
Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from 

IEEE must be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works. 



1

Iterative Frequency Domain Equalization for
Generalized Approximate Message Passing

Qinghua Guo, Defeng (David) Huang, Sven Nordholm, Jiangtao Xi, and Yanguang Yu

Abstract—An iterative frequency domain equalization ap-
proach for coded single-carrier block transmissions over fre-
quency selective channels is developed by using the recently
proposed generalized approximate message passing (GAMP)
algorithm. Compared with the low-complexity iterative frequency
domain linear minimum mean square error (FD-LMMSE)
equalization approach, the proposed one can achieve significant
performance gain with slight complexity increase.

Index Terms—Turbo equalization, frequency domain equaliza-
tion, linear MMSE, approximate message passing, generalized
approximate message passing.

I. INTRODUCTION

TURBO (iterative) equalization is a powerful technique
to combat the inter-symbol interference (ISI) and it can

achieve impressive performance gain through the iterative
extrinsic information exchange between a soft-in soft-out
(SISO) decoder and a SISO equalizer as shown in Fig. 1
[1]-[12]. Since the conception of turbo equalization in 1995,
it has received tremendous attention with a focus on the
implementation of the SISO equalizer [2]-[12].

The original APP (a posteriori probability)-based SISO
equalizer provides optimal performance but at the cost of
prohibitive computational complexity [1], which grows expo-
nentially with the number of channel taps L. This motivated
the invention of the linear MMSE (minimum mean square
error) SISO equalizer with complexity reduced to O(L2) [2]-
[7]. However, the complexity is still a concern when the
number of channel taps L is large, e.g., in broadband wireless
communications and underwater acoustic communications, L
can be tens even a few hundreds [13], [14]. Recently, the
linear MMSE equalizer has been implemented in the frequency
domain (with or without the assist of cyclic prefixing), re-
ducing complexity to the logarithmic level [8], [10]-[12]. The
frequency domain linear MMSE (FD-LMMSE) equalizer is an
attractive option due to its low complexity. However, it may
suffer from significant performance loss when the transmitted
signal is severely distorted by an ISI channel.
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Fig. 1. A turbo equalization system, where Π and Π
−1 denote the interleaver

and the deinterleaver, respectively.

Recently, Donoho, Maleki and Montanari proposed the ap-
proximate message passing (AMP) technique for compressive
sensing [19], [21], and it was rigorously analyzed in [20].
AMP is derived from belief propagation in which Gaussian ap-
proximations of the messages are used, and hence only means
and variances are needed to approximately characterize the
corresponding messages [21]. Most recently, Rangan extended
AMP to generalized AMP (GAMP) for iterative estimation of
a random vector whose elements are linearly mixed through a
matrix and measured through a componentwise probabilistic
channel [16], [17]. When the componentwise channel is the
additive white Gaussian noise channel, the original AMP can
be obtained from GAMP [17]. GAMP has been applied to
nolinear wireless scheduling in [18], and joint sparse channel
estimation and decoding in orthogonal frequency division
multiplexing (OFDM) in [15].

In this work, a SISO frequency domain equalizer for single-
carrier block transmission is proposed based on GAMP. It is
shown that the special structure of the system transfer matrix
(which is a diagonal matrix multiplied by a discrete Fourier
transfer (DFT) matrix) enables a low-complexity implementa-
tion of the GAMP algorithm. Moreover, by taking advantage
of the iterative processing of a turbo receiver, iteration of
the GAMP algorithm can be incorporated into the iteration
between the SISO equalizer and SISO decoder. The above
leads to a new SISO equalizer with complexity slightly higher
than the low-complexity FD-LMMSE equalizer. However,
simulation results demonstrate that a significant performance
gain can be achieved by the proposed one.

The scope of this work is different from that of [15].
The work in [15] deals with joint sparse channel estimation
and decoding in OFDM. The unknown vector (corresponding
to x in [17]) estimated using GAMP is the sparse channel
vector whose elements are modeled by Gaussian-mixtures,
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and the algorithm also returns the posteriors on the unknown
data symbols. This work focuses on SISO equalization in
single-carrier block transmission. The unknown vector (cor-
responding to x in [17]) estimated using GAMP is the data
symbol vector whose elements are discrete variables with a
priori distributions computed based on the feedback from the
decoder.

Notations: Lower and upper case letters denote scalars.
Bold lower and upper case letters represent column vec-
tors and matrices, respectively. The superscripts T and H
denote the transpose and conjugate transpose, respectively.
Diag{a1, a2, ..., aN} represents an N × N diagonal matrix
with its diagonal elements give by a1, a2, ..., aN . We use I to
represent an identity matrix with proper size.

II. ITERATIVE LINEAR MMSE EQUALIZATION

The received signal for the coded single-carrier system in
Fig. 1 can be represented as

y = Hx + w (1)

where y denotes an observation vector, H denotes a channel
matrix, w denotes a circularly symmetric Gaussian noise vec-
tor with mean 0 and covariance matrix σ2I, and the transmitted
signal x = [x1, x2, ..., xN ]T is mapped from an interleaved
code sequence c, i.e., each xn ∈ A = {α1, α2, ..., α2Q}
(|A| = 2Q) corresponds to a length-Q subsequence of c
denoted by cn = [c1

n, c2

n, ..., cQ
n ]T . Each αi corresponds to

a length-Q binary sequence denoted by [α1

i , α
2

i , ..., α
Q
i ]. We

use A0

q and A1

q to represent the subset of all αi with αq
i = 0

and αq
i = 1, respectively.

The task of the SISO equalizer is to compute the extrinsic
log-likelihood ratio (LLR) for each code bit cq

n [1]-[3]

Le(cq
n) = ln

P (cq
n = 0 | y)

P (cq
n = 1 | y)

− La(cq
n) (2)

where La(cq
n) is the output extrinsic LLR of the decoder in

the last iteration. The extrinsic LLR Le(cq
n) will be passed to

the SISO decoder.
The derivation for Le(cq

n) based on the linear MMSE
principle can be found in [2], and the final result is shown in
(16) in [2]. Recently, we presented a new derivation for Le(cq

n)
in [9], which is much simpler than that in [2]. Moreover,
the new derivation leads to the following alternative concise
representation for Le(cq

n) (which turns out to be equivalent to
the result in [2] as proved in [9])

Le(cq
n)=ln

∑

αi∈A0
q

exp
(

− |αi−me
n|2

ve
n

)

∏

q′ 6=q

P (cq′

n =αq′

i )

∑

αi∈A1
q

exp
(

− |αi−me
n|2

ve
n

)

∏

q′ 6=q

P (cq′

n =αq′

i )
(3)

where me
n and ve

n are called the extrinsic mean and variance
of xn, which are defined as

ve
n = (1/vp

n − 1/vn)
−1 (4)

me
n = ve

n (mp
n/vp

n − mn/vn) (5)

where mn and vn are the a priori mean and variance of xn

calculated based on the output LLRs of the SISO decoder [2],

and mp
n and vp

n are calculated by using the standard linear
MMSE estimation based on model (1) [9]. The core of the
linear MMSE equalizer re-derived in [9] is the standard linear
MMSE estimator to compute mp

n and vp
n. The computations of

mp
n and vp

n can also be based on the frequency domain model
(8), resulting in the FD-LMMSE equalizer.

It is worth mentioning that (3) can be obtained based on
the model me

n = xn + ωn with the a priori probability of xn

from the decoder, where me
n represents the ‘observation’ and

ωn represents a Gaussian noise with mean 0 and variance ve
n.

III. ITERATIVE FREQUENCY DOMAIN EQUALIZATION
USING GAMP

A. Frequency Domain Model
We assume that cyclic prefixing is used in the single-carrier

system, which results in a circulant channel matrix H in (1).
But we note that, the use of cyclic prefixes is not necessary
in a turbo receiver [10], [11]. A useful property of a circulant
matrix is that it can be diagonalized by the Discrete Fourier
Transform (DFT) matrix, i.e., FHFH = D, or equivalently

H = FHDF (6)

where F is the normalized DFT matrix (the (m, n)th element
is given by N−1/2e−j2πmn/N , where j =

√
−1), and the

diagonal matrix

D = Diag{d1, d2, ..., dN} (7)

whose diagonal elements [d1, d2, ..., dN ]T =
√

NFh ( h is the
first column of H). With (6), model (1) can be rewritten as

z = DFx + w′ (8)

where z = Fy, and w′ = Fw has the same distribution as w
because F is a unitary matrix.

B. FD-LMMSE Equalization

To facilitate the comparison between the FD-LMMSE
equalizer and the proposed GAMP based frequency domain
equalizer, we summarize the FD-LMMSE equalization algo-
rithm in the following. It is re-derived based on the frequency
domain model (8) with the framework shown in Section II.

• Step 1: Compute the mean mn and the variance vn for
each xn as follows

mn =

2
Q

∑

i=1

αiP
a(xn = αi) (9)

vn =

2
Q

∑

i=1

|αi − mn|2P a(xn = αi) (10)

where P a(xn = αi) represents the a priori probability of
xn = αi, which can be calculated based on the output
LLRs from the decoder.

• Step 2: Compute mp
n and vp

n based on (8) as follows

vp
1

= vP
2

= ... = vp
N =

1

N

N
∑

i=1

(

1

v
+

|di|2
σ2

)−1

(11)

mp = m + FHDH

(

DDH +
σ2

v
I
)−1

(z − DFm)(12)
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where v = N−1
∑N

n=1
vn, m = [m1, m2, ..., mN ]T , and

mp = [mp
1
, mp

2
, ..., mp

N ]T . Then calculate the extrinsic
mean me

n and variance ve
n for each xn using (4) and (5).

Once the extrinsic means and variances are available, the
extrinsic LLRs for the code bits can be calculated using (3).

Here we note that, in the derivation of Step 2 of the above
algorithm, we use the approximation that the a priori variances
of the symbols are the same (i.e., v). This approximation is
often used in the derivation of the frequency domain equalizer
such as in [10]-[12].

C. GAMP Based Frequency Domain Equalization

In the system represented by (1) or (8), each transmitted
symbol xn(∈ A) is a discrete random variable. In the linear
MMSE equalization, xn is treated as a Gaussian variable, i.e.,
the equalization algorithm only utilizes the first and second
order moments of xn (see (9) and (10) in the FD-LMMSE
equalization algorithm), and it may cause performance loss.

In this work, we employ the sum-product GAMP algorithm
to estimate the non-Gaussian random variables in x. In partic-
ular, we will focus on the frequency domain model (8), i.e.,
the linear mixing matrix is a special matrix DF, which leads
to a low complexity implementation of the GAMP algorithm.

According to the turbo principle, the output of the SISO
equalizer, i.e., the input to the SISO decoder, should be
extrinsic (which intuitively explains the use of extrinsic mean
and variance of xn in (3)). Hence, we expect that the outputs of
the GAMP algorithm are extrinsic to facilitate its application
in turbo equalization. By examining the derivation of the
original GAMP algorithm in [17], it can be found that the
outputs of Step 4 in the algorithm are extrinsic as they are the
messages passed from the observation side and do not contain
the immediate a priori information about xn itself. Moreover,
the output of Step 4 is in the form of mean and variance of
xn, and hence we also give them the name of extrinsic mean
and extrinsic variance (but note that they are different from the
extrinsic mean and variance defined in (4) and (5) in Section
II). Therefore, we change the order of the steps in the original
GAMP algorithm. Specifically, we make Step 5 in the original
GAMP algorithm as the first step, so that Step 4 becomes the
final step.

Based on the above discussion and the properties of a DFT
matrix, it is not hard to obtain the following iterative algorithm
to calculate the extrinsic mean and variance for each xn.

Algorithm 1
• Initialization: Set µ−1

rn
= 0, rn = 0, and s = 0.

• Step 1: Compute the mean m′
n and the variance v′

n for
each xn using the following

Pi = P a(xn = αi) exp
(

−µ−1

rn
|αi − rn|2

)

(13)

P (xn = αi) =
Pi

∑

2Q

i′=1
Pi′

, i = 1, 2, ...2Q (14)

m′
n =

2
Q

∑

i=1

αiP (xn = αi) (15)

v′n =

2
Q

∑

i=1

|αi − m′
n|2P (xn = αi) (16)

where P a(xn = αi) is the same as that in the FD-
LMMSE approach, i.e., it represents the a priori prob-
ability of xn = αi, and can be calculated based on the
output LLRs from the decoder.

• Step 2: Compute µpn
and p as follows

µpn
= v|dn|2 (17)

p = DFm′ − Λps (18)

where v = N−1
N
∑

n=1

v′n, m′ = [m′
1
, m′

2
, ..., m′

N ]T and

Λp = Diag{µp1
, µp2

, ..., µpN
}.

• Step 3: Compute µsn
and s

µsn
= (σ2 + µpn

)−1 (19)
s = Λs(z − p) (20)

where Λs = Diag{µs1
, µs2

, ..., µsN
}.

• Step 4: Compute {µrn
} and r

µr1
= µr2

= ... = µrn
= N

[

N
∑

i=1

(

|di|2µsi

) ]−1(21)

r = m′ + µr1
FHDHs (22)

where r = [r1, r2, ..., rN ]T . Then return to Step 1 for the
next iteration.

Compute Extrinsic LLRs: As discussed in the above, rn and
µrn

are the extrinsic mean and variance of xn. But they are
not in the sense of linear MMSE, and hence they are different
from those defined in (4) and (5). However, to compute the
extrinsic LLRs, we can use the model rn = xn + ω′

n, where
rn represents the ‘observation’, and ω′

n represents a Gaussian
noise with mean 0 and variance µrn

, and therefore (3) can be
used by replacing me

n with rn and ve
n with µrn

.
Equalizer Implementation: The SISO equalizer imple-

mented with Algorithm 1 involves an inner iteration, and
we give it the name Eq-GAMP-It. However, we can take
advantage of the iterative processing at the turbo receiver,
i.e., incorporate the iteration in Algorithm 1 into the iteration
between the decoder and equalizer, thereby removing the inner
iteration of the equalizer and reducing its complexity. This can
be realized by setting the number of iteration in Algorithm
1 to 1 and move the initialization of Algorithm 1 into the
initialization of the iterative process between the decoder and
the equalizer. The resultant equalizer is called Eq-GAMP.

D. Comparison with the FD-LMMSE Equalizer

It can be seen that Step 1 of Algorithm 1 for the GAMP
based approach functionally corresponds to Step 1 in the FD-
LMMSE approach, and Steps 2, 3 and 4 of Algorithm 1 for
the GAMP based approach functionally correspond to Step 2
in the FD-LMMSE approach. Both approaches need to use
(3) to calculate the extrinsic LLR for each code bit. Next, we
compare their complexity.

Steps 2, 3 and 4 in Algorithm 1 for the GAMP based
approach and their counterpart Step 2 in the FD-LMMSE
approach have almost the same complexity as explained in the
following. They both need one FFT (fast Fourier transform)
operation and one inverse FFT operation with complexity
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Fig. 2. BER performance of the receiver with different equalizers.

O(logN) per symbol. The remaining operations involved in
Steps 2, 3, and 4 in Algorithm 1 require 14 real additions
and 19 real multiplications per symbol, and the remaining
operations involved in Step 2 in the FD-LMMSE approach
require 15 real additions and 19 real multiplications.

The complexity difference lies in Step 1. Step 1 of Algo-
rithm 1 for the GAMP based approach has slightly higher
complexity than its counterpart Step 1 in the FD-LMMSE
approach due to the extra calculations of (13) and (14) in
Algorithm 1. However, thanks to (13) and (14), the symbols
in the proposed approach are not simply treated as Gaussian
variables. If the operation of exp(·) is implemented using a
look-up table approach, Step 1 in Algorithm 1 only involves
marginal complexity increase.

From the above analysis, we can see that the complexity of
the proposed Eq-GAMP is only slightly higher than that of
the FD-LMMSE equalizer.1 However, Eq-GAMP can signifi-
cantly outperform the FD-LMMSE equalizer in performance
as demonstrated by the simulation results in Section IV.

IV. SIMULATION RESULTS

Consider a single-carrier block transmission system with an
iterative receiver as shown in Fig. 1, where the cyclic prefixing
technique is used. A rate-1/2 nonsystematic convolutional code
with generator (5, 7)8 is employed, and the SISO decoder is
implemented using the BCJR algorithm. The interleaved code
sequence is mapped to a symbol sequence using QPSK with
Gray mapping, and then the symbol sequence is divided into
length-256 blocks, which are transmitted after cyclic prefixing.
We use Proakis’ 5-tap ISI channel with coefficients [0.227,
0.460, 0.688, 0.460, 0.277] (which generates severe distortion
on the transmitted signal) to verify the performance of the
approaches. The number of information bits is 7680, and the
number of iterations is 10.

The performance of the turbo receiver with the proposed
Eq-GAMP and the FD-LMMSE equalizer is compared in

1Eq-GAMP-It may have significantly higher complexity than the FD-
LMMSE equalizer, depending on the number of iterations in Algorithm 1.

Fig. 2, where the performance of the code over AWGN
channel (which is the performance limit of the system over
ISI channels) is also shown. It can be seen that a significant
performance gain is achieved by Eq-GAMP compared with
the FD-LMMSE equalizer. The performance of the receiver
with Eq-GAMP-It (5 iterations in Algorithm 1) is also shown
for reference. Eq-GAMP-It slightly outperforms Eq-GAMP at
the cost of considerable complexity increase.
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