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Abstract     

This study presents an intelligent model based on fuzzy systems for making a 

quantitative formulation between seismic attributes and petrophysical data. The 

proposed methodology comprises two major steps. Firstly, the petrophysical data, 

including water saturation (Sw) and porosity, are predicted from seismic attributes 

using various Fuzzy Inference Systems (FIS), including Sugeno (SFIS), Mamdani 

(MFIS) and Larsen (LFIS). Secondly, a Committee Fuzzy Inference System (CFIS) is 

constructed using a hybrid Genetic Algorithms-Pattern Search (GA-PS) technique. 

The inputs of the CFIS model are the output averages of the FIS petrophysical data. 

The methodology is illustrated using 3D seismic and petrophysical data of 11 wells of 

an Iranian offshore oil field in the Persian Gulf. The performance of the CFIS model 

is compared with a Probabilistic Neural Network (PNN). The results show that the 

CFIS method performed better than neural network, the best individual fuzzy model 

and a simple averaging method. 
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Introduction 

The last decade has witnessed significant advances in the study and 

application of expert systems in the petroleum industry. The establishment of the 

existence of an intelligent formulation, between two sets of data (inputs/outputs), has 

been the main topic of such studies. One such topic, of great interest, was to 

characterize how 3D seismic data can be related to lithology, rock types, fluid content, 

porosity, shear wave velocity and other reservoir properties. Petrophysical parameters, 

such as water saturation and porosity, are very important data for hydrocarbon 

reservoir characterization. Hitherto, several researchers have worked on predicting 

them from seismic data using statistical methods and intelligent systems (Nikravesh et 

al., 1998; Balch et al., 1999; Trappe and Hellmich, 2000; Nikravesh et al., 2001; 

Nikravesh and Aminzadeh, 2001; Wong and Nikravesh, 2001; Meldahl et al., 2001; 

Russell et al., 2002; Russell et al., 2003; Nikravesh and Hassibi, 2003; Aristimuño 

and Aldana, 2006; Chopra and Marfurt, 2006; Soubotcheva and Stewart, 2006).  

Generally, geological, petrophysical and seismic data are not clear-cut and, inherently, 

are associated with uncertainties. Fuzzy expert systems have become one of the 

modern and robust techniques for the analysis of geosciences data (Rezaee et al., 

2007; Kadkhodaie et al., 2006). They are able to recognize patterns, based on the 

fuzzy classification of data into natural groups, which are termed as clusters. For each 

cluster, a membership function is fitted which is used in the process of formulating 

input to output data through fuzzy rules.  

A Committee Fuzzy Inference system (CFIS), which is introduced in this study, has a 

parallel structure that produces a final result by combining the output of individual 

fuzzy models, using a hybrid, genetic algorithm-pattern search technique. Experts of 

CFIS model are the result of Sugeno, Mamdani, Larsen and simple averaging method. 

Each of the experts has a weight factor in the construction of the CFIS that is derived 

by GA-PS. The CFIS was successfully applied to the Ghar reservoir of the Iranian 

offshore oilfield, Persian Gulf.  

 

1. Methodology 

1.1. Fuzzy inference system  

A Fuzzy Inference System (FIS) is a process of formulating, from a set of input data 

to a set of output data, using fuzzy sets theory. Fuzzy sets theory was first introduced 



by Zadeh (1965). In fuzzy sets theory, each element may belong to a set to a degree 

(µ) which can take values ranging from 0 to 1 (partial membership). Each fuzzy set is 

represented by a membership function (MF). MFs are of several types such as 

Gaussian, triangular, trapezoidal, sigmoid, S-shape, Z-shape, etc. There are three main 

parts in a FIS. These are a) Fuzzifier, b) Inference Engine (fuzzy rule base) and c) 

Defuzzifier (see figure 1). In the Fuzzifier, each crisp (non-fuzzy) value passes 

through a membership function and takes a value between 0 and 1. The Inference 

Engine is the main part of the system that consists of a fuzzy rule base (RB). The 

fuzzy rule base may consist of multiple inputs and multiple outputs (MIMO) which, in 

turn, can be broken down further  into a set of rule bases with multiple inputs and 

single output (MISO) (Lee, 2004).   

                                                                                                                                               

 

                                                                                                                                               

                                                                         

In cases where the antecedents of fuzzy rules include multiple parts, then fuzzy 

operators are used to connect them. The most common fuzzy operators are; min (∧); 

max (∨); product (•) and not (-). The consequent of a fuzzy rule assigns an entire 

fuzzy set to the output. This fuzzy set is represented by a membership function that is 

chosen to indicate the qualities of the consequent. If the antecedent is only partially 

true, then the output fuzzy set is truncated according to a process which is termed 

implication. Since decisions are based on the testing of all of the rules in an FIS, the 

rules must be combined in some manner in order to make a decision. Aggregation is 

the process by which the fuzzy sets, which represent the outputs of each rule, are 

combined into a single fuzzy set. The input of the aggregation process is the list of 

truncated output functions returned by the implication process for each rule. 

Defuzzification is the process of transforming the aggregation result into a crisp 

output. There are various defuzzification methods which include: centroid; bisector; 

large of maximum (LOM); small of maximum (SOM) and mean of maximum (MOM). 

Mamdani method: The most important differences among fuzzy inference systems 

are the types of the output membership functions and the implication methods. In 

MFIS the output membership functions are fuzzy sets. After the aggregation process, 

there is a fuzzy set for each output variable that needs defuzzification. This method 
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uses the min operation (∧) as a fuzzy implication (Mamdani and Assilian, 1975; 

Mamdani, 1976 & 1977). 

Let’s suppose a rule base is given in the following form:  

Ri: if x is Ai and y is Bi then z is Ci,   i = 1, 2, …, n 

then, Ri = (Ai ∧  Bi) →  Ci is defined by 

The input data x = x0, y = y0 pass through the rule, above, to produce the final output, 

as below (Lee, 2004):   

                                    

 

                         

 

 

 

A graphical illustration of MFIS is shown in figure 2a. 

Larsen method: This method uses the product operator for the fuzzy implication. As 

with the Mamdani method output, MFs are fuzzy sets (Larsen, 1980). For a rule base 

in following form 

Ri: if x is Ai and y is Bi then z is Ci,   i = 1, 2, … , n 

then                                   is defined by                                                          

The input data x = x0, y = y0 produce the final output, as below (Lee, 2004): 

 

 
 
 
 
A graphical illustration of LFIS is shown in figure 2b. 

Sugeno method: Sugeno fuzzy inference system is similar to the Mamdani method in 

many aspects. In the first two parts of the fuzzy inference process, fuzzifying the 

inputs and applying the fuzzy operator, are exactly the same. Moreover, all the 

lemmas expressed for Mamdani fuzzy inference system are the same for SFIS. The 

main difference between them is that output membership functions are either linear or 

constant in Sugeno method (Sugeno, 1985).  

A typical rule in a Sugeno fuzzy model has the form 

If Input 1 = x0 and Input 2 = y0, then z = px0 + qy0 + r  
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For a zero-order Sugeno model, the output level is a constant (p = q = 0). The output 

level, zi, of each rule, is weighted by the firing strength iα of the rule. The final output 

of the system is the weighted average of all rule outputs, computed as follows: 

Final output= ∑
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A graphical illustration of SFIS is shown in figure 2c. 

 

1.2. Committee fuzzy inference system 

The proposed methodology, CFIS, consists of two major steps. At the first stage, 

petrophysical data are predicted from seismic data using SFIS, MFIS and LFIS 

models. Then a CFIS is constructed using a GA-PS technique. A schematic diagram 

of the CFIS, designed in this study, is shown in figure 3. The inputs of CMIS are the 

outputs and average of the previously mentioned fuzzy models. In this approach, each 

of the individual fuzzy inference systems has a weight coefficient, in constructing 

CFIS, showing its contribution in the overall prediction of the output data. A GA-PS 

technique can extract the appropriate weights, for the mentioned models, using an 

integration of genetic algorithm and pattern search techniques. Genetic algorithms 

were first introduced by Holland (1975). Potential solutions are called chromosomes 

and are represented by binary strings, or floating point numbers. A set of 

chromosomes is called a population, and a problem to be solved is represented by a 

fitness function. It is a method for moving from one population of chromosomes to a 

new population by using a kind of natural selection process together with the 

genetics−inspired operators of crossover, mutation, and inversion. The selection 

operator chooses those chromosomes in the population that will be allowed to 

reproduce, and on average the fitter chromosomes produce more offspring than the 

less fit ones. Crossover exchanges subparts of two chromosomes; mutation randomly 

changes the allele values of some locations in the chromosome; and inversion reverses 

the order of a contiguous section of the chromosome, thus rearranging the order in 

which genes are arrayed (Mitchell, 1999). In the pattern search technique, the 

algorithm searches a set of points, called a mesh, around the current point (the point 

computed at the previous step of the algorithm). The mesh is formed by adding the 

current point to a scalar multiple of a set of vectors called a pattern. If the pattern 

search algorithm finds a point in the mesh that improves the objective function at the 

Eq. (4) 



current point, the new point becomes the current point at the next step of the 

algorithm (Matlab user’s guide, 2007). 

 In this study, the fitness function for minimization by GA-PS was selected as mean 

squared error (MSE) in predicting petrophysical data using mentioned methods. The 

equation for predicting final output is expressed as below: 

AverageLFISMFISSFIS outputoutputoutputoutputOutput .... 4321 ββββ +++=  

where 1β  , 2β , 3β  and 4β  are the weight coefficients corresponding to the outputs of 

Sugeno, Mamdani, Larsen and simple averaging method. 

The methodology, described in this study, reaps the benefit of all individual methods, 

and provides more accurate results. It is clear that many components of the method, 

described in this study, are based on the results of other researcher’s works (such as 

Nikravesh et al., 1998; Mohaghegh et al., 1999; Mohaghegh, 2000; Hampson et al., 

2001; Saggaf and Nebrija, 2003; Russell, 2003 & 2004; Kamali and Mirshady, 2004; 

Lim, 2005; Chen and Lin, 2006). Overall, it provides an optimal model for predicting 

well data from seismic attributes.  

 

2. Application to the Iranian Offshore Oilfield 

The present study focuses on application of the proposed methodology of CFIS on an 

Iranian offshore oilfield. For this purpose, interpreted 3D seismic data and 

petrophysical data from 11 wells (figure 4) of the study field were used. Seismic data 

were acquired in 2002 and cover a total area of approximately 242 km2. Ghar 

Sandstone is the main reservoir unit over the study area. Seismic data quality is 

generally good over the entire time range with an absence of strong multiple 

interference. The seismic data is close to zero phase at the Ghar level. A 3D crossline 

showing general quality of seismic data across the study field is shown in figure 5. All 

of the petrophysical data were reviewed and quality controlled. Sonic and density logs 

were available for all wells.  

 

3.1 Correlation of well logs to seismic data 

At the first stage of study, well log data were correlated to seismic data. Synthetic 

seismograms were generated for each of the 11 wells: A2, A5, A9, A10, A11, 

A11_7H, A11_12H, A12_7H, A14_5H and A18_2H. The acoustic velocities from the 

sonic logs were multiplied by the bulk density values from density logs to compute 

Eq. (5) 



acoustic impedance logs. This impedance was converted to reflectivity, which was 

then converted from depth to time using a suitable time-depth relationship. Finally, 

the reflectivity in time was convolved with an appropriate wavelet to produce a 

synthetic seismogram. Depth-to-time conversion of the well logs was accomplished 

by applying checkshot data supplied for wells A10 and A12. It was necessary to 

create synthetics and extract the wavelets iteratively for the placement of the log data 

in time. This depth-to-time process allowed for a comparison of the well logs, and 

their associated tops, with the seismic data in time. Horizon interpretations and 

geologic well tops were used as an aid in determining a time-depth relationship for 

deviated wells. A sample of a well-to-seismic tie, at well A9, is shown in figure 6 

where the correlation between synthetic seismogram (blue) and composite trace (red ), 

at the well location, is 0.70. 

 

3.2 Selection of optimal seismic attributes 

Generally, the purpose of applying several statistical and intelligent models is to find 

linear and non-linear relationships and structures between input and output data. For 

this purpose, there should be a logical relationship between input and target parameter. 

In this section of the research investigations, physical relationships between input data 

(seismic attributes) and output data (petrophysical parameters) were investigated 

through the application of multi-regression analyses. A multi-regression analysis is a 

simple and practical method to find the strongest inputs for predicting a target 

parameter. Accordingly, multi-attributes to be used in construction of fuzzy models 

were chosen based on the trend obtained from regression analyses. The results of 

multi-regression analyses, for predicting water saturation and porosity, are shown in 

Table 1a, and 1b. According to Table 1, adding more attributes will improve the 

prediction. This does not always mean that the added attributes are predicting the true 

signal in the target log. The validation error can be considered as a criterion for 

determining when to stop adding attributes to the input set (Russell, 2004). According 

to Table 1a, the first four attributes of time, average frequency, filter 15/20-25/30 and 

dominant frequency, could be considered as the optimal inputs for predicting water 

saturation. The relationships between the input seismic attributes and Sw are shown in 

the crossplots of figure 7. Normally, in a hydrocarbon bearing interval, oil saturation 

decreases toward oil-water contact. Therefore, water saturation increases as time 

(depth) increases across the hydrocarbon bearing interval. Average frequency is a 



signature of the events and effects of the abnormal attenuation due to the presence of 

the hydrocarbons (Taner et al., 1994). Filter 15//20-25/30 is a trapezoidal frequency 

filter and acts as dominant frequency. As with the average frequency, dominant 

frequency can indicate abnormal frequency attenuation and, thereby, indicate the 

presence of hydrocarbon bearing zones. 

Performing a similar process, for predicting porosity, seven predictors have been 

proposed. These include: inversion result, integrate, Quadrature trace, cosine 

instantaneous phase, integrated absolute amplitude, amplitude envelope and filter 

15/20-25/30 (Table 1b). This method, proposed by Russell (2004), is efficient in 

determining optimal inputs for construction of fuzzy models. The relationships 

between the input seismic attributes and porosity are shown in the crossplots of figure 

8. The physical relationships between seismic attributes and porosity are as follows: 

Acoustic impedance is a product of sonic velocity and bulk density. There is an 

inverse relationship between velocity and bulk density. Accordingly, porosity is an 

inverse function of acoustic impedance. Integrate is the sum of the amplitudes within 

a window interval (Chen and Sidney, 1997). It is an indicator of an amplitude 

anomaly due to changes in lithology and porosity. Quadrature trace is calculated 

from a complex seismic trace analysis. It is actually a phase-delay feature and is 

useful in identifying vertical variation of instantaneous phase. Vertical variations of 

instantaneous phase relate to variations in porosity and lithology.  

Cosine instantaneous phase is an attribute derived from instantaneous phase. Since its 

fixed bounds (-1 to +1) are easier to understand (Chen and Sidney, 1997), it can better 

identify variations in porosity and lithology. Integrated absolute amplitude is sum of 

all the trace amplitudes within the window interval. As with the integrate attribute, it 

can indicate amplitude anomalies as a result of lithology and porosity variations. The 

amplitude envelope is an indicator of the major lithology changes and of gas and 

liquid accumulations (Taner et al, 1994). Accordingly, it can indicate porosity 

changes within a hydrocarbon bearing interval. As discussed for the water saturation, 

filter 15//20-25/30 is a trapezoidal frequency filter and can indicate porosity changes 

due to amplitude variations. 

 

3.3 Fuzzy clustering  

Clustering of numerical data forms the basis of many fuzzy modeling and pattern 

classification algorithms. The purpose of clustering is to find natural groupings of 



data, within a large dataset, thus revealing patterns that can provide a concise 

representation of the data behavior (Dubois et al., 1997). Fuzzy c-means and 

subtractive clustering are two powerful fuzzy clustering techniques which could be 

used for the construction of a fuzzy rule base.  

Subtractive clustering is an effective approach to estimate the number of fuzzy 

clusters and cluster centers in a Sugeno fuzzy inference system (Jarrah and Halawani, 

2001). In subtractive clustering, each data point is considered as a potential cluster 

center. Using this method, the number of effective grid points to be evaluated is 

simply equal to the number of data points, independent of the dimension of the 

problem (Chiu, 1994 & 1995). In subtractive clustering, the radius of neighborhood 

(cluster radius) plays an important role in construction of fuzzy inference system. It 

can take values between the range of [0, 1]. Specifying a smaller cluster radius will 

usually yield more and smaller clusters in the data (resulting in more rules). A large 

cluster radius yields a few large clusters in the data (Chiu, 1994). 

In the present study, the dataset is a matrix of petrophysical data and corresponding 

seismic attributes (328 samples of Ghar reservoir from 11 wells). The dataset was 

divided into 252 model samples and 76 testing samples to evaluate the the reliability 

of this new method. The optimum number of clusters was extracted, by specifying a 

set of values between 0 and 1 for clustering radius, and measuring the performance of 

the model for test data at each stage. The result showed that, by performing 

subtractive clustering on the water saturation matrix (a matrix of input seismic 

attributes and water saturation), this process provided the lowest error 

(MSESFIS=0.0136) in the case specifying 0.15 for clustering radius, resulting in 43 

clusters. For porosity, by specifying 0.4 for clustering radius, generated the lowest 

mean squared error (MSESFIS=0.0035), resulting in 50 clusters.  

Fuzzy c-means (FCM) is another fuzzy clustering technique that forms the basis of 

Mamdani and Larsen fuzzy inference systems. This technique was originally 

introduced by Jim Bezdek in 1981. It provides a method of grouping data points that 

populate some multidimensional space into a specific number of different clusters. 

The Fuzzy c-means clustering starts with an initial guess for the cluster centers, which 

are intended to mark the mean location of each cluster. The initial guess for these 

cluster centers is most likely incorrect. Additionally, FCM assigns every data point a 

membership grade for each cluster. By iteratively updating the cluster centers and the 

membership grades for each data point, FCM iteratively moves the cluster centers to 



the right location within a dataset. This iteration is based on minimizing an objective 

function that represents the distance from any given data point to a cluster center 

weighted by that data point’s membership grade. The FCM output is a list of cluster 

centers, and several membership grades, for each data point (Matlab user’s guide, 

2007).  

As mentioned in MFIS and LFIS, fuzzy rules are extracted through FCM. So the 

model matrices of water saturation and porosity were passed through FCM algorithm 

and cluster centers were calculated. In FCM algorithm, the number of clusters is 

defined by the user. However, an important question is- how many clusters are 

needed? To answer this question, the same method for choosing the optimum cluster 

radius, in subtractive clustering, is applied. That is, by specifying a number of clusters, 

from 1 to the number of the model data points (using a “for cycle”), and measuring 

the performance of the model for test data at each stage, the optimum number of 

clusters was calculated. Results showed that the water saturation model performs 

better when the number of clusters is 31 (MSEMFIS=0.0161, MSELFIS=0.0169), 

whereas the porosity model error was the lowest when fuzzy inference system was 

constructed using 44 rules (MSEMFIS=0.0020, MSELFIS=0.0023).  

 

3.4 Construction of fuzzy rule base 

In this section, fuzzy models’ structures, for estimating water saturation and porosity 

based on seismic attributes, are explained. The input data for fuzzy rules generation 

are cluster centers extracted using subtractive clustering (for SFIS), and FCM (for 

MFIS and LFIS). The methodology for construction of fuzzy rule base for estimating 

water saturation and porosity using the cluster centers follows:   

For a set of m cluster centers {u1, u2,..., um } in a dimensional space M, we assume 

that the first N dimensions correspond to input variables and the last M-N dimensions 

correspond to output variables. Each vector ui could be decomposed into two 

component vectors vi (inputs) and wi (outputs). We consider each cluster center ui as a 

fuzzy rule that describes the system behavior. Intuitively, each cluster center 

represents the rule (Chiu, 1997): 

Rule i : If {input is near vi } then output is near wi . 

Given an input vector x0, the degree of fulfillment of rule i is defined as Eq. (6) 

2
0 vx
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Eq. (6) 



Where λ is the constant. The output vector z is calculated via Eq. (7) 
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This computational model corresponds to the MFIS and LFIS employing traditional 

fuzzy if-then rules. Each rule has the following form: 

if input1 is Ai1 & input2 is Ai2 & ... then output1 is Ci1 & output2 is Ci2 ...  

where inputj is the j th input variable and outputj is the j th output variable; Aij is an 

exponential membership function in the i th rule associated with the j th input and Bij is a 

membership function in the i th rule associated with the j th output. For the i th rule, 

which is represented by cluster center ui, Aij is given by Eq. (8) 

Aij (Yj) = exp (- 1/2(inputj – vij)/ σij)
 2)                       

and Cij can be any symmetric membership function centered around wij, where vij is 

the j th element of vi, wij is the j th element of wi, and σ2
ij is the variance of cluster i in 

the  jth rule.  

In the this  research project, in order to construction of MFIS and LFIS for estimating 

Sw and porosity, a fuzzy rule base was generated through FCM-derived input and 

output cluster centers. Each cluster center was used to generate a Gaussian 

membership function in each rule. That is, each rule is represented by a Gaussian MF 

which is constructed from the center and standard deviation of the corresponding 

cluster. So the number of membership functions and if-then rules for each input and 

output dataset is then equal to number of the clusters. As mentioned, the number of 

the FCM derived clusters, for water saturation, was equal to 31. Considering four 

inputs and one output, 31 by 5 MFs were generated participating in 31 fuzzy rules 

(Table 2). Accordingly, 44 by 8 MFs were constructed for the porosity model. To 

connect antecedents of each rule, the min operator was used. As mentioned, the fuzzy 

rule base structure for MFIS and LFIS is similar. Their main difference is in 

implication method. In MFIS, min operator was used for implication, whereas in LFIS 

product operator was used for this purpose. For the both techniques, the centroid 

defuzzification method was applied.  

In SFIS, input MFs are of a Gaussian type. They were constructed using the cluster 

centers obtained from subtractive clustering (43 clusters for Sw and 50 clusters for 

porosity). However, output membership functions are linear equations constructed 

from inputs. For example, output MF1 of the Sw model, which is the consequent of 

rule no. 1, is constructed from four seismic attributes, as shown below: 

Eq. (7) 

Eq. (8) 



Output MF1= γ1*Time + γ2*Average frequency + γ3*Filter15/20-25/30 + 

γ4*Dominant frequency + γ5 

In this equation, parameters γ1, γ2, γ3 and γ4 are coefficients corresponding to input 

seismic attributes. Parameter γ5 is the constant of each equation. These parameters are 

obtained by linear least squares estimation. With these explanations, in order to 

estimate Sw, there will be 43 by 5 output MF parameters (Table 3). Accordingly, there 

will be 50 by 8 parameters showing coefficients and constants of the output MFs for 

the porosity estimation model. It is necessary to mention that, in this paper, only the 

MF parameters for water saturation model are shown. Input and output MF 

parameters, for the porosity models, were calculated in a similar process.  

 

3.5 Construction of a Committee Fuzzy Interference System - CFIS 

In this part of research, a CFIS was constructed for the overall prediction of 

petrophysical data by integrating the results of predicted data from SFIS, MFIS and 

LFIS, each of them having a weight factor showing its contribution in the overall 

prediction process. At the first step, outputs of the three fuzzy inference systems were 

averaged for predicting the target data, specifically; each of them has the weight value 

of 0.333. This output will be used as one of the experts of the CFIS. 

In the second step, a genetic algorithm-pattern search tool was used to obtain an 

optimal combination of the weights for constructing the CFIS. The fitness function for 

GA-PS was defined as below: 

2
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This function shows the MSE of the CFIS, for the training step predictions, 

where 1β  , 2β , 3β  and 4β  are the weight coefficients corresponding to the outputs of 

Sugeno, Mamdani, Larsen and simple averaging method, respectively. Oi and Li are 

output and target values, respectively, and k  is the number of test data points (76 

samples).  The parameters of GA-PS are described as following: 

The population is of a double vector type. The initial population size is 25, which 

specifies how many individuals are in each generation. Initial range is [0, 1]. This 

parameter specifies the range of the vectors in the initial population. The selection 

function was chosen as stochastic uniform, which chooses parents, for the next 

generation, based on their scaled values from the fitness scaling function. The 

Eq. (9) 

Eq. (10) 



crossover function is scattered which creates a random binary vector and selects the 

genes where the vector is [1] from the first parent, and the genes where the vector is 

[0] from the second parent, and combines the genes to form a child. The value of the 

crossover fraction is 0.78. This parameter specifies the fraction of the population that 

could be seen in the crossover children. The mutation function is Gaussian which adds 

a random number, or mutation, from a Gaussian distribution, to each entry of the 

parent vector. Parameters controlling the mutation are specified as the scale value of 1 

and shrink value of 1. The scale value controls the standard deviation of the mutation 

at the first generation. This parameter is multiplied by the range of the initial 

population. The shrink value controls the rate at which the average amount of 

mutation decreases. The standard deviation decreases linearly so that its final value 

equals 1. The hybrid function was chosen as pattern search. This is another 

minimization function that runs after the genetic algorithm terminates. 

Stopping the generation of GA was chosen at a value of 100. After 100 generations, 

change in the fitness function values over Stall generations was insignificant, and the 

mean fitness values for water saturation and porosity were fixed in 0.00915 and 

0.00157, respectively. The results of running the genetic algorithm, with pattern 

search hybrid function including best and mean fitness values, average distance 

between individuals, fitness scaling and calculated scores for the porosity case, are 

shown in figure 9. Finally, the CFIS was constructed using the GA-PS derived 

coefficients for the results of SFIS, MFIS, LFIS and simple averaging method. That is, 

the final estimation of water saturation and porosity was done through Eq. (11) and 

Eq. (12), respectively.   

AverageLFISMFISSFISCFIS SwSwSwSwSw *472.0*098.0*127.0*303.0 +++=  

AverageLFISMFISSFISCFIS ϕϕϕϕϕ *450.0*214.0*249.0*087.0 +++=  

 

3.6. Design of a probabilistic neural network 

Probabilistic neural network (PNN) is a forward feed network, built with three layers, 

and can be used for predicting both continuous or discrete (classification) data. It was 

first proposed by Specht (1990) and is based on a distance concept between objects. It 

is a very fast and efficient method to map a set of input data to their outputs. In PNN, 

for a vector of input xi, each new output sample  is calculated as linear 

combination of the n data points in the training data using the following equation.  

Eq. (12) 

Eq. (11) 



 

where  is the distance between the input point x and each of the training 

points, and it is calculated as follows: 

  

where k is the number of input data, and  is the distance scale factor for each of the 

input attributes. The only parameter of the PNN that needs to be optimized is the scale 

factor . In comparison with the other types of neural network, such as multiplayer 

perceptron that requires many parameters to be optimized, PNN is simple, fast and 

efficient. The optimal value of  is obtained when the validation error is minimum. 

The validation result for the sth target sample, which is left out of the training data, is 

calculated,  as shown below 

 

      This process is repeated for all of the target samples so the mean squared error 

between the measured and predicted output can be calculated. More details on 

probabilistic neural networks can be found in Specht (1990), Masters (1995) and 

Hampson (2001). 

For optimizing distance scale factor  range was taken between 0.10 and 3.00. The 

numbers of  values to try was set to 25. The optimized values of  are as below: 

Water saturation cas: 

Time: 0.244; Average frequency: 0.890; Filter 15/20-25/30: 2.484; Dominant 

frequency: 2.787; Global : 0.342 

Porosity case: 

Inversion result: 0.313; integrate: 0.301; Quadrature trace: 0.804; Cosine 

instantaneous phase: 0.864; Integrated absolute amplitude: 0.385; Amplitude 

envelope: 0.121; Filter 15/20-25/30: 0.495; Global : 0.463  

 

4 . Results and Discussion 

The correlation coefficient and graphical comparison between measured and predicted 

water saturation for the test samples using SFIS, MFIS, LFIS and CFIS are shown in 

figures 10a-d and 11a-d. According to the results presented in Table 4, and figures 10 

& 11, the MSE of SFIS, MFIS and LFIS models in the test data are 0.0136, 0.0161, 

(Eq. 13) 

(Eq. 14) 

(Eq. 15) 



and 0.0169, which correspond to the correlation coefficient values of 0.868, 0.865, 

and 0.855, respectively. Amongst the models used, LFIS has provided more accurate 

results, compared to MSE of SFIS, MFIS. Applying simple averaging methods for the 

combination of the outputs of the three models has provided the correlation 

coefficient of 0.885 and the MSE of 0.0108, which shows improvement in 

comparison with individual models. The optimal combination of the weights in the 

CFIS was obtained by a GA-PS. The inputs of the CFIS are the outputs of three fuzzy 

models and simple averaging method. The GA-PS derived weights for SFIS, MFIS, 

LFIS and their average are 0.303, 0.127, 0.098 and 0.472, respectively. The MSE of 

the CFIS for the test data is 0.0091, which corresponds to the correlation coefficient 

of 0.896. That it, the CFIS shows a significant improvement for the estimation of Sw 

from seismic attributes. It performs better than any one of the individual intelligent 

systems acting alone for Sw prediction. Also it has provided a small improvement in 

comparison with simple averaging method. Application of the CFIS for porosity 

estimation from seismic attributes confirms the performance of the introduced 

methodology (figures 12 and 13). According to the results presented in Table 4 and 

figures 12 & 13, application of the MFIS results in the lowest error for porosity 

estimation (MSE=0.0020, CC=0.879) among fuzzy models acting alone. Application 

of the simple averaging method improves the results (MSE=0.0017, CC=0.891). 

Finally, the CFIS decreases the estimation error up to 0.0015 which corresponds to 

correlation coefficient of 0.899.  

As it is evident from the results of this research, integrating the outputs obtained from 

different systems can improve the accuracy of the estimations. The simple averaging 

method is a kind of committee machine in which each of the inputs has equal 

contribution in the overall estimation. However, the CFIS, introduced in this study, is 

an advanced type of committee machine in which the optimal combination of weights 

is obtained by an optimization method, such as GA-PS. In order to evaluate 

performance of the designed CFIS, a neural network was used as an alternative 

method for estimating water saturation and porosity. Results show that a probabilistic 

neural network (PNN) provides more reliable results comparing to the other methods. 

Performance of the PNN was close to the best individual fuzzy inference system 

(MSE of 0.0140 for Sw and 0.0019 for porosity). That is, the CFIS method performs 

better than neural network and is the best individual fuzzy inference system.  



Lastly, using the CFIS, constructed for this research, 3D seismic data of Ghar 

reservoir were converted to petrophysical data. Maps showing distribution of CFIS 

estimated water saturation and porosity for the Top Ghar reservoir are shown in 

figures 14 and 15, respectively. As the results show, the Ghar Sandstone is a high 

quality reservoir unit over the Iranian offshore oilfield. Porosity distribution over the 

reservoir in nearly uniform (mean=0.135). Towards the south east, porosity increases 

gradually. Water saturation in the central and north west sector of the reservoir is low 

(<50%), which corresponds to the hydrocarbon bearing area.  

 

5 . Conclusion 

Fuzzy inference systems including Sugeno, Mamdani and Larsen were used for 

formulating petrophysical data to seismic attributes. Results indicate that, by the 

integration of different outputs into a Committee Fuzzy Inference System, using the 

GA-PS technique, a considerable improvement in accuracy of the target predictions 

can be achieved.  

The CFIS performed better than any individual fuzzy models for estimating water 

saturation and porosity parameters. Also, it provided lower errors than the committee 

machine constructed through simple averaging method. The CFIS has a simple and 

easy structure, and when there are multiple ways to solve a problem, it can provide 

smaller errors when compared with the average of all experts, and with little 

additional computation.  

The methodology introduced in this study is able to estimate petrophysical data from 

a large volume of 3D of seismic data. This can increase exploration success rates and 

reduce costs through the application of more reliable output results in hydrocarbon 

exploration programs. 
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