρ,x∗ .

� Gµ,ρ,x∗ has no discrete local minimizers in B∗ or in any discrete basin of f higher

than B∗.

� If f has a discrete basin B∗∗ at x∗∗ which is lower than B∗, then there is a

discrete point x́ ∈ B∗∗ that minimizes Gµ,ρ,x∗ on a connected discrete path

{x∗, . . . , x́, . . . ,x∗∗} in X.

The discrete filled function proposed in [28] is

Gµ,ρ,x∗(x) = f(x∗) − min[f(x∗), f(x)] − ρ ‖ x− x∗ ‖2 +µ{max[0, f(x) − f(x∗)]}2, (8)

12

ACCEPTED MANUSCRIPT

where ρ and µ are parameters which satisfy certain properties as detailed below.

� Recall the meaning of K and L from Assumptions 1 and 2. Suppose that x̄ ∈ SU .

• If ρ > 0 and 0 ≤ µ < ρ
L2 , then Gµ,ρ,x∗(x̄) < 0 = Gµ,ρ,x∗(x∗).

• If ρ > 0 and 0 ≤ µ ≤ ρ
2K2L2 , then for each d̄ ∈ D(x̄) such that f(x̄ + d̄) ≥

f(x∗) and ‖ x̄ + d̄ − x∗ ‖>‖ x̄ − x∗ ‖, Gµ,ρ,x∗(x̄ + d̄) < Gµ,ρ,x∗(x̄) < 0 =

Gµ,ρ,x∗(x∗).

� If ρ > 0 and 0 ≤ µ < ρ
L2 , then x∗ is a strict local maximizer of Gµ,ρ,x∗ . If x∗ is

a global minimizer of f , then Gµ,ρ,x∗(x∗) < 0, for all x ∈ X\x∗.

� Let x1, x2, x∗ be three distinct points in X. If ‖ x2 − x∗ ‖>‖ x1 − x∗ ‖, then

1 ≤ ‖ x2 − x1 ‖
‖ x2 − x∗ ‖ − ‖ x1 − x∗ ‖ < 2K2.

� Let x1, x2 ∈ X be two points such that 0 <‖ x1 − x∗ ‖<‖ x2 − x∗ ‖ and

f(x∗) ≤ f(x1) ≤ f(x2). If ρ > 0 and 0 ≤ µ ≤ ρ
2K2L2 , then

• Gµ,ρ,x∗(x2) < Gµ,ρ,x∗(x1) < 0 = Gµ,ρ,x∗(x∗);

• Gµ,ρ,x∗(x∗) has no local minimizers in B∗ or in any discrete basin of f higher

than B∗.

� For every x́,x∗ ∈ X, there exists d ∈ E such that ‖ x́ + d− x∗ ‖>‖ x́− x∗ ‖.

� Let x∗ ∈ X and x́ ∈ X be the local minimizers of f and Gµ,ρ,x∗ , respectively. If

ρ > 0 and 0 ≤ µ ≤ ρ
2K2L2 , then

• f(x́ + d́) < f(x∗) for all d́ ∈ D(x́) when f(x́) ≥ f(x∗).

• x́ is in a basin B∗∗ (associated with a local minimum x∗∗) of f which is

lower than basin B∗ (associated with x∗) .

Both µ and ρ are initialized as 1. This filled function ensures that a local minimizer

of Gµ,ρ,x∗ is either a better point in a lower basin or a vertex of X. It is not necessary

to find the minimizer of Gµ,ρ,x∗ if a point xk with f(xk) < f(x∗) is found in Step 4 of

Algorithm 2. Since xk is an improved point, the algorithm sets x0 := xk and returns to

Step 2 to minimize the original function f . If the minimizer of Gµ,ρ,x∗ is not a vertex, µ is

reduced via µ := µ/10 and Gµ,ρ,x∗ is minimized once more starting at the same xc. When

13

ACCEPTED MANUSCRIPT

no improved point is found after the minimization process for Gµ,ρ,x∗ ends up at a vertex,

then set ℓ := ℓ+1 and return to Step 3(b). If ℓ > q, ρ is reduced. The algorithm terminates

when the lower bound of ρ, ρL, is met. Several test problems were investigated in [28]

and the proposed discrete filled function was shown to be efficient in solving large scale

problems involving up to 200 variables. Note that ρL was set to 1 for the computations

in [28] and further reduction of ρ was not necessary since all test problems yielded the

global solution when ρ = 1. According to one of the characteristics of this filled function,

x́, the local minimizer of Gµ,ρ,x∗ , lies on a discrete path {x∗, . . . , x́, . . . ,x∗∗} in X that

connects the current basin B∗ at x∗ to a lower basin B∗∗. However, the properties of this

filled function do not guarantee that x́ is a true minimizer of the original function. A

revised discrete filled function is proposed in [27] to overcome this difficulty.

3.3 Discrete Filled Function in Ng, Li & Zhang [27]

Based on the work in [28], a new discrete filled function Gµ,ρ,x∗ at x∗ is defined as follows:

Gµ,ρ,x∗(x) = Aµ(f(x) − f(x∗)) − ρ ‖ x− x∗ ‖, (9)

Aµ(y) = y·µ
[

(1 − c)

(

1 − cµ

µ − cµ

)−y/ω

+ c

]

,

where ω > 0 is a sufficiently small number and 0 < c ≤ 1 is a constant. The function

Gµ,ρ,x∗(x) is a discrete filled function when certain conditions of the parameters µ and ρ

are satisfied as detailed in the following conditions:

� x∗ is a strict local maximizer of Gµ,ρ,x∗ .

� Gµ,ρ,x∗ has no local minimizer in the set SU\X̃ .

� x∗∗ ∈ X \ X̃ is a local minimizer of f if and only if x∗∗ is a local minimizer of

Gµ,ρ,x∗ . In short, x∗∗ ∈ SL.

� If ρ > 0 and 0 < µ < min{1, ρ
L}, then x∗ is a strict local maximizer of Gµ,ρ,x∗ .

If x∗ is a global minimizer of f , then Gµ,ρ,x∗(x) < 0 for all x ∈ X \ x∗.

� Let d̄ ∈ D(x̄) be a feasible direction at x̄ ∈ SU such that ‖ x̄+d̄−x∗ ‖>‖ x̄−x∗ ‖.

If ρ > 0 and 0 < µ < min{1, ρ
2K2L

}, then Gµ,ρ,x∗(x̄ + d̄) < Gµ,ρ,x∗(x̄) < 0 =

14

ACCEPTED MANUSCRIPT

Gµ,ρ,x∗(x∗).

� Let x∗∗ be a strict local minimizer of f with f(x∗∗) < f(x∗). If ρ > 0 is

sufficiently small and 0 < µ < 1, then x∗∗ is a strict local minimizer of Gµ,ρ,x∗ .

� Let x́ be a strict local minimizer of Gµ,ρ,x∗ and d̄ ∈ D(x́) be a feasible direction

at x́ such that ‖ x́ + d̄ − x∗ ‖>‖ x́ − x∗ ‖. If ρ > 0 is sufficiently small and

0 < µ < min{1, ρ
2K2L

}, then x́ is a local minimizer of f .

� Assume that every local minimizer of f is strict. Suppose that ρ > 0 is sufficiently

small and 0 < µ < min{1, ρ
2K2L

}. Then, x∗∗ ∈ X \ X̃ is a local minimizer of f

with f(x∗∗) < f(x∗) if and only if x∗∗ is a local minimizer of Gµ,ρ,x∗ .

This is an improved version of the discrete filled function in [28], to ensure x́ coincides

with x∗∗. In other words, every local minimizer of the discrete filled function Gµ,ρ,x∗ is

also a local minimizer for the original function f . Both µ and ρ are initialized as 0.1. The

parameter µ is reduced if x́ is neither a vertex nor an improved point by setting µ := µ/10

and returning to Step 3(a). When all the searches end up at vertices, set ℓ := ℓ + 1

and return to Step 3(b). Another parameter ρ is adjusted when ℓ > q. Similar to [28],

the algorithm for minimizing Gµ,ρ,x∗ exits prematurely when an improved point xk with

f(xk) < f(x∗) is found in Step 4 of Algorithm 2. The algorithm sets x0 := xk and returns

to Step 2 to minimize the original function f . Note that a direction which yields the

greatest improvement of f + Gµ,ρ,x∗ is chosen when minimizing Gµ,ρ,x∗ , assuming that a

direction for improving f and Gµ,ρ,x∗ does exist simultaneously. If such a direction does

not exist, the algorithm chooses the steepest descent direction such that Gµ,ρ,x∗(xc+d∗) <

Gµ,ρ,x∗(xc). The algorithm terminates when ρL = 0.1. Note that ρ is fixed at 0.1, since

all test problems yield a global solution with this setting. The filled function in (9) is

shown to increase computational efficiency when compared with that in [28]. Several test

problems with up to 1.38 × 10104 feasible points were solved using this method.

3.4 Discrete Filled Function in Yang & Liang [42]

A two parameter exponential filled function,

Ga,b,x∗(x) =
1

a+ ‖ x − x∗ ‖Υ

(

max{f(x) − f(x∗) + b, 0}
)

, (10)

15

ACCEPTED MANUSCRIPT

where

Υ(y) =















exp(−a/y), if y 6= 0,

0, if y = 0,

is introduced in [42]. Let SM represent the set of discrete local minimizers of f , a < 0,

and

0 < b < max
x
∗,x∗∗∈SM

f(x∗∗)<f(x∗)

(

f(x∗) − f(x∗∗)

)

.

Ga,b,x∗ is a discrete filled function of f if Ga,b,x∗(x) has the following properties:

� x∗ is a strict discrete local maximizer of Ga,b,x∗ .

� Ga,b,x∗ has no discrete local minimizers in SU .

� If x∗ is not a discrete global minimizer of f , then Ga,b,x∗ does have a discrete

minimizer x́ ∈ SL.

� For any x,x∗ ∈ X, there exists d ∈ D(x) such that ‖ x + d − x∗ ‖<‖ x − x∗ ‖.

� Let x1, x2, x∗ be three distinct points in X. If ‖ x2 − x∗ ‖>‖ x1 − x∗ ‖, then

‖ x1 − x∗ ‖
‖ x2 − x∗ ‖ < 1 − 1

2K2
.

� If, for any x1, x2 ∈ X,

• ‖ x2 − x∗ ‖>‖ x1 − x∗ ‖,

• f(x1) ≥ f(x∗),

• f(x2) − f(x∗) + b > 0,

then Ga,b,x∗(x2) < Ga,b,x∗(x1).

The parameters a and b are initialized as 0.01 and 1, respectively. When all the search

directions from x∗ have been utilized but no improved point of f is found (i.e., ℓ > q) in

Step 6 of Algorithm 2, the user proceeds as follows. If a > 10−7, only a is reduced by

a factor of 10. Otherwise, both a and b are reduced by a factor of 10. The algorithm

terminates when b ≤ 10−5. Note that it is not necessary to find the minimizer of Ga,b,x∗

for this algorithm. As long as a point xk with f(xk) < f(x∗) is found when minimizing

Ga,b,x∗ , the algorithm reverts to f to minimize the original function. As in [28], a local

16

ACCEPTED MANUSCRIPT

minimizer of this filled function is not guaranteed to be a true local minimizer of the

original function f .

3.5 Discrete Filled Function in Shang & Zhang [32]

A third exponential filled function is suggested in [32]. Let x∗ be the current local mini-

mizer and choose any x0 such that f(x0) ≥ f(x∗). According to [32], G̟,x0,x∗ is called a

discrete filled function of f at x∗ if G̟,x0,x∗ has the following properties:

� G̟,x0,x∗ has no local minimizer in SU\{x0} and x0 is not necessarily a local

minimizer of G̟,x0,x∗ .

� If x∗ is not a global minimizer of f , there exists a local minimizer x́ ∈ SL of

G̟,x0,x∗ such that f(x́) < f(x∗).

� For any x ∈ X, if x 6= x0, there exists d ∈ D(x) such that

‖ x + d− x0 ‖<‖ x− x0 ‖.

A discrete filled function is defined as

G̟,x0,x∗(x) = ζ(‖ x− x0 ‖) − ξ(̟(1 − exp(−[min{f(x) − f(x∗), 0}]2))), (11)

where ̟ > 0 is a parameter to be chosen and the prefixed point x0 satisfies f(x0) ≥ f(x∗).

The functions ζ(t) and ξ(t) have the following characteristics:

� ζ(t) and ξ(t) are strictly increasing for any t ∈ [0,+∞).

� ζ(0) = 0 and ξ(0) = 0.

� ξ(t) → C > 0 as x → +∞, where C ≥ maxx∈X ζ(‖ x − x0 ‖).

In addition, the following conditions hold for G̟,x0,x∗:

� G̟,x0,x∗ has no local minimizer in SU\{x0} for any ̟ > 0.

� Suppose SL 6= ∅. If ̟ satisfies ̟ >
ξ−1(C) exp([f(x̄∗) − f(x∗)]2)

exp([f(x̄∗) − f(x∗)]2) − 1
, where x̄∗ is a

global minimizer of f , then G̟,x0,x∗ has a local minimizer in SL.

� Suppose that ε is a small positive constant and ̟ satisfies ̟ >
ξ−1(C) exp(ε2)

exp(ε2) − 1
.

Then, given any x∗ of f such that f(x∗) ≥ f(x̄∗) + ε, where x̄∗ is a global

minimizer of f , G̟,x0,x∗ has at least one local minimizer in SL.

17

ACCEPTED MANUSCRIPT

Instead of performing a neighbourhood search in Step 3 of Algorithm 2, the implemen-

tation in [32] uses any initial point on the boundary of X to minimize G̟,x0,x∗ . In [32],

the parameter ̟ is fixed to 400.5(10
√

n + 1), where n is the dimension of a problem. For

each subsequent initial point drawn from the boundary of X, i := i + 1, the algorithm

terminates when i = 10n. Every local minimizer of G̟,x0,x∗ is assumed to be an improved

point (Step 5 of Algorithm 2 is bypassed). Though this filled function has only one fixed

parameter, the local search of G̟,x0,x∗ can become computationally intensive due to the

large number of initial points that may need to be tested before the termination criteria

is met. A nonlinear box constrained problem with up to 1.71 × 105 feasible points was

solved in [32]. Similar to [28, 42], a local minimizer of the filled function G̟,x0,x∗ is not

necessarily a local minimizer of the original function f . Furthermore, a prefixed point x0

is required at the beginning of the algorithm, resulting in the minimization process typi-

cally converging to x0 rather than an improved point of the original function. A refined

formulation of this filled function is suggested in [33].

3.6 Discrete Filled Function in Shang & Zhang [33]

Let

Gδ,q,x∗(x) =
ln(1 + q max(f(x) − f(x∗) + δ, 0))

1+ ‖ x− x∗ ‖ (12)

be a discrete filled function of f with q > 0 and

0 < δ < min
x1,x2∈X
x1 6=x2

|f(x1) − f(x2)|.

It has the following properties:

� x∗ is a strict local maximizer of Gδ,q,x∗ .

� If f(x) ≥ f(x∗) and x 6= x∗, then x is not a local minimizer of Gδ,q,x∗ .

� If x∗ is not a global minimizer of f(x), there exists a local minimizer x́ of Gδ,q,x∗

in SL.

� If x1,x2 ∈ X are two distinct points which satisfy

• f(x1) ≥ f(x∗) and f(x2) ≥ f(x∗), and

18

ACCEPTED MANUSCRIPT

• ‖ x1 − x∗ ‖>‖ x2 − x∗ ‖> 0,

then Gδ,q,x∗(x1) < Gδ,q,x∗(x2) when q > 0 is sufficiently large.

� For any x1,x2 ∈ X which satisfy

• f(x2) ≥ f(x∗) > f(x1), and

• ‖ x1 − x∗ ‖>‖ x2 − x∗ ‖> 0,

Gδ,q,x∗(x1) < Gδ,q,x∗(x2).

This filled function overcomes the prefixed point issue in [32] to ensure a better point

of the original function is attained and suggests the use of an additional parameter. The

initial settings for δ and q are δ0 = 1 and q0 = 100, respectively. A random initial point in

X is used to minimize Gδ,q,x∗ instead of a neighbourhood point, as suggested in Step 3 of

Algorithm 2. If no local minimizer of Gδ,q,x∗ is found along the search from this random

point, another initial point in X is drawn and i := i + 1. When i > 2n, q := 10q and

q < 105, the user sets δ := δ/10 and q := q0 in Step 6 of Algorithm 2. Then, i is reset

to 1 and Gδ,q,x∗ is minimized again from the same starting point with the new parameter

values. Similar to the approach in [42], it is not necessary to find a minimizer of Gδ,q,x∗ .

The algorithm terminates when δ < 10−5 and ℓ = 2n, where n refers to the dimension

of the problem. Two test problems with up to 1.1739 × 1052 feasible points were solved

in [33]. Since a local minimizer of this filled function is not necessarily a local minimizer

of the original function f , further computation is needed to find the local minimizer of f

in a lower basin for each local minimizer of Gδ,q,x∗(x) found.

3.7 Discrete Filled Function in Yang & Zhang [44]

Suppose ϕ(t) is a continuously differentiable function satisfying the following conditions:

� ϕ(t) = ϑ when t ≥ ǫ; ϕ(t) = −ϑ when t ≤ −ǫ.

� ϕ́(t) ≥ 0, − ǫ ≤ t ≤ ǫ.

� ϕ(0) = 0.

19

ACCEPTED MANUSCRIPT

Suppose also that a function η(t) satisfies η(0) = 0 and ή(t) > 0, for t ≥ 0. The filled

function in [44] is given by

Gǫ,ν,x∗(x) = η(‖ x − x0 ‖)ϕ(f(x) − f(x∗) + ν), (13)

where x0 is an arbitrary point in X, ϑ is a positive constant, and both ǫ and ν are problem-

dependent parameters. The properties for this discrete filled function are as follows:

� The function Gǫ,ν,x∗ has no discrete local minimizer except at x0 in the region

S1 = {x ∈ X : f(x) ≥ f(x∗) + ǫ − ν}, where ǫ ≥ ν.

� If ν = 0, Gǫ,ν,x∗(x) has no discrete local minimizer except at x0 in S2 = {x ∈

X : f(x) ≥ f(x∗) + ǫ}.

� If ν = ǫ, Gǫ,ν,x∗(x) has no discrete local minimizer except at x0 in SU .

� Given ν = 0 or ν = ǫ, if ǫ is sufficiently small and x∗ is not a discrete global

minimizer of f , then Gǫ,ν,x∗(x) does have a discrete local minimizer x́ in SL.

� If x∗ is a global minimizer of f , then x0 is the unique discrete global minimizer

of Gǫ,ν,x∗(x) with ν > 0.

The functions η(t) and ϕ(t) in (13) must be chosen carefully to ensure computational

reliability and efficiency. As a guide, polynomial functions are suggested in [44] for both

η(t) and ϕ(t). Based on the characteristics of this filled function, ǫ and ν are initialized as

1.0 and 0, respectively, so that there exists a local minimizer of Gǫ,ν,x∗ in a lower basin.

The disadvantage of this filled function is that it depends heavily on the initial point x0 in

computing Gǫ,ν,x∗. Thus, x0 has to be chosen carefully and plays a crucial role in finding

a local minimizer of Gǫ,ν,x∗ such that f(x̄∗) ≤ f(x∗
1) + ǫ, where x̄∗ is the global minimum

of the original function. If a local minimizer of the filled function in a lower basin cannot

be determined, then x0 is taken as its local minimizer, with suitable values of ǫ and ν,

or x0 is assumed to be the global solution of the original function, which is not likely to

happen in practice. The algorithm terminates when ǫ < 0.0001.

20

ACCEPTED MANUSCRIPT

3.8 Discrete Filled Function in Gu & Wu [16]

Gu and Wu propose the discrete filled function

G̺,x∗(x) =
1

‖ x− x∗ ‖2 +1
E̺

(

f(x) − f(x∗)
)

+ F̺

(

f(x) − f(x∗)
)

, (14)

where

E̺(y) =































0, y ≤ −̺,

−2y3

̺3 − 3y2

̺2 + 1, −̺ < y ≤ 0,

1, y > 0,

and

F̺(y) =































y + ̺, y ≤ −̺,

(̺−2)y3

̺3 + (̺−3)y2

̺2 + 1, −̺ < y ≤ 0,

1, y > 0.

Define β0 = minx∈SL
(f(x∗) − f(x)). If the function parameter ̺ satisfies

0 < ̺ ≤ β0,

then the following results hold:

� For all x ∈ X, f(x) ≥ f(x∗) is equivalent to G̺,x∗(x) > 1.

� x∗ is not a global minimizer of f if and only if SL 6= ∅ and β0 > 0.

� x ∈ SL is equivalent to G̺,x∗(x) ≤ 0.

� x∗ is a strict discrete local maximizer of G̺,x∗ .

� If x∗ is not a global minimizer of f , then there exists a discrete local minimizer

of G̺,x∗ , denoted by x́.

� x́ is either in SL or X̃.

� Given x1,x2 ∈ SU , G̺,x∗(x1) > G̺,x∗(x2) is equivalent to ‖ x1−x∗ ‖<‖ x2−x∗ ‖.

The parameter ̺ is initialized as 1. It is updated in Step 6 of Algorithm 2 by setting

̺ := ̺/10 when all searches at x∗ have been used (i.e. ℓ > q) but no improved point of

21

ACCEPTED MANUSCRIPT

f is found. The algorithm terminates when ̺ = 10−5. The one-parameter filled function

suggested here guarantees that the minimizer of G̺,x∗ is also a minimizer of f . Based

on this approach, a refined algorithm which is capable of dealing directly with nonlinear

constraints is proposed in [43].

3.9 Discrete Filled Function in Yang, Wu & Bai [43]

An extended study of the filled function method in [16] is given in [43] to deal with the

nonlinear constrained problem (3). A one-parameter discrete filled function is defined as

Gr,x∗(x) =

(

1

‖ x − x∗ ‖2 +1
+ 1

)

Γ

(

Hr(f(x) − f(x∗)) +
m

∑

i=1

Hr(gi(x) − r)

)

, (15)

where

Hr(y) =































0, y ≤ −r,

(r−2)y3

r3 + (2r−3)y2

r2 + y + 1, −r < y ≤ 0,

y + 1, y > 0,

and

Γ(y) =































0, y ≤ 0.5,

−16y3 + 36y2 − 24y + 5, 0.5 < y ≤ 1,

1, y > 1.

Let β̌ = min{β0, β1}, where

β0 = min
x∈SL

(

f(x∗) − f(x)
)

and

β1 = min
x∈X\Λ

max
i∈{1,...,m}

gi(x).

If the parameter r satisfies

0 < r ≤ β̌,

Gr,x∗ is said to be a discrete filled function at x∗ and the following properties hold:

� x∗ is a strict discrete local maximizer of Gr,x∗ on X.

22

ACCEPTED MANUSCRIPT

� If x∗ is not a global minimizer of f , then there exists a x́ ∈ SL such that x́ is a

discrete local minimizer of Gr,x∗ .

� Any discrete local minimizer of Gr,x∗ is either in SL or in X̃ .

� Given x1,x2 ∈ X\SL, Gr,x∗(x1) > Gr,x∗(x2) if and only if ‖ x1−x∗ ‖<‖ x2−x∗ ‖.

� x ∈ X\SL if and only if Gr,x∗(x) > 1.

� x ∈ SL if and only if Gr,x∗(x) = 0.

Unlike the other filled functions discussed earlier, this filled function is capable of

solving constrained nonlinear problems directly. Sets Λ and X are the feasible regions

of f and Gr,x∗ , respectively. Note that as stated in [43], the algorithm is incomplete

without justifying how to handle the non-feasibility issue of x0 if x0 ∈ X\Λ happens to be

used at the beginning of the algorithm. Based on correspondence with the main author

in [43], we suggest an additional preliminary step before Step 1 in Algorithm 2 to check if

x0 ∈ Λ before minimizing f . If this condition is satisfied, then follow Step 1 in Algorithm 2.

Otherwise, set x∗ := x0 and go directly to Step 3 in Algorithm 2. Since the local minimizer

of the discrete filled function has to be tested for feasibility with respect to the original

function, it is not guaranteed to be a local minimizer of f . Thus, further computation is

needed for this single-parameter filled function approach for each minimizer of the filled

function found. The parameter r is set as 1 at the beginning of the algorithm, reduced

by r := r/10 when ℓ > q in Step 6 of Algorithm 2, and the algorithm terminates when

r = 10−5.

4 Solutions of Test Problems

In this section, we select several promising discrete filled function methods from those de-

scribed in the previous section, based on their theoretical properties and algorithms. These

functions are tested on several benchmark problems: Colville’s function, Goldstein and

Price’s function, Beale’s singular function, Powell’s singular function, and Rosenbrock’s

function. Note that our aim is to simply compare the efficiency of different discrete filled

function methods without necessarily solving high dimensional problems. Note, though,

23

ACCEPTED MANUSCRIPT

that these methods have been demonstrated to solve problems involving up to 200 vari-

ables [27,28]. These algorithms are as follows:

• Algorithm A extracted from [28].

• Algorithm B extracted from [27].

• Algorithm C extracted from [42].

• Algorithm D extracted from [43].

The performance of each of the filled function method used in solving the test problem

is summarized in the following subsections. The final optimal solution found for each

algorithm is recorded by x∗
final with its corresponding objective value f(x∗

final). The total

number of original function evaluations, the total number of discrete filled function eval-

uations, and the ratio of the average number of original function evaluations to reach the

global solution to the total number of feasible points are represented in Tables 1-5 by Ef ,

EG, and RE , respectively.

4.1 Problem 1: Colville’s Function [19, 27, 28, 31, 42]

min f(x) = 100
(

x2 − x2
1

)2
+

(

1 − x1

)2
+ 90

(

x4 − x2
3

)2
+

(

1 − x3

)2

+ 10.1
[

(

x2 − 1
)2

+
(

x4 − 1
)2

]

+ 19.8
(

x2 − 1
)(

x4 − 1
)

,

s.t. − 10 ≤ xi ≤ 10, xi integer, i = 1, 2, 3, 4.

This box constrained problem has 1.94481 × 105 feasible points. The global minimum

solution is x∗
global = [1, 1, 1, 1]⊤ with f(x∗

global) = 0. Six starting points were considered

for the algorithms, namely [1, 1, 0, 0]⊤, [1, 1, 1, 1]⊤ , [−10, 10,−10, 10]⊤ , [−10,−5, 0, 5]⊤ ,

[−10, 0, 0,−10]⊤ , and [0, 0, 0, 0]⊤. All discrete filled function algorithms succeeded in find-

ing the global minimum from all starting points. A summary of the computational results

is displayed in Table 1. Numerical results show that Algorithm B has the smallest total

number of original function evaluations, and the average RE is 0.008635805.

24

ACCEPTED MANUSCRIPT

 Table 1: Numerical Results of Problem 1.
Type x0 x∗

final
f(x∗

final
) Ef EG RE

Algorithm A [1, 1, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 2095 7058 0.010772261

[1, 1, 1, 1]⊤ [1, 1, 1, 1]⊤ 0 2086 7037 0.010725984

[−10, 10,−10, 10]⊤ [1, 1, 1, 1]⊤ 0 3940 10603 0.020259048

[−10,−5, 0, 5]⊤ [1, 1, 1, 1]⊤ 0 2192 7056 0.011271024

[−10, 0, 0,−10]⊤ [1, 1, 1, 1]⊤ 0 2226 7059 0.011445848

[0, 0, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 2102 7060 0.010808254

Algorithm B [1, 1, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 1426 5097 0.007332336

[1, 1, 1, 1]⊤ [1, 1, 1, 1]⊤ 0 1422 5076 0.007311768

[−10, 10,−10, 10]⊤ [1, 1, 1, 1]⊤ 0 2674 5979 0.013749415

[−10,−5, 0, 5]⊤ [1, 1, 1, 1]⊤ 0 1567 5134 0.008057342

[−10, 0, 0,−10]⊤ [1, 1, 1, 1]⊤ 0 1557 5098 0.008005923

[0, 0, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 1431 5099 0.007358045

Algorithm C [1, 1, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 3041 35243 0.015636489

[1, 1, 1, 1]⊤ [1, 1, 1, 1]⊤ 0 2867 34570 0.014741800

[−10, 10,−10, 10]⊤ [1, 1, 1, 1]⊤ 0 4608 39849 0.023693831

[−10,−5, 0, 5]⊤ [1, 1, 1, 1]⊤ 0 3842 37147 0.019755143

[−10, 0, 0,−10]⊤ [1, 1, 1, 1]⊤ 0 3174 35253 0.016320360

[0, 0, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 3051 35254 0.015687908

Algorithm D [1, 1, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 1615 15973 0.008304153

[1, 1, 1, 1]⊤ [1, 1, 1, 1]⊤ 0 1435 15312 0.007378613

[−10, 10,−10, 10]⊤ [1, 1, 1, 1]⊤ 0 4145 21660 0.021313136

[−10,−5, 0, 5]⊤ [1, 1, 1, 1]⊤ 0 2569 17483 0.013209517

[−10, 0, 0,−10]⊤ [1, 1, 1, 1]⊤ 0 1748 15992 0.008988025

[0, 0, 0, 0]⊤ [1, 1, 1, 1]⊤ 0 1625 15993 0.008355572

4.2 Problem 2: Goldstein and Price’s Function [15, 27, 28, 42]

min f(x) = g(x)h(x)

s.t. xi =
yi

1000
− 2000 ≤ yi ≤ 2000, yi integer, i = 1, 2,

where

g(x) = 1 +
(

x1 + x2 + 1)2
(

19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2

)

,

and

h(x) = 30 +
(

2x1 − 3x2)
2
(

18 − 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2

)

.

25

ACCEPTED MANUSCRIPT

 Table 2: Numerical Results of Problem 2.
Type x0 x∗

final
f(x∗

final
) Ef EG RE

Algorithm A [2,−2]⊤ [0,−1]⊤ 3 51234 217255 0.003200525

[0,−1]⊤ [0,−1]⊤ 3 47189 217255 0.002947838

[−2,−2]⊤ [0,−1]⊤ 3 53675 217255 0.003353011

[−0.5,−1]⊤ [0,−1]⊤ 3 47189 217255 0.002947838

[1,−1.5]⊤ [0,−1]⊤ 3 50723 217255 0.003168603

[1,−1]⊤ [0,−1]⊤ 3 47189 217255 0.002947838

Algorithm B [2,−2]⊤ [0,−1]⊤ 3 25041 151356 0.001564280

[0,−1]⊤ [0,−1]⊤ 3 18995 151356 0.001186594

[−2,−2]⊤ [0,−1]⊤ 3 24472 151356 0.001528736

[−0.5,−1]⊤ [0,−1]⊤ 3 20475 151356 0.001279048

[1,−1.5]⊤ [0,−1]⊤ 3 22533 151356 0.001407609

[1,−1]⊤ [0,−1]⊤ 3 21978 151356 0.001372938

Algorithm C [2,−2]⊤ [0,−1]⊤ 3 50028 1170105 0.003125187

[0,−1]⊤ [0,−1]⊤ 3 45983 1170105 0.002872501

[−2,−2]⊤ [0,−1]⊤ 3 52469 1170105 0.003277673

[−0.5,−1]⊤ [0,−1]⊤ 3 45983 1170105 0.002872501

[1,−1.5]⊤ [0,−1]⊤ 3 49517 1170105 0.003093266

[1,−1]⊤ [0,−1]⊤ 3 45983 1170105 0.002872501

Algorithm D [2,−2]⊤ [0,−1]⊤ 3 48030 623910 0.003000375

[0,−1]⊤ [0,−1]⊤ 3 43985 623910 0.002747688

[−2,−2]⊤ [0,−1]⊤ 3 50475 623910 0.003153111

[−0.5,−1]⊤ [0,−1]⊤ 3 43985 623910 0.002747688

[1,−1.5]⊤ [0,−1]⊤ 3 47519 623910 0.002968453

[1,−1]⊤ [0,−1]⊤ 3 43985 623910 0.002747688

This box constrained problem has 1.6008001 × 107 feasible points. The global minimum

solution is x∗
global = [0,−1]⊤ with f(x∗

global) = 3. Six starting points were considered in

the computational tests, these being [2,−2]⊤, [0,−1]⊤, [−2,−2]⊤, [−0.5,−1]⊤, [1,−1.5]⊤,

and [1,−1]⊤. A summary of the computational results is given in Table 2. All algorithms

succeeded in finding the global minimum from all starting points, where Algorithm B is

shown to be the most efficient method. This method succeeded in identifying the global

minimum solution with an average of 22249 function evaluations. The average RE is

0.0013899.

26

ACCEPTED MANUSCRIPT

4.3 Problem 3: Beale’s Function [25, 27, 28, 31, 42]

min f(x) =
[

1.5 − x1

(

1 − x2

)

]2
+

[

2.25 − x1

(

1 − x2
2

)

]2

+
[

2.625 − x1

(

1 − x3
2

)

]2
,

s.t. xi =
yi

1000
− 10000 ≤ yi ≤ 10000, yi integer, i = 1, 2.

This box constrained problem has 4.00040001 × 108 feasible points. The global mini-

mum solution is x∗
global = [3, 0.5]⊤ with f(x∗

global) = 0. Six starting points were consid-

ered in the tests: [10,−10]⊤, [9.997,−6.867]⊤ , [0,−1]⊤, [1, 1]⊤, [−2, 2]⊤, and [0, 0]⊤. A

summary of the computational results is shown in Table 3. Only Algorithms A and B

succeeded in identifying the global minimum with the average number of function eval-

uations being 119722.2 and 358077.3, respectively. Note that Algorithm B is more effi-

cient than Algorithm A, where the average RE is 0.000299275, compared to 0.000895104.

As for Algorithms C and D, both yielded local minimizers close to the global solution:

[3.015, 0.504]⊤ , [2.989, 0.497]⊤ , [3.004, 0.501]⊤ , and [2.996, 0.499]⊤ . A possible reason for

this failure to converge may be that our implementation calls on neighbourhood points in

Step 3 in a different order to that in other implementations.

4.4 Problem 4: Powell’s Singular Function [25, 27, 28, 31, 42]

min f(x) =
(

x1 + 10x2

)2
+ 5(x3 − x4)

2 + (x2 − 2x3)
4

+ 10(x1 − x4)
4,

s.t. xi =
yi

1000
− 10000 ≤ yi ≤ 10000, yi integer, i = 1, 2, 3, 4.

This box constrained problem has 1.60032 × 1017 feasible points. The global minimum

is at x∗
global = [0, 0, 0, 0]⊤ with f(x∗

global) = 0. Six starting points were used in the tests:

[10, 10, 10, 10]⊤ , [−10,−10,−10,−10]⊤ , [10,−10,−10, 10]⊤ , [1,−1,−1, 1]⊤, [−10, 1, 0, 5]⊤ ,

and [0, 0, 0, 0]⊤ . All methods succeeded in identifying the global minimum. Table 4

27

ACCEPTED MANUSCRIPT

 Table 3: Numerical Results of Problem 3.

Type x0 x∗

final
f(x∗

final
) Ef EG RE

Algorithm A [10,−10]⊤ [3, 0.5]⊤ 0 408190 1781788 0.001020373

[9.997,−6.867]⊤ [3, 0.5]⊤ 0 410442 1781788 0.001026002

[0,−1]⊤ [3, 0.5]⊤ 0 415309 1781788 0.001038169

[1, 1]⊤ [3, 0.5]⊤ 0 216860 1140046 0.000542096

[−2, 2]⊤ [3, 0.5]⊤ 0 219484 1140046 0.000548655

[0, 0]⊤ [3, 0.5]⊤ 0 478179 2049532 0.001195328

Algorithm B [10,−10]⊤ [3, 0.5]⊤ 0 119997 1310251 0.000299963

[9.997,−6.867]⊤ [3, 0.5]⊤ 0 121489 1310251 0.000303692

[0,−1]⊤ [3, 0.5]⊤ 0 129333 1310251 0.000323300

[1, 1]⊤ [3, 0.5]⊤ 0 107219 723603 0.000268021

[−2, 2]⊤ [3, 0.5]⊤ 0 105842 723603 0.000264579

[0, 0]⊤ [3, 0.5]⊤ 0 134453 776637 0.000336099

Algorithm C [10,−10]⊤ [3.015, 0.504]⊤* 0.0000376 100002 128430 0.000249980

[9.997,−6.867]⊤ [3.015, 0.504]⊤* 0.0000376 100002 123335 0.000249980

[0,−1]⊤ [3.015, 0.504]⊤* 0.0000376 100001 111165 0.000249978

[1, 1]⊤ [2.989, 0.497]⊤* 0.0000211 100001 199532 0.000249978

[−2, 2]⊤ [2.989, 0.497]⊤* 0.0000211 100001 202671 0.000249978

[0, 0]⊤ [2.989, 0.497]⊤* 0.0000211 100002 206268 0.000249980

Algorithm D [10,−10]⊤ [3.004, 0.501]⊤* 0.00000255 386183 2610857 0.000965361

[9.997,−6.867]⊤ [3.004, 0.501]⊤* 0.00000255 388440 2610857 0.000971003

[0,−1]⊤ [3.004, 0.501]⊤* 0.00000255 393307 2610857 0.000983169

[1, 1]⊤ [2.996, 0.499]⊤* 0.00000257 257134 2110006 0.000642771

[−2, 2]⊤ [2.996, 0.499]⊤* 0.00000257 276458 2110006 0.000691076

[0, 0]⊤ [3.004, 0.501]⊤* 0.00000255 494215 2711826 0.001235414

*Remarks: The final solution is a local solution.

summaries the computational results. Numerical experiments suggest that Algorithm B

has the smallest total number of original function evaluations, and the average RE is

7.01735 × 10−15.

4.5 Problem 5: Rosenbrock’s Function [27, 28, 31, 42]

min f(x) =

24
∑

i=1

[

100
(

xi+1 − x2
i

)2
+

(

1 − xi

)2
]

,

s.t. − 5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , 25.

28

ACCEPTED MANUSCRIPT

 Table 4: Numerical Results of Problem 4.

Type x0 x∗

final
f(x∗

final
) Ef EG RE

Algorithm A [10, 10, 10, 10]⊤ [0, 0, 0, 0]⊤ 0 1874 7248 1.17102× 10−14

[−10,−10,−10,−10]⊤ [0, 0, 0, 0]⊤ 0 1928 7247 1.20476× 10−14

[10,−10,−10, 10]⊤ [0, 0, 0, 0]⊤ 0 1825 7248 1.14040× 10−14

[1,−1,−1, 1]⊤ [0, 0, 0, 0]⊤ 0 1742 7248 1.08853× 10−14

[−10, 1, 0, 5]⊤ [0, 0, 0, 0]⊤ 0 1807 7247 1.12915× 10−14

[0, 0, 0, 0]⊤ [0, 0, 0, 0]⊤ 0 1732 7243 1.08228× 10−14

Algorithm B [10, 10, 10, 10]⊤ [0, 0, 0, 0]⊤ 0 1160 5350 7.24855× 10−15

[−10,−10,−10,−10]⊤ [0, 0, 0, 0]⊤ 0 1179 5349 7.36728× 10−15

[10,−10,−10, 10]⊤ [0, 0, 0, 0]⊤ 0 1131 5350 7.06734× 10−15

[1,−1,−1, 1]⊤ [0, 0, 0, 0]⊤ 0 1067 5350 6.66742× 10−15

[−10, 1, 0, 5]⊤ [0, 0, 0, 0]⊤ 0 1140 5349 7.12358× 10−15

[0, 0, 0, 0]⊤ [0, 0, 0, 0]⊤ 0 1061 5345 6.62992× 10−15

Algorithm C [10, 10, 10, 10]⊤ [0, 0, 0, 0]⊤ 0 2777 36061 1.73528× 10−14

[−10,−10,−10,−10]⊤ [0, 0, 0, 0]⊤ 0 2536 34605 1.58468× 10−14

[10,−10,−10, 10]⊤ [0, 0, 0, 0]⊤ 0 2759 36061 1.72403× 10−14

[1,−1,−1, 1]⊤ [0, 0, 0, 0]⊤ 0 2612 36061 1.63217× 10−14

[−10, 1, 0, 5]⊤ [0, 0, 0, 0]⊤ 0 2420 34605 1.51220× 10−14

[0, 0, 0, 0]⊤ [0, 0, 0, 0]⊤ 0 2342 34594 1.46346× 10−14

Algorithm D [10, 10, 10, 10]⊤ [0, 0, 0, 0]⊤ 0 2043 17777 1.27662× 10−14

[−10,−10,−10,−10]⊤ [0, 0, 0, 0]⊤ 0 1744 16478 1.08978× 10−14

[10,−10,−10, 10]⊤ [0, 0, 0, 0]⊤ 0 2048 17777 1.27974× 10−14

[1,−1,−1, 1]⊤ [0, 0, 0, 0]⊤ 0 1874 17777 1.17102× 10−14

[−10, 1, 0, 5]⊤ [0, 0, 0, 0]⊤ 0 1620 16478 1.01230× 10−14

[0, 0, 0, 0]⊤ [0, 0, 0, 0]⊤ 0 1542 16458 9.63557× 10−15

This box constrained problem has 1.08347×1026 feasible points. The global minimum is at

x∗
global = [1, . . . , 1]⊤ with f(x∗

global) = 0. Six starting points were considered in the simula-

tions: [0, . . . , 0]⊤, [3, . . . , 3]⊤, [−5, . . . ,−5]⊤, [2,−2, . . . , 2,−2, 2]⊤, [3,−3, . . . , 3,−3, 3]⊤,

and [5,−5, . . . , 5,−5, 5]⊤. All algorithms succeeded in identifying the global minimum for

most of the starting points used. A summary of the computational results is displayed in

Table 5. Clearly, Algorithm B has the least total number of original function evaluations

and the average RE is 1.87477 × 10−21.

29

ACCEPTED MANUSCRIPT

 Table 5: Numerical Results of Problem 5.

Type x0 x∗

final
f(x∗

final
) Ef EG RE

Algorithm A [0, . . . , 0]⊤ [1, . . . , 1]⊤ 0 211831 682050 1.95512× 10−21

[3, . . . , 3]⊤ [1, . . . , 1]⊤ 0 418536 898526 3.86292× 10−21

[−5, . . . ,−5]⊤ [1, . . . , 1]⊤ 0 217435 682050 2.00684× 10−21

[2,−2, . . . , 2,−2, 2]⊤ [1, . . . , 1]⊤ 0 214231 682050 1.97727× 10−21

[3,−3, . . . , 3,−3, 3]⊤ [1, . . . , 1]⊤ 0 510907 1006018 4.71547× 10−21

[5,−5, . . . , 5,−5, 5]⊤ [1, . . . , 1]⊤ 0 512802 1006018 4.73296× 10−21

Algorithm B [0, . . . , 0]⊤ [1, . . . , 1]⊤ 0 171072 444101 1.57893× 10−21

[3, . . . , 3]⊤ [1, . . . , 1]⊤ 0 312888 644091 2.88783× 10−21

[−5, . . . ,−5]⊤ [1, . . . , 1]⊤ 0 176624 444101 1.63017× 10−21

[2,−2, . . . , 2,−2, 2]⊤ [1, . . . , 1]⊤ 0 173472 444101 1.60108× 10−21

[3,−3, . . . , 3,−3, 3]⊤ [1, . . . , 1]⊤ 0 191402 563646 1.76656× 10−21

[5,−5, . . . , 5,−5, 5]⊤ [1, . . . , 1]⊤ 0 193297 563646 1.78405× 10−21

Algorithm C [0, . . . , 0]⊤ [0, . . . , 0]⊤* 24 532603 3031547 4.91571× 10−21

[3, . . . , 3]⊤ [1, . . . , 1]⊤ 0 627360 2824273 5.79277× 10−21

[−5, . . . ,−5]⊤ [0, . . . , 0]⊤* 24 538156 3031547 4.96696× 10−21

[2,−2, . . . , 2,−2, 2]⊤ [0, . . . , 0]⊤* 24 534952 3031547 4.93739× 10−21

[3,−3, . . . , 3,−3, 3]⊤ [1, . . . , 1]⊤ 0 678295 2920682 6.26039× 10−21

[5,−5, . . . , 5,−5, 5]⊤ [1, . . . , 1]⊤ 0 680190 2920682 6.27788× 10−21

Algorithm D [0, . . . , 0]⊤ [0, . . . , 0]⊤* 24 182636 1493376 1.68566× 10−21

[3, . . . , 3]⊤ [1, . . . , 1]⊤ 0 289538 1401000 2.67232× 10−21

[−5, . . . ,−5]⊤ [0, . . . , 0]⊤* 24 188189 1493376 1.73691× 10−21

[2,−2, . . . , 2,−2, 2]⊤ [0, . . . , 0]⊤* 24 184985 1493376 1.70734× 10−21

[3,−3, . . . , 3,−3, 3]⊤ [1, . . . , 1]⊤ 0 339380 1493460 3.13234× 10−21

[5,−5, . . . , 5,−5, 5]⊤ [1, . . . , 1]⊤ 0 341275 1493460 3.14983× 10−21

*Remarks: The final solution is a local solution.

4.6 Comparison with Literature Results

Table 6 shows the average values of a number of original function evaluations for an

algorithm to terminate and compares this with the results from the literature. Since

these test problems were not solved in [43], we compare our numerical results with those

in [28], [27], and [42] only. Recall that in our implementations of these algorithms, we

construct a look-up table to store each objective function value computed so far to avoid

repeated calculation of the objective function. Consequently, our implementations show

a significantly lower number of function evaluations when compared to the results found

in the literature. We note that in our implementation of the various algorithms, searches

for a local minimum of the filled function may be initialized with different starting points

30

ACCEPTED MANUSCRIPT

 Table 6: A Comparison of Function Evaluations.

Problem Algorithm Our implementations Results in [28] Results in [27] Results in [42]

1 A 2440.17 4263.11

B 1679.5 3767.78

C 3430.5 85705

D 2189.5

2 A 49533.17 111125.86

B 22249 68196.29

C 48327.17 2125511

D 46329.83

3 A 366914.3 939209.57

B 119368.8 444887.71

C 100001.5* 4861560

D 365956.2*

4 A 1818 7337207.5

B 1123 6731232

C 2574.333 155868850

D 1811.8333

5 A 347623.7 320610.44

B 203125.8 305712.11

C 662038.3 6282030

D 323397.7

*Remarks: The final solution is a local solution.

than those used in the implementations published previously. This is because either the

order in which the neighbourhood of x∗ is to be tested is not specified or these starting

points are not confined to the neighbourhood N(x∗) and are chosen randomly within the

feasible region. This difference may influence the observed efficiency and accuracy of the

algorithm. As can be seen from Table 6, Algorithm B is the most efficient method, yielding

the lowest number of function evaluations for solving all test problems.

5 Concluding Remarks

Various discrete filled function methods are reviewed in this paper. The fundamental idea

behind the filled function concept is to introduce an auxiliary function to move from a

current local minimizer to an improved point, if it exists. Interestingly, each filled function

has its own termination and parameter updating criteria, though a generic algorithm is

proposed here to try and capture their commonalities. Based on their theoretical proper-

31

ACCEPTED MANUSCRIPT

ties, only discrete filled functions in [16] and [27] guarantee that a local minimizer of the

filled function is also a local minimizer of the original function.

Discrete filled function methods have shown promising results in finding globally op-

timal solutions in several benchmark problems as demonstrated in the previous section,

thus confirming the applicability, reliability, and efficiency of this relatively recent global

optimization technique. Our intention is to adapt the technique to complex mixed discrete

optimization problems where individual objective function evaluations are computation-

ally expensive. Methods requiring the least number of function evaluations are important

in this context [35,36].

Acknowledgement

The authors would like to thank Ryan Loxton from Curtin University of Technology for

his constructive feedback on some algorithms in this manuscript. Special thanks also goes

to David Packer from Curtin University of Technology for his valuable comments on the

original manuscript.

References

[1] J. Bang-Jensen, G. Gutin, and A. Yeo. When the greedy algorithm fails. Discrete

Optimization, 1:121–127, 2004.

[2] J. Cai and G. Thierauf. Evolution strategies for solving discrete optimization prob-

lems. Advances in Engineering Software, 25:177–183, 1996.

[3] D. Chakrabarty, N. R. Devanur, and V. V. Vazirani. New geometry-inspired relax-

ations and algorithms for the Metric Steiner Tree Problem. In A. Lodi and A. Pan-

conesi and G. Rinaldi (Eds.), Integer Programming and Combinatorial Optimization:

13th International Conference, IPCO 2008 Bertinoro, Italy, May 26-28, 2008 Pro-

ceedings. Springer-Verlag Berlin Heidelberg, 344–358, 2008.

[4] V. Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Opera-

tions Research, 4(3):233–235, 1979.

32

ACCEPTED MANUSCRIPT

[5] L. C. W. Dixon and G. P. Szego, editors. Towards Global Optimization. Elservier

Science Limited: North-Holland, 1975.

[6] G. Dobson. Worst-case analysis of greedy heuristics for integer programming with

nonnegative data. Mathematics of Operations Research, 7(4):515–531, 1982.

[7] A. Etzel. Mixed discrete optimization of multiple-valued systems. In 27th Interna-

tional Symposium on Multiple-Valued Logic Proceedings, Antigonish, Canada, pages

259–264, May 28-30, 1997.

[8] A. Federgruen and H. Groenevelt. The greedy procedure for resource allocation

problems: necessary and sufficient conditions for optimality. Operations Research,

34(6):909–918, 1986.

[9] M. L. Fisher. The Lagrangian relaxation method for solving integer programming

problems. Management Science, 50(12):1861–1871, 2004.

[10] R. Fukasawa and M. Goycoolea. On the exact separation of mixed integer knapsack

cuts. In M. Fischetti and D. P. Williamson (Eds.), Integer Programming and Combi-

natorial Optimization: 12th International Conference, IPCO 2007 Ithaca, New York,

June 25-27, 2007 Proceedings. Springer-Verlag Berlin Heidelberg, 225–239, 2007.

[11] R. Ge. A filled function method for finding a global minimizer of a function of several

variables. Mathematical Programming, 46(1):191–204, 1990.

[12] R. Ge and C. Huang. A continuous approach to nonlinear integer programming.

Applied Mathematics and Computation, 34(1):39–60, 1989.

[13] A. M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical

Programming Study, 2:82–114, 1974.

[14] F. Glover. Tabu search and adaptive memory programming–advances, applications

and challenges. In R. S. Barr, R. V. Helgason, J. L. Kennington (Eds.), Interfaces

in Computer Science and Operations Research: Advances in Metaheuristics, Opti-

mization, and Stochastic Modeling Technologies. Kluwer Academic Publishers, 1–75,

1996.

33

ACCEPTED MANUSCRIPT

[15] A. A. Goldstein and J. F. Price. On descent from local minima. Mathematics of

Computation, 25(115):569–574, 1971.

[16] Y. H. Gu and Z. Y. Wu. A new filled function method for nonlinear integer program-

ming problem. Applied Mathematics and Computation, 173(2):938–950, 2006.

[17] O. Günlük and J. Linderoth. Perspective relaxation of mixed integer nonlinear pro-

grams with indicator variables. In A. Lodi and A. Panconesi and G. Rinaldi (Eds.),

Integer Programming and Combinatorial Optimization: 13th International Confer-

ence, IPCO 2008 Bertinoro, Italy, May 26-28, 2008 Proceedings. Springer-Verlag

Berlin Heidelberg, 1–16, 2008.

[18] O. K. Gupta and A. Ravindran. Branch and bound experiments in convex nonlinear

integer programming. Management Science, 31(12):1533–1546, 1985.

[19] W. Hock and K. Schittkowski. Test examples for nonlinear programming codes.

Springer-Verlag, New York, 1980.

[20] W. J. Lee, A. V. Cabot, and M. A. Venkataramanan. A branch and bound algo-

rithm for solving separable convex integer programming problems. Computers and

Operations Research, 21(9):1011–1024, 1994.

[21] K. Madsen and J. Žilinskas. Testing branch-and-bound methods for global optimiza-

tion. IMM, Department of Mathematical Modelling, Technical University of Denmark,

2000.

[22] R. E. Marsten and T. L. Morin. A hybrid approach to discrete mathematical pro-

gramming. Mathematical Programming, 14:21–40, 1978.

[23] L. Michel and P. Van Hentenryck. A simple tabu search for warehouse location.

European Journal of Operational Research, 157:576–591, 2004.

[24] C. Mohan and H. T. Nguyen. A controlled random search technique incorporating the

simulated annealing concept for solving integer and mixed integer global optimization

problems. Computational Optimization and Applications, 14:103–132, 1999.

[25] J. J. Moré, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization

software. ACM Transactions on Mathematical Software, 7(1):17–41, 1981.

34

ACCEPTED MANUSCRIPT

[26] C. K. Ng, D. Li, and L. S. Zhang. Filled function approaches to nonlinear integer

programming: a survey. In S. H. Hou and X. M. Yang and G. Y. Chen (Eds.),

Frontiers in Optimization and Control, vol. 20. Kluwer Academic Publishers, 1-20,

2005.

[27] C. K. Ng, D. Li, and L. S. Zhang. Discrete global descent method for discrete global

optimization and nonlinear integer programming. Journal of Global Optimization,

37(3):357–379, 2007.

[28] C. K. Ng, L. S. Zhang, D. Li, and W. W. Tian. Discrete filled function method for

discrete global optimization. Computational Optimization & Applications, 31(1):87–

115, 2005.

[29] M. Rim and R. Jain. Lower-bound performance estimation for the high-level synthesis

scheduling problem. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 13(4):451–458, 1994.

[30] S. L. Rosen and C. M. Harmonosky. An improved simulated annealing simulation

optimization method for discrete parameter stochastic systems. Computers and Op-

erations Research, 32:343–358, 2005.

[31] K. Schittkowski. More test examples for nonlinear programming codes. Springer-

Verlag, New York, 1987.

[32] Y. Shang and L. Zhang. A filled function method for finding a global minimizer

on global integer optimization. Journal of Computational and Applied Mathematics,

181(1):200–210, 2005.

[33] Y. Shang and L. Zhang. Finding discrete global minima with a filled function for

integer programming. European Journal of Operational Research, 189(1):31–40, 2008.

[34] N. Turkkan. Discrete optimization of structures using a floating-point genetic algo-

rithm. In Annual Conference of the Canadian Society for Civil Engineering, Moncton,

Canada, June 4-7, 2003.

35

ACCEPTED MANUSCRIPT

[35] S. F. Woon. Global Algorithms for Nonlinear Discrete Optimization and Discrete-

Valued Optimal Control Problems. Ph.D. thesis, Department of Mathematics and

Statistics, Curtin University of Technology, 2009.

[36] S. F. Woon, V. Rehbock, and R. C. Loxton. Global optimization method for

continuous-time sensor scheduling. Special Issue of Dynamics and Systems Theory,

10(2):175–188, 2010.

[37] S. J. Wu and P. T. Chow. Steady-state genetic algorithms for discrete optimization

of trusses. Computers and Structures, 56(6):979–991, 1995.

[38] Z. Wu and B. W. Wah. The theory of discrete Lagrange multipliers for nonlinear

discrete optimization. In J. Jaffar(Ed.), Principles and Practice of Constraint Pro-

gramming: 5th International Conference, CP 1999, Alexandria, Virginia, October

11-14, 1999 Proceedings. Springer-Verlag Berlin Heidelberg, 28–42, 1999.

[39] Z. Wu and B. W. Wah. An efficient global-search strategy in discrete Lagrangian

methods for solving hard satisfiability problems. In Proceeding of the 17th National

Conference on Artificial Intelligence, Austin, Texas, pages 310–315, July 30 - August

3, 2000.

[40] X. Xu and P. J. Antsaklis. Optimal control of switched autonomous systems. In

Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada,

volume 4, pages 4401–4406, December 10-13, 2002.

[41] X. Q. Yang and C. J. Goh. A nonlinear Lagrangian function for discrete optimization

problems. In A. Migdalas, A. Pardalos, P. Varbrand, K. Holmqvist (Eds.), From

Local to Global Optimization. Kluwer Academic Publishers, The Netherlands, 291–

304, 2000.

[42] Y. Yang and Y. Liang. A new discrete filled function algorithm for discrete global

optimization. Journal of Computational and Applied Mathematics, 202(2):280–291,

2007.

[43] Y. Yang, Z. Wu, and F. Bai. A filled function method for constrained nonlinear integer

programming. Journal of Industrial and Management Optimization, 4(2):353–362,

2008.

36

ACCEPTED MANUSCRIPT

[44] Y. Yang and L. Zhang. A gradually descent method for discrete global optimization.

Journal of Shanghai University (English Edition), 11(1):39–44, 2007.

[45] A. Zanette, M. Fischetti, and E. Balas. Can pure cutting plane algorithms work? In

A. Lodi and A. Panconesi and G. Rinaldi (Eds.), Integer Programming and Combi-

natorial Optimization: 13th International Conference, IPCO 2008 Bertinoro, Italy,

May 26-28, 2008 Proceedings. Springer-Verlag Berlin Heidelberg, 416–434, 2008.

[46] W. Zhu. An approximate algorithm for nonlinear integer programming. Applied

Mathematics and Computations, 93(2-3):183–193, 1998.

37

