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Abstract. A linear observational equation system for real time GNSS carrier phase ambiguity resolution (AR) is often 

severely ill-posed in the case of poor satellite geometry. An ill-posed system may result in unreliable or unsuccessful 

AR if no care is taken to mitigate this situation. In this paper, the GNSS AR model as an ill-posed problem is solved 

by regularizing its baseline and ambiguity parameters respectively with the threefold contributions: (i) The regulariza-

tion parameter is reliably determined in context of minimizing mean square error of regularized solution by replacing 

the quadratic matrix of the true values of unknowns with the covariance matrix of their initial values; (ii) The different 

models for computing initial values of unknowns are systematically discussed in order to address the potential 

schemes in real world applications; (iii) The superior performance of the regularized AR are demonstrated through the 

numerically random simulations as well as the real GPS experiments. The results show that the proposed regulariza-

tion strategies can effectively mitigate the model’s ill-condition and improve the success AR probability of the obser-

vational system with a severely ill-posed problem. 

Keywords. GNSS; ambiguity resolution; regularization; ill-posed problem; success probability 

1. Introduction 

GNSS carrier phase integer ambiguity resolution (AR) as a key to precise real time positioning applications has at-

tracted a great deal of research attentions since early 1980s. Many methods and algorithms have been developed, in-

cluding extra-widelaning technique (Wübbena 1989), ambiguity function method (Counselman and Gourevitch 1981), 

fast ambiguity resolution approach (Frei and Beutler 1990), Cholesky decomposition (Euler and Landau 1992; Xu 

2001), least squares ambiguity searching technique (Hatch 1990), Least squares AMBiguity Decorrelation Adjustment 

(LAMBDA) (Teunissen 1993) as well as Ambiguity Resolution with Constraint Equations (ARCE) method (Park et al. 

1996), of which the LAMBDA is popularly used in the geodetic community due to its efficient search speed (Teunis-

sen 1999). A good AR method is characterized by the following aspects (Abidin 1993; Chen 1994; Xu 1998a): 

*Manuscript, including all figures
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(i) Computed float ambiguities are close to their integers and their covariance matrix is near diagonal. In other 

words, the error correlation between the float ambiguities is generally weak. To achieve this, any available constraint 

between coordinates or ambiguities may be made use of, depending on the situation whether a prior baseline informa-

tion is given or a subset of ambiguity integers are predetermined (Li and Shen 2009). Alternatively, many researchers 

take the ill-condition of the GNSS AR model into account, using the regularization against least squares (LS) estima-

tion to obtain more accurate float ambiguity solutions (Xu et al. 1999; Ou and Wang 2004; Shen and Li 2007; Gui and 

Han 2007; Li and Shen 2008). 

(ii) As the core of an AR process, the integer search strategy can efficiently determine the integers. A good search 

engine can, to a certain extent, reduce the quality demand on the float solutions. In fact, this has been the focus of the 

most of AR methods, of which the integer rounding is the simplest way to immediately fix the ambiguities to their 

nearest integers, but it cannot achieve high success probability since the correlations amongst all ambiguities are not 

considered. Also using rounding but partially considering correlation between two consecutive ambiguities, Dong and 

Bock (1989) proposed a bootstrapping procedure based on the sequential LS adjustment. In the bootstrapping, a num-

ber of the nuisance ambiguity candidates can be excluded and the search efficiency is improved. Teunissen (1993) 

firstly attempted to rigorously estimate ambiguities using integer LS (ILS) method which considers the correlations 

amongst all ambiguities in the integer search process. Furthermore, Teunissen (1995) systematically established the 

LAMBDA method with an embedded decorrelation technique to improve the integer search speed. Afterwards, several 

alternative decorrelation techniques have been proposed, such as LLL, inverse integer Cholesky decomposition as 

well as united ambiguity decorrelation (Xu et al. 1995; Liu et al. 1999; Grafarend 2000; Xu 2001; Chang et al. 2005). 

However, it is realized by Xu (2001) that all decorrelation techniques can speed up the estimation procedure only if 

the dimension of the integer vector is not too high. Therefore, how to efficiently improve the search speed in high di-

mensional case is still an open and challenging issue. 

(iii) The reliability of integer solutions from the searching engine is evaluated with a robust hypothesis testing. This 

is an important and also rather challenging issue. It is important because a wrong integer solution can lead to incorrect 

estimation of the remaining real parameters, while difficult because the integer is discrete and one cannot describe its 

reliability using uncertainty like a real parameter. Many research efforts have been made to address this issue based on 

the AR success probability, including early contributions by Hassibi and Boyd (1996, 1998), Teunissen (1998, 1999, 

2001, 2002), Verhagen (2004, 2005) and more recent works by Xu (2006), O’Keefe et al. (2007), Zhu et al. (2007). 

A linear observational system for fast or real time GNSS AR and position estimation is often severely ill-posed due 

to the poor observation geometry in short observation span. As a result, a small observational error may result in a 
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large error in the LS solution, where the float ambiguities distinctly apart from their integers and the covariance matrix 

is characterized by strong correlation between ambiguity parameters. In fact, the stable float solution is possible when 

the model’s ill-condition is effectively mitigated. In the past few years, several researchers have attempted to solve the 

problem for stable float ambiguities by regularizing this ill-posed model (Xu et al. 1999; Ou and Wang 2004; Shen 

and Li 2007; Gui and Han 2007; Li and Shen 2008). Ou and Wang (2004) studied a regularized AR with a regulariza-

tion matrix constructed from the baseline part of the normal equations. The estimation requires a prior knowledge of 

the baseline vector at the decimeter-level and the regularization parameter (RP) is empirically chosen to 1. Shen and 

Li (2007) proposed to regularize the ambiguity parameters to stabilize their float estimates as well. Gui and Han (2007) 

put forward a double-k type regularization method to regularize baseline and ambiguities simultaneously using two 

different RPs. In fact, the double-k type regularization is essentially equivalent to the single-k type regularization, be-

cause once one type of the parameters is reliably estimated, the remaining can be computed accordingly. With a prior 

knowledge of baseline, a more reasonable RP can be determined (Li and Shen 2008). 

However, there have been problems in using regularization to solve the GNSS AR model in the past works. (i) RP is 

crucial for the regularization but rather difficult to determine because in theory the true values of unknowns are 

needed in the minimizing the mean square error (MSE) criterion, whereas no sufficient attentions have been paid to 

this issue in the existing works. (ii) Regularization can indeed make the float solution decorrelated and its probability 

density function (PDF) sharper, but the regularized solution is biased. Nevertheless in the previous works, the regula-

rized bias is ignored. The question is that whether the regularized biases are considerable to affect the efficiency of 

regularized AR. 

In this paper, a fast GNSS AR model as an ill-posed problem is solved by regularizing its baseline and ambiguity 

parameters respectively to address the problems identified thus far. To determine a reliable PR, we replace the qua-

dratic matrix of the true values of unknowns with the covariance matrix of their initial values, and thus the problem of 

determining the RP turns to a problem of computing the stable initial values of unknowns. Furthermore, the different 

models for computing initial values of unknowns are systematically discussed in order to address the potential 

schemes in real applications. Since it is rather difficult to explicitly prove the higher success probability of regularized 

AR if considering the regularized biases, the random simulations as well as the real GPS experiments are adopted to 

numerically demonstrate superior performance of regularized AR. 

The rest of the paper is organized as follows. Section 2 briefly introduces the regularization estimation for ill-posed 

model. This is followed by the theoretical analysis on the basis for using the covariance matrix of the initial values of 

unknowns instead of the quadratic matrix of true values in the RP determination. Section 3 gives the fast GNSS AR 
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model and demonstrates the ill-posed characteristics of its LS solution. In sections 4 and 5, we will give more com-

prehensive investigation into the regularized AR by regularizing the baseline and ambiguity parameters respectively, 

and the potential schemes in real applications are discussed. The random simulations and the real GPS experiments 

are implemented in sections 6 and 7 to demonstrate the superior performance of regularized AR. The concluding re-

marks are outlined in the last section. 

2. Ill-posed problem and regularization estimation 

2.1 Mathematical model and regularization estimation 

A linear (linearized) model is expressed as 

𝒚𝒚 = 𝑨𝑨𝑨𝑨 + 𝒆𝒆;     𝜎𝜎0
2𝑸𝑸                                       (1) 

where 𝒚𝒚 ∈ ℝ𝑛𝑛  is an observation vector contaminated by an error vector 𝒆𝒆 ∈ ℝ𝑛𝑛  with normal distribution of mean 

zero and covariance matrix 𝜎𝜎0
2𝑸𝑸; 𝜎𝜎0

2 is a variance scalar of unit weight and 𝑾𝑾 = 𝑸𝑸−1 a positive-definite weight 

matrix; 𝑨𝑨 ∈ ℝ𝑛𝑛×𝑚𝑚  is a matrix with full column rank connected to the unknown vector 𝑨𝑨 ∈ ℝ𝑚𝑚  and generally n>m. 

If the matrix A is well-conditioned, the LS solution as the best unbiased estimation to this overdetermined system of 

Eq.(1) is given as 

𝑨𝑨�𝐿𝐿 = (𝑨𝑨𝑇𝑇𝑾𝑾𝑨𝑨)−1𝑨𝑨𝑇𝑇𝑾𝑾𝒚𝒚                                     (2) 

However, if A is ill-posed (namely the condition number of A is very large), the LS solution (2) becomes instable be-

cause a small error in the observation vector y will derive a large error in the solution 𝑨𝑨�𝐿𝐿. In order to stabilize the so-

lution in such ill-posed model, Tikhonov (1963) regularization is commonly used, which is also known as ridge re-

gression in statistics. The regularization solves the problem (1) with the following minimization 

min𝑨𝑨 ‖𝑨𝑨𝑨𝑨 − 𝒚𝒚‖𝑸𝑸2 + 𝛼𝛼‖𝑨𝑨‖2                                   (3) 

where ‖∙‖𝑸𝑸𝟐𝟐 = (∙)𝑇𝑇𝑸𝑸−1(∙) and α>0 is the RP. The regularized solution is derived as 

𝑨𝑨�𝑅𝑅 = (𝑨𝑨𝑇𝑇𝑾𝑾𝑨𝑨 + 𝛼𝛼𝑰𝑰𝑚𝑚)−1𝑨𝑨𝑇𝑇𝑾𝑾𝒚𝒚 = 𝑵𝑵𝛼𝛼
−1𝑨𝑨𝑇𝑇𝑾𝑾𝒚𝒚 ;    𝜮𝜮𝑨𝑨�𝑅𝑅 = 𝜎𝜎0

2𝑵𝑵𝛼𝛼
−1𝑵𝑵𝑨𝑨𝑵𝑵𝛼𝛼

−1                  (4) 

where 𝑵𝑵𝑨𝑨 = 𝑨𝑨𝑇𝑇𝑾𝑾𝑨𝑨 and 𝑵𝑵𝛼𝛼 = 𝑨𝑨𝑇𝑇𝑾𝑾𝑨𝑨 + 𝛼𝛼𝑰𝑰𝑚𝑚  with Im being the m×m identity matrix. The regularized solution is 

biased and its bias is computed as 

𝒈𝒈𝑨𝑨�𝑅𝑅 = 𝐸𝐸(𝑨𝑨�𝑅𝑅 − 𝑨𝑨) = −𝛼𝛼𝑵𝑵𝛼𝛼
−1𝑨𝑨�                                  (5) 

(see e.g., Shen and Li 2007), where E(·) is the expectation operation and 𝑨𝑨� is the true value of the unknown vector. 

Traditionally, MSE is used to evaluate the regularized solution including the effect of the bias term 

𝑴𝑴𝑨𝑨�𝑅𝑅 = 𝐸𝐸[(𝑨𝑨�𝑅𝑅 − 𝑨𝑨)(𝑨𝑨�𝑅𝑅 − 𝑨𝑨)𝑇𝑇] = 𝜮𝜮𝑨𝑨�𝑅𝑅 + 𝒈𝒈𝑨𝑨�𝑅𝑅𝒈𝒈𝑨𝑨�𝑅𝑅
𝑇𝑇 = 𝑵𝑵𝛼𝛼

−1(𝜎𝜎0
2𝑵𝑵𝑥𝑥 + α2𝑨𝑨�𝑨𝑨�𝑇𝑇)𝑵𝑵𝛼𝛼

−1             (6) 

(see e.g., Xu and Rummel 1994). Desirably, a good estimation is companied by a small bias besides a stable solution. 

Since the true values 𝑨𝑨� is never known, as suggested by Xu et al. (2006) it can be directly replaced by the regularized 

http://en.wikipedia.org/wiki/Overdetermined_system�
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estimate to compute the regularized bias as 

𝒈𝒈𝑨𝑨�𝑅𝑅� = −𝛼𝛼𝑵𝑵𝛼𝛼
−1𝑨𝑨�𝑅𝑅                                         (7) 

Since 𝑨𝑨�𝑅𝑅  is a biased estimate of x, we have 

𝒈𝒈𝒈𝒈𝑨𝑨�𝑅𝑅� = 𝐸𝐸�𝒈𝒈𝑨𝑨�𝑅𝑅� − 𝒈𝒈𝑨𝑨�𝑅𝑅� = 𝛼𝛼2𝑵𝑵𝛼𝛼
−2𝑨𝑨�                                (8) 

Obviously, if we use 𝑨𝑨�𝑅𝑅  to estimate the biases of 𝑨𝑨�𝑅𝑅 , the estimation error is the second-order values of RP Thus it is 

reasonable to evaluate the regularized bias using Eq. (8) if RP is small. 

2.2 Determination of regularization parameter 

The RP α is prerequisite for the regularized solution. There are many methods for computing RP, such as, discrepancy 

principle, general cross validation, L-curve and so on (Hansen 1992; Xu 1998b). In this paper, we compute a RP by 

minimizing MSE of the regularized solution to guarantee the estimation efficiency, namely, 

𝛼𝛼 = arg min𝛼𝛼>0 𝑡𝑡𝑡𝑡�𝑴𝑴𝑨𝑨�𝑅𝑅�                                    (9) 

where tr(·) is the mathematical operation for computing the trace of a matrix. It is easy to prove that the second-order 

derivative ∂2𝑡𝑡𝑡𝑡�𝑴𝑴𝑨𝑨�𝑅𝑅� ∂𝛼𝛼2⁄ > 0 holds true for any α>0, which means that the unique minimization point exists. It is 

observed that the true values 𝑨𝑨� are necessary to compute a RP, but in practice they are never known. One can replace 

𝑨𝑨� by their initial values (for instance, the LS estimates), namely, 𝑨𝑨�𝑨𝑨�𝑇𝑇 ≈ 𝑨𝑨�𝑨𝑨�𝑇𝑇 with 𝑨𝑨� being the initial values. It is 

crucial to determine RP α, because the regularized solution is sensitive to α. From theoretical point of view, α is used 

to essentially balance the contributions of observation and regularized bias to the regularized solution. A large α value 

will definitely lead to a large bias. Conversely, if α value is too small, the model’s ill-condition cannot be effectively 

mitigated and then the regularized solution is still unstable. Apparently, if we use the non-iterative initial solution to 

compute α, the initial values are usually large such that the derived α is too small. Thus the initial solution should be 

computed iteratively. However, after iteration, the systematic trends are basically removed from observations, i.e., 

𝐸𝐸(𝑨𝑨�) ≈ 𝟎𝟎. Hence we have the approximation 

𝑨𝑨�𝑨𝑨�𝑇𝑇 = �𝑨𝑨� − 𝐸𝐸(𝑨𝑨�)��𝑨𝑨� − 𝐸𝐸(𝑨𝑨�)�
𝑇𝑇
≈ 𝐸𝐸 ��𝑨𝑨� − 𝐸𝐸(𝑨𝑨�)��𝑨𝑨� − 𝐸𝐸(𝑨𝑨�)�

𝑇𝑇
� = 𝜎𝜎0

2𝑸𝑸𝑨𝑨�               (10) 

and the RP can be in practice computed by 

𝛼𝛼 = arg min𝛼𝛼>0 𝑡𝑡𝑡𝑡(𝑵𝑵𝛼𝛼
−1(𝑵𝑵𝑨𝑨 + 𝛼𝛼2𝑸𝑸𝑨𝑨�)𝑵𝑵𝛼𝛼

−1)                           (11) 

One may use the LS solution 𝑨𝑨�𝐿𝐿 to replace 𝑨𝑨�, namely, LS covariance matrix 𝜎𝜎0
2𝑸𝑸𝑨𝑨�𝐿𝐿  to replace 𝑨𝑨�𝑨𝑨�𝑇𝑇 . However, in 

ill-posed model (1), the cofactor matrix 𝑸𝑸𝑨𝑨�𝐿𝐿  is generally unstable. Therefore, alternative methods to compute the sta-

ble initial values of unknowns and their cofactor matrix are adopted in the context of GNSS AR in next section. As a 

consequence, the determination of RP is turned to seek the stable initial estimates and their cofactor matrix. 
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3. Fast GPS ambiguity resolution model and integer least squares estimation 

The double differenced (DD) GPS observation model for a short baseline and its LS estimation are given. Then the 

ill-posed characteristics of ambiguity normal equations for a short observation span are demonstrated. 

3.1 GPS observation model for a short baseline 

We start from the linearized DD phase equations at a short baseline ignoring the effects of residual atmospheric biases 

𝜱𝜱𝑗𝑗 = [𝑨𝑨𝑗𝑗 𝑩𝑩𝑗𝑗 ] �𝒂𝒂𝒃𝒃� + 𝒆𝒆𝜱𝜱𝑗𝑗 ;   𝜎𝜎0
2𝑸𝑸𝜱𝜱𝑗𝑗                                (12) 

where 𝜱𝜱𝑗𝑗  and 𝒆𝒆𝜱𝜱𝑗𝑗  are the vectors of phase observations and their noises;  𝒂𝒂 ∈ ℤ𝑚𝑚  and 𝒃𝒃 ∈ ℝ3 are the unknown 

vectors for integer ambiguities and baseline respectively, and their corresponding coefficient matrices are  𝑨𝑨𝑗𝑗 = 𝜆𝜆𝑰𝑰𝑚𝑚  

and 𝑩𝑩𝑗𝑗 ; 𝜎𝜎0
2 is the variance of DD phase serving as a prior variance of unit weight; 𝑸𝑸𝜱𝜱𝑗𝑗  is a cofactor matrix of phase 

observations. The subscript “j” denotes the jth epoch. Similarly, the DD pseudorange equations read 

𝑷𝑷𝑗𝑗 = 𝑩𝑩𝑗𝑗𝒃𝒃 + 𝒆𝒆𝑷𝑷𝑗𝑗 ;     𝜎𝜎0
2𝑸𝑸𝑷𝑷𝑗𝑗                                   (13) 

where the cofactor matrix of pseudoranges 𝑸𝑸𝑷𝑷𝑗𝑗 = 𝜅𝜅 × 𝑸𝑸𝜱𝜱𝑗𝑗  and 𝜅𝜅 = 𝜎𝜎𝐶𝐶2 𝜎𝜎0
2⁄  is a scalar weight for pseudorange rela-

tive to phase; 𝜎𝜎𝐶𝐶2 is the variance of DD pseudorange; Collecting n epoch observations together yields 

𝒚𝒚 = 𝑨𝑨𝒂𝒂 + 𝑩𝑩𝒃𝒃 + 𝒆𝒆;    𝜎𝜎0
2𝑸𝑸                                   (14) 

where 𝒚𝒚 = [𝜱𝜱1
𝑇𝑇 ⋯ 𝜱𝜱𝑛𝑛

𝑇𝑇 𝑷𝑷1
𝑇𝑇 ⋯ 𝑷𝑷𝑛𝑛𝑇𝑇]𝑇𝑇 , 𝒆𝒆 = �𝒆𝒆𝜱𝜱1

𝑇𝑇 ⋯ 𝒆𝒆𝜱𝜱𝑛𝑛
𝑇𝑇 𝒆𝒆𝑷𝑷1

𝑇𝑇 ⋯ 𝒆𝒆𝑷𝑷𝑛𝑛
𝑇𝑇 �

𝑇𝑇
, 𝑨𝑨 = �10� ⊗ �

𝑨𝑨1
⋮
𝑨𝑨𝑛𝑛
�, 𝑩𝑩 = �11� ⊗

�
𝑩𝑩1
⋮
𝑩𝑩𝑛𝑛

�; 𝑸𝑸 = �𝑰𝑰𝑛𝑛 𝟎𝟎
𝟎𝟎 𝜅𝜅 × 𝑰𝑰𝑛𝑛

� ⊗ 𝑸𝑸𝜱𝜱 is a cofactor matrix with 𝑸𝑸𝜱𝜱 = 𝑸𝑸𝜱𝜱1 = ⋯ = 𝑸𝑸𝜱𝜱𝑛𝑛 ; 𝑨𝑨1 = ⋯ = 𝑨𝑨𝑛𝑛 = 𝜆𝜆𝑰𝑰𝑚𝑚  and λ is 

the wavelength of phase. The weight matrix  𝑾𝑾 = 𝑸𝑸−1. 

3.2 Integer least squares ambiguity resolution 

Being different from purely real-valued model, Eq.(14) includes integer ambiguity parameters. The ILS method was 

introduced by Teunissen (1993) to solve Eq. (14). An alternative two-step procedure was described in Xu et al. (1995). 

In this paper, we outline the formulae of the float solution and integer search criterion directly without any derivation. 

The normal equations of LS float solutions are 

�𝑨𝑨
𝑇𝑇𝑾𝑾𝑨𝑨 𝑨𝑨𝑇𝑇𝑾𝑾𝑩𝑩

𝑩𝑩𝑇𝑇𝑾𝑾𝑨𝑨 𝑩𝑩𝑇𝑇𝑾𝑾𝑩𝑩
� �
𝒂𝒂�𝐿𝐿
𝒃𝒃�𝐿𝐿
� = �𝑨𝑨

𝑇𝑇𝑾𝑾𝒚𝒚
𝑩𝑩𝑇𝑇𝑾𝑾𝒚𝒚

�                                (15) 

For simplifying the expressions, we set up the notations: �𝑵𝑵𝒂𝒂𝒂𝒂 𝑵𝑵𝒂𝒂𝒃𝒃
𝑵𝑵𝒃𝒃𝒂𝒂 𝑵𝑵𝒃𝒃𝒃𝒃

� = �𝑨𝑨
𝑇𝑇𝑾𝑾𝑨𝑨 𝑨𝑨𝑇𝑇𝑾𝑾𝑩𝑩

𝑩𝑩𝑇𝑇𝑾𝑾𝑨𝑨 𝑩𝑩𝑇𝑇𝑾𝑾𝑩𝑩
�, �

𝒖𝒖𝒂𝒂
𝒖𝒖𝒃𝒃� = �𝑨𝑨

𝑇𝑇𝑾𝑾𝒚𝒚
𝑩𝑩𝑇𝑇𝑾𝑾𝒚𝒚

�; 

𝑵𝑵𝒂𝒂|𝒃𝒃 = 𝑵𝑵𝒂𝒂𝒂𝒂 − 𝑵𝑵𝒂𝒂𝒃𝒃𝑵𝑵𝒃𝒃𝒃𝒃
−1𝑵𝑵𝒃𝒃𝒂𝒂 , 𝑵𝑵𝒃𝒃|𝒂𝒂 = 𝑵𝑵𝒃𝒃𝒃𝒃 − 𝑵𝑵𝒃𝒃𝒂𝒂𝑵𝑵𝒂𝒂𝒂𝒂

−1𝑵𝑵𝒂𝒂𝒃𝒃 ; 𝒖𝒖𝒃𝒃|𝒂𝒂 = 𝒖𝒖𝒃𝒃 − 𝑵𝑵𝒃𝒃𝒂𝒂𝑵𝑵𝒂𝒂𝒂𝒂
−1𝒖𝒖𝒂𝒂 , 𝒖𝒖𝒂𝒂|𝒃𝒃 = 𝒖𝒖𝒂𝒂 − 𝑵𝑵𝒂𝒂𝒃𝒃𝑵𝑵𝒃𝒃𝒃𝒃

−1𝒖𝒖𝒃𝒃  and 

�
𝑸𝑸𝒂𝒂�𝐿𝐿 𝑸𝑸𝒂𝒂�𝐿𝐿 ,𝒃𝒃�𝐿𝐿
𝑸𝑸𝒃𝒃�𝐿𝐿 ,𝒂𝒂�𝐿𝐿 𝑸𝑸𝒃𝒃�𝐿𝐿

� = �𝑵𝑵𝒂𝒂𝒂𝒂 𝑵𝑵𝒂𝒂𝒃𝒃
𝑵𝑵𝒃𝒃𝒂𝒂 𝑵𝑵𝒃𝒃𝒃𝒃

�
−1

. Here the subscript “L” denotes the LS solution. Thus the LS float solution is 
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symbolized from Eq.(15) as 

𝒂𝒂�𝐿𝐿 = 𝑵𝑵𝒂𝒂|𝒃𝒃
−1 𝒖𝒖𝒂𝒂|𝒃𝒃, 𝜮𝜮𝒂𝒂�𝐿𝐿 = 𝜎𝜎0

2𝑵𝑵𝒂𝒂|𝒃𝒃
−1                                 (16) 

In the second step, the float ambiguities are mapped to their integers by solving the minimization problem (Teunissen 

1993; Xu et al. 1995) 

𝒂𝒂�𝐿𝐿 = arg min𝒂𝒂∈ℤ𝒎𝒎 (𝒂𝒂�𝐿𝐿 − 𝒂𝒂)𝑇𝑇𝜮𝜮𝒂𝒂�𝐿𝐿
−1(𝒂𝒂�𝐿𝐿 − 𝒂𝒂)                           (17) 

Because the integer is discrete, we cannot drive an explicit expression of solution unless the covariance matrix 𝜮𝜮𝒂𝒂�𝐿𝐿  is 

diagonal. Thus the searching procedure is applied to pick out the optimal integer candidate. To speed up the search, 

the decorrelation technique is often employed to make the strongly correlated covariance matrix 𝜮𝜮𝒂𝒂�𝐿𝐿  towards a di-

agonal one (Teunissen 1993, 1995; Xu et al. 1995; Liu et al. 1999; Grafarend 2000; Xu 2001; Chang et al. 2005). 

From the geometric view, it makes the elongated super-ellipsoid more sphere-like. 

3.3 Ill-posed characteristic of ambiguity normal equations 

In fast GNSS AR, the normal equations (15) are strongly collinear due to the strong correlation between baseline and 

ambiguity parameters (Teunissen and Kleusberg 1998; Li and Shen 2010). In other words, if three baseline compo-

nents or at least three DD ambiguities are fixed, the remaining parameters can be computed accordingly. From the 

spectrum point of view, there are three extremely small eigenvalues within all eigenvalues of the norm matrix. We 

apply singular value decomposition (SVD) for the normal matrix associated to ambiguities as 

𝑵𝑵𝒂𝒂|𝒃𝒃 = 𝑽𝑽𝑽𝑽𝑽𝑽𝑇𝑇                                     (18) 

where 𝑽𝑽 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜃𝜃1 ⋯ 𝜃𝜃𝑚𝑚) satisfies with 𝜃𝜃1 > ⋯ > 𝜃𝜃𝑚𝑚  and last three components 𝜃𝜃𝑚𝑚−2, 𝜃𝜃𝑚𝑚−1 and 𝜃𝜃𝑚𝑚  are 

much smaller than the others. To intuitively illustrate this ill-posed property, we collect 1000 epochs of L1 phase data 

from a 4.6 km baseline (which is also used in the latter experiments in section 7). The 7 common satellites (i.e., 6 am-

biguities) are tracked in the whole computations. The ambiguity normal equations are computed using 10 epoch data 

and the oldest epoch is updated for each computation. All eigenvalues for total 991 experiments are shown in Figure 1 

where the y-axis denotes the common algorithm of eigenvalues. Each subplot shows all 991 computations for one ei-

genvalue. Apparently, the variation in each subplot is very small and smooth due to the smooth satellite geometry var-

iation, but the differences between the first three and the last three eigenvalues are significant, far beyond a scale of 

10–4. Therefore, the normal matrix Na|b in fast GNSS AR is severely ill-posed with property that three eigenvalues of 

Na|b are extremely smaller than the others. 
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Figure 1: Eigenvalue variations of the ambiguity normal matrices over 1000 data epochs 

4. Ambiguity estimation by regularizing baseline parameters 

Following from the above analysis on the ill-posed fast GNSS AR problem, we introduce the regularization algorithm 

to this ill-posed model, namely regularizing the baseline parameters. 

4.1 Mathematical model 

The minimization function contains an additional quadratic term of the baseline vector 

min𝒂𝒂,𝒃𝒃 ‖𝑨𝑨𝒂𝒂 + 𝑩𝑩𝒃𝒃 − 𝒚𝒚‖𝑸𝑸2 + 𝛼𝛼‖𝒃𝒃‖2 , 𝒂𝒂 ∈ ℝ𝒎𝒎                           (19) 

The regularized baseline solutions are 

𝒃𝒃�𝑅𝑅𝑅𝑅 = 𝑵𝑵�𝒃𝒃|𝒂𝒂
−1 𝒖𝒖𝒃𝒃|𝒂𝒂;    𝜮𝜮𝒃𝒃�𝑅𝑅𝑅𝑅 = 𝜎𝜎0

2𝑵𝑵�𝒃𝒃|𝒂𝒂
−1 𝑵𝑵𝒃𝒃|𝒂𝒂𝑵𝑵�𝒃𝒃|𝒂𝒂

−1                             (20) 

where 𝑵𝑵�𝒃𝒃|𝒂𝒂 = 𝑵𝑵𝒃𝒃|𝒂𝒂 + 𝛼𝛼𝑰𝑰3 and the subscript “RB” denotes the regularized solution by regularizing baseline parameters. 

Accordingly, the regularized bias is computed as 

𝒈𝒈𝒃𝒃�𝑅𝑅𝑅𝑅 = 𝐸𝐸�𝒃𝒃�𝑅𝑅𝑅𝑅 − 𝒃𝒃� = −𝛼𝛼𝑵𝑵�𝒃𝒃|𝒂𝒂
−1 𝒃𝒃�                               (21) 

It is easy to derive the regularized float ambiguities by substituting Eq.(20) into Eq.(15), 

𝒂𝒂�𝑅𝑅𝑅𝑅 = 𝑵𝑵𝒂𝒂𝒂𝒂
−1�𝒖𝒖𝒂𝒂 − 𝑵𝑵𝒂𝒂𝒃𝒃𝒃𝒃�𝑅𝑅𝑅𝑅�;   𝜮𝜮𝒂𝒂�𝑅𝑅𝑅𝑅 = 𝜎𝜎0

2�𝑵𝑵𝒂𝒂𝒂𝒂 − 𝑵𝑵𝒂𝒂𝒃𝒃𝑵𝑵�𝒃𝒃𝒃𝒃−1𝑵𝑵𝒃𝒃𝒂𝒂�
−1

                  (22) 

with 𝑵𝑵�𝒃𝒃𝒃𝒃 = 𝑵𝑵𝒃𝒃𝒃𝒃 + 𝛼𝛼𝑰𝑰3. Similarly, the biases of regularized ambiguities are  

𝒈𝒈𝒂𝒂�𝑅𝑅𝑅𝑅 = 𝑵𝑵𝒂𝒂𝒂𝒂
−1𝑵𝑵𝒂𝒂𝒃𝒃𝒈𝒈𝒃𝒃�𝑅𝑅𝑅𝑅 = 𝛼𝛼𝑵𝑵𝒂𝒂𝒂𝒂

−1𝑵𝑵𝒂𝒂𝒃𝒃𝑵𝑵�𝒃𝒃|𝒂𝒂
−1 𝒃𝒃�                           (23) 

and their MSE are 

𝑴𝑴𝒂𝒂�𝑅𝑅𝑅𝑅 = 𝜎𝜎0
2�𝑵𝑵𝒂𝒂𝒂𝒂 − 𝑵𝑵𝒂𝒂𝒃𝒃𝑵𝑵�𝒃𝒃𝒃𝒃−1𝑵𝑵𝒃𝒃𝒂𝒂�

−1
+ 𝛼𝛼2𝑵𝑵𝒂𝒂𝒂𝒂

−1𝑵𝑵𝒂𝒂𝒃𝒃𝑵𝑵�𝒃𝒃|𝒂𝒂
−1 𝒃𝒃�𝒃𝒃�𝑇𝑇𝑵𝑵�𝒃𝒃|𝒂𝒂

−1 𝑵𝑵𝒃𝒃𝒂𝒂𝑵𝑵𝒂𝒂𝒂𝒂
−1               (24) 

Following the RP computation practice with Eq.(11), 𝒃𝒃�𝒃𝒃�𝑇𝑇  is substituted by 𝜎𝜎0
2𝑸𝑸𝒃𝒃� to derive the RP as 
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𝛼𝛼 = arg min𝛼𝛼>0𝑡𝑡𝑡𝑡 ��𝑵𝑵𝒂𝒂𝒂𝒂 − 𝑵𝑵𝒂𝒂𝒃𝒃𝑵𝑵�𝒃𝒃𝒃𝒃−1𝑵𝑵𝒃𝒃𝒂𝒂�
−1

+ 𝛼𝛼2𝑵𝑵𝒂𝒂𝒂𝒂
−1𝑵𝑵𝒂𝒂𝒃𝒃𝑵𝑵�𝒃𝒃|𝒂𝒂

−1 𝑸𝑸𝒃𝒃�𝑵𝑵�𝒃𝒃|𝒂𝒂
−1 𝑵𝑵𝒃𝒃𝒂𝒂𝑵𝑵𝒂𝒂𝒂𝒂

−1�            (25) 

Thereby, the key to computing a RP turns to computation of a stable initial baseline and its covariance matrix. 

4.2 Initial baseline computed from pseudorange observables 

To obtain a stable initial baseline, we make use of pseudoranges in the geometry-based and time-averaged models, 

respectively. The geometry-based model is referred to as an observation model involving geometric parameters such 

as coordinates etc.; whereas a time-averaged model is a simplified geometry-based model where the several consecu-

tive geometry-based equations are averaged due to a small geometry variation in a short time span. Comparing with 

geometry-based model, the compatible solution is obtained in time-averaged model, but the computation efficiency 

can be significantly improved (Teunissen 1997). 

Geometry-based model 

The initial baseline is computed using the pseudoranges of multiple epochs based on geometry-based model as 

𝒃𝒃�𝐺𝐺𝑅𝑅 = �∑ 𝑩𝑩𝑗𝑗𝑇𝑇𝑸𝑸𝑷𝑷𝑗𝑗
−1𝑩𝑩𝑗𝑗𝑛𝑛

𝑗𝑗=1 �
−1
�∑ 𝑩𝑩𝑗𝑗𝑇𝑇𝑸𝑸𝑷𝑷𝑗𝑗

−1𝑛𝑛
𝑗𝑗=1 𝑷𝑷𝑗𝑗�                           (26) 

and its corresponding covariance matrix is derived as 

𝜮𝜮𝒃𝒃�𝐺𝐺𝑅𝑅 = 𝜎𝜎0
2𝜅𝜅 �∑ 𝑩𝑩𝑗𝑗𝑇𝑇𝑸𝑸𝜱𝜱𝑗𝑗

−1𝑩𝑩𝑗𝑗𝑛𝑛
𝑗𝑗=1 �

−1
                              (27) 

where the subscript “GB” indicates geometry-based model. 

Time-averaged model 

The time-averaged model is used to efficiently compute baseline as 

𝒃𝒃�𝑇𝑇𝑇𝑇 = (𝑩𝑩�𝑇𝑇𝑸𝑸𝑷𝑷
−1𝑩𝑩�)−1(𝑩𝑩�𝑇𝑇𝑸𝑸𝑷𝑷

−1𝑷𝑷�)                                (28) 

where 𝑩𝑩� = 1
𝑛𝑛
∑ 𝑩𝑩𝑗𝑗𝑛𝑛
𝑗𝑗=1  and 𝑷𝑷� = 1

𝑛𝑛
∑ 𝑷𝑷𝑗𝑗𝑛𝑛
𝑗𝑗=1 . The subscript “TA” denotes the time-averaged model. Accordingly, its co-

variance matrix is derived as 

𝜮𝜮𝒃𝒃�𝑇𝑇𝑇𝑇 = 𝜎𝜎0
2𝜅𝜅
𝑛𝑛

(𝑩𝑩�𝑇𝑇𝑸𝑸𝜱𝜱
−1𝑩𝑩�)−1                                  (29) 

5. Ambiguity estimation by regularizing ambiguity parameters 

As alternative scheme, we can stabilize the fast GNSS AR model by regularizing the ambiguity parameters. In this 

scheme, not only the geometry-based and time-averaged but also the geometry-free models are employed to compute 

the initial ambiguities for RP determination. 

5.1 Mathematical model 

The regularized AR based on regularizing ambiguities is solved by minimizing the following cost function 

min𝒂𝒂,𝒃𝒃 ‖𝑨𝑨𝒂𝒂 + 𝑩𝑩𝒃𝒃 − 𝒚𝒚‖𝑸𝑸2 + 𝛼𝛼‖𝒂𝒂‖2 , 𝒂𝒂 ∈ ℝ𝑚𝑚                           (30) 
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The regularized float ambiguities read 

𝒂𝒂�𝑅𝑅𝑇𝑇 = 𝑵𝑵�𝒂𝒂|𝒃𝒃
−1 𝒖𝒖𝒂𝒂|𝒃𝒃;   𝜮𝜮𝒂𝒂�𝑅𝑅𝑇𝑇 = 𝜎𝜎0

2𝑵𝑵�𝒂𝒂|𝒃𝒃
−1 𝑵𝑵𝒂𝒂|𝒃𝒃𝑵𝑵�𝒂𝒂|𝒃𝒃

−1                            (31) 

where 𝑵𝑵�𝒂𝒂|𝒃𝒃 = 𝑵𝑵𝒂𝒂|𝒃𝒃 + 𝛼𝛼𝑰𝑰𝑚𝑚  and the subscript “RA” denotes the regularized solution by regularizing ambiguity para-

meters. The regularized bias is computed in terms of Eq.(5), 

𝒈𝒈𝒂𝒂�𝑅𝑅𝑇𝑇 = 𝐸𝐸(𝒂𝒂�𝑅𝑅𝑇𝑇 − 𝒂𝒂) = −𝛼𝛼𝑵𝑵�𝒂𝒂|𝒃𝒃
−1 𝒂𝒂�                              (32) 

The MSE is computed according to Eq.(6) by 

𝑴𝑴𝒂𝒂�𝑅𝑅𝑇𝑇 = 𝜎𝜎0
2𝑵𝑵�𝒂𝒂|𝒃𝒃

−1 𝑵𝑵𝒂𝒂|𝒃𝒃𝑵𝑵�𝒂𝒂|𝒃𝒃
−1 + 𝛼𝛼2𝑵𝑵�𝒂𝒂|𝒃𝒃

−1 𝒂𝒂�𝒂𝒂�𝑇𝑇𝑵𝑵�𝒂𝒂|𝒃𝒃
−1                          (33) 

Following the similar RP computation to Eq. (25), 𝒂𝒂�𝒂𝒂�𝑇𝑇 is replaced by the covariance matrix 𝜮𝜮𝒂𝒂� of initial ambigui-

ties, we have the RP for ambiguity vector as follows 

𝛼𝛼 = argminα>0𝑡𝑡𝑡𝑡�𝑵𝑵�𝒂𝒂|𝒃𝒃
−1 �𝑵𝑵𝒂𝒂|𝒃𝒃 + 𝛼𝛼2𝑸𝑸𝒂𝒂��𝑵𝑵�𝒂𝒂|𝒃𝒃

−1 �                          (34) 

5.2 Initial ambiguities computed from pseudoranges 

We compute the initial ambiguities by fixing the initial baseline derived from the geometry-based and time-averaged 

models respectively. In addition, the geometry-free model is used to compute the initial ambiguities. As defined by 

Teunissen (1997), the geometry-free model is the simplest model for ambiguity estimation where the geome-

try-specific parameters are all canceled. 

Geometry-based model 

The ambiguities are computed using the baseline solved from the geometry-based model 

𝒂𝒂�𝐺𝐺𝑅𝑅 = �𝜱𝜱� − 𝑩𝑩�𝒃𝒃�𝐺𝐺𝑅𝑅� 𝜆𝜆⁄                                     (35) 

with 𝜱𝜱� = 1
𝑛𝑛
∑ 𝜱𝜱𝑗𝑗
𝑛𝑛
𝑗𝑗=1 , and their corresponding covariance matrix is 

𝜮𝜮𝒂𝒂�𝐺𝐺𝑅𝑅 = 𝜎𝜎0
2

𝜆𝜆2 �
𝑸𝑸𝜱𝜱
𝑛𝑛

+ 𝜅𝜅𝑩𝑩� �∑ 𝑩𝑩𝑗𝑗𝑇𝑇𝑸𝑸𝜱𝜱𝑗𝑗
−1𝑩𝑩𝑗𝑗𝑛𝑛

𝑗𝑗=1 �
−1
𝑩𝑩�𝑇𝑇�                            (36) 

Time-averaged model 

If the time-averaged baseline 𝒃𝒃�𝑇𝑇𝑇𝑇  is used instead of 𝒃𝒃�𝐺𝐺𝑅𝑅  in Eq.(35), the covariance matrix of initial ambiguities 

becomes 

𝜮𝜮𝒂𝒂�𝑇𝑇𝑇𝑇 = 𝜎𝜎0
2

𝜆𝜆2×𝑛𝑛
[𝑸𝑸𝜱𝜱 + 𝜅𝜅𝑩𝑩�(𝑩𝑩�𝑇𝑇𝑸𝑸𝜱𝜱

−1𝑩𝑩�)−1𝑩𝑩�𝑇𝑇]                            (37) 

Geometry-free model 

If only phase is used in error equations, we can alternatively compute initial ambiguities using geometry-free model 

where geometric parameters are canceled. Thus the initial ambiguities are computed as 

𝒂𝒂�𝐺𝐺𝐺𝐺 = (𝜱𝜱� − 𝑷𝑷�) 𝜆𝜆⁄                                      (38) 

and their covariance matrix is derived as 
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𝜮𝜮𝒂𝒂�𝐺𝐺𝐺𝐺 = (1+𝜅𝜅)𝜎𝜎0
2

𝜆𝜆2×𝑛𝑛
𝑸𝑸𝜱𝜱                                     (39) 

6. Evaluation of regularized ambiguity resolution 

The superior performance of regularized AR would be evident from its success probability. However the regularized 

solution is biased and it is very difficult to explicitly prove its higher success probability relative to that of LS. Hence 

we illustrate this benefit of the regularized integer solutions by random simulations in the following discussions. 

6.1 Shannon’s upper probabilistic bound for ambiguity resolution 

The essence of fixing ambiguity is to map a real-valued float solution onto its integer value. Due to the discrete prop-

erty of integer ambiguity, multiple float ambiguities could be mapped onto a unique integer. Hassibi and Boyd (1996, 

1998) introduced the Voronoi cell to describe the set of the float ambiguities that corresponds to a unique integer, see 

also Xu (2006), which is alternatively called pull-in region by Teunissen (1999, 2001) in GNSS community. If the 

float ambiguity is within this Voronoi cell, it can be correctly fixed into its integer, otherwise mapped onto another 

integer. In other words, the integral probability of the float ambiguity over the Voronoi cell is equivalent to the success 

probability of correct AR. Obviously, the PDF of the float ambiguities and the Voronoi cell must be given to compute 

the success probability. 

Considering the normally distributed error vector e, the float solution 𝒂𝒂�𝐿𝐿  is of normal distribution, i.e., 

𝒂𝒂�𝐿𝐿~𝑁𝑁(𝒂𝒂� 𝜮𝜮𝒂𝒂�𝐿𝐿) with 𝒂𝒂� and 𝜮𝜮𝒂𝒂�𝐿𝐿  the expectation and covariance matrix of 𝒂𝒂�𝐿𝐿, respectively. Thus the probability of 

LS AR is 

𝑃𝑃(𝒂𝒂�𝐿𝐿) = ∫𝑆𝑆𝒂𝒂�𝐿𝐿
𝑝𝑝(𝑨𝑨)𝑑𝑑𝑨𝑨                                (40) 

where the PDF of LS float solution 𝑝𝑝(𝑨𝑨) = �2𝜋𝜋𝜮𝜮𝒂𝒂�𝐿𝐿 �
−1 2⁄

  exp �− 1
2

(𝑨𝑨 − 𝒂𝒂�)𝑇𝑇𝜮𝜮𝒂𝒂�𝐿𝐿
−1(𝑨𝑨 − 𝒂𝒂�)�

                     
 and 𝑆𝑆𝒂𝒂�𝐿𝐿  is the Voronoi cell 

of integer solution 𝒂𝒂�𝐿𝐿. |∙| represents the determinant operation of a matrix. If 𝒂𝒂�𝐿𝐿 is assumed to be the unknown true 

integer solution, then the integral (40) becomes the success probability (Xu 2006) 

𝑃𝑃(𝒂𝒂�𝐿𝐿) = ∫𝑆𝑆0,𝐿𝐿
𝑝𝑝(𝑨𝑨)𝑑𝑑𝑨𝑨                                (41) 

and 𝑝𝑝(𝑨𝑨) = �2𝜋𝜋𝜮𝜮𝒂𝒂�𝐿𝐿 �
−1 2⁄

  exp �− 1
2
𝑨𝑨𝑇𝑇𝜮𝜮𝒂𝒂�𝐿𝐿

−1𝑨𝑨�
                     

. Here, 𝑆𝑆0,𝐿𝐿 is the Voronoi cell of 𝒂𝒂�𝐿𝐿 = 𝟎𝟎. Xu (2006) pointed out that it 

is rather difficult to compute the integral of (41) since the Voronoi cell 𝑆𝑆0,𝐿𝐿  is constructed by cutting the 

m-dimensional space by infinite hyper-planes and sensitive to the covariance matrix 𝜮𝜮𝒂𝒂�𝐿𝐿 . Moreover, he recognized 

that the Shannon’s lower probabilistic bound of error can be used to compute the upper probabilistic bound of 𝑃𝑃(𝒂𝒂�𝐿𝐿) 

in the case of GNSS applications as (Xu 2006),  

𝑃𝑃(𝒂𝒂�𝐿𝐿) = ∫𝑆𝑆0,𝐿𝐿
𝑝𝑝(𝑨𝑨)𝑑𝑑𝑨𝑨 ≤ ∫𝐸𝐸0

𝑝𝑝(𝑨𝑨)𝑑𝑑𝑨𝑨                          (42) 
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where 𝐸𝐸0 = �𝑨𝑨�𝑨𝑨𝑇𝑇𝜮𝜮𝒂𝒂�𝐿𝐿
−1𝑨𝑨 ≤ 𝜒𝜒2�, and the positive constant χ2 satisfies the condition that the defined ellipsoid E0 is of 

unit volume. The inequality (42) was re-discovered by Hassibi and Boyd (1996, 1998). For convenient expression, we 

denote 𝑃𝑃𝑢𝑢𝑝𝑝 (𝒂𝒂�𝐿𝐿) = ∫𝐸𝐸0
𝑝𝑝(𝑨𝑨)𝑑𝑑𝑨𝑨. The most attractive feature of Shannon’s upper probabilistic bound is that it does not 

require any knowledge about Voronoi cell S0,L. 

  Since the E0 is mathematically very simple, one can then use approximation techniques of multiple integrals to 

compute 𝑃𝑃𝑢𝑢𝑝𝑝 (𝒂𝒂�𝐿𝐿). However, before the integral computation, the constant χ2 must be determined according to the 

condition of its unit volume as (Apstol 1969) 

𝜒𝜒2 = �
𝑛𝑛Γ(𝑛𝑛 2⁄ )

2𝜋𝜋𝑛𝑛 2⁄ ��𝑸𝑸𝒛𝒛�𝑓𝑓 �

𝑛𝑛/2 = 1
𝜋𝜋

× �
𝑛𝑛2Γ2(𝑛𝑛 2⁄ )

4�𝑸𝑸𝒛𝒛�𝑓𝑓 �

𝑛𝑛                              (43) 

where Г is the gamma function which is recursively calculated using the relation Γ(𝑥𝑥 + 1) = 𝑥𝑥Γ(𝑥𝑥), Γ(1/2) = √𝜋𝜋 

and Γ(𝑛𝑛) = (𝑛𝑛 − 1)!. Especially, in two-dimensional case, the analytical formula of 𝑃𝑃𝑢𝑢𝑝𝑝 (𝒂𝒂�𝐿𝐿) is easily derived 

𝑃𝑃𝑢𝑢𝑝𝑝 (𝒂𝒂�𝐿𝐿) = 1 − exp �− 𝜒𝜒2

2
�                                (44) 

However, it is not easy to derive the analytical formula for the high-dimensional case. In this paper, we compute the 

integral 𝑃𝑃𝑢𝑢𝑝𝑝 (𝒂𝒂�𝐿𝐿) based on the Basic theorem of Monte-Carlo Integration (Weinziel 2000; Teunissen et al. 2008) 

𝑃𝑃𝑢𝑢𝑝𝑝� (𝒂𝒂�𝐿𝐿) = �̅�𝑝(𝑨𝑨)                                   (45) 

with �̅�𝑝(𝑨𝑨) = 1
𝑁𝑁
∑ 𝑝𝑝(𝑨𝑨𝑑𝑑)𝑁𝑁
𝑑𝑑  and N is the number of random samples within the ellipsoid E0. The one-standard error of 

this approximation integral is 

𝜎𝜎𝐼𝐼 = �𝑝𝑝2(𝑨𝑨)��������−𝑝𝑝̅2(𝑨𝑨)
𝑁𝑁

                                    (46) 

with 𝑝𝑝2(𝑨𝑨)�������� = 1
𝑁𝑁
∑ 𝑝𝑝2(𝑨𝑨𝑑𝑑)𝑁𝑁
𝑑𝑑 . To achieve the reliable approximation solution, the random samples must be enough. For 

more information about Monte-Carlo integration, one can refer to Weinziel (2000). 

  However, the regularized float solution is biased and we should specify the bias effect to evaluate the success prob-

ability of regularized AR. Let the regularized AR by regularizing ambiguities be a case study, its distribution reads 

𝒂𝒂�𝑅𝑅𝑇𝑇~𝑁𝑁(𝒂𝒂� + 𝒈𝒈𝒂𝒂�𝑹𝑹𝑨𝑨 𝜮𝜮𝒂𝒂�𝑹𝑹𝑨𝑨). In this case, the PDF 𝑝𝑝(𝑨𝑨) in Eq.(42) becomes 

𝑝𝑝(𝑨𝑨) = �2𝜋𝜋𝜮𝜮𝒂𝒂�𝑅𝑅𝑇𝑇 �
−1 2⁄

  exp �− 1
2
�𝑨𝑨−𝒈𝒈𝒂𝒂�𝑹𝑹𝑨𝑨�

𝑇𝑇
𝜮𝜮𝒂𝒂�𝑅𝑅𝑇𝑇
−1 �𝑨𝑨−𝒈𝒈𝒂𝒂�𝑹𝑹𝑨𝑨��

                     
                 (47) 

In theory, we cannot guarantee that the Shannon’s upper probabilistic bound, i.e., inequality (41), holds true for any 

𝒈𝒈𝒂𝒂�𝑹𝑹𝑨𝑨 unless the biases are small, which means that the success probability of regularized AR may be conservatively 

evaluated. Fortunately, in the GNSS case, the regularized biases are often rather small, referring to the section 7 for 

real GPS experiments. In following, we call the Shannon’s upper probabilistic bound directly as success probability 
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without confusion. 

6.2 Demonstration of higher success probability of regularized AR through random simulations 

In general, the regularization can effectively alleviate the model’s ill-condition and thus improve the accuracies of 

float ambiguities as well as decrease their correlation. In such a situation, if the effect of regularized bias is ignored, 

the success probability of the regularized AR is definitely larger than that of LS AR, which was proven by Gui and 

Han (2007). However the regularized solution is biased and the bias will decrease the success probability. In other 

words, the regularization makes the shape of PDF of float ambiguities sharper but the bias introduces a translation to 

the PDF. Both factors affect the success probability, thus it is rather difficult (almost impossible) to explicitly prove 

the higher success probability of regularized AR if taking the bias into account. 

For intuitive illustration of the improvement of regularized AR, we study two examples firstly. (i) Supposing a LS 

float ambiguity and its corresponding regularized solution are 𝑑𝑑�𝐿𝐿~𝑁𝑁(0 0.25) and  𝑑𝑑�𝑅𝑅~𝑁𝑁(0.1 0.09), their suc-

cess probabilities are 68.27% and 88.60% respectively. (ii) The second one is for a two-dimensional AR case. The LS 

and regularized float ambiguities are normally distributed, �
𝑑𝑑�𝐿𝐿,1
𝑑𝑑�𝐿𝐿,2

�~𝑁𝑁 ��00� �0.16 0.02
0.02 0.05��  and 

�
𝑑𝑑�𝑅𝑅,1
𝑑𝑑�𝑅𝑅,2

�~𝑁𝑁 ��0.02
0.03� �0.090 0.012

0.012 0.040��, respectively. We compute their success probabilities based on Monte-Carlo 

integration formulae (45) and (46) with N=105. The success probabilities are 83.85% and 93.08% and their approxi-

mation accuracies are 0.15% and 0.2%, respectively. From these two examples, we conclude that if the PDF of regula-

rized float ambiguities becomes sufficiently sharper and the regularized biases retain relatively small values, the suc-

cess probability as the integral of PDF over the pull-in region is hardly affected (see also Teunissen 2001), which is 

the often case for the fast GNSS AR situations. In addition, the success probability of the two-dimensional LS solution 

is re-computed by (44). The result is 83.89% which is very close to the result from the Monte-Carlo method. It implies 

that the Monte-Carlo integration can reliably approximate the integral of (42) if the random samples are sufficient. 

Higher success probabilities of the regularized AR are now numerically demonstrated by random simulations which 

allow ambiguity normal equations to vary with different degrees of ill-condition and to be solved by using regulariza-

tion and LS methods respectively. The random simulations are implemented in this paper mainly according to Xu 

(2001), Chang et al. (2005) and Li and Shen (2010). The float ambiguity vector  𝒂𝒂�𝐿𝐿 is firstly generated by  𝒂𝒂�𝐿𝐿 =

𝜎𝜎𝐶𝐶
𝜆𝜆

× randn(𝑚𝑚, 1), where randn(m,1) is a Matlab built-in function to generate a vector of m random elements of stan-

dard normal distribution. The normalized orthogonal matrix V is computed by factorization of a random square matrix 

which also generated by Matlab function. The eigenvalues θi (i=1, 2,…,m) of the diagonal matrix Θ are the positive 

simulated random numbers. Then the simulated normal equations consisting of NL and u are trivially determined by 
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𝑵𝑵𝐿𝐿 = 𝑽𝑽𝑽𝑽𝑽𝑽𝑇𝑇 and 𝒖𝒖 = 𝑵𝑵𝐿𝐿 × 𝒂𝒂�𝐿𝐿. It is crucial to apply a scale factor, for instance 105, to the last three eigenvalues for 

obtaining three small eigenvalues and thus a gap between them and the others (Teunissen and Kleusberg 1998; Li and 

Shen 2010). In order to fully demonstrate the performance of regularized AR, three scale factors (SF), i.e. 104, 105 and 

106, are applied to describe three different ill-posed degrees of ambiguity normal equations. 

We adopt regularization and LS methods to solve the ambiguities with the following steps: 

(i) The RP is computed by Eq.(34) with the cofactor matrix of initial ambiguities 𝑸𝑸𝒂𝒂� = 𝝈𝝈𝑪𝑪
𝟐𝟐

𝜆𝜆2×𝝈𝝈𝟎𝟎
𝟐𝟐.  

(ii) The LS float solution (𝒂𝒂�𝐿𝐿 , 𝜮𝜮𝒂𝒂�𝐿𝐿 ) and the regularized float solution (𝒂𝒂�𝑅𝑅𝑇𝑇 , 𝜮𝜮𝒂𝒂�𝑅𝑅𝑇𝑇 ) are computed by Eqs.(16) and 

(31), respectively. 

(iii) The regularized bias 𝒈𝒈𝒂𝒂�𝑹𝑹𝑨𝑨�  is computed by substituting the regularized float solution 𝒂𝒂�𝑅𝑅𝑇𝑇  into Eq.(32). 

(iv) The success probabilities of regularized and LS AR are computed based on Eq. (45) with the corresponding 

PDFs and N=105. 

 

Figure 2. Success probabilities of ambiguity resolution (σC=0.3, m=5; left: SF=10–4, middle: SF=10–5, right: SF=10–6) 

 

 

Figure 3. Success probabilities of ambiguity resolution (σC=0.5, m=5; left: SF=10–4 middle: SF=10–5, right: SF=10–6) 
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Table 1: Success probabilities of regularized and LS AR (%) 

σC (m) 
Regularized AR LS AR 

SF=10–4 SF=10–5 SF=10–6 SF=10–4 SF=10–5 SF=10–6 

0.3 93.84 83.54 82.49 75.58 16.43 1.01 

0.4 78.49 63.24 62.79 51.53 6.00 0.31 

0.5 57.47 39.96 37.73 30.17 2.40 0.09 

 

The results are presented in Figure 2 for σC=0.3m and m=5 and Figure 3 for σC=0.5m and m=5, respectively. For 

each figure, three subplots from left to right reflect the SFs of 10–4, 10–5 and 10–6 assigned in the simulations, respec-

tively. The dash-line and the solid-line represent the success probabilities of regularized and LS solutions, respectively. 

For the larger SF pertaining to a slight ill-condition, the larger success probabilities are obtained in both regularization 

and LS solutions, vice versa. However, the regularization can always improve the success probability, albeit the im-

provement degree depends on the ill-conditioned degree of the model. Comparing Figures 2 and 3, it is observed that 

the pseudorange accuracy (i.e., accuracy of initial ambiguity) is also an important factor for AR. To verify this point, 

we conduct more simulations for different pseudorange accuracies. The results are shown in Table 1. Apparently, the 

success probabilities are affected by both the ill-conditioned degree of the model and the pseudorange accuracy 

though their effect degrees are different. However, when the model is severely ill-conditioned and this ill-condition is 

not efficiently mitigated, the precise pseudoranges can hardly improve the successful AR. For example, in the case of 

SF=10–6 (see the last column of Table 1 which corresponds to the most severely ill-conditioned models), the success 

probabilities are almost zero although when σC=0.3m. Up to now, we have numerically demonstrated the higher suc-

cess probability of regularized AR by random simulations. 

7. Performance of regularized AR using real GPS observations 

We further evaluate the superior performance of regularized AR with respect to ILS solutions using a real GPS data 

set. The float solutions are solved by using LS and regularization respectively and then LAMBDA method is em-

ployed to fix their integer solutions. Total 8000 epochs of single frequency data are collected for a 4.6km baseline us-

ing the Leick MC500 receivers with the sample interval of 1 s. The observation types include C1 pseudorange and L1 

phase and their accuracies are assessed to be 0.345m and 3.1mm according to Li et al. (2008). The elevation mask is 

set to 13 degrees. Figure 4 illustrates the PDOP series (A) and the number of observed satellites (B) over the whole 

observation period. 
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Figure 4. The PDOP series (A) and the number of observed satellites (B) in the whole observation span 

 

First of all, all ambiguities are correctly fixed using all observations serving as true integers in the following analy-

sis. We statistically compute the success probabilities of correct AR as 

𝑃𝑃 = 𝑛𝑛𝑐𝑐𝑐𝑐𝑡𝑡 𝑛𝑛𝑡𝑡𝑐𝑐𝑡𝑡⁄ × 100%                                  (48) 

where ncor and ntot are the number of computations with all ambiguities being correctly fixed and the number of total 

computations. In addition, to understand the overall quality of the float ambiguities, we define the mean accuracy lev-

el as 

𝜎𝜎𝑚𝑚𝑚𝑚𝑑𝑑𝑛𝑛 = �𝑡𝑡𝑡𝑡(𝜮𝜮𝒂𝒂�) 𝑚𝑚⁄                                    (49) 

where 𝜮𝜮𝒂𝒂� is the covariance matrix for the LS float ambiguities and it is replaced by the MSE matrix 𝑴𝑴𝒂𝒂� for the re-

gularized float ambiguities including the effects of regularized biases; m is the number of ambiguities. In fact it re-

veals a mean accuracy level of a set of float ambiguities. In the following, we will evaluate the performances of two 

regularized AR schemes, which are specified by regularizing baseline and ambiguity parameters respectively with 

respect to those of LS AR. 

7.1 Regularized AR by regularizing baseline parameters 

Two experimental schemes are carried out to demonstrate the regularized AR performance, which correspond to use of 

the geometry-based and time-averaged models in computing initial baseline respectively, as shown in Table 2. 

In this subsection, all experiments use both L1 phase and C1 pseudorange to form the error equations (14) and 

κ=10000. In each computation, a moving window of 10 epoch data are used, and the moving window moves forward 

one epoch for the next computation. For the RB_GB scheme, Figure 5 presents the computed RP for all computations. 

Referring to Figure 4, these RPs strongly depend on the PDOP values. A smaller PDOP is corresponding to a larger RP. 
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It is because the uncertainty of initial baseline computed from pseudoranges based on a geometry-based model is low-

er as the PDOP is smaller. Thus a lager RP brings the regularized solution closer to precise initial values. Conversely, 

when the PDOP is larger, the uncertainty of computed initial baseline will be larger, and the estimated RP is automati-

cally smaller so as to reduce the dependence of regularized solution on the initial value. Figure 6 shows the condition-

al numbers of LS and regularized normal equations. It is evident that the conditional numbers are significantly re-

duced by regularization, which means that the regularization can indeed effectively reduce the model’s ill-condition. 

 
Table 2: Two experiment schemes for regularized AR by regularizing baseline parameters (RB_GB denotes computing the 

initial baseline based on geometry-based model while RB_TA based on time-averaged model) 

 RB_GB RB_TA 

Float solution 𝒂𝒂�𝑅𝑅𝐶𝐶 = 𝑵𝑵𝒂𝒂𝒂𝒂
−1�𝒖𝒖𝑑𝑑 − 𝑵𝑵𝑑𝑑𝑎𝑎𝒃𝒃�𝑅𝑅𝐶𝐶�, 𝜮𝜮𝒂𝒂�𝑅𝑅𝐶𝐶 = 𝜎𝜎0

2�𝑵𝑵𝑑𝑑𝑑𝑑 − 𝑵𝑵𝑑𝑑𝑎𝑎𝑵𝑵�𝑎𝑎𝑎𝑎−1𝑵𝑵𝑎𝑎𝑑𝑑 �
−1

 

Bias 𝒈𝒈𝒂𝒂�𝑅𝑅𝐶𝐶� = 𝑵𝑵𝑑𝑑𝑑𝑑
−1𝑵𝑵𝑑𝑑𝑎𝑎𝒈𝒈𝒃𝒃�𝑅𝑅𝐶𝐶 = 𝛼𝛼𝑵𝑵𝑑𝑑𝑑𝑑

−1𝑵𝑵𝑑𝑑𝑎𝑎𝑵𝑵�𝑎𝑎|𝑑𝑑
−1 𝒃𝒃�𝑅𝑅𝐶𝐶

 

RP 𝛼𝛼 = arg min𝛼𝛼>0 𝑡𝑡𝑡𝑡 ��𝑵𝑵𝑑𝑑𝑑𝑑 − 𝑵𝑵𝑑𝑑𝑎𝑎𝑵𝑵�𝑎𝑎𝑎𝑎−1𝑵𝑵𝑎𝑎𝑑𝑑 �
−1 + 𝛼𝛼2𝑵𝑵𝑑𝑑𝑑𝑑

−1𝑵𝑵𝑑𝑑𝑎𝑎𝑵𝑵�𝑎𝑎|𝑑𝑑
−1 𝑸𝑸𝒃𝒃�𝑵𝑵�𝑎𝑎|𝑑𝑑

−1 𝑵𝑵𝑎𝑎𝑑𝑑𝑵𝑵𝑑𝑑𝑑𝑑
−1� 

𝑸𝑸𝒃𝒃� 𝜅𝜅 × �� 𝑩𝑩𝑗𝑗𝑇𝑇𝑸𝑸𝜱𝜱𝑗𝑗
−1

𝑛𝑛

𝑗𝑗=1
𝑩𝑩𝑗𝑗�

−1

 
𝜅𝜅
𝑛𝑛

× (𝑩𝑩�𝑇𝑇𝑸𝑸𝜱𝜱
−1𝑩𝑩�)−1 

 

 

Figure 5. Computed regularization parameters 

 

Figure 6. Conditional numbers of LS and regularized normal equations  

 

The differences between the LS and regularized float ambiguities and their true values are shown in Figure 7. The 

differences of LS solutions are similar to those of the regularized solutions in the RB_GB scheme and all smaller than 
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3 cycles. The theoretical accuracy of these differences is computed by �∑ 𝛿𝛿𝑑𝑑𝑑𝑑2𝑛𝑛
𝑑𝑑=1 𝑛𝑛⁄  to be 0.69 cycles for LS and 

regularization, where 𝛿𝛿𝑑𝑑𝑑𝑑  is the ith difference and n is the number of differences. It means that for a good estimation, 

the mean accuracy computed by Eq.(49) from the covariance matrix of float ambiguities should be close to this theo-

retical accuracy. Figure 8 shows the mean accuracies of LS and regularized float solutions computed by Eq.(49), and 

their means are 1.10 cycles and 0.88 cycles for LS and regularization, respectively. Obviously, the mean accuracies of 

regularized float ambiguities are closer to the theoretical accuracy than those of LS float ambiguities. Therefore, the 

covariance matrix of regularized float ambiguities can reflect their real accuracies. In other words, the regularized 

float solutions are admissible with their covariance matrix better than the LS solutions. 

 

 

Figure 7. Differences between true ambiguities and LS (A) as well as regularized float ambiguities (B) 

 

 

Figure 8. Mean accuracies of LS and regularized float ambiguities 

 

Because the regularized float solution is biased and the LAMBDA method is used to fix ambiguity, the decorrelated 

regularized biases may affect AR when they are sufficiently large. The biases of the regularized float ambiguities are 

computed according to the formula in Table 2, and then they are transformed by multiplying the Z-transformation ma-
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trix output from LAMBDA method to obtain the decorrelated regularized biases. As shown in Figure 9, fortunately, 

these biases are mostly smaller than 0.01 cycles in magnitude and ignorable comparing with the accuracy improve-

ment by regularization (see also Figure 8). In fact, the regularization makes the PDF of float ambiguities more peaked 

such that these small regularized biases result in very little change to the success probability (Teunissen 2001). How-

ever, if the biases turn so large to affect the correct AR, additional process may be needed. A possible bias-corrected 

approach for regularized solution is motivated by Xu et al. (2006). 

 

 

Figure 9. Decorrelated biases of regularized float ambiguities 

 

A further assessment of the regularized AR with RB_GB and RB_TA models is carried out to explore its depen-

dence on the numbers of data epochs with respect to the performance of ILS AR. The success probabilities computed 

by Eq. (48) are shown in Table 3. Results from RB_GB and RB_TA are quite consistent with each other, which imply 

that the time-averaged model is a good alternative to the geometry-based model to simplify the computation when the 

sample interval is small. With accumulation of continuous observations in the linear equation system, the success 

probabilities for both regularized and LS are increased and the advantage of regularization over LS is decreased, be-

cause the model’s ill-condition degree is reduced and the LS solution is stabilized with more measurements. In other 

words, the regularization would be no longer required when the observation accumulation is sufficient to make the 

underlying model strong enough. 

 
Table 3: Success probabilities of regularized AR by regularizing the baseline parameters (%) 

Schemes 
Number of data epochs 

1 3 5 10 30 60 90 120 150 

LS 63.76 65.15 65.47 66.02 69.36 73.20 79.97 82.61 85.89 

RB_GB 70.01 70.76 71.22 71.38 74.39 78.30 83.43 85.18 88.47 

RB_TA 70.01 70.76 71.22 71.38 74.38 78.30 83.43 85.18 88.47 
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7.2 Regularized AR by regularizing ambiguity parameters 

Three experiment schemes are designed to demonstrate the regularized AR by regularizing ambiguity parameters as 

outlined in Table 4. Similar to the subsection 7.1, three different schemes are specified to compute initial ambiguities 

using the geometry-based (RA_GB), time-averaged (RA_TA) and geometry-free (RA_GF) models, respectively, in 

which both L1 phase and C1 pseudorange are used in RA_GB and RA_TA, whereas only L1 phase is used in RA_GF. 

 
Table 4: Three experiment schemes for regularized AR by regularizing ambiguity parameters (RA_GB, RA_TA and 

RA_GF denote to compute the initial ambiguities based on the geometry-based, time-averaged and geometry-free models, 

respectively) 

 RA_GB RA_TA RA_GF 

Float solution 𝒂𝒂�𝑅𝑅𝑇𝑇 = 𝑵𝑵�𝒂𝒂|𝒃𝒃
−1 𝒖𝒖𝒂𝒂|𝒃𝒃; 𝜮𝜮𝒂𝒂�𝑅𝑅𝑇𝑇 = 𝜎𝜎0

2𝑵𝑵�𝒂𝒂|𝒃𝒃
−1 𝑵𝑵𝑑𝑑|𝑎𝑎𝑵𝑵�𝒂𝒂|𝒃𝒃

−1
 

Bias 𝒈𝒈𝒂𝒂�𝑅𝑅𝑇𝑇� = −𝛼𝛼𝑵𝑵�𝑑𝑑|𝑎𝑎
−1 𝒂𝒂�𝑅𝑅𝑇𝑇 

RP 𝛼𝛼 = argmin𝛼𝛼>0 𝑡𝑡𝑡𝑡�𝑵𝑵�𝒂𝒂|𝒃𝒃
−1 �𝑵𝑵𝑑𝑑|𝑎𝑎 + 𝛼𝛼2𝑸𝑸𝒂𝒂��𝑵𝑵�𝒂𝒂|𝒃𝒃

−1 � 

𝑸𝑸𝒂𝒂� 𝑸𝑸𝜱𝜱 𝑛𝑛⁄ + 𝜅𝜅𝑩𝑩� �∑ 𝑩𝑩(𝑗𝑗)𝑇𝑇𝑸𝑸𝜱𝜱
−1𝑛𝑛

𝑗𝑗=1 𝑩𝑩(𝑗𝑗)�
−1
𝑩𝑩�𝑇𝑇

𝜆𝜆2  
𝑸𝑸𝜱𝜱 + 𝜅𝜅𝑩𝑩�(𝑩𝑩�𝑇𝑇𝑸𝑸𝜱𝜱

−1𝑩𝑩�)−1𝑩𝑩�𝑇𝑇

𝜆𝜆2 × 𝑛𝑛
 

(1 + 𝜅𝜅)𝑸𝑸𝜱𝜱

𝜆𝜆2 × 𝑛𝑛
 

 

Because the performance of RA_GB and RA_TA are similar to those of RB_GB and RB_TA given in previous 

subsection, only the performance of RA_GF is demonstrated. Again, a moving window of 10 consecutive data epochs 

is used in each computation. Figure 10 gives the computed regularized parameters which are distinctly different from 

those in Figure 5, because the PDOP is free of influence on the geometry-free model and only pseudorange accuracy 

dominates the initial ambiguities. Figure 11 presents the conditional numbers of LS and regularized normal equations. 

The mean conditional number can be reduced from 107.7 to 104.6 when the regularization is applied. Figure 12 shows 

the differences between the LS and regularized float ambiguities and their true values respectively. The differences are 

in the range of tens of cycles for the LS solution and reduced to smaller than 3 cycles for regularization. Comparing 

with Figure 7, the LS solution of RA_GF is much worse mainly since only phase data are used and the derived normal 

equations are severely of ill-condition. 

 
Figure 10. Computed regularization parameters 
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Figure 11. Conditional numbers of normal equations of LS and regularization 
 

Figure 13 shows the decorrelated regularized biases. Although the values are larger than those shown in Figure 9, 

they are still small enough comparing to the accuracy improvement after regularization. Figure 14 illustrates the mean 

accuracies of LS and regularized float ambiguities, where the y axis denotes the common logarithm of the mean accu-

racies. The average of these mean accuracies of LS float ambiguities is 35.24 cycles, but the regularization improves it 

to 0.75 cycles. 

 
Figure 12. Differences between true ambiguities and LS (A) ambiguities as well as regularized ambiguities (B) 

 

 
Figure 13. Decorrelated biases of regularized ambiguities 
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Figure 14. Mean accuracies of LS and regularization 

 

We also assess performances of three regularized AR schemes to shown their dependence on the different numbers 

of data epochs. The success probabilities computed by Eq.(48) are given in Table 5. The performances of RA_GB and 

RA_TA are consistent with RB_GB and RB_TA, referring to Table 3, because the essences of computing the initial 

baselines and ambiguities are same. Although the success probabilities of RA_GF is lower than those of the other 

schemes, but its improvements are more significant with respect to the LS performance. 

 
Table 5: Success probabilities of regularized AR by regularizing ambiguity parameters (%) 

Schemes 
Number of data epochs 

1 3 5 10 30 60 90 120 150 

LS 63.76 65.15 65.47 66.02 69.36 73.20 79.97 82.61 85.89 

RA_GB 73.30 74.03 74.37 74.77 77.10 81.39 85.36 87.09 89.43 

RA_TA 73.30 74.03 74.37 74.77 77.10 81.39 85.36 87.11 89.44 

LS – 0.11 1.03 2.44 10.34 22.08 34.67 46.55 56.39 

RA_GF – 59.51 59.44 60.13 62.77 63.73 68.81 75.17 79.08 

 

8. Summary and remarks 

In this paper, we have comprehensively addressed the fast GNSS AR as an ill-posed problem. The key has been to 

determine the reasonable RP where the true values of unknowns are necessary in theory but impossible to obtain in 

practice. Consequently, the paper has proposed to replace the quadratic matrix of the true values of unknowns with the 

covariance matrix of their initial values. As a result, the problem of computing a reasonable RP is turned to computing 

the reliable initial values of unknowns and the derived RP depends on the precision of initial values. Normally a larger 

RP corresponds to more precise initial values and brings the regularized solution closer to the initial values. Moreover, 

two regularization AR schemes have been examined, namely by regularizing the baseline and ambiguity parameters, 

respectively. For each scheme, the different models for computing initial values were specified.  

Experiment studies with specially designed random simulations have numerically demonstrated that the higher 
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success probabilities are generally achievable with regularized AR with respect to the LS AR. Furthermore using a 

real GPS data set, the regularized AR has also demonstrated superior performance in actual success probability with 

respect to the LS AR method. 

In general, the regularization can effectively mitigate the model’s ill-condition and then stabilize the float solutions. 

In other words, the regularized float ambiguities are closer to their integers and have a less correlated covariance ma-

trix as compared to the LS float ambiguities. Consequently, higher success AR probability can be achieved, especially 

in the case of the strong ill-posed observational models with fewer observational data epochs. 
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