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[1] We simulate the effect of fractures by considering them to be thin circular cracks in a
poroelastic background. Using the solution of the scattering problem for a single-crack
and multiple-scattering theory, we estimate the attenuation and dispersion of elastic waves
in a porous medium containing a sparse distribution of cracks. When comparing with a
similar model, in which multiple-scattering effects are neglected, we find that there is
agreement at high frequencies and discrepancies at low frequencies. We conclude that the
interaction between cracks should not be neglected at low frequencies, even in the
limit of weak crack density. Since the models only agree with each other at high
frequencies, when the time available for fluid diffusion is small, we conclude that the
interaction between cracks, which is a result of fluid diffusion, is negligible at high
frequencies. We also compare our results with a model for spherical inclusions and find
that the attenuation for spherical inclusions has exactly the same dependence upon
frequency but a difference in magnitude, which depends upon frequency. Since the
attenuation curves are very close at low frequencies, we conclude that the effective
medium properties are not sensitive to the shape of an inclusion at wavelengths that are
large compared with the inclusion size. However, at frequencies such that the
wavelength is comparable to or smaller than the inclusion size, the effective properties are
sensitive to the greater compliance of the flat cracks, and more attenuation occurs at a
given frequency as a result.

Citation: Galvin, R. J., and B. Gurevich (2009), Effective properties of a poroelastic medium containing a distribution of aligned
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1. Introduction

[2] Naturally fractured reservoirs are becoming increas-
ingly important for oil and gas exploration in many areas of
the World. Because fractures may control the permeability
of a reservoir it is important to be able to find and
characterize fractured zones. In order to characterize a
fractured reservoir we need to understand the effect the
fractures will have on its overall elastic properties. Fractures
are highly compliant compared to the relatively stiff pores,
so fluid will flow between pores and fractures during
passage of the seismic wave. In essence, a rock containing
both pores and fractures can be thought of as a particular
case of a dual-porosity material [Berryman and Wang, 1995;
Auriault and Boutin, 1994]. If the fractures are aligned, the
reservoir will exhibit long wavelength effective anisotropy.
Since the fluid flow and scattering caused by the presence of

fractures depends upon seismic frequency, the anisotropy
will be frequency dependent.
[3] In the limit of low frequencies static models can be

used to obtain the effective elastic moduli of the fluid-
saturated medium in terms of the properties of the dry
skeleton and the saturating fluid [Gassmann, 1951; Brown
and Korringa, 1975; Thomsen, 1995; Gurevich, 2003;
Cardona, 2002]. For these models to be valid, fluid pressure
must have time to fully equilibrate throughout the connected
porespace which will only be the case at low frequencies. At
higher frequencies pressure equilibration will be incomplete
causing frequency-dependent attenuation and dispersion.
The analysis of these effects requires a dynamic model of
interaction of an elastic wave with an ensemble of fractures
in a porous medium.
[4] A number of schemes tackling this dynamic problem

in fractured porous rocks are currently available. Brajanovski
et al. [2005] model a fractured medium as very thin, highly
porous layers in a porous background. Their model implies
that these fractures are of infinite extent and therefore is valid
when fracture spacing is much smaller than fracture length
(diameter). The case of finite-size fractures was considered
by Hudson et al. [1996], who model fractures as thin penny-
shaped voids, and account for fluid flow effects by applying
the diffusion equation to a single crack and ignoring interac-
tion between cracks. This approximation however leads to
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some unphysical effects, such as the result that the anisotropy
of the fluid-saturated fractured and porous rock in the low-
frequency limit is the same as for the dry rock [Hudson et al.,
2001; Chapman, 2003; Brown and Gurevich, 2004].
[5] Chapman [2003] and Maultzsch et al. [2003] analyze

frequency-dependent anisotropy caused by the presence of
mesoscale fractures in a porous rock, by considering con-
nectivity of individual fractures, pores and microcracks. A
more general computational model which can take account
of pores and fractures of any size and shape was proposed
by Jakobsen et al. [2003] using the T-matrix approximation,
commonly used to study effective properties of heteroge-
neous media. In the T-matrix approximation the effect of
voids (pores, fractures) is introduced as a perturbation of the
solution for the elastic background medium.
[6] An alternative approach is to model the effect of

fractures as a perturbation with respect to an isotropic
porous background medium. This approach seems attractive
because it allows us to use all the machinery of the theory of
wave propagation in fluid-saturated porous media, known
as the theory of poroelasticity [Biot, 1962], without speci-
fying individual shapes of grains or pores. It also seems
logical to assume that the perturbation of the porous
medium caused by the introduction of fractures will be
much smaller than the perturbation caused by putting all the
pores and fractures into an elastic solid.
[7] In this paper we simulate the effect of fractures by

considering them to be thin circular cracks in a poroelastic
background. We assume that the cracks are mesoscopic
(large compared to the pore size, but small compared to the
fast wave wavelength). Using the solution of the scattering
problem for a single crack [Galvin and Gurevich, 2007] and
the multiple-scattering theory of Waterman and Truell
[1961] we estimate the attenuation and dispersion of elastic

waves taking place in a porous medium containing a sparse
distribution of such cracks (Figure 1).

2. Equations of Poroelasticity

[8] We consider a system of aligned penny-shaped cracks
in a fluid-saturated porous medium described by the equa-
tions of poroelasticity

r � s ¼ �w2 ruþ rfw
� �

ð1Þ

rp ¼ w2 rf uþ qw
� �

ð2Þ

where w = f(U � u) is the relative fluid displacement, f is
the medium porosity, u is the solid displacement, U is the
average absolute fluid displacement, w is the angular wave
frequency, rf and r are the densities of the fluid and of the
overall medium. The parameter q is a frequency-dependent
coefficient responsible for viscous and inertial coupling
between the solid and fluid displacements. Here and below
we restrict ourselves to frequencies well below Biot’s
critical frequency, where fluid flow in the pores is of the
Poiseuille type and q(w) � ih/kw [Biot, 1956] where h is
the fluid viscosity and k is the intrinsic permeability of the
medium. s and p are the total stress tensor and fluid
pressure, which are related to the displacement vectors via
the constitutive relations

s ¼ H � 2mð Þr � uþ aMr � w½ 
Iþ m ruþ ruð ÞT
h i

ð3Þ

p ¼ �aMr � u�Mr � w: ð4Þ

In equations (3) and (4) m is the shear modulus of the solid
frame, a = 1 � K/Kg is the Biot-Willis coefficient [Biot and
Willis, 1957],

M ¼ a� fð Þ
Kg

þ f
Kf

� ��1

ð5Þ

is the so-called pore space modulus,

H ¼ Ksat þ
4

3
m ð6Þ

is the P wave modulus of the saturated poroelastic medium
and Ksat is the bulk modulus of the saturated medium which
is related to the bulk moduli of the fluid Kf, solid Kg, and
dry skeleton K by the Gassmann [1951] equation

Ksat ¼ K þ a2M : ð7Þ

[9] In the following we will consider the case of a single
circular crack, which has axial symmetry. Thus there is
no dependency upon the transverse angle q. Using
equations (3) and (4) we can therefore decompose

Figure 1. A porous medium containing a sparse distribu-
tion of cracks.
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equations (1) and (2) into scalar equations in cylindrical
coordinates (r, q, z):

m r2 � 1

r2

� �
ur þ lþ mð Þ @e

@r
þ rw2ur � a

@p

@r
¼ 0 ð8Þ

mr2uz þ lþ mð Þ @e
@z

þ rw2uz � a
@p

@z
¼ 0 ð9Þ

r2pþ iwb
M

pþ iabwe ¼ 0 ð10Þ

where l = K � 4m/3, b = h/k, and e is the cubical dilatation

e ¼ r � u ¼ 1

r

@

@r
rurð Þ þ @uz

@z
: ð11Þ

Equations (8)–(10) are supplemented by the constitutive
relations

szz ¼ 2m
@uz
@z

þ le� ap ð12Þ

srz ¼ m
@ur
@z

þ @uz
@r

� �
ð13Þ

and using equation (2) we have

wz ¼
1

iwb
@p

@z
� rf w

2uz

� �
: ð14Þ

[10] The displacement and stress fields must obey the
boundary conditions [Deresiewicz and Skalak, 1963] at the
crack face, i.e. continuity of normal and tangential compo-
nents of stresses, continuity of solid and relative fluid
displacements and continuity of the pore fluid pressure.
We assume that the circular cracks are in hydraulic com-
munication with the surrounding porous medium. Here and
below we assume that the fluid in the cracks (but not in the
pores!) is incompressible. According to Hudson [1981], the
compressibility of the crack-filling fluid can be neglected as
long as

Kf

m
� c

a
; ð15Þ

where as before Kf is the bulk modulus of the fluid in the
crack, m is the shear modulus of the background medium,
and c/a is the aspect ratio of the crack. Note that in an elastic
medium a crack filled with an incompressible fluid does not
cause any scattering of a normally incident P wave. Thus in
a porous medium such cracks will not cause any scattering
of a normally incident P wave at frequencies where the size
of the crack a is comparable to the wavelength of the
incident wave. However, there may still be scattering of
incident energy due to fluid flow between the cracks and the
pore space. As will be seen, this effect occurs at much lower

frequencies where the crack radius is comparable to the
diffusion length 1/jk2j, where

k2 ¼
iwhH
kML

� �1=2

ð16Þ

is the complex wave number of Biot’s slow wave (here L =
l + 2m = K + 4m/3 is the P wave modulus of the dry frame).
[11] In the next section we review the problem of scat-

tering of an elastic wave in a porous medium by a single
crack, and then present analysis of the scattering by an
ensemble of cracks.

3. Scattering by a Single Crack

[12] Interaction of a plane elastic wave with a single crack
in the porous medium described by the equations outlined
above was considered by Galvin and Gurevich [2007]. An
incident plane longitudinal wave, harmonic in time, prop-
agates in the positive direction of the z axis (normal to the
crack plane z = 0) of a cylindrical coordinate system.
[13] Since we have geometrical symmetry about the crack

plane z = 0, both the scattered and total displacement fields
satisfy the equations of dynamic poroelasticity given above
in the semi-infinite poroelastic medium z 
 0. The incident
wave can be represented as the displacement field
uz
(i) = u0e

ik1z, where k1 is the wave number. The aim is to
derive the scattered field u(r) that results from interaction
between the incident wave and the crack, which occupies
the circle 0 � r � a in the plane z = 0. The total
displacement field is therefore u(t)(r) = uz

(i)az + u(r), where
az is a unit vector directed along the z axis.
[14] For an incompressible fluid in the cracks, the volume

fraction average of the normal displacement (1 � f)uz +
fUz = uz + wz through the face of each crack must be equal
to zero. Continuity of total normal stress tells us that
both szz

(t) and p(t) in the total field in the porous medium
in the vicinity of the crack face must be equal to the
pressure of the crack-filling fluid, p(c), so that szz

(t) = p(t) or
szz � p = �(szz

(i) � p(i)). Also, analogously to the elastic
case, srz is everywhere zero, and uz = wz = 0 due to
symmetry considerations. Expressing stress and fluid pres-
sure in terms of displacement via constitutive relations (12)
and (4) our boundary conditions can be written:

srz ¼ 0 0 � r < 1 ð17Þ

uz ¼ 0 a < r < 1 ð18Þ

wz ¼ 0 a < r < 1 ð19Þ

uz þ wz ¼ 0 0 � r � a ð20Þ

szz þ p ¼ �ik1 H � aMð Þu0 0 � r � a ð21Þ
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where it is noted that conditions (18)–(20) can be combined
to give the single condition

uz þ wz ¼ 0 0 � r � 1: ð22Þ

[15] Galvin and Gurevich [2007] obtained a general
solution to equations (8)–(10) using Hankel transform
techniques, reducing the scattering problem to a pair of
dual integral equations:Z 1

0

y 1þ T yð Þ½ 
B yð ÞJ0 yrð Þdy ¼ �p0 0 � r � a; ð23Þ

Z 1

0

B yð ÞJ0 yrð Þdy ¼ 0 a < r < 1; ð24Þ

where

T yð Þ ¼ 1þ aMk23
H 2y2 � k23

 �

" #
T1 yð Þ � T2 yð Þ½ 
 � 1; ð25Þ

T1 yð Þ ¼
M k22L� 2amy2

 �

4agy2 y2 � q2q3ð Þ � k22 2y2 � k23

 �� �

2mH 1� gð Þk22q2y 2y2 � k23 1� aM
H


 �� � ;

ð26Þ

T2 yð Þ ¼
ag 2y2 � k23


 �2�4y2q1q3

h i
þ 2y2 � k23

 �

k20 � k21

 �

2ag 1� gð Þk23q1y
;

ð27Þ

k3 is the shearwave wave number, qi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � k2i

p
(so

that iqi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i � y2

p
is the axial wave number), g = m/L,

and p0 = ik1(H � aM)u0 is the incident pressure. The
function B(y) is defined by

B yð Þ ¼ � 2am 1� gð Þk23q1y
L 2y2 � k23 1� aM

H


 �� �A1 yð Þ; ð28Þ

where A1(y) is the spectral amplitude of the scattered fast
compressional wave.
[16] Dual integral equations (23)–(24) were then reduced

to a single Fredholm equation of the second kind:

B xð Þ þ 1

p

Z 1

0

R x; yð ÞT yð ÞB yð Þdy ¼ �p0S xð Þ; ð29Þ

where

R x; yð Þ ¼ sin a x� yð Þ
x� y

� sin a xþ yð Þ
xþ y

; ð30Þ

S xð Þ ¼ 2

p
sin ax� ax cos ax

x2
; ð31Þ

and x and y are radial wave numbers. Since an analytical
solution to equation (29) exists only when its kernal function

R(x, y)T(y) is separable, in general one must obtain B(x) via
numerical methods.

4. A Sparse Distribution of Cracks

[17] The multiple-scattering theorem of Waterman and
Truell [1961] provides a method to compute attenuation and
dispersion of seismic waves in a medium with randomly
distributed inhomogeneities, if the far-field amplitude of the
scattering by a single inhomogeneity is known. According
to Waterman and Truell [1961], effective wave number may
be calculated from the amplitudes of the scattered field as

k*

k1

� �2

¼ 1þ 2pn0 f 0ð Þ
k21

� �2
� 2pn0 f pð Þ

k21

� �2
ð32Þ

where k1 is the real wave number of the fast P wave, n0 is
the density or number of scatterers per unit volume and f(0),
f(p) are far-field amplitudes of the fast P wave scattered in
the forward and backward direction (with respect to the
incident wave) by a single inclusion. For a sufficiently small
concentration of inclusions quadratic terms in equation (32)
can be neglected, which yields

k* ¼ k1 1þ 4pn0 f 0ð Þ
k21

� �1=2
� k1 1þ 2pn0 f 0ð Þ

k21

� �
ð33Þ

The real part of equation (33) gives the effective velocity v*
in media with a low concentration of scatterers

1

v*
¼ 1

v1
1þ 2pn0

k21
Re f 0ð Þf g

� �
ð34Þ

The imaginary part of equation (33) gives the dimensionless
attenuation (inverse quality factor)

Q�1 ¼ 4pn0
k21

Im f 0ð Þf g ð35Þ

The above expressions (34) and (35) allow us to model the
dispersion and attenuation due to the scattering of a plane
elastic wave by poroelastic inclusions randomly distributed
throughout a poroelastic medium. In this study we
investigate the special case of dispersion and attenuation
due to aligned cracks using the solution for the scattering by
a circular crack given in the previous section. Our f(0) is
obtained analogously to the elastic case [Robertson, 1967]
by considering the far-field asymptotics of the axial
displacement

uz ¼
Z 1

0

A3 yð Þe�q3z � a
L

X2
i¼1

Ai yð Þqie�qiz

" #
yJ0 yrð Þdy ð36Þ

[Galvin and Gurevich, 2007] where the Ai(y) are the spectral
amplitudes of the fast, slow and shear waves scattered by a
single crack. This yields (see Appendix A)

f 0ð Þ ¼ � ik1 H � aMð Þ
2mH 1� gð Þ lim

y!0

B yð Þ
y

: ð37Þ
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Substitution of f(0) given by equation (37) into
equations (34) and (35) gives the frequency dependency
of the fast wave velocity and attenuation in terms of the
solution B(x) of the integral equation (29).
[18] The Fredholm equation (29) needs to be solved for

every frequency (which is a parameter of the kernel function
R(x, y)T(y) and the right-hand side S(x)). This equation does
not have a general analytical solution for arbitrary frequen-
cy, and has to be solved numerically. However, the equation
can be greatly simplified in the limiting cases of low and
high frequencies, resulting in asymptotic analytical solu-
tions. Numerical and asymptotic analytical solutions are
presented in the next sections.

5. Numerical Solution

[19] The numerical solution of the Fredholm equation (29)
can be easily obtained by the method of quadratures.
Figures 2 and 3 show this solution in terms of effective
velocity v(w) = w/Rek* (normalized by crack-free saturated
velocity v1) and dimensionless attenuation Q�1 = 2Rek*/Imk*
as functions of dimensionless frequency w0 = jk2aj2. Also
shown in Figure 3 are asymptotic solutions in the low- and
high-frequency limits (explained in the following sections),
the equant porosity model of Hudson et al. [1996], and the
result for spherical inclusions [Ciz et al., 2006] for com-
parison. The solution exhibits a typical relaxation peak
around a normalized frequency w0 of about 10, or at circular
frequency f = w/2p ’ 2kM(K + 4m/3)/Hha2, the frequency
where the fluid diffusion length 1/jk2j is of the order of the
crack radius a.

6. Analytical Solution

6.1. Mesoscopic Cracks

[20] The kernel function T(y) as given by equation (25) is
general with regards to the size of the crack relative to the
incident wavelength. However, we are mainly interested in
situations where the scattering is due to wave-induced fluid

flow to and from the cracks (i.e. the slow wave). For the
scattering to be predominantly due to fluid flow, the crack
size must be small relative to the wavelength of the incident
compressional wave, k1a � 1 (mesoscopic cracks), so that
scattering into the slow wave mode is dominant. For
significant slow wave scattering to take place the radial
wave number y should be of the order of 1/a, or in other
words y � k1 and we can approximate expression (25) as

T yð Þ � M
2agy2 � k22

 �2�2yq2ag k22 ag � 2ð Þ þ 2ay2g

� �
2Hg g � 1ð Þyq2k22

:

ð38Þ

We now obtain asymptotic solutions in the low- and high-
frequency limits. Note that we are still in the low-frequency
regime of Biot theory, the low- and high-frequency limits
we evaluate here are with respect to the extent to which
fluid is able to diffuse between crack and pore space during
passage of the wavefield. That is, in the low-frequency limit
there is plenty of time available for fluid flow to occur, the
diffusion length can be taken large compared with the crack
radius, or jk2ja � 1. At increasingly high frequencies there
is no time available for appreciable fluid flow to occur and
therefore the diffusion length can be taken as small
compared with the crack radius, jk2ja � 1.

6.2. Low-Frequency Asymptote

[21] For low frequencies jk2ja � 1. Then S(y) only con-
tributes significantly to the integral in equation (29) for y of
the order 1/a. For y � 1/a, S(y) is small. Thus T(y) only
contributes to the integral in equation (29) for y�jk2j. In this
case equation (38) can be simplified to give

Tlow yð Þ � �Mk22 2L2 þ 3a2m2 � 4amLð Þ
4Hm L� mð Þy2 : ð39Þ

Figure 2. Dimensionless velocity as a function of
dimensionless frequency: numerical solution (asterisks),
low-frequency asymptotic (solid line), high-frequency
asymptotic (dashed line), and the Hudson et al. [1996]
equant porosity model (dots).

Figure 3. Dimensionless attenuation as a function of
dimensionless frequency: numerical solution (asterisks),
low-frequency asymptotic (circles), high-frequency asymp-
totic (dashed line), the Hudson et al. [1996] equant porosity
model (dots), and the result for spherical inclusions (solid
line). Crack and sphere radius are equal.

B07305 GALVIN AND GUREVICH: POROELASTICITY OF A CRACKED MEDIUM

5 of 11

B07305



At low frequencies the contribution of the integral in
equation (29) is small relative to the RHS and therefore
equation (29) can be solved by iteration. That is, assuming an
initial solution B(x) = �p0S(x) and then substituting B(y) =
�p0S(y) and T(y) � Tlow(y) into equation (29), yields

B xð Þ ¼ �p0S xð Þ þ p0

p

Z 1

0

R x; yð ÞT yð ÞS yð Þdy: ð40Þ

Because we actually require the limit of B(x)/x as x ! 0
we can simplify the integral in equation (40) by rewriting
it

lim
x!0

B xð Þ
x

¼ �p0 lim
x!0

S xð Þ
x

þ p0

p

Z 1

0

lim
x!0

R x; yð Þ
x

T yð ÞS yð Þdy

ð41Þ

and then evaluating the limits on the RHS. Expanding R(x,
y)/x using the trigonometric identity

sin A� Bð Þ ¼ sinA cosB� cosA sinB; ð42Þ

we obtain

R x; yð Þ
x

¼ 2 y sin ax cos ay� x cos ax sin ayð Þ
x x2 � y2ð Þ : ð43Þ

As x ! 0, sin ax � ax and cos ax � 1 so that equation (43)
simplifies to

R x; yð Þ
x

� 2 sin ay� ay cos ayð Þ
y2

¼ pS yð Þ: ð44Þ

At small x,

sin ax� ax cos ax � axð Þ3

3
ð45Þ

and hence

S xð Þ
x

� 2a3

3p
: ð46Þ

Therefore equation (41) simplifies to

lim
x!0

B xð Þ
x

¼ � 2p0a
3

3p
þ p0

Z 1

0

Tlow yð Þ S yð Þ½ 
2dy ð47Þ

which, upon evaluation of the integral, yields

lim
x!0

B xð Þ
x

¼
p0a

3 M k2að Þ2 4amL� 2L2 � 3a2m2ð Þ � 10Hm L� mð Þ
h i

15pHm L� mð Þ :

ð48Þ

Thus equation (37) yields

flow 0ð Þ ¼
5þ M 2�4agþ3a2g2ð Þ k2að Þ2

2Hg 1�gð Þ

� �
H � aMð Þ2k21a3

15pmH 1� gð Þ : ð49Þ

By substituting equation (49) into (34) and taking the real
part, one can obtain an expression for effective velocity in the
low-frequency limit

v* ¼ v1 1� 2e H � aMð Þ2

3mH 1� gð Þ

" #
: ð50Þ

In equation (50) v1 = w/k1 = (H/r)1/2 is the velocity of the fast
compressional wave in the porous host (crack-free fluid-
saturated porous medium) and e = n0a

3 = (3/4p)(a/b)fc is the
crack density parameter [Hudson, 1980] where fc =
(4/3)pa2bn0 is the additional porosity present due to the
cracks.
[22] Low-frequency attenuation Q�1 is defined by the

imaginary part of the function flow(0),

Q�1
low ¼ 2M H � aMð Þ2 2� 4ag þ 3a2g2ð Þ k2aj j2e

15mH2g 1� gð Þ2
; ð51Þ

and is proportional to jk2aj2, that is, to the first power of
frequency.

6.3. High-Frequency Asymptote

[23] For high frequencies jk2ja � 1. To analyze this case
we note that function R(x, y) as given by equation (30) is a
function oscillating with a period of 2p/a and decaying with
y as y�1. At the same time, T is also a function decaying
with a positive power of y. Thus most of the contribution to
the integral in equation (29) comes from the interval 0 < y <
y0, that is,

B xð Þ þ 1

p

Z y0

0

R x; yð ÞT yð ÞB yð Þdy � �p0S xð Þ; ð52Þ

where y0 is on the order of 1/a. For high frequencies jk2ja�
1 and thus y0 � jk2j. Hence we can simplify expression (38)
assuming that y � jk2j,

Thigh yð Þ � �iML2k2

2Hm L� mð Þy : ð53Þ

In this limit we can obtain an analytical solution directly
from dual equations (23) and (24). Since Thigh(y) is much
larger than 1 in equation (23), substituting Thigh(y) yields a
single integral equation for B(y):

Z 1

0

B yð ÞJ0 yrð Þdy ¼ D rð Þ; ð54Þ

where

D rð Þ ¼
�2igH 1� gð Þp0

Mk2
0 � r � a

0 a < r � 1:

ð55Þ

Note that the left hand side of equation (54) is simply the
Hankel transform of the function B(y)/y. Thus B(y)/y can be
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obtained as the inverse Hankel transform of the right hand
side,

B yð Þ
y

¼
Z 1

0

D rð ÞJ0 yrð Þrdr ¼ �2igH 1� gð Þp0
Mk2

Z a

0

J0 yrð Þrdr:

ð56Þ

For equation (37) we only need the limit of B(y)/y for small
y. Noting that J0(yr) ! 1 for small arguments, we obtain

lim
y!0

B yð Þ
y

¼ �igH 1� gð Þp0a2
Mk2

: ð57Þ

Substitution of this result into equation (37) yields:

fhigh 0ð Þ ¼ � i k1að Þ2 H � aMð Þ2

2MLk2
: ð58Þ

By substituting this expression into the dispersion
equation (34) one can see that its relative contribution to
the real part of the effective wave number vanishes in the
high-frequency limit, implying that the velocity in that limit
tends to the velocity in the porous crack-free medium. This
result is logical as at sufficiently high frequencies the fluid
has no time to move between pores and cracks, and
therefore the cracks behave as if they were isolated. In
particular, the dry case is excluded, except in the static limit.
[24] Attenuation at high frequencies reads

Q�1
high ¼

ffiffiffi
2

p
pe H � aMð Þ2

ML k2aj j ; ð59Þ

and thus scales with w�1/2.

6.4. Peak Frequency

[25] Finally, the asymptotic results of this section allow us
to obtain an expression for the characteristic frequency of
the dissipation mechanism that exists due to wave-induced
flow between pores and cracks. Earlier we argued from
physical principles that characteristic frequency wc of this
mechanism is such that the diffusion length 1/jk2j is of the
order of the crack size a,

iwchH
kML

� ��1=2

� a ð60Þ

or

wc �
k
ha2

ML

H
: ð61Þ

In the stiff frame approximation Kf � K < Kg we have H �
L, M � Kf /f and expression (61) simplifies to

wc �
k
ha2

Kf

f
: ð62Þ

[26] A more precise estimate of the characteristic
frequency can be obtained by considering the frequency at

which the low- and high-frequency asymptotic solutions
(51) and (59) are equal (intersection of the asymptotes):

2M H � aMð Þ2 2� 4ag þ 3a2g2ð Þ k2aj j2e
15mH2g 1� gð Þ2

¼
ffiffiffi
2

p
pe H � aMð Þ2g
mM k2aj j

ð63Þ

or

k2aj j3¼ 15p
ffiffiffi
2

p
H2g2 1� gð Þ2

2M2 2� 4ag þ 3a2g2ð Þ : ð64Þ

Which, using equation (16) yields the following expression
for characteristic frequency:

wc ¼
kML

ha2H
15p

ffiffiffi
2

p
H2g2 1� gð Þ2

2M2 2� 4ag þ 3a2g2ð Þ

" #2=3

: ð65Þ

One can see that this precise estimate of the peak frequency
has the same dependence on permeability, viscosity and
crack size as the intuitive estimate (62), but differs in its
dependency on porosity and both fluid and solid moduli.
[27] Finally, we can estimate the peak value of attenuation

by substituting the expression for wc (or k2a) into one of the
asymptotic solutions. This gives

Q�1
max ¼

e H � aMð Þ2

m
4p2g 2� 4ag þ 3a2g2ð Þ

15MH2 1� gð Þ2

" #1=3

ð66Þ

or, for the common stiff case aM � L, Kf � Kg,

Q�1
max ¼

4p2 2� 4ag þ 3a2g2ð ÞLf
15g2 1� gð Þ2Kf

" #1=3

e: ð67Þ

Apart from the obvious fact that maximum attenuation is
proportional to crack density, this shows a counterintuitive
result that peak attenuation increases with decreasing fluid
bulk modulus (albeit rather weakly). However, one should
remember that the theory presented here is only valid for
relatively stiff fluids obeying the condition (15) and not for
gas-saturated or dry media.

7. Discussion

7.1. Gassmann Consistency

[28] In the low-frequency limit the pressure throughout
the pore space and fractures should be equilibrated. In his
seminal paper Gassmann [1951] showed that in this case the
elastic properties of the saturated medium are uniquely
defined by the elastic properties of the dry frame, porosity,
and the bulk moduli of the solid grain material and the
saturating fluid. For the isotropic case Gassmann derived an
expression for the undrained bulk modulus of the saturated
medium, which is widely used for fluid substitution in
porous rocks. However, Gassmann [1951] also derived a
more general equation for the case where the frame is
macroscopically anisotropic (but is still made up of a single
isotropic solid material). This equation was later generalized
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by Brown and Korringa [1975] to materials made of
anisotropic and microheterogeneous solid material.
[29] A porous medium with aligned fractures is macro-

scopically anisotropic (transversely isotropic) and is made
of one isotropic solid. Therefore it should be consistent with
the anisotropic Gassmann [1951] equation. This particular
case was analyzed by Gurevich [2003] who derived explicit
expressions for the stiffness tensor of the saturated medium
as a function of porosity and elastic moduli of the back-
ground medium, solid and fluid bulk moduli, and fracture
weakness (which for sparsely populated cracks can be
uniquely related to fracture density).
[30] The results of Gurevich [2003] are exact expressions

valid for any fracture weakness. In order to compare our
low-frequency result with the expression of Gurevich
[2003], we expand that expression in powers of fracture
density and retain only the linear term. The resulting
expression for the plane deformation stiffness c33

sat along
the symmetry axis z is

csat33 ¼ H 1� 4e H � aMð Þ2

3mH 1� gð Þ

" #
: ð68Þ

[31] For the velocity of compressional waves propagating
along the z axis equation (68) gives an equation identical to
equation (50) (again, for small crack density). This confirms
that our result at low frequencies is asymptotically (e.g., in
sparse limit) consistent with the Gassmann’s theory. This
Gassmann consistency is an important feature of the model
presented here and shows that the hydraulic interaction
between cracks and pores is properly accounted for.
[32] The dry case Kf = M = 0 violates the condition (15)

making the present theory invalid. However, if we formally
take the limit M! 0, then equation (68) gives the following
expression for the dry axial P wave modulus

c
dry
33 ¼ H 1� 4e

3g 1� gð Þ

� �
; ð69Þ

or, for dry P wave velocity

vdry ¼ v1 1� 2e
3g 1� gð Þ

� �
: ð70Þ

This coincides with the well-known expression for the
velocity of compressional waves propagating perpendicular
to a system of dry open cracks in an elastic medium in the
limit of low crack density [Hudson, 1980]. The low-
frequency velocity gives the correct result in the dry limit
(which violates the condition (15)) because at low
frequencies fluid in the cracks and pores is in full pressure
equilibrium, and thus the stiffness of the fluid in the cracks
is irrelevant.

7.2. Comparison With the Equant Porosity Model
of Hudson et al. [1996]

[33] Hudson et al. [1996] developed a model of a cracked
medium with equant porosity, where pressure within a crack
is relieved into the host porous material by diffusion; see
also Hudson et al. [2001]. We can compare the predictions

of our model with the equant porosity model (EPM) of
Hudson et al. [1996] as the two models differ only in the
assumptions regarding fluid flow, and all the parameters
have the same physical meaning. The effective velocity for
wave propagation in the EPM is

v*H ¼ v1H 1� 4eL2

3m 1þ KHð Þ L� mð Þ

� �
; ð71Þ

where for thin cracks (thickness less than the fluid diffusion
length)

KH � 1þ i

3

� �
L

m
Kf

L� m

� �
a

J
; ð72Þ

and

J 2 ¼ fKf k
2wh

: ð73Þ

Figure 2 shows the dispersion predicted by both models as
well as high and low-frequency asymptotes for our model.
At high frequencies both models predict no deviation from
the background velocity. This is logical as in the high-
frequency limit of both models there is no time available for
appreciable fluid flow to occur, and hence there will be no
flow-induced dispersion. At low frequencies our model is
consistent with the static Gassmann theory, whereas the
EPM is not. The possible reason for this disagreement is
that hydraulic interaction between different cracks is not
accounted for in the EPM.
[34] Figure 3 shows the attenuation curves for both

models, and the low and high frequency asymptotes for
our model. The attenuation asymptotes for the EPM are

Q�1
lowH ¼ 8

ffiffiffi
2

p
ea

9mg 1� gð Þ2

ffiffiffiffiffiffiffiffiffiffiffi
Kf hw
fk

s
ð74Þ

for low frequencies and

Q�1
highH ¼ 2

ffiffiffi
2

p
eL

Kf a

ffiffiffiffiffiffiffiffiffiffiffi
fKf k
hw

s
ð75Þ

for high frequencies. We can more closely compare our
asymptotes (51) and (59) with the EPM by taking a rigid-
frame approximation, which yields

Q�1
low � 4 2� 4ag þ 3a2g2ð Þa2ehw

15mg 1� gð Þ2k
ð76Þ

for low frequencies and

Q�1
high �

peL
Kf a

ffiffiffiffiffiffiffiffiffiffiffi
fKf k
2hw

s
ð77Þ

for high frequencies. At high frequencies the behavior of the
two models is almost identical. At low frequencies the
predictions are significantly different, as our model predicts
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that Q�1 will be proportional to w whereas the EPM predicts
Q�1 being proportional to

ffiffiffi
w

p
. The attenuation curves of

Figure 3 also show that both models predict an attenuation
peak of the same magnitude, although the EPM predicts the
peak occurring at a lower frequency.
[35] An approximation for the nature of the characteristic

attenuation peaks shown in Figure 3 can be obtained by
comparing the expressions for characteristic frequencies.
The characteristic frequency for the EPM can be obtained
by equating the low- and high-frequency asymptotes of
attenuation,

wEPM ¼ k
ha2

9fm2 1� gð Þ2

4Kf

¼ k
ha2

9fg2 lþ mð Þ2

4Kf

: ð78Þ

Comparing this expression with the corresponding expres-
sion (65) for wc from our theory, we see that these
expressions show similar dependencies on permeability,
fluid viscosity and crack radius, but are somewhat different
with regards to fluid and matrix moduli, and porosity.

7.3. Comparison With the Model of Chapman [2003]

[36] It is also interesting to compare our results with the
model of Chapman [2003]. Chapman considers coupled
fluid motion between cracks and equant background poros-
ity on two scales: a grain scale and a much larger meso-
scopic fracture scale. Each fracture is assumed to be
hydraulically connected to a fixed number of spherical
pores.
[37] As far as velocities are concerned, Chapman’s

[2003] model predicts the same low- and high-frequency
limiting behavior as our model: Gassmann velocity in the
low-frequency limit and velocity of a crack-free medium in
the high frequency limit. Furthermore, both models predict
the same frequency scaling of attenuation at low frequen-
cies. At high frequencies, however, Chapman’s model
predicts that Q�1 will scale with w�1 whereas our model
predicts a scaling with w�1/2. The characteristic attenuation
peak frequencies are in agreement as long as it is assumed
that Chapman’s relaxation time tf (inverse of characteristic
frequency) is proportional to (a/d)2 where a is the fracture
size and d is the grain size, and not to (a/d), as in the work
of Maultzsch et al. [2003]. The nature of these differences is
as yet unclear and is the subject of an ongoing analysis. We
shall note however that the scaling of attenuation with w�1/2

at high frequencies is consistent with the EPM model
discussed above, and is a common effect of heterogeneities in
poroelastic media when the characteristic size of the inhomo-
geneities is much larger than the diffusion length 1/jk2j [White,
1975; Norris, 1993; Gurevich and Lopatnikov, 1995; Johnson,
2001; Müller and Gurevich, 2005].

7.4. Comparison With Planar Fractures

[38] A theory of attenuation and dispersion of elastic waves
in a poroelastic medium permeated by a system of parallel
planar fractures was recently proposed by Brajanovski et al.
[2005], whomodeled fractures as thin periodically spaced flat
layers with very high porosity ff ! 1. The theory of
Brajanovski et al. [2005] gives the same scaling laws for
attenuation at low (Q�1 / w) and high (Q�1 / w�1/2)

frequencies as the present theory. However, direct quantita-
tive comparison of the two theories is not possible since the
ensembles of planar and finite circular cracks are controlled
by different parameters. It is nevertheless instructive
to compare the characteristic frequencies of the two theories.
The theory of planar fractures has two characteristic
frequencies [Brajanovski et al., 2006] but only one of them
is relevant for small crack densities [Lambert et al., 2006].
The expression for this frequency is [Brajanovski et al.,
2006], equation (14)

wP ¼ 2 3
ffiffiffiffiffi
36

p
D�4=3

N

kL
h2h

H

M

� �1=3

; ð79Þ

where h is characteristic fracture spacing and DN is the so-
called relative fracture weakness. In order to compare this
expression to our expression for wc we need to relate DN to
the crack density. For low crack density we have
[Schoenberg and Douma, 1988]

DN ¼ 4eL2

3m L� mð Þ ¼
4e

3g 1� gð Þ ð80Þ

and hence

wP ¼ 9

2

k
h2h

m 1� gð Þ g 1� gð Þ H
M

� �1=3
e�4=3: ð81Þ

The striking difference between wP and any other
characteristic frequencies mentioned earlier is its strong
dependence on fracture weakness or crack density. How-
ever, direct comparison of these characteristic frequencies is
not entirely applicable, because for sparse finite-size
circular cracks their effect on elastic properties of, say,
dry material is entirely controlled by their geometrical
configuration, that is, by crack radius and number density.
For planar fractures this is not the case: because normal
fracture weakness DN and fracture spacing h are completely
independent parameters. Nevertheless, it is interesting to
note that wP is proportional to k/h2h. Thus the dependency
of wP on permeability and viscosity is the same as in the
present theory, while the crack size in the expression for wc
is replaced by fracture spacing. This is the result of the fact
that in the theory of parallel planar fractures the waves
scattered by individual fractures interfere coherently, with
interference naturally controlled by the distance between
fractures. Also of note is the fact that the dependencies of
wc, equation (65), and wP, equation (81), on H and M (and
thus on the porosity and elastic moduli of the matrix and
fluid) also show some similarities. Furthermore, a more
detailed comparison shows that the high-frequency attenua-
tion asymptotes for the two models are exactly the same for
the same specific surface of fractures [Gurevich et al.,
2007]. This is logical since at high frequencies the diffusion
occurs in a small vicinity of fractures and thus is insensitive
to the geometrical configuration. This is in contrast to low
frequencies where penny shape fractures act essentially like
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point sources of diffusion whereas planar fractures create
one-dimensional diffusion.

7.5. Comparison With Scattering by Spherical
Inclusions

[39] The analogous scattering problem for the case of a
sparse distribution of spherical inclusions in a porous
medium was treated by Ciz et al. [2006]. The attenuation
curve for the case of identical material parameters and fluid
filled cavities is also shown in Figure 3. Note that the
dependence on frequency is identical for the high and low
frequency asymptotic behavior, only the magnitude is
different. This is due to the fact that a thin crack is more
compliant to deformation than a sphere, and therefore there
is always going to be more fluid flow induced attenuation
taking place in the medium with cracks. At low frequencies
the curves are quite close, implying that at these wave-
lengths the differences between a sphere and a crack of the
same radius do not have a great effect on the attenuation, as
both are equivalent to point scatterers. At higher frequencies
however there is a larger difference between spherical and
crack-like inclusions as wavelengths are small enough for
the shape differences to become significant.

8. Conclusions

[40] When the effect of a distribution of cracks is con-
sidered, assumptions regarding the interaction between
individual cracks control how realistic the model is. We
estimate the effect of a distribution of cracks using the
multiple-scattering theorem of Waterman and Truell [1961].
This theory accounts for the interaction between scatterers
(i.e., the multiple scattering) as long as the cracks are not
too close together (small crack density). This analysis yields
an effective velocity and attenuation due to fluid flow
between pores and fractures. In the low-frequency limit,
when the crack size is small compared with the fluid
diffusion length, the wave period is sufficient for pressure
equilibration between cracks and pores, and the velocity is
consistent with the anisotropic Gassmann equations. Con-
versely, at high frequencies, the fluid does not have suffi-
cient time to undergo significant flow, the cracks behave as
if they were isolated from the adjacent pores, and the
velocity is equal to that in the host porous medium without
cracks. Attenuation has a maximum at an intermediate
frequency where the diffusion length is on the order of
the crack size. At low frequencies w, attenuation is propor-
tional to w, while at high frequencies it scales with w�1/2.
This behavior is qualitatively consistent with that of infinite
planar cracks in a poroelastic medium, and of scattering by
spherical inclusions in such media. The theoretical model
presented here can be extended to higher crack concen-
trations by using a self-consistent approach [Berryman,
1980a, 1980b; O’Connell and Budiansky, 1974; Zhang
and Achenbach, 1991].
[41] The attenuation and dispersion due to fractures has

important implications for quantitative interpretation of
seismic data in fractured reservoirs. In particular, our results
can be used to infer fracture size from seismic data in cross-
well configuration. Furthermore, the model presented here
can be used to model frequency-dependent anisotropy,
which can be observed by measuring frequency-dependent

shear wave splitting in VSP data. In summary, modeling of
attenuation and dispersion caused by fractures can help in
the characterization of fractures, host rocks and fluids.

Appendix A: Far-Field Scattering Amplitude

[42] We require f(0), the far-field scattering amplitude of
the fast compressional wave for a single crack in the
direction of the incident wave. Since the incident wave
approaches along the negative z axis,

f 0ð Þ ¼ lim
z!1

u1z ðA1Þ

where uz
1 is given by the fast-wave (i = 1) term in

equation (36)

f 0ð Þ ¼ lim
z!1

�a
L

Z 1

0

A1 yð Þq1ye�q1zdy

� �
: ðA2Þ

Because q1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � k21

p
is real or imaginary depending on

the magnitude of y, it is convenient to split the integral in
equation (A2) into two:

Z 1

0

A1 yð Þq1ye�q
1
zdy ¼

Z k1

0

A1 yð Þq1yeiz k2
1
�y2ð Þ1=2dy

þ
Z 1

k1

A1 yð Þq1ye�z y2�k2
1ð Þ1=2dy: ðA3Þ

Due to the presence of the negative exponential term, the
second integral goes to zero as z ! 1 and equation (A2)
reduces to

f 0ð Þ ¼ lim
z!1

�a
L

Z k1

0

A1 yð Þq1yeiz k2
1
�y2ð Þ1=2dy

� �
: ðA4Þ

We can evaluate this limit using a result from Erdelyi
[1956], page 47:

lim
z!1

Z b

a
eizt8 tð Þdt ¼ 8 bð Þeizb

iz
� 8 að Þeiza

iz
: ðA5Þ

Employing the substitution of variables t = �(k1
2 � y2)1/2 in

equation (A4) reduces it to the form of equation (A5) and
gives the result

f 0ð Þ ¼ ak21
L

A1 0ð Þ; ðA6Þ

which upon substituting for A1 using relation (28) yields
equation (37).
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