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ABSTRACT 
Dissolved gas analysis (DGA) of transformer oil is one of the most effective power transformer 

condition monitoring tools. There are many interpretation techniques for DGA results however all 

these techniques rely on personnel experience more than analytical formulation. As a result, various 

interpretation techniques do not necessarily lead to the same conclusion for the same oil sample. 

Furthermore, significant number of DGA results fall outside the proposed codes of the current 

based-ratio interpretation techniques and cannot be diagnosed by these methods. Moreover, ratio 

methods fail to diagnose multiple fault conditions due to the mixing up of produced gases. To 

overcome these limitations, this paper introduces a new fuzzy logic approach to reduce dependency 

on expert personnel and to aid in standardizing DGA interpretation techniques. The approach relies 

on incorporating all existing DGA interpretation techniques into one expert model. DGA results of 

2000 oil samples that were collected from different transformers of different rating and different life 

span are used to establish the model. Traditional DGA interpretation techniques are used to analyze 

the collected DGA results to evaluate the consistency and accuracy of each interpretation technique. 

Results of this analysis were then used to develop the proposed fuzzy logic model.  

   Index Terms  — Transformer Diagnosis, Condition monitoring, DGA, Fuzzy logic.  

 

1   INTRODUCTION 

   POWER transformers represent a critical link in any 

transmission or distribution network. To improve the 

reliability of the equipment and to avoid any catastrophic 

failure, effective monitoring and diagnostic techniques must 

be adopted. Transformer dielectric oil and paper insulation are 

considered as key sources to detect incipient and fast 

developing faults, insulation trending and generally reflects 

the health condition of the transformer [1]. There are several 

of chemical and electrical diagnostic techniques currently used 

by various utilities to examine the health condition of power 

transformers [2]. Among of these methods, dissolved gas in oil 

analysis (DGA) is widely used to detect power transformer 

incipient faults. Due to electrical and thermal stresses that in-

service transformer exhibits, oil and paper decomposition 

occurs [3]. Gases produced due to oil decomposition are 

hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene 

(C2H4) and ethane (C2H6). On the other hand paper 

decomposition produces carbon monoxide (CO) and carbon 

dioxide (CO2) [4]. Various internal faults within a power 

transformer evolve particular amount of characteristic gases 

that can be used to determine the type of fault. However, the 

analysis is not always straight forward as there may be more 

than one fault present at the same time. Partial discharge 

activity produces H2 and CH4 while arcing generates all gases 

including traceable amount of C2H2 [3]. DGA can be used to 

determine the amount and type of gases in transformer oil and 

hence aiding in determining the transformer failure rank [5, 6]. 

There are many DGA interpretation techniques such as key 

gas method [7, 8], Roger ratio method [9, 10] and Duval 

triangle method [11] that have been reported in the literatures.  

 

     All of these techniques rely on personnel experience more 

than mathematical formulation and they do not necessarily 

lead to the same conclusion for the same oil sample. Precise 

DGA interpretation is yet a challenge in the power transformer 

condition monitoring research area and there is no globally 

accepted technique for DGA interpretation.  

Availability of DGA data history has recently motivated 

researchers to develop a standard approaches for DGA 

interpretation based on mathematical and artificial intelligent 

(AI) techniques [12-16]. The application of AI in the 

interpretation of DGA results are mainly to overcome the 

drawbacks arise from the application of ratio methods that 

include failure to identify fault types in case of multiple fault 

conditions and the invalid code that some DGA data may 

result in.  

A recent study [17] shows that various DGA interpretation 

techniques are not consistent and they may lead to different 

interpretation for the same oil sample. To verify this finding, 

consistency and accuracy analyses are performed on 2000 

DGA results of transformer oil samples that were collected 

from various transformers of different rating, life span and 

operating conditions. Results of consistency and accuracy 

analyses are then used to develop a fuzzy logic model that 

incorporates the key features of several well established DGA 

interpretation techniques such as Roger, Doerenburg, IEC 

ratio methods along with key gas and Duval triangle methods. 

The model provides one result based on all of these techniques 

to assure a reliable and consistent decision on the health 

condition of the transformer oil. The model however, is built 

to enable the user to observe the output of each individual 

method as will be elaborated in section 3.      
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2   DGA INTERPRETATION TECHNIQUES 

There are many DGA interpretation techniques currently 

used by various utilities.  Among these techniques the Roger, 

Doerenburg, IEC, key gas and Duval triangle are the most 

popular and widely used methods. These methods are well 

established in the literature and they are briefly elaborated 

below to highlight the limitation of each technique.  

Roger’s ratio method which is based on earlier work by 

Doerenburg, uses four-key gas ratios [18]. On the other hand, 

the IEC ratio method uses three-key gas ratios[19]. Ratio 

methods are only valid if a significant amount of the gas used 

in the ratio is present otherwise the method will not be able to 

identify the type of fault and will lead to invalid code. 

Therefore, ratio methods can be used to identify the type of 

fault more than detecting it.  

   The key gas method is set forth in IEEE standard (C57.104-

1991) that was revised in 2008 [7, 18] for transformer oil 

DGA interpretation. This method uses combination of 

individual gases and total combustible gas concentration 

(TCGC) to classify risks within a transformer. However, this 

guide is not widely accepted as an effective tool to evaluate 

the health condition of in-oil immersed transformers as it is 

considered very conservative and a transformer may operate 

safely even though its DGA analysis indicates condition 4 

(imminent risk) as far as gas evolution rate is not constantly 

increasing [3].   

   Duval and De Pablo mentioned that good number of DGA 

results fall outside ratio-based interpretation techniques and 

cannot be diagnosed using these methods. Duval proposed a 

triangle for transformer fault diagnosis based on DGA results 

[11]. However as Duval triangle does not encompass an area 

for normal DGA results, this method can only be used to 

identify the fault type in case of faulty transformer and 

therefore, no indication of incipient fault can be obtained [19].  

 

3  FUZZY LOGIC MODELS 

   In this section, fuzzy logic models are developed to aid in 

standardizing the overall decision of various DGA 

interpretation techniques. Each fuzzy logic model is developed 

in accordance to fuzzy inference flow chart shown in Fig. 1. 

Input variables to the model are the concentration of the 7-key 

gases in parts per million (ppm). The output of each model is 

divided into 5 sets of membership functions comprising all 

fault conditions that operating transformers may exhibit along 

with a membership function for normal condition (F5) as 

summarized in Table 1 [7, 12, 19]. A membership function 

(F6) is added to represent the “out of code” condition that ratio 

methods may lead to for some DGA samples. The output 

membership functions for all models are shown in Fig. 2.  

 
Figure 1. Fuzzy logic model flow chart 
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Figure 2. Fuzzy logic models output membership functions 

   Table 1 is established based on the fact that gases are formed 

inside an oil-filled transformer at particular range of 

temperatures as specified in the combustible gas generation -

temperature [19] and Hastead’s thermal charts [7]. Cellulosic 

thermal decomposition produces CO and CO2 at lower 

temperature than oil decomposition [7] and traceable amount 

of CO and CO2 can be found at normal operating condition. 

For a confirmed decision on paper degradation condition, the 

ratio CO2/CO is used [7]. However, this ratio is not a reliable 

indicator for paper health condition and other tests such as 

furan analysis or if possible, degree of polymerisation should 

be conducted to provide an affirmed decision on the paper 

condition [17, 20]. Oil thermal decomposition starts at higher 

temperature and at about 350 ºC production of C2H4 begins. At 

about 450 ºC, H2 production exceeds all other gases causing 



 

low-intensity discharges such as partial discharge and very 

low level intermittent arcing [7]. At about 700 ºC, more C2H2 

is produced causing high intensity arcing or continuing 

discharge proportion [7].  

   Each fuzzy model is built using the graphical user interface 

tool provided by MATLAB where each input is fuzzified into 

various sets (normal to significant) of membership functions. 

Centre-of-gravity which is widely used in fuzzy models, was 

used for defuzzification method where the desired output z0 is 

calculated as [21] : 
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where μc(z) is the membership function of the output.   

       A set of fuzzy logic rules in the form of (IF-AND-THEN) 

statements relating the input to the output variables was 

developed based on transformer’s diagnoses and test data 

interpretation techniques [22, 23] as elaborated below.  

A. Key Gas Fuzzy Logic Model 

   Membership functions for the seven input gases are 

established based on the amount of gases present in oil 

sample. Set of fuzzy rules are developed as shown in Fig. 3. 

The model is tested with inputs, H2 (80 ppm), CH4 (100 ppm), 

C2H6 (60 ppm), C2H4 (45 ppm), C2H2 (15 ppm), CO (250 

ppm), CO2 (1500 ppm) and total dissolved combustible gas 

(TDCG) (550 ppm) as detected in a transformer oil sample 

using DGA. As the amount of all key gases and TDCG are 

within normal condition according to the IEEE standard, the 

model output is 1 which is corresponding to F5 (normal 

condition).  

 
Figure 3. Key gas Fuzzy rules 

B. Duval Triangle Fuzzy Logic Model 

   The set of fuzzy rules relates the inputs to the output 

variable developed for this method is shown in Fig. 4. The 

model is tested with inputs, CH4/(C2H2+C2H4+CH4) (8%), 

C2H4/(C2H2+C2H4+CH4 (15%) and C2H2/(C2H2+C2H4+CH4)  

(7.5%) as detected in a transformer oil sample using DGA. 

The fuzzy logic model provides 7.04 which is corresponding 

to F3 (partial discharge fault).  

 

Figure 4. Duval fuzzy rules 

C. IEC Ratio Fuzzy Logic Model 

   The developed set of fuzzy rules relates the input and the 

output variables for IEC ratio method is shown in Fig. 5. The 

model is tested with inputs, C2H2/C2H4 (0.15), CH4/H2 (2.5) 

and C2H4/C2H6 (5). The fuzzy logic model numerical output is 

9.38, which is corresponding to F4 (arcing fault). 

 
Figure 5. IEC fuzzy rules 

D. Roger’s Ratio Fuzzy Logic Model 

   The developed set of fuzzy rules relates the inputs to the 

output variable for this method is shown in Fig. 6. The model 

is tested with all input ratios equal to 2.5 that result in a 

numerical output of 11 which is corresponding to F6 (out of 



 

code). This reveals that DGA results of this oil sample cannot 

be diagnosed using Roger’s ratio method. 

 

Figure 6. Roger ratio fuzzy rules 

E. Doerenburg Fuzzy Logic Model 

   Set of fuzzy rules relates the input and the output variables 

are developed based on Doerenburg interpretation code (Table 

2 [18]) as shown in Fig. 7. The model is tested with inputs, 

CH4/H2 (0.5), C2H2/C2H4 (1.5), C2H2/CH4 (0.5) and 

C2H6/C2H2 (0.25). The fuzzy logic model output is 9 which is 

corresponding to F4 (arcing fault). 

Table 2. Doerenburg ratio and diagnosis [18] 

Fault  R1= CH4/H2 R2= C2H2/ C2H4 R3= C2H2/ CH4 R4= C2H6/ C2H2 

  Thermal   R1>1.0 R1>1.0 R2<0.75 R2<1    R3<0.3   R3<0.1 R4>0.4 R4>0.2 

Corona  R1<0.1 R1<0.01 Not significant    R3<0.3   R3<0.1 R4>0.4 R4>0.2 

Arcing 0.1< R1<1   0.01< R1<1 R2>0.75 R2>1.0    R3>0.3   R3>0.1 R4<0.4 R4<0.2 

 
Figure 7. Doerenburg fuzzy rules 

 

 

 

 

4    CONSISTENC and ACCURCY ANALYSIS 

DGA results of 2000 oil samples with pre-known fault 

type that were collected from different transformers of 

different ratings and different operating life span (2 years to 

40 years) are used in this analysis. Diagnostic methods were 

grouped according to fault types as shown in Table 1 [12]. All 

the 2000 DGA data were analysed using the developed 5 

individual fuzzy logic models (key gas, Duval, IEC, Roger 

and Doerenburg) against the fault types shown in Table 1.  

   The consistency (C) and accuracy (A) of each method is 

calculated based on its successful prediction (P) in identifying 

various faults as below [12]. 
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where Sfn is the percentage of successful prediction of a 

particular fault type fn, Tsp is the total successful prediction 

cases and Ttc is the total number of cases.  

   Among the 2000 oil samples, 487 samples were found to be 

faulty and they are used to assess the consistency and accuracy 

of each method to identify various types of faults. Table 3 

shows the success rate of each method in identifying different 

types of faults from which it can be concluded that Duval 

triangle is the most consistent method in identifying thermal 

faults (F1 and F2). On the other hand, key gas is the most 

consistent method in identifying electrical faults (F3 and F4). 

Table 3. Consistency analysis of Various DGA interpretation methods 
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    The overall consistency for each method is calculated as the 

average of the successful prediction rates of the four fault 

types. As shown in Table 3, Duval triangle method is the most 

consistent method and Roger’s ratio is the least consistent 

method in identifying various faults. This is attributed to the 

fact that ratio methods may lead to out-of-code ratios in some 



 

cases. In terms of accuracy, Table 4 shows that Duval triangle 

is the most accurate technique followed by key gas and 

Doerenburg methods while IEC and Roger ratio are the least 

accurate methods. Results in Tables 3 and 4 are shown in Fig. 

8.  

Table 4. Accuracy analysis of Various DGA interpretation methods 

Method Roger  IEC Doern.   Duval Key Gas 

Total case  487 487 487 487 487 

No prediction  299 242 0 0 0 

Prediction Number  188 245 487 487 487 

Successful prediction 

cases (Tsp) 

107 140 319 436 325 

Accuracy predicted (A ) 22% 28.7%  65.5%  89.5% 66.7% 

 

Figure 8. Consistency and Accuracy comparison of all methods 

   The above results prove that DGA interpretation is not an 

exact science and there is no 100% consistency among the 

existing DGA interpretation techniques [18, 24]. To overcome 

this drawback, a fuzzy logic model based on the integration of 

all aforementioned methods is proposed and discussed in the 

following section.   

5       Proposed Approach  

    The new approach is based on the incorporation of different 

DGA interpretation techniques into one prototype software 

model as shown in the flow chart of Fig. 9. In Fig. 9, key gas 

method is firstly used to determine the health condition of the 

transformer oil sample based on its DGA results. If the 

concentration of individual key gases along with the TDCG is 

within normal condition according to the IEEE standard, the 

model reports normal condition and no further analysis will be 

performed. However, if the key gas method results in 

abnormal condition, the DGA results will be further analysed 

using Duval triangle and ratio methods (IEC, Roger and 

Doerenburg) to accurately identify the fault type. The overall 

decision (D) is calculated based on the accuracy level of each 

method according to the following equation: 

  
∑       
   
   

∑    
   
   

       (5) 

where Di is the decision of each individual method weighted 

by its accuracy level Ai calculated in section 4 (Table 3).  

 

Figure 9. Flow chart of the proposed approach 

   In case any of the ratio methods provides a ratio that does 

not fit into the diagnostic codes, the decision value 

corresponding to this method is set to zero. Normal condition 

is only specified by key gas method while in case of faulty 

condition, the fault is specified by all methods according to 

(5). To implement the flow chart in Fig. 9, the individual 

fuzzy logic models for various DGA interpretation techniques 

are integrated in one fuzzy model as shown in Fig. 10.  

 

Figure 10. Proposed overall fuzzy logic model 



 

    The inputs to the overall model are the concentration of the 

7-key gases in particle per million and the output represents an 

overall decision (D) on the DGA input data. The model is 

tested for the DGA data shown in Fig. 10, which shows that 

both Roger and IEC ratio methods provide a value greater than 

10 that is corresponding to F6 (out of code) in Fig. 2 and 

hence, their contribution to the overall decision is eliminated. 

Fig. 10 also shows that, although Duval and Doerenburg 

methods result in a faulty condition, their contribution in the 

overall decision is also eliminated by the model as key gas 

method results in a normal condition and the overall decision 

in this case is only specified by the key gas method according 

to the flow chart shown in Fig. 9.  

 

6 VALIDATION OF THE PROPOSED MODEL 

    To examine the accuracy of the proposed model, DGA 

results of 70 samples of pre known faults from previously 

published research papers [13, 18, 25-27] along with some 

collected DGA data are tested using the proposed model 

shown in Fig. 10 to compare the model’s output with the 

actual fault. Three samples of each fault condition are shown 

in Table 5.  

Table 5. Validation of the proposed approach 

   The first 9 samples in Table 5 are from [25] among which 

the first 3 samples show normal condition as all key gases 

along with the TDCG of the 3 samples are below the fault 

limit of key gas method. The model output in this case is 1 

which is specified by the key gas method as the ratio methods 

lead to out-of-code result and Duval triangle cannot be used as 

it does not comprise any normal zone.  

     The actual fault of samples 4, 5 and 6 is thermal fault that 

is not involving cellulose which is evidenced by the high 

amount of C2H4 and CH4. As reported in [25], oil sample 

number 4 was collected from a unit that has partly destroyed 

load tap changer contact while sample 5 was collected from a 

unit that has a defective core ground strap that exhibited signs 

of severe heating. Sample 6 was collected from a unit that 

suffers from burned low voltage coils. The model output 

agrees with the actual fault of these samples as it results in a 

value within the range of 4 to 6 which is corresponding to 

fault F2 in Table 1.  

    Samples 7, 8 and 9 indicate significant amount of C2H2 

along with high concentration of other key gases. This 

indicates severe local overheating and arcing in these units 

which should be removed from service immediately for 

further inspections. According to [25], sample 7 was collected 

from a unit that has arcing between the tank and the high 

voltage lead which was reformed in another direction to solve 

the problem. The main reason of arcing fault in sample 8 was 

a severe arc to ground fault occurred during the shutdown 

procedure of the unit that was operating without its cooling 

system being turned on while sample 9 was collected from a 

unit suffering from a high voltage lead failure under oil [25]. 

The model output corresponding to these cases is a value 

between 8 and 10 which is equivalent to fault F4 in Table 1.  

   The concentration of H2 in samples 10, 11 and 12 is 

considerably high to suggest a corona in oil. This agrees with 

the actual fault type reported in [13, 27] from which the three 

DGA results are taken. The fuzzy logic model provides a 

value in the range of 6 to 8 which is corresponding to fault F3 

in Table 1.  

   The last three samples were collected from in-service 

transformers. The relatively high concentration of CO2 and 

CO along with other gases such as C2H6 in the samples 

indicates local overheating involving cellulose. The model 

output for these samples is a value between 4 and 6 which is 

corresponding to fault F2 in Table 1.  

Table 6. Asset management decision based on model output 

Fault Model   

output (D) 

Fault diagnosis Recommended asset 

management decision 

F5 0≤D<2 No fault -Continue normal 

operation 

F1 

 

2≤D<4 -Cellulosic 

decomposition 

-Overheated cellulose  

-Exercise caution 

-Furan analysis is 

recommended   

-Check generation rate 

monthly 

F2 4≤D<6 -Oil decomposition 

-Overheated oil 

-Exercise caution 

-Check generation rate 

weekly* 

 

F3 

 

6≤D<8 -Corona in oil  

(low intensity electrical 

discharge) 

-Exercise extreme 

caution 

-Check generation rate 

weekly* 

-Plan outage 

F4 

 

8≤D<10 -Arcing in oil  

(high intensity electrical 

discharge) 

-Exercise extreme 

caution 

-Check generation rate 

daily* 

- Consider removal 

from service 
*
Manual collection of oil samples from suspected units is very risky. An online 

DGA detector is strongly recommended to avoid direct contact with suspected unit.  

   While the proposed model shows high agreement with the 

actual electrical faults (F3 and F4), it fails in some samples to 

distinguish thermal faults involving overheating in oil or cellulose 

(F1 and F2) and an engineering judgement should be used in this 

case.  

   Based on the model output, an asset management decision can 

be taken as proposed in Table 6.  
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1 2 7 0 0 0 0 132 F5 F5 

2 54 0 0 4 0 106 1303 F5 F5 

3 47 12 0 8 0 115 1113 F5 F5 

4 80 619 0 2480 326 268 2952 F2 F2 

5 231 3997 0 5584  1726 0 2194 F2 F2 

6 507 1053 17 1440 297 22 2562 F2 F2 

7 127 24 81 32 0 0 2024 F4 F4 

8 441 207 261 224 43 161 1123 F4 F4 

9 217 286 884 458 14 176 1544 F4 F4 

10 160 10 1 1 3 - - F3 F3 

11 240 20 96 28 5 - - F3 F3 

12 2587 7.88 0 1.4 4.7 - - F3 F3 

13 23 6 31 23 172 225 2716 F1 F1 

14 103 74 0 9 80 754 2605 F1 F1 

15 124 166 0 59 87 530 3750 F1 F1 



 

7 CONCLUSION 

   This paper introduces a new interpretation approach for 

dissolved gas analysis (DGA) of transformer oil based on the 

integration of strength of all existing interpretation techniques 

into one powerful expert model. A comparative consistency 

and accuracy study using experimental results of 2000 

transformer oil samples based on traditional DGA 

interpretation techniques is given. Results show that the 

current traditional methods are not consistent and they do not 

necessarily lead to the same conclusion for the same oil 

sample. Moreover, significant number of DGA results fall 

outside the proposed codes of ratio-based methods. All 

accuracy-weighted decisions of individual DGA interpretation 

techniques are combined together to provide one overall 

decision on DGA data. An asset management action based on 

the model output is also proposed. The agreement of the 

model output with actual faults within a transformer is tested 

against 70 DGA samples of pre-known fault type. While the 

model shows high agreement in identifying electrical faults, it 

fails in some samples to distinguish between the overheating 

in oil and cellulose. The proposed software should be used in 

conjunction with engineering judgment, operational 

circumstances and should be taken as a flag for asset 

management action. Also, comparison and analogies of sister 

transformers with similar operating conditions is 

recommended. 

  

REFERENCES 
[1] A. Abu-Siada and S. Islam, “A Novel On-Line Technique to detect Power 

Transformer  Winding Faults”, IEEE Transaction on Power Delivery, Vol. 27, 

No. 2, pp. 849-857, April 2012. 

[2] M. Arshad and S. M. Islam, "Significance of cellulose power transformer 

condition assessment," IEEE Transactions on Dielectrics and Electrical 

Insulation, vol. 18, pp. 1591-1598, Oct 2011. 

[3] M. Arshad, "Remnant Life Estimation Model Using Fuzzy Logic for 

Power Transformer Asset Management," PhD thesis, Curtin University of 

Technology, September 2005. 

[4] Hydroelectric Research and Technical Services Group, "Facilities, 

Instructions, Standards and Techniques; Transformer Diagnostics," vol. 3-31, 

pp. 1-63, June 2003. 

[5]X. Liu, F. Zhou, and F. Huang, "Research on on-line DGA using FTIR 

[power transformer insulation testing]," vol.3, pp. 1875-1880, 2002. 

[6] Guide for Diagnostic Field Testing of Electric Power Apparatus – Part 1, 

"Oil-filled Power Transformers, Regulators, and Reactors," vol. IEEE 62-

1995™, 1995. 

[7]"IEEE guide for the interpretation of gases generated in oil-immersed 

transformers," IEEE Std C57.104-2008 (Revision of IEEE Std C57.104-1991), 

pp. C1-27, 2009. 

[8] “Mineral Oil-Impregnated Electrical Equipment” in Service-Interpretation 

of Dissolved and Free Gas Analysis, International Electrotechnical 

Commission (IEC) 60599, 1997. 

[9]V. G. Arakelian, "Effective diagnostics for oil-filled equipment," IEEE 

Electrical Insulation Magazine, vol. 18, pp. 26-38, 2002. 

[10]R. R. Rogers, "IEEE and IEC Codes to Interpret Incipient Faults in 

Transformers, Using Gas in Oil Analysis," IEEE Transactions on Electrical 

Insulation, vol. EI-13, pp. 349-354, 1978. 

[11]M. Duval, "New techniques for dissolved gas-in-oil analysis," IEEE 

Electrical Insulation Magazine, vol. 19, pp. 6-15, 2003. 

[12]N. A. Muhamad, B. T. Phung, and T. R. Blackburn, "Comparative study 

and analysis of DGA methods for mineral oil using fuzzy logic," International 

Power Engineering Conference, IPEC 2007, pp. 1301-1306, 2007. 

[13]M. Hongzhong, L. Zheng, P. Ju, H. Jingdong, and Z. Limin, "Diagnosis of 

power transformer faults on fuzzy three-ratio method,"  the 7th International 

Conference in Power Engineering, IPEC 2005, pp. 1-456, 2005. 

[14] W. Zhenyuan, L. Yilu, and P. J. Griffin, "Neural net and expert system 

diagnose transformer faults," Computer Applications in Power, IEEE, vol. 13, 

pp. 50-55, 2000. 

[15] S. Mofizul Islam, T. Wu, and G. Ledwich, "A novel fuzzy logic approach 

to transformer fault diagnosis," IEEE Transactions on Dielectrics and 

Electrical Insulation, vol. 7, pp. 177-186, 2000. 

[16] A. Singh and P. Verma, "A review of intelligent diagnostic methods for 

condition assessment of insulation system in power transformers," 

International Conference on Condition Monitoring and Diagnosis, CMD 

2008, pp. 1354-1357, 2008. 

[17] A. Abu-Siada and S. Islam, "A new approach to identify power 

transformer criticality and asset management decision based on dissolved gas-

in-oil analysis," IEEE Transactions on Dielectrics and Electrical Insulation, 

vol. 19, pp. 1007-1012, June 2012. 

[18] "IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed 

Transformers," IEEE Std C57.104-1991, 1992. 

[19] Hydroelectric Research and Technical Services Group, “Facilities, 

Illustrations, Standards and Techniques; Transformer Maintenance," US 

Department of Interior Bureau of Reclamation, Denver, Colorado, vol. 3-30, 

pp. 1-81, October 2000. 

[20] A. Abu-Siada, Sin P. Lai, and S. M. Islam, “A Novel Fuzzy Logic 

Approach for Furan Estimation in Transformer Oil”, IEEE Transaction on 

Power Delivery, Vol. 27, No. 2, pp. 469-474, April 2012. 

[21]H. Li and M. Gupta, "Fuzzy Logic and Intelligent Systems," International 

Series in Intelligent Technologies, Kluwer Academic Publisher 1995. 

[22] A. Abu-Siada, M. Arshad and S. Islam, “Fuzzy Logic Approach to 

Identify Transformer Criticality using Dissolved Gas Analysis”, proceeding of 

the 2010 IEEE PES General Meeting, USA , July 2010.  

[23] S. Hmood, A. Abu-Siada, M. Masoum and S. Islam,“ Standardization of 

DGA Interpretation Techniques using Fuzzy Logic Approach,” proceeding of 

the IEEE International Conference on Condition Monitoring and Diagnosis 

conference,  Bali, Indonesia, September 2012. 

[24] K. Spurgeon, W. H. Tang, Q. H. Wu, Z. J. Richardson, and G. Moss, 

"Dissolved gas analysis using evidential reasoning," Science, Measurement 

and Technology, IEE Proceedings -, vol. 152, pp. 110-117, 2005. 

[25] J. B. DiGiorgio, "Dissolved Gas Analysis of Mineral Oil Insulating 

Fluids," Northern Technology and Testing, pp. 1-21, 2005. 

[26] Y. Fu and l. Zhang, "Comprehensive method detecting the status of the 

transformer based on the artificial intelligence," International Conference on 

Power System Technology, PowerCon 2004, pp. 1638-1643, vol.2, 2004. 

[27] D. V. S. Siva Sarma and G. N. S. Kalyani, "ANN approach for condition 

monitoring of power transformers using DGA," 2004 IEEE Region 10 

Conference, TENCON 2004, pp. 444-447 Vol. 3, 2004. 

A. Abu-Siada (M’07, SM’12) received his B.Sc. and M.Sc. 

degrees from Ain Shams University, Egypt and the PhD 

degree from Curtin University, Australia, All in Electrical 

Engineering. Currently, he is a senior lecturer in the 

Department of Electrical and Computer Engineering at 

Curtin University. His research interests include power 

system stability, condition monitoring, power electronics 

and power quality. He is editor-in-chief for the electrical and 

electronic engineering international journal, a regular reviewer for many IEEE 

Transactions and a vice chair of the IEEE CIS, WA Chapter. 

S. HMOOD received a B.Sc. degree in Electrical 

Engineering from Basrah University, Iraq. Currently, she is 

perusing a Masters of Philosophy study with the Department 

of Electrical and Computer Engineering at Curtin University, 

Australia. Her research interests include power transformer 

condition monitoring and application of artificial intelligence 

to power systems.  

S. Islam (M’83, SM’93) received the B.Sc. from 

Bangladesh University of Engineering and Technology, 

Bangladesh, M.Sc. and PhD degrees from King Fahd 

University of Petroleum and Minerals, Saudi Arabia, all in 

electrical power engineering in 1979, 1983, and  1988 

respectively. He is currently the Chair Professor in Electrical 

Power Engineering at Curtin University, Australia. He 

received the IEEE T Burke Haye’s Faculty Recognition award in 2000. His 

research interests are in Condition Monitoring of Transformers, Wind Energy 

Conversion and Power Systems.  He is regular reviewer for the IEEE Trans. 

on Energy Conversion, Power Systems and Power Delivery. Prof. Islam is an 

editor of the IEEE Transaction on Sustainable Energy.  


	IEEE first page
	192584

