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Many industrial decisions problems are decentralized in which decision 
makers are arranged at two levels, called bilevel deeision problems. Bilevel 
decision making may involve uncertain parameters which appear either 
in the objective functions or constraints of the leader or the follower or 
both. Furthermore, the leader and the follower may have multiple conflict 
decision objectives that should be optimized simultaneously. This study 
proposes an approximation Kth-best approach to solve the fuzzy multi­
objective bilevel problem. Two case based examples further illustrate how 
to use the approach to solve industrial decision problems. 

Keywords: Bilevel programming, Fuzzy sets, Optimization, Multi-objective 
decision making, Fuzzy programming, Kth-best approach. 

1 INTRODUCTION 

Bilevel programming (BP) is a special case of multilevel programming with 
a two level structure to model bilevel decision problems. In a BP problem, 
decision makers are arranged at two levels and both try to make decision 
successively. When the leader at the upper level attempts to optimize hislher 
objective(s), the follower at the lower level tries to find an optimized strat­
egy according to each of possible decisions made by the leader [3,4}' Here, 
although each decision maker (the leader or the follower) tries to optimize 
hislher own objective functions with partially or without considering the 
objectives of the other level, the decision of each level affects the objec­
tive optimization of the other level [16]. The Stackelberg solution [33J has 
been employed as a solution concept to bilevel programming problems, and 
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a considerable number of approaches for obtaining the solution have been 
developed [1,2,5-13,15,18-20,34]. 

To solve a real BP problem, a BP model needs to be established first. The 
parameters in the objective functions and constraints of the leader and the 
follower are required to be fixed at some values in an experimental and/or 
subjective manner through the experts' understanding of the nature of the 
parameters in the problem-formulation process. It has been observed that, in 
most real-world situations, the possible values of these parameters are often 
only imprecisely or ambiguously known to the experts, such as planning of 
land-use, transportation and water resource. With this observation, it would 
be certainly more appropriate to interpret the experts' understanding of the 
parameters of a BP problem as fuzzy numbers [35]. Many researchers, such 
as Sakawa et al. [22-27], have formulated BP problems with fuzzy parame­
ters and propose fuzzy programming methods for fuzzy bilevel programming 
problems. Our recent research work has extended Kuhn-Tucher, K th-best and 
branch-and-bound approaches to solve BP problems with fuzzy parameters. 

Another issue in bilevel decision practice is that multiple conflicting objec­
tives often need to be considered simultaneously by the leader, and/or the 
follower. For example, a coordinator of a multi-division firm considers 
three objectives in making an aggregate production plan: maximise net prof­
its, maximise quality of products, and maximise worker satisfaction. The 
three objectives could be in conflict with each other, but must be consid­
ered simultaneously. Any improvement in one objective may be achieved 
only at the expense of others. The normal multi-objective decision-making 
problem has been well researched by many researchers such as Hwang and 
Masud [14J. But in a bilevel model, the selection of a satisfactory solution 
for the leader is imparted by his/her follower's optimal reaction. Therefore, 
how to find an optimal solution for the leader which has mUltiple objectives 
under the consideration of both its constraints and its followers needs to be 
explored. 

Following our previous research results shown in [17,28-32,37-42J, 
this study aims at developing an approach to solve fuzzy multi-objective 
linear bilevel programming (FMOLBP) problems. It first transforms a 
FMOLBP problem into a non-fuzzy multi-objective linear bilevel program­
ming (MOLBP) problem. Based on the definition and related theorems [29,41], 
it then solve the FMOLBP problem by solving the associated MOLBP prob­
lem. As this paper focuses a linear bilevel problem, so BP means linear BP in 
the paper. 

Following the introduction, Section 2 reviews related definitions, theo­
rems and properties of fuzzy numbers and a FMOLBP model [41]. A general 
fuzzy number based approximation Kth-best approach for solving FMOLBP 
problems is presented in Section 3. Two case based examples are shown in 
Section 4 for illustrating the proposed model and approach. Conclusions and 
further study are discussed in Section 5. 
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2 PRELIMINARIES 

In this section, we present some basic concepts, definitions and theorems that 
are to be used in the subsequent sections. The work presented in this section 
also can be found from our recent papers in [36,41). 

2.1 Fuzzy numbers 
Let R be the set of all real numbers, RII be n-dimensional Euclidean space, 
and x = (XI, X2, .•• ,x/I)T, Y (YI, Y2, ... ,YIl)T E RII be any two vectors, 
where Xi, Yi E R, ii, 2, ... , nand T denotes the transpose of the vector. 
Then we denote the inner product of X and Y by (x, y). For any two vectors 
x, Y E R", we write x 2; Y iff Xi ::: Yi, Vi = 1, 2, ... , n; x ::: Y iff x 2; Y and 
x =1= y; x > Y iff Xi > Yi, Vi 1,2, ... , n. 

Definition 2.1. A fuzzy number a is defined as a fuzzy set on R, whose 
membership function J1.ii satisfies the following conditions: 

1. J1.ii is a mapping from R to the closed interval [0,1]; 

2. it is normal, i.e., there exists x E R such that J1.ii (x) = I; 

3. for any A E (0,1], aA = (x; J1.ii(X) ::: A) is a closed interval, denoted 
by [ar, af)· 

Let F(R) be the set of all fuzzy numbers. By the decomposition theorem of 
fuzzy sets, we have 

a= U Alar, aft 
AEIO.ll 

for every aE F(R). 
Let F*(R) be the set of all finite fuzzy numbers on R. 

Theorem 2.1. Let abe a fuzzy set on R, then a E F(R) if and only if J1.ii 
satisfies 

1 xE[m,nj 

J1.ii(X) = L(x) x < m , 

R(x) x > n1 
where L(x) is the right-continuous monotone increasing function, 0 '5 
L(x) < 1 and limX->-CXl L(x) =:: 0, R(x) is the left-continuous monotone 
decreasing function, 0 '5 R (x) < 1 and limx->oo R (x) O. 

Corollary 2.1. For every ii E F(R) and AJ, A2 E [0, I],if AJ '5 A2, then 
aA2 CaA1 • 
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Definition 2.2. For any ii, b E F(R) and °~ A E R, the sum of ii and band 
the scalar product of A and aare defined by the membership functions 

sup min {Ma(U), Mb(v)},
I=u+v 

Ma-ij(t) = sup min {Mii(U), Mij(v)},
t=u-v 

MAa(t) = sup Ma(U). 
f=AU 

Theorem 2.2. For any ii, bE F(R) and °~ a E R. 

a+ b U Alaf + bf, af + bfl, 
AErO,11 

a - b = a+ (-b) = U A[a; bf, af - bfl, 
AE[O, I] 

aa U A[aa; ,aaf], 
AElO,I] 

Definition 2.3. Let ai E F(R), i = 1,2",., n. We define a (ai, 
a2",.,iin ) 

11 

X r+ 1\ Miii (Xi), 
;=1 

where x (XI, X2, , .. , Xn) TERn, and ais called an n-dimensional fuzzy 
number on RII, If ai E F*(R), i = 1,2,.", n, a is called an n-dimensional 
finite fuzzy number on R". 

Let F(R") and F*(R") be the set of all n-dimensional fuzzy numbers and 
the set of all n-dimensional finite fuzzy numbers on R" respectively. 

Proposition 2.1. For every aE F(R"), ais normal. 

Proposition 2.2. For every a E F(R II 
), the A-section of a is an n­

dimensional closed rectangular region for any A E (0, 1], 

Proposition 2.3. For every aE F(R") and AI, A2 E [0, 1], if AI ~ A2, then 

aA2 CaA!' 

Definition 2.4. For every n-dimensional fuzzy numbers ii, b, E F(R"), we 
define 

I. a~b iff af ~ bf and af ~ bf, A E (0, 1]; 

2, ii":b iffaL > b L andaR > bR A E (0 IJ'A - A A - A' " 

3. a>-b iff af > bJ~ and af > bf, A E (0, 1 J. 
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We call thc binary relations ;" >- and >- a fuzzy max order, a strict fuzzy max 
order and a strong fuzzy max order, respectively. 

2.2 Fuzzy multi-objective linear bilevel programming model 
Consider the following FMOLBP problem: 

For x E Xc Rn , y EYe Rm, F : X x Y --+- F*eRS), 

and f : X x Y --+- r(Rt), 

min Fex, y) = (C!1X + dllY, C21X + d2IY, ... , C.dX + dsly)T (2.la) 
XEX 

(2.1 b) 

min f(x, y) = (C12X + dnY, C22X + d22Y, ... , Ct2X + dt2y)T
yEY 

(2.1c) 

(2.1d) 

where Cil, Cj2 E F*(R"), dn, dj2 E F*(Rm), i = 1,2, ... , s, j = 1,2, ... , t, 
bl E F*(RP), b2 E F*(Rq), AI = (aij)pxll, ai) E F*(R), ih (bij)pxm, 

bi) E F* (R), ,12 = (eij)q Xll, eij E F* (R), H2 (Sij)q xm, sij E r (R). 

For the sake of simplicity, we set X x Y = {(x, Y): Alx + HI -< bl, 

A2x + Hzy ,; b2} and assume that X x Y is compact. In a FMOLBP 
problem, for each (x, y) E X x Y, the value of the objective functions 
F(x,y) = (FI(x,y),F2(X,y), ... ,Fs (x,y» and f(x,y) = (f1(X,y), 
hex, y), ... , hex, y» of the leader and the follower are s-dimensional and 
t-dimensional fuzzy numbers, respectively. Thus, we introduce the following 
concepts of optimal solutions to FMOLBP problems. 

Definition 2.5. [41] A point (x*, y*) E Xx Yis said to be a complete optimal 
solution to the FMOLBP problem if it holds that F(x*, y*) ,; F(x, y) and 
f(x*,y*) -< f(x,y)forall(x,y)EXx Y. 

Definition 2.6. [41] A point (x·, y*) E X x Y is said to be a Pareto optimal 
solution to the FMOLBP problem if there does not exist (x, y) E X x Y such 
that F(x·, y*) ~ F(x, y) and f(x*, y*) ~ f(x, y) holds. 

Definition 2.7. [41] A point (x·, y*) E X x Y is said to be a weak Pareto 
optimal solution to the FMOLBP problem iftherc is no (x, y) E X x Y such 
thatF(x*,y*) >- F(x,y)andf(x*,y*) >- f(x,y) holds. 
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Associated with the FMOLBP problem, we now consider the following 
MOLBP problem: 

ForxEXCRII , YEYcRm. F:XxY~F*(RS), 

and f : X x Y ~ F*(RI), 

min(F(x,y»~(R) = «FI(X, y»r, (FI(X, y»f,···, (F:~(x, y»f,
xeX 

(Fs(x, y»f)T, A E [0, 1] (2.2a) 

subject to AT.,.x + Bhy ~ bh, Af"x + Br"y ~ bf)., A E [0, 1] (2.2b) 

min(f(x, y»f(R) «/J (x, y))f, (fl (x, y»f,··· (f1(X, y»r,
yeY 

(f1(X, y»f)T, A E [0, 1] (2.2c) 

subject to Ar"x + Bf).y ~ bf", Af).x + BAy ~ bf)., A E [0. 1] (2.2d) 

where (Fj(x, y»f = ch).x + dh).y, (F;(x, y»f = c~).x + dft).y, 
(/j(x, y»f = cJ2).X + dJm Y and(fj(x, y»f = Cf2).X + dfmY, A E 

[0 I] L R L R RII d L d R d L d R Rm d L d R 
, ,Ci \)., cit", Cj2)., cj2). E 'il)" iJ,,' j2A' j2)' E , iJ,,' il).' 

dJ2)" df2)' E Rm, i = 1, 2, ... , S, j 1, 2, ... , t, br)., bf). E RP, br", bf" E 

Rq, Ah = (ab), Af" = (ai~) E RPXI!, Af). = (efj,.)' Af). = (e~A) E RqxII, 

BL - (b L ) BR (b R ) RPxm BL - ( L ) BR _ ( R) Rqxm
I), - iiA' I), ;J;. E '2" - SUA' 2" - S;h.. E . 

For the sake of simplicity, we set K x r {(x, y); Ar"x + Bf). ~ 
br", Af).x + Bfi ~ bf", Af).x + Bf" ~ bf)., Af"x + BA ~ bf,,} and assume 
that K x r is compact. Obviously, X x Y = K x 

Definition 2.8. [41] A point (x'. y*) E K x r. is said to be a complete 
optimal solution to the MOLBP problem if it holds that «Fl(X*,y*»r. 
(FI(X*, y*»f, ... , (Fs(x*, y*»f, (Fs(x*, y*»f)T ~ «FI(X, y»f, «FI(X, 
y»f,···, (Fs(x, Y»r, (Fs(x, y»f)T and«fl(x*, y*»f, (f1(X*, y*»f,···, 
(fl(x*,y*»f, (ft(x*,y*»f)T ~ «fl(x,y»f, «fl(x.y»f.· .. «fl(x, 
y»f, «(fI(X, y»f)T for A E [0, 1] and (x, y) E K x r. 
Definition 2.9. [41] A point (x', y*) E X x r is said to be a Pareto opti­
mal solution to the MOLBP problem if there is no (x, y) E x r such 
that «Fj (x*, y*»f, (F) (x', y*}}f, ... , (Fs(x*, y*»f, (Fs (x*, y*»f)T ~ 
«Fdx, y»f, «Fl (x, y»f, ... , (Fs (x, y»f, (Fs(x, y »f)T or «/J (x*, y*»f, 
(/J (x*, y*»f, ... , (fl (x*, y*»f, (fl (x*, y*»f)T ~ «fl (x, y»f, (fl (x, 
y»f,··., (!r(x, y»f), (f1(X, y»f)T hold. 

Definition 2.10. [41] A point (x*, y*) E X x r is said to be a weak Pareto 
optimal solution to the MOLBP problem if there is no (x, y) E K x r such 
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that «FI (x', y*»f, (FI (x*, y*»f, ... , (Fs(x·, y*))f, (Fs(x*, y*»f)T > 
«FJ (x, y»f, «FI (x, y»f, ... , (Fs(x, y»f, (Fs(x, y»f)T or «ft (x*, y*»f, 
(fl(x*,y'»f, .. ·, (fl(x*,y*»f, (f1(x*,y*»f)T > «(fl(x,y»f,(ft(x,
y»f, ... , (fr (x, Y»r, (f1(X, y»f)T hold. 

Theorem 2.3. [41] Let (x*, y*) be the optimal solution ofthe MOLBPproblem 
defined by (2.2). Then it is also an optimal solution ofthe FMOLBP problem 
defined by (2.1). 

Theorem 2.4. [41] For x EX eRn, y EYe Rm, ifall the fuzzy parame­
ters aij, hij, eij, si}, cij, h), h2 and dij have piecewise trapezoidal membership 
functions in the FMOLBP problem (2.1), 

/li(/) = CX (2.3) 
CX" - CXn-1 R 
R R (-1+2a 1)+CXI1 -1Z - Z n­
an-I an 

R < t < R
2al = = zao 

R 
2ao < t 

where zdenotes ail, hij, eij, Sij, cij, hi, h2 and di} respectively, then, (x·, y*) 
is a complete optimal solution to the problem (2.1) ifand only if (x· , y*) is a 
complete optimal solution to the MOLBP problem: 

min(Fi(x, y»~ = cAax + dhaY, i = 1,2, ... , s,) 0, 1, ... , n 
XEX J J J 

(2.4a) 

min(Fi(x, y»~ = c~a.x + di~aY' i = 1,2, ... , s,) 0,1, ... , n 
XEX J J J 


subject to AfajX + BfajY ;s:: bra)' ) = 0,1, ... , n 


A R + BR ,< bR . 0 1 
lajX laJY"" la)' J:::: , , ... ,n (2.4b) 

min(fi(X, y»~ = c~a'x + di~aY' i = 1,2, ... , s,) 0,1, ... , n 
yeY J J J 

min(fi(x, Y»~ Ci~aJ'X + di~aJ'Y' 1,2, ... ,s,) =0, 1, ... ,n
yeY J 

(2.4c) 
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j = 0,1, ... , n. (2Ad) 

We note 

Alx + BIY;:::: bl (2Ab') 

A2X + B2Y ;:::: b2 (2Ad') 

where 

AL BLA ran 2a" la"A,= , B2 
Afao Afao Bfao 

BR 

,A2 = ,Bl = 

A fall , Afa" , Iall 

brao brao 

bL bL 

11.1" 
 2Q'ubl = .b2 = 


bfao bfao 


Then we can re-write (2.4) by using 

min(Fi(X, y»~ = chax + dhaY, i = 1,2, ... , s, j = 0,1, ... , n 
xEX }} } 

(204'a) 

min(Fi(x, y»~ = c~ax + di~aY' i = 1,2, ... , s, j 0,1, ... , n 
xEX } } } 

subject to A,x + B1y ;:::: bl, (2A'b) 

min(./i(x, y»~ c~ax + dAaY, 1,2, ... ,s,j =0, 1, ... ,n
yE Y }} J 

min(./i(x, y»~ = c~ax + di1a y, i = 1,2, ... , s, j 0, I, ... , n 
yEY }} } 

(2A'c) 

(2.4'd) 

Theorem 2.5. [41] For x E X C R", Y EYe R m, ifall the fuzzy parame­
ters au. bu, eij, Sij. Cij, bl, b2 and dij have piecewise trapezoidal membership 
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functions (2.3) in the FMOLBP problem (2.1), then (x*, y*) is a Pareto opti­
mal solution to the problem (2.1) if and only if (x*, y*) is a Pareto optimal 
solution to the MOLBP problem (2.4'). 

Theorem 2.6. [41] For x E X C RIl, Y EYe Rm, ifall the fuzzy parame­
ters ai). hi}, ei). si)' cu. hI. h2 and dU have piecewise trapezoidal membership 
functions (2.3) in the FMOLBP problem (2.1), then (x*. y*) is a weak Pareto 
optimal solution to the problem (2.1) ifand only if (x*. y*) is a weak Pareto 
optimal solution to the MOLBP problem (2.4'). 

These definitions and theorems will be used in following sections to develop 
an approach for solving the FMOLBP problems. 

3 AN APPROXIMATION Kth·BEST APPROACH 

To solve the FMOLBP problem (2.1), we need to solve its transformed 
form (2.4'). For solving (2.4'), we can use the method of weighting [21] 
to this problem, such that it becomes the following problem: 

min(F(x,y» = ~Wjl(~(cfX+dfY)+ ~(CfX+drY»)
XEX ~ ~ a, ttl Lt <1f (1j

j=l 1=0 1=0 

(3.la) 

subject to Alx + BlY hI, (3.lb) 

min(f(x, y» = ~ Wj2(~(C} x +dfy) + ~(cf x + dry))
YE Y L..,; L..,; C1, i:1, ~ a,

j=1 1=0 1=0 
(Xl 

(3.lc) 

subject to A2X + EU ;£ h2. (3.1d) 

In order to get a solution for above (3.1), we give a definition of optimal 
solution and related theorems as follows. 

Definition 3.1. (a) Constraint region of the linear BP problem: 

(b) Feasible set for the follower for each fixed x EX: 

(c) Projection of S onto the leader's decision space: 
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Follower's rational reaction set for x E SeX): 

P(x) = {y E Y : y E argmin [(f(x, y» :y E S(x)l} 

where argmin [f(x, y) : y E Sex)] = (y E Sex) : (f(x, y» ~ (f(x, y», 
.v E Sex)} 

(e) Inducible region: 

fR {(x, y) : (x, y) E S, y E P(x») 

The rational reaction set P (x) defines the response while the inducible region 
fR represents the set over which the leader may optimize his objective. Thus 
in terms of the above notations, the linear BP problem can be written as 

min/F(x, y) : (x, y) E fR). (3.2) 

Theorem 3.1. The inducible region can be written equivalently as piecewise 
linear equality constraint comprised ofsupporting hyperplanes ofconstraint 
region S. 

Proof Let us begin by writing the inducible region of Definition 3.1 ( e) 
explicitly as follower: 

fR= (x,y): (x,y) E S, 

d2Y = min[d2Y : Bi Y ~ bi - Aix, ii, 2, Y 2: OJ}, (3.3) 

L R - L Rwhere Ci Ci + cio + cio' di di + dio + dio ' i = 1,2. Now we define 

Q(x) = min{dzy : BiY ~ bi - Ajx, i 1,2, y 2: 0). (3.4) 

Let us define 

We rewrite (3.4) as follows 

Q(x) = min(d2Y : By ~ b - Ax, y 2: 0). (3.5) 

For each value ofx E SeX), the resulting feasible region to problem (2.3) is 
nonempty and compact. Thus Q(x), which is a linear program parameterized 
in x, always has a solution. From duality theory, we get 

max{u(Ax b): uB ~ -d2' u 2: 0), (3.6) 

which has the same optimal value as (3.1) at the solution u*. Let u I , ... , US 

be a listing of all the vertices of the constraint region of (3.6) given by 
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u = {u : uB ?:; u :::: 0). Because we know that a solution to (3.6) 
occurs at a vertex of U, we get the equivalent problem 

(3.7) 

which demonstrates that Q(x) is a piecewise linear function. Rewriting IR as 

IR = {(x, y) E S : Q(x) - li2y 0), (3.8) 

yields the desired result. D 

By this theorem, we give the following corollaries: 

CoroUary 3.1. The linear BP problem (3.1) is equivalent to minimizing F 
over a feasible region comprised ofa piecewise linear equality constraint. 

Proof. From (3.2) and Theorem 2.6, we have the desired result. o 

Corollary 3.2. A solution for the linear BP problem occurs at a vertex of1R. 

Proof. A linear BP programming can be written (3.2). Since F is linear, if a 
solution exists, one must occur at a vertex of 1R. The proof is completed. D 

Now, we give a very important theorem which is the core for proposing an 
approximation Kth-best approach. 

Theorem 3.2. The solution (x*, y*) of the linear BP problem occurs at a 

"r 

vertex ofS. 


Proof. Let (x I , Y I)•... , (x', yr) be the distinct vertices of S. Since any point 

in S can be written a convex combination of these vertices, let (x·, y*) = 

L..d=lct,.(iX ,y h "r . . _ O· 1, ... ,r - an r::: - t
,i) ,were L...i=lct, 1,ct, > ,l d r. I 
must be shown that r = 1. To see this let us write the constraints to (2.3) at 
(x·, y*) in their piecewise linear form (2.4'). 

o= Q(x*) - li2Y* 

i i::: L ct; Q(x ) L ct;li2y
; 

by convexity of Q(x) 

But by definition, 

Q(Xi):= min li2y::: li2yi. 
yES(x i } 
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Therefore, Q(x i) li2yi:5 0, i = I, ... ,r. Noting that aj ~ 0, i = I, ... , r, 
the equality in the preceding expression must hold or else a contradiction 
would result in the sequence above. Consequently, Q(x i ) - liz/ = 0 for all i. 
This implies that (Xi, y') E IR, i = I, ... , rand (x*, y*) can be written as 
a convex combination of points in IR. Because (x", y*) is a vertex of IR, a 
contradiction results unless r = 1. D 

We therefore give the following corollary. 

Corollary 3.3. Ifx is an extreme point ofIR, it is an extreme point of S. 

Proof Let (x*, y*) be an extreme point of IR and assume that it is not an 
extreme point of S. Let (x I, Y I), ... , (x' , y') be the distinct vertices of S. 
Since any point in S can be written a convex combination ofthese vertices, let 
(x*, y*) = I:~=l al(xi , yi), where I:;=I aj = 1, ai ~ 0, i = I, ... , rand 
r :5 r. It must be shown that r I. To see this let us write the constraints 
to (2.3) at (x*, y*) in their piecewise linear form (2.4'). 

o Q(x*) - li2y* 

by convexity of Q(x) 

But by definition, 

Q(xi ) min li2y :5 liz/ . 
yES(x') 

Therefore, Q(x i ) - li2yl :5 0, i = I, ... , r. Noting that ai ~ 0, i = 1, ... , r, 
the equality in the preceding expression must hold or else a contradiction 
would result in the sequence above. Consequently, Q(x i ) - li2yi 0 for all i. 
This implies that (xi, yi) E IR, ii, ... , rand (x*, y*) can be written as a 
convex combination of points in IR. Because (x*, y*) is an extreme point of 
IR, a contradiction results unless r = I. This means that (x*, y*) is an extreme 
point of S. The proof is completed. D 

Theorem 2.6 and Corollary 3.3 have provided theoretical foundation for 
our new approach. It means that by searching extreme points on the constraint 
region S, we can efficiently find an optimal solution for a linear BP problem. 
The basic idea of our extended properties approach is that according to the 
objective function of the upper level, we descendent order all the extreme 
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points on S, and select the first extreme point to check if it is on the inducible 
region JR. If yes, the current extreme point is the optimal solution. If not, 
select the next one and check. 

More specifically, let (Xli" Ylll),"" (X[NI, YlNI) denote the N ordered 
extreme points to the linear programming problem 

min{c\x + d\y : (x, y) E SI, 	 (3.9) 

such that 

I, ... ,N-l. 

Let y denote the optimal solution to the following problem 

min(j(x[i], y) : Y E S(xlil)). (3.1 0) 

We only need to find the smallest i (i E (I, ... , N}) under which Ylil = y. 
Let write (3.10) as follows 

min I(x, y) 

subject to yES(x) 

x = xUI. 

From Definition 3.1 (a) and (c), we have 

min I(x, Y) = C2 X + d2Y 	 (3.lla) 

subject to AIX + 81 Y :::: bl (3.llb) 

A2X + 82Y :::: b2 (3.lic) 

x = Xli] (3.lld) 

Y 2: O. (3.lle) 

To solve (3.11), the first is select one ordered extreme point (xU], Ylij), then 
solve (3.11) to obtain the optimal solution y. If Y = YUI, (Xli], YliJ) is the 
global optimum to (3.1). Otherwise, check the next extreme point. 

Based on above definition ofoptimal so lution and Theorem 3.2, we propose 
an approximation Kth-best approach for solving FMOLBP problem (2.1) as 
follows. 

The approximation K th-best approach: 
Step 1 	Givenweightswjl(J 1,2, .... s)andwj2(j = 1,2, ... ,t)for 

the objectives of the leader and the follower respectively and let 

I:J=I Wj\ land I:j",\ Wj2 = 1. 

Step 2 	Transform the problem (2.1) to the problem (2.4'). 
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Step 3 	 Set I :::: 1 and a range of errors E > O. 

Step 4 	 Let the interval [0, 1] be decomposed into i-I equal sub-intervals 
with (i-I + 1) nodes Aj(i :::: 0, ... ,2/- 1) which are arranged in 
the order of 0 :::: AO < AI < ... < A2H :::: 1. 

Step 5 	 Transform the problem (2.4') to the problem (3.1) by the weighting 
method and solve (MOLBP) ~ i.e. (3.1) by using the extended Kth­
best approach [29] for obtainlllg an optimal solution (x, Yhi. 

Step 6 	 Put i ~ 1. Solve (3.9) with the simplex method to obtain the optimal 
solution (XII]. Yl 11)' Let W {(xlIl> YI 11») and T ¢. Go to Step 7. 

Step 7 	 Solve (3.11) with the bounded simplex method. Let y denote the 
optimal solution to (3.11). If Y :::: Ylil stop; (Xli). Ylij) is the global 
optimum to (3.1) with K* = i. Otherwise, go to Step 8. 

Step 8 	 Let W[iJ denote the set ofadjacent extreme points of (xli], YIn) such 
that (x, y) E Wlil implies CIX + dty 2: CtXfi] + d1Yfil' Let T = 
T U {(Xli], YIn») and W = (W U WIiI)\T. Go to Step 9. 

Step 9 	 Seti ~ i+l and choose (X[i] , Y[iJ)sothatjxliJ+gYliJ = min{clx+ 
dly : (x, y) E W). Go to Step 7. 

Step 10 	 I 1+ 1, repeat Step 4 to Step 9 to solve (MOLBP}zI+I. 

Step II 	 If II(x,yhI+J - (x,yhlll < E, then the solution (x*,y*) of the 
FMOLBP problem is (x, yhl+l, otherwise, update I to 2l and go 
back to Step 10. 

Step 12 	 Show the result of problem (2.1), stops. 

4 ILLUSTRATIVE EXAMPLES 

We give examples here to illustrate how to use the proposed FMOLBP model 
and the approximation Kth-best approach solving a FMOLBP problem in 
practice. Example 1 mainly shows how to build a FMOLBP model for a real 
problem, and Example 2 gives all details to solve a FMOLBP problem by the 
proposed approximate K th-best approach. 

Example 1. In a company, the CEO is as the leader, and the heads ofbranches 
ofthe company are as the follower in making an annual budget for the company. 
Obviously, the leader (the CEO)'s decision will be affected by the reactions 
ofthe follower (heads of branches). Each of the CEO's possible decisions is 
influenced by the various reactions of the heads. In order to arrive an optimal 
solution (better strategies) for the CEO's decision on the annual budget, we 
establish a bilevel decision making model. 
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The CEO has two main objectives: I) to maximize the net profits, represented 
by FI(X, y) and 2) to maximize the quality of products, by Fz(x, y), but 
subject to some constraints including the requirements of material, marking 
cost, labor cost, working hours and so on. The heads of branches, as the 
follower, attempts to I) maximize their net profit, 11 (x, y), and 2) maximize 
work satisfactory h(x, y). The CEO understands that for each policy he may 
make, these heads will have a new reaction to deal with by optimizing their 
objective maxYEy(f1 (x, y), hex, y». 

When modeling the bilevel decision problem, the main difficulty is to set 
up parameters for the objectives and constraints of both the leader and the 
follower. We can only estimate some values such as material cost, labor cost, 
according to our experience and previous data. For some items, the values can 
be only assigned by linguistic terms, such as 'about SI000'. This is a com­
mon case in any organizational decision practice. By using fuzzy numbers to 
describe these uncertain values and linguistic terms in parameters, a FMOLBP 
model can be established for this decision problem. 

Let x = (XI, xZ)T E RZ be the CEO's decision variables, and y = 
(YI, yz, Y3)T E R3 be the branch heads' decision variables, and X {x::: OJ, 
y = {y ::: OJ, we can build the following model for the decision problem: 

-- T --- T ~ 
subject to (3, 9)(XI, X2) + (9, 5, 3)(YI, Yz, Y3) :::: 1039 

-- T --- T max h(x, y) = (6, 4)(XI, X2) + (8,7, 4)(YI, Y2, Y3)
yEY 

- - T - -- T­subjectto(3,-9)(x[,x2) +(-9,-4,O)(Y[,YZ,Y3) ::::61 
-- T - - - T ~ 

(5,9)(XI,X2) +(10, 1,-2)(YI,Y2,Y3) ::::924 

In this model, the unified form for all membership functions of the 
parameters of the objective functions and constraints is as follows: 

x < a ore < x 
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2 3 4 5 

(0, 1,2) (8,9, 12) (9, 10, 13) (0.5, 1, 2.5) (2,3,6) 
2 (8,9, 12) (1,2,5) (1,2,5) (6,7,10) (3,4,7) 
3 (2,4,5) (4,6, 7) (5, 7, 8) (2,4,5) (6,8,9) 

(4,6, 7) (2,4,5) (6,8,9) (5, 7, 8) (2,4,5) 

TABLE 4.1 
Membership functions of fuzzy objective functions' parameters 

2 3 4 5au 
I (2,3,5) (8,9, II) (8,9,11) (4,5,7) (2,3,5) 
2 (-6,-4,-3) (-2, I, -0.5) (2,3,5) (-5,-3, (-4, -2, I) 
3 (2,3,5) (-\I, -9, -8) (-II, -9, -8) (-6, -4, (0,0,0) 
4 (4,5,7) (8,9,11) (9, 10, 12) (0.5, 1,2) (-4, -2, -I) 
5 (2,3,5) (-5, -3, -2) (0,0,0) (0.5, 1,2) (4,5,7) 

TABLE 4.2 
Membership functions of fuzzy constraints' parameters 

1 
2 
3 
4 
5 

(1038,1039,1041) 
(93, 94, 96) 
(60,61,63) 

(923,924,926) 
(419,420,422) 

TABLE 4.3 
Membership functions of fuzzy right-hand-side's parameters 

For simplicity, we only represent the above form ofmembership function as 
(a, b, c). Then, for the example, all membership functions offuzzy parameters 
ofthe objective functions and constraints are to be represented in the quadruple 
pair form and listed in Tables 4.1,4.2, and 4.3, respectively. 

Now, We first given the weights for the two fuzzy objectives of the leader 
are (0.5, 0.5) and of the follower (0.5, 0.5) and the interval [0, 1] be decom­
posed into 21- 1mean sub-intervals with (i-I + l) nodes Ai (i = 0, ... , i-I) 
which is arranged in the order of 0 = ),,0 < AI < ... < ),,2/-1 1 and a 
range of errors e 10-6 > O. Then we can solve this problem by using the 
proposed approximation K th-best approach. The solution of the problem is 
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XI = 146.2955, Xz 28.9394 and YI 0, Y2 = 67.9318, Y3 = 0 such that 

max FI(X, Y) = 164.2955 x 1+ 28.9394 x 9 + 67.9318 x I 
xEX 

maxF2(X,Y) 164.2955 x 9+28.9394 x 2+67.9318 x 7 
xEX 

minil(x, y) 164.2955 x 4+28.9394 x 6+67.9318 x 4 
yEY 

min hex, y) = 164.2955 x 6 + 28.9394 x 4 + 67.9318 x 7. 
yEY 

Example 2. Consider the following FMOLBP problem with X E R I, Y E R I, 

and X = {x ?:: O}, Y {y ?:: OJ, 

min FJ (x, y) = -Ix + 2y 
xEX 

min F2(X, v) - 4y
xEX • 

subject to ix + 3y ::::: 4 
minil (x, y) = -Ix + 2y
yEY 

min hex, y) = 2x - Iy
yEY 

subject to Ix ly::::: 0 
ix - ly < 6 

where 

t < 0 t < 1 

t o~ t < 1 1 ~ t < 2 
/1'2 (t) r~ 1l~t<2' 3 - t 2~t<3'~-t 

2 ~ t 0 3r2 

t < 2 t < 3 

2~t<3 3~t<4r~2 r~34-t 3~t<4' 5-t 4~t<5' 

0 4 ~ t 0 5 ~ t 

0 t < 


t + I 1 ~ t < 0
wet) = o 1- t 2 o~ t < I

1o 1 ~ t 

We now solve this problem by using the proposed approximation Kth-best 
approach. 
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Step 1 Given the weights for the two fuzzy objectives of the leader are (0.5, 
0.5) and of the follower (0.5, 0.5). 

Step 2 The FMOLBP problem is first transformed to the following associated 
MOLBP problem by using Theorem 2.3 

min(F, (x, y»f 
XEX 

L -L - Lmin(F2(x, y)h = 2A x + (-4hy, A E [0, I] 
xEX 

min(F2(x, y»f 
XEX 

L - L -Lmin(f2(x, y)h (-Ihx + 2A y, A E [0, IJ 
yEY 

. R - R -R
mm(f2(x,y)h =(-lhx+2AY' AE[O,I]
yEY 

. -L -L -L-R -R -R
subject to lAx + (-Ihy ~ 0)., lAX + Ih y ~ 0A' A E [0, I] 

- L - L -L - R - R
(-lhx+(-lhy~OA' Ihx+ Ihy 

-R
~OA' AElO,l] 

Step 3 Set I I and e = 10-6 > O. 

Step 4 Let the interval [0, I] be decomposed into i-I equal sub-intervals 
with (21- 1 + 1) nodes Aj(i 0, ... ,2'-1) which is arranged in the order of 
o= AO < AI < ... < A21-1 = I. We get the following MOLBP problem 

min(Fl(x, y»f(R) = -Ix + 2y 
XEX 

min(FI (x, y»~ = -2x + y 
XEX 

min(Fl(x,y»C Ox+3y 
XEX 

min(F2(x, y))f(R) = 2x - 4y 
xEX 

min(F2(x, y»~ = Ix 5y 
XEX 



223 Fuzzy MULTIOBIECTlVE DECISION MAKING 

subject to 	- Ix + 3y .::: 4 

- 2x + 2y.::: 3 

Ox + 4y.::: 5 

min(!I(x, Y»T(R) = 2x Iy 
yeY 

min(jl(x,y»t=lx 2y
yEY 

min(jl(x,y»C 3x-Oy
yeY 

min(h(x, ynt(R} = -Ix + 2y 
yeY 

min(h(x, y»t = -2x + Iy
yEY 

min(h(x, y»t Ox + 3y 
yey 

subject to Ix Iy.::: 0 

Ox - 2y.::: 

2x - Oy .::: I 

- Ix ly.::: 0 

-2x -2y.:::-1. 

Step 5 We solve this MOLBP problem by using the extended Kth-best 
approach [29] and the method of weighting. 

min F(x, y) = 3x - 6y 
XEX 

subject to 	- Ix +3y .::: 4 

- 2x + 2y .::: 3 

Ox + 4y .::: 5 

min f(x, y) 3x + 3y
yEY 

subject to Ix - Iy .::: 0 

Ox - 2y.::: 

2x - Oy .::: I 

- Ix ly.::: 0 

2x - 2y.::: 1. 
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According to the extended Kth-best approach, let us rewrite it as follows 
in (3.7) 

min F(x, y) = 3x 6y 

subject to - Ix + 3y :s 4 

- 2x + 2y :s 3 

Ox + 4y :s 5 

Ix-Iy:sO 

Ox - 2y :s -1 

2x Oy:s 1 

- Ix - Iy :s 0 

2x - 2y :s -1 

x::: 0, y > O. 

Step 6 Let i = I, and solve the above problem with the simplex method to 
obtain the optimal solution (xII], Yrll) (0, 1.25). Let W = {(O, 1.25)} and 
T = cp. Go to Step 7. 

Loop 1: 
Step 7 By (3.9), we have 

min j(x, y) = 3x + 3y 

subject to - Ix + 3y :s 4 

- 2x + 2y :s 3 

Ox + 4y :s 5 

Ix - Iy :s 0 

Ox 2y:S-1 

2x Oy:s I 

Ix ly:sO 

- 2x - 2y :s 

x 0 

y ::: o. 

Using the bounded simplex method, we have y = 0.5. Because of y 1= YUt. 
we go to Step 8. 

Step 8 We have Wlil {(0.5, 1.25), (0, 0.5), (0, 1.25)}, T = (0, 1.25)} and 
W = (0,0.5), (0.5, 1.25)}, then go to Step 9. 
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Step 9 Update i 2, and choose (xli], Yli]) = (0.5, 1.25), then go to Step 7. 

Loop 2: 
Step 7 By (3.9) 

min I (x , y) = 3x + 3Y 

subject to - Ix + 3y ::s 4 

2x + 2y ::s 3 

Ox + 4y ::s 5 

Ix - Iy ::s 0 

Ox 2y::s-1 

2x - Oy ::s I 

- Ix - Iy ::s 0 

-2x -2y::s-1 

x =0.5 

y 2: O. 

Using the bounded simplex method, we have ji = 0.5. Because of y :f. Ylil, 
we go to Step 5. 

Step 8 We have W[iJ {(0.5, 1.25), (0.5, 0.5), (0, 1.25)}, T = (CO, 1.25), 
(0.5, 1.25)} and W == {(O, 0.5), (0.5, 0.5)}, then go to Step 9. 

Step 9 Update i = 3, and choose (xU], y[ij) (0,0.5), then go to Step 7. 

Loop 3: 
Step 7 By (3.9), we have 

min I(x, y) 3x + 3y 
subject to -Ix + 3y ::s 4 


-2x + 2y ::s 3 

Ox + 4y ::s 5 

Ix-Iy::sO 

Ox - 2y ::s -1 

2x - Oy ::s 1 

-Ix ly::s 0 

-2x - 2y ::s -1 

x 0 

y 2: O. 


Using the bounded simplex method, we have y 0.5. Because of ji Ylib 

we stop here. (xli I, Ylil) (0,0.5) is the global solution to this Example. 
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By examining above procedure, we found that the optimal solution occurs at 
the point (x* , y*) = (0, 0.5) with 

min FI(X, y) = Ix - 2y = 
XEX 

min F2(X, y) = Ox - 3y -1.3 
XEX 

min F3(X, y) 2x - Iy = -0.5 
xEX 

min II (x, y) = 0.5 
yEY 

min hex, y)
yEY 

Step 10 Set I = 2 and we solve the following MOLBP problem 

min(FI (x, y»~(R) == Ix + 2y 
xEX 

'( )L 3 3mm FI (x, Y ) I = - - x + - y 
xEX 2 2 2 

min(FI (x, y»k -2x + Iy 
XEX 

, R h 5
mm(Fl(x, y» J = --x +-y 
xEX '! 2 2 

min(FI (x, y»~ = Ox + 3y 
xEX 

min(F2(x, y»~(R) = 2x - 4y 
xEX 

, L 3 9
mm(F2(x, y» 1 = -x -y 
XEX ! 2 2 

min(F2(x, y»k = Ix - 5y 
XEX 

5 7 
min(F2(x, y»y -x -y 
XEX 	 2 2 2 

min(F2(x, y»~ = 3x - 3y 
XEX 

subject to 	 Ix + 3y :::: 4 

357 
- -x + -y <

2 2' - 2 

- 2x + 2y:::: 3 

h 7 9 
-x+ -y <
2 2 -	 2 
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Ox + 4y ..::: 5 

min(jl (x, y»t(R) = 2x - Iy 
yEY 

3 3 
min(jt(x, y»t -x --y
yEY :1 2 2 

min(jJ(x, y»~ Ix 2y
yEY 

" R 5 .J2
mm(jt (x, y» I = -2 x -2Y 
yEY :1 

min(jt(x, y»~ = 3x - Oy
yEY 

min(h(x, y»t(R) = -Ix + 2y 
yEY 

3 3 
min(h(x, y»t = -x +-y
yEY "2 2 2 

min(h(x, y»~ -2x + Iy
yEY 

5 
min(h(x, y»1 = - 2 +-y
yEY :2 2 

min(h(x, y»~ = Ox + 3y
yEY 

subject to Ix - ly ..::: 0 

.J2 3 1 
-x - -y <-­
2 2" - 2 

Ox-2Y":::-1 

3 .J2 
-x - ..::: 
2 2 2 

2x - Oy ..::: 1 

3 3 1 
Z"x-Z"Y":::-2 

lx-ly,,:::O 

.J2 .J2 .J2 
--x--y < 

2 2 - - 2 

- 2x - 2y < -1. 
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We solve this MOLBP problem by using the extended Kth-best approach and 
the method of weighting. 

5 - J2)min F(x, y) = 3 + --- x - lOy 
XEX ( 2 


subject to - Ix + 3y :'5: 4 


3 5 7 

-x + -y <2 2 - 2 


- 2x + 2y :'5: 3 


7 9 

2 + 2Y :'5: 2: 


Ox + 4y :'5: 5 


(5- J2 ) (5 - J2 )minj(x,y)= --+3 x+ --+3 y 
yEY 2 2 

subject to Ix - ly :'5: 0 

J2 3 1 
T X - 2:Y :'5:-2: 

Ox - 2y :'5: -1 

3 J2 J2 
2: x TY:'5: T 

2x - Oy :'5: 1 

3 3 1 
- 2: x - 2: Y :'5: 2 

- Ix ly:'5: 0 

J2 J2 J2 
T X -TY :'5:T 

- 2x 2y:'5: 

The optimal solution occurs at the point (x", y*) (0,0.5) with 

min (Fl(X,Y))T(R) = I 
XEX 

min (F, (x, y»f = 0.75 
XEX "2 

min (Fl (x, y»k 0.5 
XEX 

min(FJ(x,y»~ = 1.25 
XEX i 
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min (FI (x, y»~ = 1.5 
XEX 

min (F2(X, y»y -2.25 
XEX :1 

min (F2(X, y»&' = -2.5 
XEX 

min (F2(X, y»y = -1.75 
XEX ~ 

min (F2(X, y»~ 1.5 
XEX 

min(fl(x, y»~(R) -0.5 
yEY 

min(f](x,y»y = -0.75 
yEY 2 

min (ft (x, y»~ = 
yEY 

. / R .f2mm( I(X,y»1 =-­
yEY 2 4 

min (f2(X, y»~(R) = 1 
yEY 

min (f2(X, y»y = 0.75 
yEY '1 

min (h(x, y»~ = 0.5 
yEY 

min(f2(x,y»~ 1.25 
yEY 2 

min(f2(x,y»~ = 1.5. 
yEY 

Step 10 When x = 0, y 0.5, we have lI(x, y}z2 - (x, y)2111 = 0 < E. 

Step 11 The solution of the problem is x 0, y 0.5 such that 

min FI(X, y) = 0.5 x 2 
XEX 

min F2(X, y) -0.5 x 4 
xEX 

min/I(x, y) = 0.5 x 2 
yEY 

min h(x, y) -0.5 x 1. 
yEY 
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5 CONCLUSION AND FURTHER STUDY 

Following our previous research [29,31,41], this paper proposes a fuzzy 
number based approximate Kth-best approach to solve proposed FMOLBP 
problem. Two examples are given to illustrate how to establish a FMOLBP 
model and how to use the proposed approach. Further study will include the 
development of fuzzy multi-objective multi-follower bilevel programming 
problems. 
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