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Abstract 
 
The Namaqua-Natal Province of southern Africa formed a part of the Kalahari craton, 

possibly linked to the ~1.0 Ga supercontinent Rodinia, but the timing of assembly and its 

positioning relation to other components is still debated. Thorough ion-probe zircon dating 

combined with strategic field observations in the tectonic front of a metamorphic belt can 

clarify some of these issues. In this study, the age of two “pretectonic” units, constrains the 

timing of collision and clarifies the role of the Koras Group as a tectonostratigraphic marker. 

The volcanosedimentary Wilgenhoutsdrif Group contains Archaean and Paleoproterozoic 

material, showing that it probably formed in a continental rift or a passive margin setting, 

before its involvement in the Namaqua collision event. At 1241 ± 12 Ma Ma the Areachap 

island arc magmatism was in progress, followed by a collision event around 1200 Ma which 

at 1165 ± 10 Ma gave rise to migmatites in the island arc terrane. At the same time (1173 ± 12 

Ma) in the adjoining Kaaien terrane the first sequence of Koras Group bimodal magmatism 

formed in a fault basin, invalidating the concept that this Group is a tectonostratigraphic 

marker of the end of tectonism in the whole Namaqua Province. A time of little activity 

followed, with yet another pulse of magmatism at 1100–1090 Ma, giving rise to a second 

sequence of sedimentation and volcanism in the Koras Group, as well as correlated intrusive 

rocks. This second pulse is not related to any significant regional deformation and may have 
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been thermally induced. It is in part coeval with the Umkundo large igneous province of the 

Kaapvaal and Zimbabwe Cratons. These formations preserve an important record for 

reconstructing Rodinia and our 1093 ± 7 Ma U-Pb age of the uppermost volcanic formation of 

the Koras Group, should be used as the age for the Kalkpunt Formation, frequently cited as a 

Kalahari Craton paleopole.
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 4 

Introduction 5 

Collision events in the Namaqua sector have been assigned ages between 1.28 (Frimmel, 6 

2004) and 0.9 Ga (Hoal, 1993), with many authors citing 1100 Ma (Thomas et al., 1996) and 7 

most paleomagnetic syntheses start at 1100 Ma.  The mid-Proterozoic supercontinent Rodinia 8 

(Dalziel et al., 2000) included many ~1.0 Ga components now distributed over the globe.  The 9 

Namaqua sector of the Namaqua-Natal province of Southern Africa (Fig. 1) is one such 10 

fragment, in which the timing of collision and subsequent events is poorly constrained. 11 

Several workers, (Humphreys and Van Bever Donker, 1987; Stowe, 1986; van Zyl, 1981) 12 

concluded that the north eastern part of the Namaqua sector is a structurally complex area 13 

with at least one deformational phase prior to terrane assembly, and that several fold phases 14 

developed in relation to Namaquan collision events, with the main event, here termed NF2. 15 

This is evident in both the Areachap and Kaaien terranes. Stowe (1986) considered the area 16 

we refer to as the Kaaien Terrane as a part of the Kgalagadi Province. Note that in Fig. 2 we 17 

follow Thomas et al., (1994b) and Cornell et al. (2006), restricting the Kheis Province to east 18 

of the Dabep thrust, following geochronological evidence that the main foliation in the region 19 

between the Dabep thrust and Trooilopspan Shear Zone (here called the Kaaien Terrane) is 20 

related to the Namaqua Orogeny. 21 

 22 

The ion probe technique of zircon dating enables precise age determinations of rock-forming 23 

events in complex metamorphic areas such as the Namaqua-Natal Province. Using 24 

backscattered electron and cathodoluminescent images of zircon, distinct age domains such as 25 

xenocrystic cores, oscillatory zoned magmatic areas and metamorphic rims can be identified 26 



and metamict zones avoided by the  ~30 micron ion beam. In this work we present a number 27 

of precise ion probe dates for key formations and events in the NE marginal areas of the 28 

Namaqua sector, which allow us to clarify the history before, during and after collision. We 29 

show that the main collision event in this part of the Namaqua sector occurred after 1230 Ma 30 

and before 1165 Ma.  31 

 32 

The volcanosedimentary Koras Group in the Kaaien Terrane near Upington (Figs. 1, 2, and 3) 33 

has been considered important due to its stratigraphic position in the Namaqua Front, being 34 

regarded as undeformed and overlying highly deformed rocks of the Namaqua Province. 35 

These relationships suggest that the Koras Group is younger than all deformation in the 36 

collisional orogeny, possibly related to the formation of Rodinia (Gutzmer et al., 2000). This 37 

concept led to the Koras Group being chosen as defining the top of the Mokolian Erathem of 38 

the South African Committee for Stratigraphy (SACS) (1980), so that its age, although 39 

variously defined at 1080, 1180 or 1123 Ma, is used as a chronostratigraphic boundary in 40 

maps of the South African Geological Survey.  Previous investigations include geochemistry 41 

and several imprecise and contradictory whole rock or bulk zircon model age determinations 42 

from 1.2 to 1.0 Ga, including 1.9 Ga xenocrysts (Table 1). Gutzmer et al. (2000) summarised 43 

the earlier work and claimed that their precise 1171 ± 7 Ma ion probe Pb-Pb zircon age for a 44 

Koras rhyolite resolved this topic. Palaeomagnetic data from the Koras Group provide 45 

important points on apparent polar wander paths (Briden et al., 1979), but the precise age of 46 

the formations sampled was not well known.  In this work we confirm the age for one Koras 47 

rhyolite, but also show that the Group represents at least 80 Ma of stratigraphic history. We 48 

also demonstrate that the tectonostratigraphic relationships defining the end of Namaqua 49 

deformation are valid only in the Kaaien Terrane, not in the terranes further west. 50 

Fig. 1  51 



Table 1  52 

 53 

Methods 54 

Zircons were separated from about 2 kg of each sample. The samples were crushed using a 55 

swing mill and then sieved through 400µm. This material was panned by hand, heavy 56 

minerals were dried and zircons were hand picked, mounted in epoxy and polished. 57 

Cathodoluminescence and backscattered images were obtained for the individual zircon 58 

grains, to identify age domains and to avoid cracks and metamict zones. All imaging for 59 

samples with prefix DC was done using a Zeiss DSM 940 electron microscope at Gothenburg 60 

University. A Cameca 1270 ion probe was used for U-Pb dating at the Nordsim facility in the 61 

Swedish Natural History Museum in Stockholm, as described by Whitehouse et al. (1997; 62 

1999). A ~30 micron oxygen ion beam was used and the NIST 91500 zircon standard was 63 

used for calibration. Common Pb corrections samples run at Nordsim (prefix DC) assume a 64 

present day Stacey & Kramers (1975) model average terrestrial Pb composition, based on the 65 

observation that most common Pb is due to laboratory contamination. Sample S03-10 was 66 

analysed with a SHRIMP instrument at Curtin University, Perth, Australia according to 67 

(Nelson, 1997) using standard CZ3, common Pb correction with a Broken Hill type of 68 

composition (Cummings & Richards, 1975) and cathodoluminescence imaging done at Curtin 69 

University. Age calculations were made using the Isoplot 3 programme of Ludwig (1991; 70 

1998). Uncertainties of age calculations are all given at the 2σ level, ignoring decay constant 71 

errors. Unless stated otherwise, all the dates reported in this work are ion probe zircon U-Pb 72 

data. 73 

The results are given in Table 2 and raw data in the supplementary data. 74 



Mineral analysis of hornblende in DC0439, see Table 3, were done at Gothenburg University 75 

on a Hitachi S-3400N Scanning electron microscope with an Oxford EDS system, and 76 

pressure calculations in the programme by Tindle and Webb (1994). 77 

Fig. 2 78 

Table 2 79 

 80 

Wilgenhoutsdrif Group 81 

The upper part of the Wilgenhoutsdrif Group is made up of basaltic volcanic rocks which 82 

contain preserved hyaloclastites and pillow lavas, with interbedded rhyolites, sandstones, 83 

conglomerates, shales, and minor calcsilicates (Figs. 2 and 3). The group overlies the 84 

Groblershoop Formation, a thrust package of metasedimentary quartz-mica schists which may 85 

be as old as 1900 Ma (Theart et al., 1989) that probably represents a passive margin shelf 86 

sequence on the western margin of the Kaapvaal Craton formed before the Kheis tectonism. 87 

The Wilgenhoutsdrift Group is severely deformed and metamorphosed in the greenschist 88 

facies. It shows two phases of deformation which according to Moen (1987; 1999), record the 89 

Namaqua deformation history in this area. Geochemical data suggests that the metabasites are 90 

alkali-basalts, which may have originated in either a rift setting or as oceanic islands 91 

(Stenberg, 2005). Unlike many other mafic rocks from southern Africa, the Wilgenhoutsdrif 92 

shows no geochemical subduction signature.  The mafic and at least partly submarine 93 

volcanism, together with the presence of minor serpentinites in the sequence leads to the 94 

suggestion of an oceanic tectonic setting prior to its involvement in the Namaqua collision. 95 

We analysed detrital zircons to investigate if the sediments had a juvenile character, reflecting 96 

an oceanic setting, or formed close to an old crustal source.    97 

Fig. 3 98 

 99 



Although ascribed by most workers to the early stages of the Namaqua Wilson Cycle, 100 

previous dates for the Wilgenhoutsdrif Group, summarised in Table 1 have not been 101 

consistent. A felsic volcanic rock dated at 1290 ± 8 Ma (Moen, unpublished data) in Cornell 102 

et al. (2006), establishing an age for the volcanism in this Group.  103 

 104 

Two samples were analysed from sedimentary units within the Wilgenhoutsdrif Group. The 105 

outcrop displayed quartzite and calcsilicate layers interbedded with conglomerate. The U-Pb 106 

data for these detrital zircons are concordant (Fig. 4b), and shown as Pb-Pb data in a 107 

probability density plot in Fig. 4a, range between 1770 and 2864 Ma, with the major 108 

population between 1800 and 2200 Ma.   109 

Fig. 4 110 

 111 

Koras Group 112 

The Koras Group (Fig. 2) overlies highly deformed units, including the Wilgenhoutsdrif 113 

Group. As shown in Fig. 3, it is made up of two bimodal volcanic sequences comprising 114 

basalt, rhyolite and sediments like conglomerate and sandstone. Each sequence represents a 115 

cycle of bimodal volcanism and sedimentation. It is situated in fault basins and considered to 116 

be related to a trans-tensional setting (Grobler et al., 1977), developed during late to post-117 

collision. The Koras Group is usually described as undeformed, although in many samples 118 

greenschist facies mineral assemblages pseudomorph the magmatic minerals. Most previous 119 

workers agreed that the entire Koras Group postdated Namaqua deformation in the entire 120 

region.  However, Sanderson-Damstra (1982) documented deformation fabrics in the 121 

Bossienek Formation, meter-scale folds as well as slickenside striations in outcrops of 122 

micaceous sandstone, which we also observed. His mapping also established the existence of 123 

gentle folding in the lower Swartkopsleegte rhyolites, identified two phases parallel to the 124 



regional FN2 and FN3 (FN3 crosscutting FN2) respectively and an angular unconformity 125 

between them and the overlying Rouxville basalts on the farm Karos Settlement.  In this work 126 

four different units were sampled within the Koras Group. They are described in stratigraphic 127 

order from base to top. The Swartkopsleegte rhyolite is from the first cycle and recently 128 

yielded an ion probe Pb-Pb age of 1171 ± 7 Ma (Gutzmer et al., 2000). Our sample contained 129 

a small number of zircons, which for 21 spots yield a discordia upper intercept age of 1163 ± 130 

12, and for the 9 concordant grains a concordia age at 1173 ± 12 Ma (Table 2, Fig. 5a). The 131 

concordia age is interpreted as the age of extrusion. The lower intercept of 328 ± 25 Ma 132 

reflects an ancient lead loss event during the Carboniferous, possibly corresponding to the 133 

Dwyka glaciation in the Gondwana continent. Much of the present land surface in this area is 134 

an exhumed Dwyka surface and tillite occurences are common.   135 

Fig. 5 136 

 137 

Two rhyolitic lava samples were taken from the Leeuwdraai Formation in the upper volcanic 138 

cycle, which overlies the unconformity. The massive appearance of this formation led to its 139 

interpretation as an intrusion by some workers. However, the occurrence of horizons of 140 

welded tuff and layers with quartz-filled vesicles leave no doubt that it is an extrusive unit.   141 

These two samples yielded plentiful zircon and concordia ages of 1095 ± 10 Ma by SHRIMP, 142 

and 1092 ± 9 Ma by Nordsim respectively (Table 2, Fig. 5 b,c). The mean of these two ages, 143 

which overlap statistically, is 1093 ± 7 Ma.   144 

 145 

A unit regarded as a Swartkopsleegte correlate on the farm Ezelfontein in the southern 146 

domain, 20 km south of the type area, was dated. This yielded a date of 1104 ± 8 Ma (Table 2, 147 

Fig. 5d), showing that it is actually a Leeuwdraai correlate. Xenocrystic zircon cores in this 148 

sample (DC0420) yield Pb-Pb ages from 1182 Ma to 2116 Ma old. Concerning the 149 



correlations in the Koras Group, our sample is not the same as the Ezelfontein Formation 150 

palaeomagnetic sample of Briden et al (1979). Their sample is from a basaltic unit today 151 

referred to as Boom River Formation.  152 

 153 

The uppermost Kalkpunt Formation red sandstone sample gave a wide range of detrital zircon 154 

U-Pb ages from 1116 up to 1897 Ma (Table 2, Fig. 5e). This reflects the ages in the 155 

provenance area towards the end of Koras volcanism. It suggests that the volcanism was not 156 

so extensive that it covered the whole area, although it is possible that the 1900 Ma grains 157 

were xenocrysts in Koras lavas. This sandstone has been used to define a paleomagnetic pole 158 

with age given as 800-1050 Ma (Briden et al., 1979) and taken as 1065 Ma (Weil et al., 159 

1998). Field relationships suggest that the volcanic rubble which forms the base of this 160 

sedimentary unit was deposited soon after the 1093 ± 7 Ma Leeuwdraai Formation volcanism 161 

ceased, thereby establishing a maximum and probably true age for the Kalkpunt Sandstone 162 

Formation.  163 

 164 

Blauwbosch and Rooiputs intrusives 165 

The Blauwbosch granite and the Rooiputs granophyre have been interpreted as intrusive and 166 

extrusive or sub-volcanic equivalents of the Koras Group respectively, based on their lack of 167 

deformation and the similarity in geochemical signatures (Geringer and Botha, 1976; Moen, 168 

1987). They crop out 50 km and 38 km NW of Upington, respectively (Figs. 1 and 2). The 169 

coarse-grained, two-feldspar Blauwbosch granite yielded a concordia age of 1093 ± 11 Ma 170 

(Table 2, Fig. 5f). The Rooiputs granophyre is characterized by large numbers of mafic 171 

xenoliths, reflecting bimodal magmatism, and gave a concordia age of 1093 ± 10 Ma (Table 172 

2, Fig. 5g). These ages confirm the correlation, but only with the upper part of the Koras 173 

Group.  Two xenocrystic zircons in the Rooiputs granophyre yield Pb-Pb minimum ages of 174 



1818 and 1742 Ma, possibly reflecting Kheis Province rocks at depth. Three other xenocrysts 175 

have low Th/U ratios that probably indicate metamorphic zircon (Schersten et al., 2000) 176 

which yield a concordia age of 1187 ± 11 Ma. 177 

This corresponds to the first Koras volcanic cycle and might reflect a metamorphic event in 178 

the bedrock at that time. Similar ages have been reported further west in the Namaqua 179 

Province (Raith et al., 2003) and as shown in the following section.  180 

 181 

Areachap Group 182 

The Areachap Terrane lies west of the Kaaien Terrane (Figs. 1 and 2), comprising a package 183 

of predominantly mafic to minor felsic metavolcanic rocks and metasediments which have the 184 

geochemical signature of a subduction-related arc complex (Geringer et al., 1994).  This 185 

terrane has an amphibolite to granulite facies metamorphic overprint, which is generally much 186 

higher grade than those to the east. However, the amphibolite grade stretches into the 187 

westernmost quartsites of the Kaaien Terrane and their deformational histories are commonly 188 

correlated (Stowe, 1986; van Zyl, 1981).  189 

 190 

The Areachap Group was defined by Geringer and Botha (1984). It was conceived as a group 191 

of subduction-related formations which were accreted to the Kalahari Craton during the 192 

Namaqua orogeny (Fig. 2). Common features are the rock assemblages dominated by mafic 193 

and intermediate metavolcanics and their erosion products, the geochemical subduction 194 

signatures of the Copperton, Boksputs and Jannelsepan mafic rocks and Besshi-type Cu-Zn 195 

mineralization which has very similar Pb and S isotope signatures at Copperton and Areachap 196 

Mines (Voet and King, 1986; Theart et al., 1989).  197 

Its juvenile character was established by a Kober method zircon date of 1285 ± 14 Ma 198 

(Cornell et al., 1990) at Copperton, 200 km south of Upington (Table 1). Views on this 199 



correlation are not unanimous, some workers consider the Boven Rugseer Shear Zone (Fig. 200 

2), which transects the two areas, a major terrane boundary which prohibits them from 201 

correlating across it. Several strong geochemical similarities, Pb and S isotopes, Sm-Nd 202 

model ages and zircon ages as well as lithology need to be explained if they are not 203 

correlated. For further discussion see Cornell et al. (2006). 204 

The narrow juvenile Areachap terrane seems to be unique in the Namaqua sector, but has 205 

similar age and origin to the juvenile terranes in the Natal sector of the Province (Thomas et 206 

al., 1994a). In this work, a metadacite was dated to establish ages for its origin and 207 

metamorphism, as was a cordierite-biotite-quartz-sphalerite gneiss from the Areachap Mine, 208 

close to Upington. The metadacite occurs as a thick migmatitic unit exposed in a quarry in the 209 

largely metabasic Jannelsepan Formation. It contains extensive locally-derived leucosome 210 

lenses and is also cut by tonalitic dykes which were folded after intrusion, showing that FN2 211 

deformation accompanied migmatization. Conditions for performing hornblende barometry 212 

based on the Al content were met, melt and fluid were present as were phases of K-feldspar, 213 

titanite, plagioclase, magnetite, biotite, quartz and hornblende. The aluminium in hornblende 214 

geobarometer gives pressures of 5-6 Kbar (Tindle and Webb, 1994), corresponding to 15-18 215 

km depth for the migmatite (Table 3). Differences are due to different calibrations of the 216 

barometer, the calibration of Schmidt (1992), gave 6.1-6.3 Kbar.   217 

Zircons from this sample (DC0439), seen in backscattered electron images, exhibit 218 

oscillatory-zoned magmatic cores related to the origin of the protolith. Most grains also have 219 

thick rims or truncating overgrowths, which are ascribed to recrystallisation during 220 

migmatization.  The magmatic zircon gave a concordia age of 1241 ± 12 Ma (Table 2 and Fig. 221 

6a) and the overgrowths, which have low (<0.1) Th/U ratios indicative of metamorphic zircon 222 

gave a concordia age of 1165 ± 10 Ma (Table 2 and Fig. 6a). A borehole sample (AP15-825), 223 

a cordierite-biotite-quartz-sphalerite gneiss from Areachap Mine north of the Orange river, 224 



further confirms the regional extent of this metamorphic event. The sample has rare zircons 225 

with metamorphic overgrowths yielding a concordia age of 1158 ± 12 Ma (Fig. 6b) as well as 226 

monazites giving a mean Pb-Pb age of 1148 ± 12 Ma (Table 2). 227 

Table 3 228 

Fig. 6 229 

 230 

Swanartz Gneiss 231 

This granitic gneiss intervenes between the Areachap and the Wilgenhoutsdrif Group (Figs. 2 232 

and 3). It is a generally coarse grained granitic gneiss with abundant biotite and hornblende as 233 

well as K-feldspar porphyroblasts. It shows intrusive but generally bedding parallel 234 

relationships to the surrounding schist of the Dagbreek Formation, although cross-cutting 235 

contacts occur, with continuous structural fabric over them. Like many other granites in the 236 

region, it is deformed and was thus classified as a pre- or syntectonic granite. It is also cut by 237 

many bimodal Koras dykes. Its abundant zircon yields a concordia age of 1371 ± 9 Ma (Table 238 

2, Fig. 5h), establishing that it formed early in the tectonic cycle and before the 239 

Wilgenhoutsdrif Group was deposited.   240 

 241 

 242 

 243 

Discussion  244 

 245 

Wilgenhoutsdrif Group 246 

The detrital zircon from metasedimentary samples of the Wilgenhoutsdrif Group shows that 247 

most of the sediment was derived from an old provenance area. The 2.5 to 3.2 Ga zircons 248 

were probably derived from the Kaapvaal Craton, but the main body of 1800-2100 grains is 249 



more likely derived from the Kheis Province (Fig. 1) although the Craton does contain some 250 

rocks of this age. Hills of sandstone and micaceous quartzite occur and the Hartley lava 251 

horizon in the Kheis Front is dated at ~1929 Ma (Cornell et al., 1998). The Kheis Front is a 252 

west-verging thrust package ramped over the Kaapvaal Craton, (Stowe, 1986), which may 253 

reflect the closure of an ocean basin at the end of a 1.9 to 1.7 Ga Wilson cycle (Cornell et al., 254 

1998). As Eglington and Armstrong (2004) point out, the geochronological evidence for such 255 

a tectonic cycle is fragmentary, however it seems to be the best explanation for the geological 256 

relationships in the Kheis Province as shown in Fig. 2, which suggest a passive margin 257 

development at 1.9 Ga and require a thrusting event before 1.7 Ga (Tinker et al., 2002). 258 

Detrital zircons in the quartzites (Dagbreek Formation and Groblershoop Formation) to the 259 

east and around the Koras and Wilgenhoutsdrif exposures also have ages that agree with the 260 

dominating 1900-2200 Ma range, as well as a few older ages, (Moen, unpublished data), in 261 

Cornell et al., (2006). 262 

 263 

The chemical alteration trends and pillow structures in the mafic rocks together with the 264 

occurrence of serpentinites and calcsilicate rocks in the Wilgenhoutsdrif Group point to an 265 

oceanic setting. Together with the geochemical interpretation of an alkaline basalt protolith 266 

(Stenberg, 2005), these data indicate that the Wilgenhoutsdrif Group originated in a 267 

continental rift, accompanied by immature and locally shallow-water shelf sediments. 268 

 269 

Subduction and collision 270 

Some time after the onset of Wilgenhoutsdrif basin development, a subduction zone was 271 

active in an ocean basin to the west, leading to arc magmatism in which Areachap mafic to 272 

intermediate volcanic rocks formed between 1285 (Copperton Formation) and 1240 Ma 273 

(Jannelsepan Formation). The geometry suggests that the Wilgenhoutsdrif Group formed in a 274 



back-arc basin environment with the “Swanartz crustal block” on the outboard side. The 275 

ocean basin closed and the terranes of the Namaqua Province were assembled by a series of 276 

collisions, resulting in thickened crust and an extensive mountain belt across most of the 277 

Province. The Areachap Terrane was thus juxtaposed onto the Kaaien Terrane and the 278 

Wilgenhoutsdrif depositional basin was closed. This collision event was accompanied by 279 

isoclinal deformation in rocks of both terranes, referred to as the main Namaqua deformation 280 

event, FN2 (Humphreys and Van Bever Donker, 1987). After most orogenic deformation was 281 

complete in the Kaaien Terrane, trans-tensional stress opened up a new basin much as 282 

proposed by Jacobs et al. (1993), but much earlier than the 1070 Ma they suggested, leading 283 

to the first Koras bimodal volcanism at 1173 Ma.  284 

 285 

Age of the collision from different terranes 286 

In the Kaaien Terrane the collision-related orogeny is bracketed between the age of the 287 

Wilgenhoutsdrif Group at 1290 Ma and the oldest Koras Group rhyolites at 1173 Ma. 288 

However, the 1173 Ma rhyolites show traces of folding as pointed out by Sanderson-Damstra 289 

(1982) and so the FN2 deformation probably still affected this area to some extent, during the 290 

first Koras volcanism. The collision event and subsequent deformation must have proceeded 291 

for some tens of millions of years before deformation rates approached zero, thus the collision 292 

probably began before 1200 Ma.     293 

In the adjacent Areachap Terrane, arc-magmatic processes were active at 1240 Ma, but 294 

migmatization at 15-18 km depth following the collision was in progress at 1165 Ma. At least 295 

20 Ma was required for the build-up of heat, so the collision should have begun before 1185 296 

Ma. Considering both terranes, the collision began after 1240 Ma and probably just before or 297 

around 1200 Ma.  298 

 299 



End of tectonism in different terranes 300 

Our dating shows that while the lower Koras Group was being deposited in the Kaaien 301 

Terrane at 1173 ± 12 Ma, the Jannelsepan Formation of the Areachap Group, today less than 302 

12 km to the west, was subjected to migmatization and deformation in the Areachap Terrane  303 

(1165 ± 10 Ma) in a syntectonic setting.  This can be explained by the 15-18 km difference in 304 

depth between the two localities, which prevailed at that time, according to our hornblende 305 

barometry. The long-held concept that the Koras postdates all tectonism in the Namaqua 306 

Sector of the Province (Barton and Burger, 1983; Gutzmer et al., 2000) must therefore be laid 307 

to rest.  308 

 309 

Four ion probe dates for Koras Group rhyolites suggest that there were two discrete pulses of 310 

magmatism at 1173 and 1093 Ma. Both intrusive equivalents which we dated fall in the latter 311 

group. We cannot exclude the possibility that all the zircons found in the two Swartkopsleegte 312 

samples thus far dated by ion-probe are actually xenocrysts. However, we have had no 313 

evidence to support this idea and consider it less likely.  314 

 315 

The unconformity between the first and second volcanic cycles, recognised by Du Toit, 316 

(1965) and documented by Sanderson-Damstra (1982) is now shown to represent an interval 317 

of some 80 Ma (1173-1093). After 1093 Ma there is no sign of folding in the Koras Group, 318 

although tilting continued. The Koras dykes and correlated intrusions which cut the Areachap 319 

Terrane are also undeformed, which shows that tectonism in the Areachap Terrane had waned 320 

by 1093 Ma. It seems likely that by this time the Areachap Terrane had been exhumed from 321 

the mid-crustal depths envisaged during the migmatization process.   322 

 323 



In the broader context, (Raith et al., 2003) documented high grade metamorphism at 1187 Ma 324 

in the Bushmanland terrane, associated with extensive granite magmatism of the 1210-1180 325 

Little Namaqualand Suite (Clifford et al., 2004; Robb et al., 1999). These rocks crop out 326 

around 300-400 km west of the area we investigated and correlations of tectonic events has 327 

not yet been established.  328 

 329 

Magmatic event around 1100 Ma 330 

Geochemical work has shown (Geringer and Botha, 1976; Moen, 1987) that rhyolite of the 331 

Koras Group and the intrusive Blauwbosch granite and the Rooiputs granophyre are related 332 

and display a potassium-enriched calc-alkaline trend. Our zircon data now confirms that these 333 

intrusives are linked to the Koras Group, but only to the second volcanic pulse, around 1093 334 

Ma. Moreover, these intrusive and extrusive rocks together suggest a ‘post tectonic’ bimodal 335 

magmatic event at 1093 Ma in the eastern Namaqua Sector. To the west (1087 Ma 336 

charnockite date (Barton and Burger, 1983)) and south (Copperton) (Cornell et al., 1992), 337 

magmatic intrusions such as charnockites, and low-P, high-T metamorphic events have been 338 

dated around 1080 Ma, which reflect the same regional thermal pulse.  This may be broadly 339 

related to the 1106 ± 2 Ma  Umkundo Igneous Province (Hanson et al., 2004), defined by a 340 

large number of mafic intrusions on the otherwise undeformed Kaapvaal and Zimbabwe 341 

Cratons. 1109 Ma magmatism has also been recognised near the west coast by (Raith et al., 342 

2003). A mantle process of continental scale seems to have happened at this time. This might 343 

be related to either a superplume (Hanson et al., 2004) or to mantle delamination suggested by 344 

Gibson (1996) which could explain the changes in age, down to 1040 Ma in western 345 

Namaqualand.  346 

 347 

 348 



Evidence for 1.9 Ga Kheis Province crust at depth.   349 

The xenocrysts in the Rooiputs granophyre and some of the extrusive rocks of the Koras 350 

Group are thought to be derived from deeper in the crust. These range in age from 2.1 to 1.74 351 

Ga, similar to the main group of Wilgenhoutsdrif detrital zircons which are considered to be 352 

derived from the Kheis Province. It thus seems likely that the Kheis Province extends beneath 353 

the Kaaien Terrane, which was thrust onto it during the Namaqua collision. This is consistent 354 

with the gravity-defined boundary of the Namaqua Province lying west of the Kaaien Terrane 355 

(Fig. 1). Both xenocrystic and detrital zircons in and around the Koras basin reflect 356 

Palaeoproterozoic crustal growth, possibly in the Kheis Province. These crustal events are too 357 

young to reflect basement of the Kaapvaal Craton to the east, and too old to belong to the 358 

Areachap juvenile island arcs further west.  359 

The Swanartz gneiss is wedged between faults in the Kaaien terrane and its 1371 Ma age 360 

predates all other basement rocks reported so far in eastern Namaqualand. Comparable ages 361 

are known from 1350 Ma granulites near Marydale (Humphreys and Cornell, 1989), from the 362 

Awasib Mountain land, Namibia (Hoal and Heaman, 1995). They probably all reflect passive 363 

margin processes at the beginning of the Namaqua Wilson cycle. 364 

 365 

Conclusions 366 

 367 

 368 

1. Two “pretectonic” units have been dated, which formed before the Namaqua Province was 369 

assembled by collisions. These are the 1371 ± 9 Ma Swanartz  Gneiss in the Kaaien Terrane 370 

and the 1241 ± 12 Ma Jannelsepan Formation in the Areachap Terrane. 371 

 372 



2. The Wilgenhoutsdrif Group sediments were strongly influenced by older continental 373 

material, derived mainly from the Kheis Province. The bimodal character of the volcanic 374 

rocks likewise indicates significant crustal input during their generation. The Wilgenhoutsdrif 375 

Group probably formed in a continental back arc rift before becoming involved in Namaqua 376 

collisions.  377 

 378 

3. The collision event which assembled terranes in the eastern Namaqua Sector started some 379 

time after 1230 Ma to allow for the formation of the Jannelsepan Formation at 1241 ± 12 Ma  380 

and probably around 1200 Ma to allow for pressure and heat build up to result in 381 

migmatitisation at 1165 ± 10 Ma in the Jannelsepan Formation of the Areachap Terrane.  382 

 383 

4. Ages of two discrete bimodal volcanic cycles in the Koras Group and their related intrusive 384 

equivalents, the Blauwbosch Granite and the Rooiputs Granophyre have been determined. 385 

These rocks, which range from slightly folded to undeformed, overlie and intrude highly 386 

folded rocks in the Namaqua Front. 387 

 388 

5. The 1173 Ma date for the first Koras volcanic pulse marks the end of all but gentle FN2 389 

folding in the Kaaien Terrane. However the nearby Areachap Terrane was experiencing 390 

migmatization and severe FN2 deformation at around that time. Thus the regional 391 

tectonostratigraphic implications of a long-sought after “correct” date for the Koras Group are 392 

much less profound than has been envisaged.  393 

 394 

6. The two cycles in the Koras Group may have different origins, considering the 80 Ma time 395 

gap. The early sequence probably originated in a pull-apart basin due to post-collision strike-396 



slip movements. The late cycle reflects a continental-scale thermal process in the mantle such 397 

as a superplume or lithospheric delamination process.   398 

 399 

7. An issue raised with the new chronostratigraphy of the Koras Group is the importance of 400 

complementing stratigraphic mapping with additional dating. A consequence is that the 401 

integrity of the Koras Group might be questioned. The 80 Ma time gap and unconformity 402 

between the pulses of magmatism in the Koras Group might invalidate its definition as a 403 

Group. 404 

 405 

8. Paleoproterozoic zircon xenocrysts found in the Koras extrusives and correlated intrusives 406 

reflect a 1.8-2.0 Ma crust-forming event. They probably originate from sediments or tectonic 407 

basement which formed on the margin of the Kaapvaal Craton during the Kheis tectonic cycle 408 

and was overridden by the Kaaien terrane during the Namaquan collision. 409 

 410 

9. By determining the age of the last volcanic cycle in the Koras Group, the Leeuwdraai 411 

rhyolite at 1093 ± 7 Ma, we have also established the maximum age of the sedimentation in 412 

the Kalkpunt sandstone. This constrains the age of the paleopole taken from this formation at 413 

younger than but close to 1093 Ma (we propose 1090 ± 5 Ma). These new data will contribute 414 

to the refinement of palaeomagnetic data for other formations of the Koras Group, and more 415 

importantly to Apparent Polar Wander curves for the Kalahari Craton in paleomagnetic 416 

reconstructions. 417 

 418 
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Captions to Figures and Tables: 
 
Fig. 1. Map of southern Africa.  
Modified after Cornell et al, 2006. Shows the spatial relationship of the ~1.0 Ga Namaqua 
Province to the Kaapvaal Craton. The clearly defined geophysical boundary runs 
northwestward along the tectonic front zone, but departs from the craton margin at Marydale, 
where the ~1.8 Ga Kheis Province is interposed between them. 
 
Fig. 2. Map of the investigated area. 
Sample locations are shown as asterisks except for DC01139 that crop out off the map to the 
NW. Outcrops patterns of the Koras Group, the Wilgenhoutsdrif Group and the Areachap 
Group are shown, as well as major shear zones. 
 
Fig. 3. A generalised section A-B showing the Koras Group and its 
tectonostratigraphic context.  
The profile A-B is shown in Fig 2. Longitude and latitude for A =28’38 400, 
21’18 100, B = 28’22 000, 21’57 800. The section is drawn through the Central 
Domain of the Koras Group. Drawn from the SA Council for Geoscience 1:250 
000 geological map 2820 Upington, stratigraphic nomenclature following 
(Moen, in prep), for earlier names used for palaeomagnetism see Table 1. 
Thicknesses are not to scale, and the dips of faults and shears are schematic.  
 
Fig. 4. Provenance age plot. 
(a) Detrital zircon ages in two metasedimentary samples of the Wilgenhoutsdrif Group shown 
as a probability density plot. Number of spots are 22 (n=22) in 22 zircons. (b) Concordia plot 
of data in (a). 
 
Fig. 5. Concordia diagrams of (a) DC0380 (b) S03-10 (c) DC0263 (d) DC0420 (e) DC0411 
(f) DC01139 (g) DC01138 (h) DC0428.  
 
Fig. 6. (a). Concordia diagram of sample DC0439,  Jannelsepan Formation, Areachap Group. 
Displays two age groups, of magmatic and metamorphic origin. (b) Concordia diagram of 
sample AP15-825, Jannelsepan Formation, Areachap Group. 
 
Table 1. Literature age compilation. Table 1. Literature age compilation. 
* the Florida Formation paleomagnetic pole (Briden et al., 1979), was derived from outcrops 
of the present Boom River Formation. 
 
Table 2. Age calculations for U-Pb ion probe zircon data, unless otherwise stated, used in this 
work. Errors are given at 2σ level, except where indicated by * (at 95% confidence level) and 
calculations ignoring decay constant errors. For full data see supplementary data and for 
concordia plots, see Fig. 4, 5, 6. 
 



Table 3. SEM-EDS element analysis of hornblende in the Jannelsepan migmatite, Areachap 
Terrane (DC0439) thin section, for Al in hornblende barometry (see text). 
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 Rock type Age ± 2σ  
(Ma) 

Method,  
initial ratio 

Reference 

Koras Group 
extrusives 

    

Leeuwdraai Formation Qtz porphyry 
lavas 

1180 ±74 Discordia, 3 
conventional U-Pb 
zircon samples  

Botha et al., 1979  

Swartkopsleegte 
Formation 

Qtz porphyry 
lavas 

1171 ±7 Weighted mean ion 
probe zircon Pb-Pb 

Gutzmer et al., 2000 
 

Swartkopsleegte 
Formation 

Qtz porphyry 
lavas 

1966 ±7 Ion probe zircon Pb-Pb 
one xenocryst in above 
sample. 

Gutzmer et al., 2000 
 

Boom River Formation, 
formerly Florida 
Formation*. 

Basalts 1157 ± 44 
replaces 
1176 ± 18 

Rb-Sr isochron, 7 points, 
MSWD 1.2, 0.7060 ±4 

Recalculated data of 
Kröner, 1977 

Koras intrusives     
Ezelfontein intrusion Syenite 1076 ±52 Rb-Sr isochron 0.7065 Barton and Burger, 

1983 
Uitkoms dyke Quartz porphyry 1032 & 

1049 
2 discordant 
conventional U-Pb 
zircon samples 

Barton and Burger, 
1983 

Wilgenhoutsdrif Gp     
 Metabasic lava 1331 ±100 Rb-Sr isochron 0.7026 Barton and Burger, 

1983 
 Metabasic lava 1125 ±20 Rb-Sr errorchron 0.7017 Cornell 1975, in 

Cahen et al., 1984 
 Acid lava 1336 & 

1287 
2 discordant 
conventional U-Pb 
zircon samples 

Barton and Burger, 
1983 

Areachap Group     
Copperton Formation Metadacite 1285 ±14 Kober method zircon Pb-

Pb 
Cornell et al., 1990 

Jannelsepan Formation Amphibolite 1300 to 
1100 

Imprecise Rb-Sr, Pb-Pb 
and Th-Pb data. 

Barton and Burger, 
1983 

 
 
  
 

Table 1



Sample Formation, rock type Age (Ma) Type of grain Spots used Isoplot MSWD Th/U Lower Location
regression  ratio intercept (Ma) S E

Koras Group
DC0411 Kalkpunt, Sandstone 1116 ± 16 detrital 1 concordia 0.19 -  28°27.322´ 21°40.348´

1120-1196 detrital 5 Pb-Pb ages - -
1290 detrital 1 Pb-Pb ages - -
1824 & 1896 detrital 2 Pb-Pb ages - -

DC0263 Leeuwdraai, Rhyolite 1092 ± 9 magmatic 14 concordia 0.47 >0.8  28°27.800´ 21°40.800´
S03-10 Leeuwdraai, Rhyolite 1095 ± 10 magmatic 20 concordia 0.74 >0.8 28°28.204´ 21°41.664´
DC0420 Rhyodacite at Ezelfontein 1104 ± 8 magmatic 9 concordia 1.9 >0.7 28°37.894´ 21°42.113´

(mapped as Swartkopsleegte) 1182-1204 xenocrysts 3 Pb-Pb ages - -
1341 xenocryst 1 Pb-Pb age - -
1814-2117 xenocrysts 4 Pb-Pb ages - -

DC0380 Swartkopsleegte, Rhyolite 1173 ± 12* magmatic 9 concordia 0.75 0.08-0.57 28°24.878´ 21°36.364´
1163 ± 12 magmatic 21 discordia 1.6 - 328 ± 25

Wilgenhoutsdrif Group 
DC0415 Leerkrans, Sandstone 2016 - 2760 detrital 9 Pb-Pb ages - -  28°29.757´ 21°42.723´
DC0416 Leerkrans, Conglomerate 1337 - 2864 detrital 13 Pb-Pb ages - -  28°29.757´ 21°42.723´
Areachap Group
DC0439 Jannelsepan, Migmatite 1241 ± 12 magmatic 5 concordia 0.65 >0.75 28°30.279´ 21°12.378´

1165 ± 10* metamorphic rim 5 concordia 0.67 <0.09
AP15825 Jannelsepan, Biotite Gneiss 1192 ± 14 metamorphic? 3 concordia <0,01 0.15-0.28 28°17.970´ 21°02.500´

1158 ± 12 metamorphic rim 3 concordia 1.7 <0.01
1142 ± 12 monazites 2 wtd mean Pb-Pb 2.6 -

Unit not assigned to a Group or Suite
DC0428 Swanartz Granite Gneiss 1371 ± 9 magmatic 8 concordia 0.12 >0.46 28°24.794´ 21°25.900´

1364 ± 13 magmatic 11 discordia 0.93 - 428 ± 120
DC01139 Blauwbosch Granite 1093 ± 11 magmatic 4 concordia 1 >0.46 28°05.740´ 20°49.044´

1093 ± 11 magmatic 14 discordia 1.3 - 250 ± 39
DC01138 Rooiputs Granophyre 1093 ± 10 magmatic 10 concordia; 0.16 >0.2  28°08.891´ 21°01.888´

1818 & 1742 xenocrysts 2 Pb-Pb ages - -
1187 ± 14 xenocrysts 4 concordia 0.24 <0.06

Table 2



Element App Intensity Weight% Weight% Atomic% Compd% Formula Number
   Conc. Corrn.  Sigma      of ions
Analysis 1 - hornblende in DC0439 
Na 0.76 0.69 1.1 0.05 1.16 1.48 Na2O 0.45
Mg 3 0.65 4.6 0.06 4.6 7.62 MgO 1.79
Al 4.08 0.73 5.58 0.06 5.03 10.54 Al2O3 1.96
Si 15.52 0.82 18.87 0.09 16.33 40.36 SiO2 6.35
K 1.25 1.06 1.18 0.03 0.73 1.42 K2O 0.28
Ca 8.05 0.99 8.13 0.07 4.93 11.38 CaO 1.92
Ti 0.63 0.83 0.76 0.04 0.39 1.28 TiO2 0.15
Mn 0.65 0.83 0.78 0.05 0.35 1.01 MnO 0.13
Fe 14.29 0.85 16.84 0.13 7.33 21.66 FeO 2.85
O 38.92 0.16 59.14 23
Totals 96.76

Cation sum 15.89
Analysis 2 - hornblende in DC0439 
Na 0.72 0.69 1.05 0.05 1.11 1.41 Na2O 0.43
Mg 3.02 0.65 4.64 0.06 4.64 7.69 MgO 1.8
Al 4.05 0.73 5.55 0.06 5.01 10.49 Al2O3 1.95
Si 15.5 0.82 18.85 0.09 16.33 40.34 SiO2 6.35
K 1.2 1.06 1.14 0.03 0.71 1.37 K2O 0.27
Ca 7.95 0.99 8.03 0.07 4.87 11.23 CaO 1.89
Ti 0.68 0.83 0.82 0.04 0.42 1.36 TiO2 0.16
Mn 0.64 0.83 0.77 0.05 0.34 0.99 MnO 0.13
Fe 14.46 0.85 17.04 0.14 7.42 21.92 FeO 2.88
O 38.92 0.16 59.17 23
Totals 96.8

Cation sum 15.87
Analysis 3 - hornblende in DC0439 
Na 0.7 0.69 1.01 0.05 1.07 1.36 Na2O 0.42
Mg 2.99 0.65 4.58 0.06 4.58 7.6 MgO 1.78
Al 4.09 0.73 5.59 0.06 5.03 10.57 Al2O3 1.96
Si 15.57 0.82 18.92 0.09 16.35 40.48 SiO2 6.36
K 1.25 1.06 1.18 0.03 0.74 1.43 K2O 0.29
Ca 8.09 0.99 8.17 0.07 4.95 11.43 CaO 1.92
Ti 0.64 0.83 0.77 0.04 0.39 1.28 TiO2 0.15
Mn 0.66 0.83 0.8 0.05 0.35 1.03 MnO 0.14
Fe 14.37 0.85 16.94 0.14 7.36 21.79 FeO 2.86
O 39.01 0.16 59.18 23
Totals 96.98

Cation sum 15.87  
 

Table 3



Sample/ 
spot

[U] 
ppm

[Th] 
ppm

Th/U 
meas.

f206% Error 
corr.

Discordance 
(%)

DC01138 - Rooiputs Granophyre 
10a 132 114 0.869 0.71 1.8634 ± 2.8398 0.18549 ± 2.0720 0.73 9.4 1010 ± 39 1097 ± 21
10b 145 137 0.943 {0.08} 2.0085 ± 2.3101 0.19261 ± 1.9214 0.83 5.1 1085 ± 26 1136 ± 20
10c 137 123 0.895 {0.09} 2.0047 ± 2.2601 0.18717 ± 1.9109 0.85 -3.1 1139 ± 24 1106 ± 19
10d 139 124 0.889 0.16 1.9477 ± 2.2511 0.18731 ± 1.8968 0.84 2.7 1080 ± 24 1107 ± 19
17b 158 59 0.378 3.43 1.9978 ± 3.4824 0.18492 ± 2.0333 0.58 -5.8 1156 ± 55 1094 ± 20
20a 112 77 0.685 {0.17} 1.9027 ± 2.2390 0.18293 ± 1.8952 0.85 0.3 1080 ± 24 1083 ± 19
20b 113 77 0.689 {0.13} 1.9193 ± 2.2377 0.18340 ± 1.9264 0.86 -0.7 1092 ± 23 1086 ± 19
24a 103 67 0.655 {0.07} 1.9086 ± 2.3284 0.17811 ± 1.8956 0.81 -7.9 1140 ± 27 1057 ± 19
24b 106 70 0.664 {0.07} 1.8591 ± 2.2776 0.17821 ± 1.8953 0.83 -2.9 1086 ± 25 1057 ± 19
61a 349 72 0.207 {0.04} 1.9616 ± 2.0452 0.18733 ± 1.8955 0.93 1.3 1094 ± 15 1107 ± 19
17a* 462 27 0.058 0.06 2.2398 ± 1.9748 0.20443 ± 1.8987 0.96 1.4 1184 ± 11 1199 ± 21
64a* 391 23 0.059 {0.03} 2.2176 ± 1.7809 0.20223 ± 1.6486 0.93 0.2 1185 ± 13 1187 ± 18
62a 1075 6 0.005 2.89 1.5560 ± 2.2956 0.15061 ± 1.9055 0.83 -16.3 1067 ± 26 904 ± 16
17c 403 24 0.059 {0.04} 2.2061 ± 1.8035 0.20055 ± 1.6592 0.92 -1.2 1192 ± 14 1178 ± 18
30a 439 5 0.011 {0.00} 2.1121 ± 1.7579 0.19675 ± 1.6487 0.94 1.4 1143 ± 12 1158 ± 17
65a 113 111 0.980 {0.07} 5.5908 ± 1.8318 0.36478 ± 1.6491 0.90 11.9 1818 ± 14 2005 ± 28
69a 98 109 1.108 {0.04} 4.5445 ± 1.9836 0.30918 ± 1.7370 0.88 -0.4 1742 ± 17 1737 ± 26
72a 392 24 0.062 {0.03} 2.1869 ± 1.8291 0.19979 ± 1.6490 0.90 -0.7 1182 ± 16 1174 ± 18
DC01139 - Blauwbosch Granite
19a 933 429 0.460 0.18 1.9744 ± 1.9891 0.18887 ± 1.9510 0.98 2.5 1090 ± 8 1115 ± 20
25a 110 132 1.208 {0.13} 1.9749 ± 2.1784 0.18869 ± 1.8951 0.87 2.2 1093 ± 21 1114 ± 19
6a 469 407 0.867 0.92 1.8948 ± 2.0624 0.18254 ± 1.8995 0.92 0.5 1076 ± 16 1081 ± 19
8a 240 191 0.795 0.35 1.9594 ± 2.1375 0.18580 ± 1.8952 0.89 -0.9 1108 ± 20 1099 ± 19
25b 78 90 1.150 {0.15} 1.9403 ± 2.4045 0.18299 ± 1.9958 0.83 -3.4 1119 ± 27 1083 ± 20
6b 621 353 0.568 0.39 1.7928 ± 2.0266 0.17383 ± 1.9401 0.96 -3.1 1063 ± 12 1033 ± 19
26a 54 64 1.180 {0.00} 1.9511 ± 2.3742 0.18233 ± 1.9113 0.81 -5.5 1137 ± 28 1080 ± 19
26b 340 261 0.767 3.21 1.6860 ± 2.7771 0.16678 ± 1.9488 0.70 -3.0 1023 ± 40 994 ± 18
47a 4124 2778 0.674 3.44 0.3789 ± 3.6886 0.04844 ± 1.8978 0.51 -37.5 482 ± 68 305 ± 6
47a2 3879 2670 0.688 7.77 0.4148 ± 5.5568 0.05115 ± 1.9197 0.35 -43.7 560 ± 110 322 ± 6
50a 441 414 0.938 0.38 1.7446 ± 0.16830 ± 1.9107 0.94 -7.1 1073 ± 14 1003 ± 18
53a 171 82 0.477 0.63 1.8521 ± 2.2849 0.17626 ± 1.8971 0.83 -5.3 1101 ± 25 1047 ± 18
53b 364 266 0.730 0.08 1.8255 ± 2.0143 0.17435 ± 1.8958 0.94 -5.7 1093 ± 14 1036 ± 18
63a 544 621 1.143 1.56 1.7620 ± 2.1983 0.16594 ± 1.8966 0.86 -12.7 1121 ± 22 990 ± 17
DC0263 - Leeuwdraai Rhyolite, Koras Group
18a 47 66 1.392 0.98 1.9097 ± 3.7424 0.18427 ± 2.2666 0.61 1.8 1073 ± 59 1090 ± 23
20b 80 79 0.983 {0.15} 1.9851 ± 3.9651 0.18828 ± 2.2532 0.57 0.5 1107 ± 64 1112 ± 23
21a 122 98 0.803 {0.16} 1.9638 ± 2.6587 0.18434 ± 2.2532 0.85 -3.6 1128 ± 28 1091 ± 23
21b 50 46 0.931 {0.13} 1.9747 ± 3.3270 0.18454 ± 2.2677 0.68 -4.3 1137 ± 48 1092 ± 23
25b 53 51 0.951 {0.11} 1.9693 ± 2.8585 0.18584 ± 2.2663 0.79 -1.8 1117 ± 34 1099 ± 23
27a 130 107 0.819 {0.10} 1.8713 ± 2.6013 0.17942 ± 2.2495 0.86 -2.2 1086 ± 26 1064 ± 22
2a 133 113 0.846 {0.09} 1.9471 ± 2.5831 0.18651 ± 2.2610 0.88 1.5 1088 ± 25 1102 ± 23
37a 126 145 1.148 0.18 1.9313 ± 2.5830 0.18585 ± 2.2566 0.87 2.1 1078 ± 25 1099 ± 23
39a 94 92 0.986 {0.11} 1.9632 ± 2.6225 0.18521 ± 2.2479 0.86 -2.2 1118 ± 27 1095 ± 23
3a 187 168 0.900 {0.05} 1.9460 ± 2.4565 0.18539 ± 2.2587 0.92 -0.2 1098 ± 19 1096 ± 23
44a 69 102 1.482 0.30 1.8412 ± 3.2562 0.17887 ± 2.3183 0.71 0.2 1059 ± 45 1061 ± 23
4a 138 157 1.139 0.39 1.8744 ± 2.6516 0.18143 ± 2.2442 0.85 0.8 1067 ± 28 1075 ± 22
7a 216 222 1.029 {0.06} 1.9567 ± 2.4826 0.18637 ± 2.2801 0.92 0.3 1099 ± 20 1102 ± 23
9a 138 137 0.991 {0.13} 1.9224 ± 2.5415 0.18308 ± 2.2583 0.89 -1.5 1099 ± 23 1084 ± 23
11a 201 159 0.793 0.18 1.8741 ± 2.5455 0.17804 ± 2.3090 0.91 -4.7 1104 ± 21 1056 ± 23
11b 45 44 0.970 {0.32} 1.9322 ± 3.0643 0.17685 ± 2.2923 0.75 -11.8 1178 ± 40 1050 ± 22
20a 168 150 0.895 {0.10} 1.7820 ± 2.7874 0.16876 ± 2.4810 0.89 -10.2 1110 ± 25 1005 ± 23
25a 119 131 1.104 3.10 1.4685 ± 4.4927 0.18913 ± 2.2483 0.50 153.0 465 ± 84 1117 ± 23
29a 156 151 0.967 0.32 1.7824 ± 2.7931 0.17590 ± 2.3843 0.85 1.8 1028 ± 29 1045 ± 23
38a 75 92 1.218 0.54 1.8255 ± 3.0642 0.18127 ± 2.2956 0.75 6.3 1015 ± 41 1074 ± 23
DC0380 - Swartkopsleegte Rhyolite, Koras Group
7a 524 47 0.090 0.40 2.2578 ± 2.4076 0.20545 ± 2.2491 0.93 1.4 1190 ± 17 1205 ± 25
8a 458 34 0.075 {0.01} 2.2218 ± 2.3256 0.20297 ± 2.2467 0.97 0.9 1182 ± 12 1191 ± 24
9a 267 31 0.116 {0.03} 2.2493 ± 2.5620 0.20559 ± 2.2494 0.88 2.3 1181 ± 24 1205 ± 25
9b 285 39 0.135 {0.00} 2.2557 ± 2.7565 0.20599 ± 2.3248 0.84 2.3 1183 ± 29 1207 ± 26
9c 208 44 0.213 {0.06} 2.1797 ± 2.4854 0.19941 ± 2.3071 0.93 -0.6 1179 ± 18 1172 ± 25
10a 392 141 0.359 {0.05} 2.2049 ± 2.3342 0.20237 ± 2.2448 0.96 1.4 1173 ± 13 1188 ± 24
14a 690 257 0.372 0.21 2.2233 ± 1.5917 0.20314 ± 1.5070 0.95 1.0 1182 ± 10 1192 ± 16
25b 67 38 0.571 0.75 2.0780 ± 2.4082 0.19190 ± 1.5063 0.63 -2.7 1160 ± 37 1132 ± 16
27b 966 437 0.452 1.47 2.0442 ± 1.6678 0.18998 ± 1.5090 0.90 -2.5 1148 ± 14 1121 ± 16
4a 508 193 0.380 0.06 2.2690 ± 2.3266 0.21013 ± 2.2481 0.97 7.1 1155 ± 12 1230 ± 25
11a 295 90 0.307 0.67 1.9820 ± 2.5222 0.18523 ± 2.2436 0.89 -4.0 1137 ± 23 1095 ± 23
13a 800 395 0.494 0.05 2.3038 ± 2.3769 0.21017 ± 2.2457 0.94 4.2 1185 ± 15 1230 ± 25
20a 896 298 0.332 0.05 2.2839 ± 2.3544 0.20977 ± 2.2579 0.96 5.3 1171 ± 13 1228 ± 25
24a 3196 1195 0.374 8.52 0.5098 ± 2.9022 0.06253 ± 2.2766 0.78 -32.6 572 ± 39 391 ± 9
13a 622 191 0.307 0.05 2.4896 ± 2.3916 0.22713 ± 2.2612 0.95 12.6 1185 ± 15 1319 ± 27
24a 1652 701 0.424 0.08 2.3103 ± 2.3039 0.21154 ± 2.2632 0.98 5.6 1177 ± 9 1237 ± 26
21a 278 110 0.394 {0.06} 2.1592 ± 2.5975 0.19492 ± 2.4901 0.96 -5.2 1205 ± 14 1148 ± 26
25a 154 168 1.090 0.13 2.1836 ± 1.8465 0.20298 ± 1.5064 0.82 4.2 1147 ± 21 1191 ± 16
26a 2392 472 0.198 2.93 1.2132 ± 1.7154 0.12296 ± 1.5115 0.88 -24.6 974 ± 16 748 ± 11
24b 1460 571 0.391 2.42 1.6811 ± 1.7400 0.16183 ± 1.5114 0.87 -11.1 1078 ± 17 967 ± 14
28a 1259 475 0.378 1.24 1.6758 ± 1.6449 0.15947 ± 1.5135 0.92 -14.3 1101 ± 13 954 ± 13
12a 388 65 0.166 0.22 2.2662 ± 1.6754 0.21226 ± 1.5063 0.90 10.5 1132 ± 15 1241 ± 17
DC0411 -  Sandstone, Kalkpunt Formation, Koras Group
7a 254 143 0.562 {0.03} 2.0043 ± 1.2708 0.18963 ± 1.1495 0.90 0.7 1112 ± 11 1119 ± 12
22a 173 136 0.788 0.08 5.4796 ± 1.2219 0.34242 ± 1.1450 0.94 0.1 1896 ± 8 1898 ± 19
24a 283 24 0.084 {0.03} 2.2809 ± 1.2476 0.20680 ± 1.1456 0.92 1.4 1197 ± 10 1212 ± 13
32a 292 42 0.144 {0.05} 2.2259 ± 1.2394 0.20325 ± 1.1456 0.92 0.9 1183 ± 9 1193 ± 12
46a 108 97 0.900 {0.11} 2.0259 ± 1.4116 0.19098 ± 1.1482 0.81 0.7 1120 ± 16 1127 ± 12
50a 217 181 0.832 {0.07} 2.5983 ± 1.2562 0.22461 ± 1.1449 0.91 1.4 1290 ± 10 1306 ± 14
9a 365 363 0.995 1.94 4.0226 ± 1.4581 0.26157 ± 1.2731 0.87 -20.0 1825 ± 13 1498 ± 17
23a 1141 101 0.088 2.04 1.8858 ± 1.7855 0.17355 ± 1.3315 0.75 -12.6 1167 ± 23 1032 ± 13
26a 456 30 0.067 3.07 1.6870 ± 1.6179 0.15665 ± 1.1888 0.73 -19.8 1150 ± 22 938 ± 10
53a 103 118 1.143 5.46 3.6994 ± 18.4155 0.52933 ± 2.2668 0.12 1379.1 227 ± 375 2739 ± 51

206Pb/238/U  
±1σ (Ma)

207Pb/206Pb 
±1σ(Ma)

207Pb/235U   ±1σ 
error

206Pb/238U       ±1σ 
error
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Sample/ 
spot

[U] 
ppm

[Th] 
ppm

Th/U 
meas. f206%

Error 
corr.

Discordance 
(%)

DC0415 - Quartzite, Leerkrans Formation, Wilgenhoutsdrif Group
3a 238 138 0.578 1.31 6.4683 ± 2.4412 0.37790 ± 2.3299 0.95 2.9 2017 ± 13 2066 ± 41
13a 165 88 0.532 0.09 13.9303 ± 1.1605 0.52597 ± 1.1202 0.97 -1.6 2760 ± 5 2724 ± 25
15a 220 232 1.058 {0.04} 6.9786 ± 1.1562 0.38680 ± 1.1033 0.95 -0.1 2109 ± 6 2108 ± 20
18a 194 114 0.586 0.07 6.8605 ± 1.1684 0.38252 ± 1.1001 0.94 -0.6 2099 ± 7 2088 ± 20
17a 120 49 0.408 {0.04} 13.0256 ± 1.1632 0.51202 ± 1.1070 0.95 -1.3 2694 ± 6 2665 ± 24
26a 160 137 0.854 0.08 6.5050 ± 1.2288 0.37145 ± 1.1552 0.94 -1.2 2057 ± 7 2036 ± 20
26b 170 137 0.807 0.23 6.3926 ± 1.2106 0.36635 ± 1.1238 0.93 -2.2 2051 ± 8 2012 ± 19
28a 53 29 0.549 {0.15} 7.0073 ± 1.5105 0.38833 ± 1.2136 0.80 0.3 2110 ± 16 2115 ± 22
32a 134 66 0.497 0.08 13.4038 ± 1.2363 0.51611 ± 1.1853 0.96 -2.0 2728 ± 6 2683 ± 26
1a 141 67 0.474 0.43 6.1140 ± 2.5333 0.35066 ± 2.4442 0.96 -6.3 2049 ± 12 1938 ± 41
5a 694 402 0.580 3.99 3.4911 ± 1.2456 0.10134 ± 1.1347 0.91 -84.1 3184 ± 8 622 ± 7
6a 405 227 0.560 0.35 5.1259 ± 1.3717 0.30034 ± 1.3352 0.97 -18.0 2011 ± 6 1693 ± 20
10a 311 244 0.785 1.64 5.0297 ± 1.6631 0.33647 ± 1.2275 0.74 6.3 1773 ± 20 1870 ± 20
15b 139 116 0.839 3.74 6.1752 ± 2.0018 0.34117 ± 1.1004 0.55 -12.1 2115 ± 29 1892 ± 18
32b 256 88 0.346 0.26 12.6146 ± 1.1983 0.48937 ± 1.1692 0.98 -6.6 2716 ± 4 2568 ± 25
41a 100 97 0.977 2.76 2.4865 ± 1.7355 0.14531 ± 1.2865 0.74 -60.4 2016 ± 21 875 ± 11
DC0416 - Conglomerate, Leerkrans Formation, Wilgenhoutsdrif Group
4a 301 211 0.701 0.24 6.3663 ± 2.2477 0.36976 ± 2.1835 0.97 0.1 2027 ± 9 2028 ± 38
9a 169 135 0.803 0.34 5.0708 ± 2.3427 0.32981 ± 2.1833 0.93 0.8 1824 ± 15 1837 ± 35
13a 302 104 0.346 0.27 15.5326 ± 2.2156 0.55021 ± 2.1850 0.99 -1.7 2864 ± 6 2826 ± 50
20a 173 126 0.725 0.30 7.6810 ± 2.3032 0.40687 ± 2.2027 0.96 0.6 2189 ± 12 2201 ± 41
28a 109 311 2.847 0.61 5.0630 ± 2.4920 0.33294 ± 2.1988 0.88 3.1 1804 ± 21 1853 ± 36
29a 266 110 0.414 0.32 6.8816 ± 2.2548 0.38294 ± 2.1850 0.97 -0.7 2102 ± 10 2090 ± 39
30a 146 184 1.259 0.18 5.1196 ± 2.3368 0.32873 ± 2.1832 0.93 -0.9 1847 ± 15 1832 ± 35
31a 291 141 0.483 0.12 5.5571 ± 2.2525 0.34128 ± 2.1826 0.97 -2.1 1928 ± 10 1893 ± 36
32a 132 134 1.015 0.57 6.7814 ± 2.4117 0.38741 ± 2.1815 0.90 3.1 2056 ± 18 2111 ± 39
33a 364 360 0.988 0.21 7.2063 ± 2.2422 0.39958 ± 2.1821 0.97 3.3 2109 ± 9 2167 ± 40
51a 368 201 0.546 0.10 12.0762 ± 2.2083 0.49951 ± 2.1815 0.99 0.1 2609 ± 6 2612 ± 47
64a 154 94 0.610 0.52 5.2620 ± 2.3979 0.33350 ± 2.1816 0.91 -1.0 1871 ± 18 1855 ± 35
65b 261 122 0.467 0.50 2.9064 ± 2.3840 0.24285 ± 2.1829 0.92 3.7 1356 ± 18 1401 ± 28
65a 417 132 0.316 0.20 2.8947 ± 2.2784 0.24422 ± 2.1824 0.96 5.9 1337 ± 13 1409 ± 28
DC0420 - Rhyolite at Ezelfontein, Koras Group
96a 55 57 1.037 {0.10} 1.9394 ± 1.7082 0.18319 ± 1.1633 0.68 -3.0 1116 ± 25 1084 ± 12
97a 55 105 1.898 {0.21} 1.9830 ± 1.7250 0.19078 ± 1.1509 0.67 4.7 1079 ± 26 1126 ± 12
102b 53 55 1.046 {0.15} 1.9654 ± 1.7523 0.18838 ± 1.1452 0.65 2.6 1086 ± 26 1113 ± 12
102c 71 81 1.137 {0.09} 2.0252 ± 1.5762 0.18960 ± 1.1450 0.73 -1.4 1133 ± 21 1119 ± 12
104b 81 59 0.735 0.79 1.9678 ± 1.9040 0.18600 ± 1.1745 0.62 -1.4 1114 ± 30 1100 ± 12
9a 81 121 1.497 {0.10} 1.9341 ± 2.1136 0.18664 ± 1.8318 0.87 3.1 1073 ± 21 1103 ± 19
11a 96 138 1.440 {0.07} 1.9844 ± 2.0394 0.18739 ± 1.8248 0.89 -0.9 1116 ± 18 1107 ± 19
45a 64 71 1.111 0.31 1.9221 ± 2.2224 0.18629 ± 1.8328 0.82 3.8 1064 ± 25 1101 ± 19
58a 49 50 1.019 {0.20} 1.9290 ± 2.3995 0.18924 ± 1.8335 0.76 8.1 1040 ± 31 1117 ± 19
94a 130 80 0.617 {0.04} 2.7849 ± 1.3255 0.23452 ± 1.1488 0.87 1.4 1341 ± 13 1358 ± 14
96b 94 114 1.215 {0.19} 1.8057 ± 1.8680 0.17341 ± 1.1606 0.62 -5.2 1082 ± 29 1031 ± 11
99b 48 44 0.934 {0.26} 1.8110 ± 2.0195 0.17154 ± 1.1449 0.57 -8.7 1110 ± 33 1021 ± 11
21a 480 317 0.660 0.03 7.1009 ± 1.1767 0.39195 ± 1.1533 0.98 0.8 2117 ± 4 2132 ± 21
23a 260 92 0.352 {0.04} 2.2164 ± 1.3009 0.20016 ± 1.1778 0.91 -2.6 1205 ± 11 1176 ± 13
33a 119 171 1.433 0.34 2.0229 ± 1.6637 0.19790 ± 1.1449 0.69 12.4 1045 ± 24 1164 ± 12
49a 50 59 1.165 0.63 2.0143 ± 2.0888 0.19557 ± 1.1562 0.55 9.4 1060 ± 35 1151 ± 12
50a 1237 77 0.062 0.09 5.7726 ± 1.1661 0.35239 ± 1.1555 0.99 0.5 1938 ± 3 1946 ± 19
50b 395 152 0.386 {0.01} 6.0576 ± 1.2169 0.35774 ± 1.1449 0.94 -1.5 1997 ± 7 1971 ± 19
66a 316 129 0.410 {0.02} 2.2230 ± 1.2693 0.20303 ± 1.1665 0.92 0.9 1182 ± 10 1192 ± 13
66b 86 66 0.762 3.92 1.5868 ± 3.7238 0.15101 ± 1.1479 0.31 -18.9 1101 ± 69 907 ± 10
6a 69 87 1.267 1.62 1.6732 ± 3.3383 0.18174 ± 1.8666 0.56 32.2 831 ± 57 1076 ± 19
99a 276 435 1.575 2.05 4.3393 ± 2.1082 0.28385 ± 1.5459 0.73 -12.6 1814 ± 26 1611 ± 22
102a 78 107 1.370 {0.20} 1.8370 ± 1.7232 0.17384 ± 1.1666 0.68 -7.7 1112 ± 25 1033 ± 11
36a 48 43 0.896 0.79 1.9073 ± 2.7362 0.18885 ± 1.9317 0.71 10.1 1021 ± 39 1115 ± 20
102d 85 111 1.307 {0.12} 2.0005 ± 2.1273 0.19428 ± 1.8349 0.86 8.7 1060 ± 22 1144 ± 19
104a 433 19 0.045 {0.02} 2.2118 ± 1.2628 0.20198 ± 1.1500 0.91 0.3 1183 ± 10 1186 ± 12
DC0428 - Swanartz Gte gneiss
41a 109 84 0.773 {0.05} 2.9038 ± 1.7316 0.23945 ± 1.4098 0.81 0.2 1381 ± 19 1384 ± 18
32a 180 115 0.641 {0.03} 2.8609 ± 1.5864 0.23976 ± 1.3809 0.87 2.9 1350 ± 15 1385 ± 17
6a 257 159 0.619 0.67 2.7909 ± 1.7234 0.23291 ± 1.3882 0.81 -0.7 1358 ± 20 1350 ± 17
85a 113 109 0.963 {0.06} 2.9193 ± 1.7360 0.24149 ± 1.4083 0.81 1.5 1375 ± 19 1394 ± 18
76a 183 130 0.712 {0.02} 2.8684 ± 1.6274 0.23605 ± 1.3864 0.85 -1.5 1385 ± 16 1366 ± 17
101a 57 44 0.764 {0.15} 2.7822 ± 2.0783 0.23152 ± 1.4379 0.69 -1.7 1364 ± 29 1342 ± 17
118a 133 116 0.873 {0.07} 2.8612 ± 1.8943 0.23954 ± 1.3819 0.73 2.6 1352 ± 25 1384 ± 17
85b 146 67 0.456 {0.05} 2.9073 ± 1.7740 0.23859 ± 1.3953 0.79 -0.9 1391 ± 21 1379 ± 17
101b 315 220 0.700 0.05 2.9685 ± 1.4996 0.24795 ± 1.3726 0.92 5.8 1357 ± 12 1428 ± 18
100a 888 626 0.704 0.30 2.1901 ± 1.7972 0.18941 ± 1.7278 0.96 -14.4 1289 ± 10 1118 ± 18
118b 156 66 0.426 0.44 2.8148 ± 1.8069 0.24553 ± 1.3840 0.77 12.5 1273 ± 22 1415 ± 18
106a 282 130 0.460 {0.04} 2.9693 ± 1.7062 0.24613 ± 1.3773 0.81 3.8 1371 ± 19 1418 ± 18
73a 66 8 0.116 0.57 2.2911 ± 2.3488 0.19935 ± 1.5591 0.66 -9.1 1278 ± 34 1172 ± 17
41b 317 140 0.441 1.73 2.6340 ± 2.4107 0.25788 ± 1.4225 0.59 46.7 1044 ± 39 1479 ± 19
40a 649 270 0.417 1.82 2.3769 ± 1.7950 0.23178 ± 1.3705 0.76 30.8 1052 ± 23 1344 ± 17
106b 47 22 0.463 0.89 2.2294 ± 2.9844 0.20030 ± 1.5932 0.53 -3.4 1215 ± 49 1177 ± 17
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DC0439 - Migmatite, Jannelsepan Formation, Areachap Group
4a 1072 797 0.744 2.00 2.4543 ± 2.3651 0.21729 ± 2.2280 0.94 2.1 1244 ± 15 1268 ± 26
40a 691 547 0.791 5.18 2.4434 ± 9.0795 0.21860 ± 2.3505 0.26 4.6 1223 ± 163 1274 ± 27
40b 758 649 0.856 4.18 2.3889 ± 2.5414 0.20904 ± 2.2272 0.88 -3.7 1266 ± 24 1224 ± 25
76a 1139 1003 0.881 1.90 2.3549 ± 2.3330 0.20798 ± 2.2271 0.95 -2.7 1248 ± 14 1218 ± 25
56a 1634 1466 0.897 0.78 2.4192 ± 2.2784 0.21605 ± 2.2261 0.98 3.1 1227 ± 10 1261 ± 26
4b* 1553 146 0.094 0.32 2.0348 ± 2.2702 0.18783 ± 2.2260 0.98 -4.8 1161 ± 9 1110 ± 23
12a* 1791 120 0.067 0.29 2.1947 ± 2.2641 0.20319 ± 2.2261 0.98 3.5 1156 ± 8 1192 ± 24
71a* 1706 19 0.011 0.12 2.2054 ± 2.2543 0.20299 ± 2.2260 0.99 2.3 1167 ± 7 1191 ± 24
75a* 1856 23 0.012 0.56 2.0838 ± 2.2960 0.19103 ± 2.2265 0.97 -4.5 1175 ± 11 1127 ± 23
115a* 1587 24 0.015 0.03 2.2062 ± 1.3357 0.20326 ± 1.3004 0.97 2.6 1165 ± 6 1193 ± 14
139a 1832 247 0.135 0.13 1.9409 ± 1.3388 0.17841 ± 1.2988 0.97 -10.3 1170 ± 6 1058 ± 13
2a 1904 35 0.018 0.25 1.5708 ± 2.3070 0.15049 ± 2.2315 0.97 -18.1 1087 ± 12 904 ± 19
2b 2902 86 0.030 4.74 0.6651 ± 2.6702 0.07273 ± 2.2260 0.83 -46.2 817 ± 31 453 ± 10
11a 1187 523 0.440 4.26 2.0737 ± 2.5156 0.18490 ± 2.2261 0.88 -12.0 1230 ± 23 1094 ± 22
39a 1962 33 0.017 0.20 1.5872 ± 2.2664 0.14950 ± 2.2260 0.98 -21.3 1121 ± 8 898 ± 19
106a 1930 28 0.015 0.05 1.4942 ± 1.3435 0.14061 ± 1.3001 0.97 -26.1 1123 ± 7 848 ± 10
105a 1755 18 0.010 0.16 2.0512 ± 1.3439 0.18785 ± 1.3016 0.97 -6.2 1177 ± 7 1110 ± 13
110a 2795 55 0.020 0.27 0.6587 ± 1.3938 0.07004 ± 1.3095 0.94 -51.8 875 ± 10 436 ± 6
53a 1502 32 0.021 0.87 1.6621 ± 2.3143 0.16255 ± 2.2261 0.96 -7.7 1046 ± 13 971 ± 20
53b 2986 54 0.018 0.20 0.6779 ± 2.2866 0.07126 ± 2.2267 0.97 -52.4 899 ± 11 444 ± 10
71b 1793 29 0.016 0.16 1.8825 ± 2.2853 0.17533 ± 2.2279 0.97 -9.7 1144 ± 10 1041 ± 21
75b 2522 2604 1.032 0.72 2.0624 ± 2.2598 0.18651 ± 2.2263 0.99 -9.0 1202 ± 8 1102 ± 23
81a 1572 29 0.019 0.17 2.2433 ± 2.2601 0.20783 ± 2.2260 0.98 6.0 1154 ± 8 1217 ± 25
AP15-825 - Biotite Gneiss, Jannelsepan Formation, Areachap Group
2c 290 45 0.154 0.08 2.26659 ± 1.6072 0.2060 ± 1.3345 0.83 1.4 1192 ± 18 1208 ± 15
1b 200 32 0.160 0.08 2.16089 ± 1.7632 0.1963 ± 1.3341 0.76 -3.4 1193 ± 23 1155 ± 14
1c 183 51 0.276 0.08 2.29214 ± 2.0407 0.2076 ± 1.3349 0.65 1.5 1199 ± 30 1216 ± 15
1a* 434 3 0.007 {0.03} 2.12399 ± 1.4905 0.1952 ± 1.3321 0.89 -1.9 1170 ± 13 1150 ± 14
2a* 337 2 0.007 0.06 2.14116 ± 1.5220 0.2000 ± 1.3325 0.88 3.5 1138 ± 15 1175 ± 14
2b* 312 4 0.012 0.08 2.12787 ± 1.6041 0.1993 ± 1.3325 0.83 3.8 1132 ± 18 1172 ± 14
S03-10 - Rhyolite, Leeuwdraai Formation, Koras Group
10.1 111 101 0.93 0.15 1.9578 ± 3.7529 0.1787 ± 2.1308 0.57 -10.4 1060 ± 21 1184 ± 61
10.2 63 60 0.97 0.63 1.9549 ± 3.9330 0.1877 ± 2.2090 0.56 2.4 1109 ± 23 1083 ± 65
10.3 63 51 0.83 0.81 1.8698 ± 3.9625 0.1759 ± 2.2011 0.56 -7.1 1044 ± 21 1124 ± 66
10.4 25 29 1.23 2.35 1.8274 ± 8.3010 0.1859 ± 2.6252 0.32 13.7 1099 ± 27 966 ± 161
10.5 302 370 1.27 0.17 2.0044 ± 2.3670 0.1869 ± 2.0118 0.85 -3.2 1104 ± 20 1141 ± 25
10.6 26 40 1.60 2.93 1.8118 ± 13.9696 0.1874 ± 2.7310 0.20 18.8 1107 ± 28 932 ± 281
10.7 29 27 0.96 2.24 1.8361 ± 12.0168 0.1846 ± 2.6426 0.22 10.4 1092 ± 27 990 ± 238
10.8 162 140 0.89 0.42 1.9565 ± 2.7856 0.1863 ± 2.0650 0.74 0.2 1101 ± 21 1099 ± 37
10.9 83 73 0.90 0.45 1.9428 ± 3.1082 0.1858 ± 2.1440 0.69 0.7 1099 ± 22 1091 ± 45
10.1 51 46 0.93 1.01 1.9852 ± 5.3844 0.1831 ± 2.3208 0.43 -6.8 1084 ± 23 1163 ± 96
10.11 93 87 0.96 0.53 2.0575 ± 3.7566 0.1872 ± 2.1511 0.57 -7 1106 ± 22 1190 ± 61
10.12 60 50 0.86 0.94 1.9384 ± 4.3568 0.1848 ± 2.2453 0.52 -0.3 1093 ± 23 1097 ± 75
10.13 65 61 0.97 0.70 2.0046 ± 4.3281 0.1886 ± 2.2151 0.51 -0.9 1114 ± 23 1124 ± 74
10.14 18 16 0.95 1.95 1.8919 ± 11.9583 0.1883 ± 2.9271 0.24 10.1 1112 ± 30 1010 ± 235
10.15 110 111 1.05 0.84 1.8328 ± 3.7869 0.1843 ± 2.1199 0.56 10.2 1090 ± 21 989 ± 64
10.16 78 118 1.58 3.33 1.3908 ± 8.3375 0.1831 ± 2.2259 0.27 160.7 1084 ± 22 416 ± 180
10.17 69 94 1.42 0.75 1.9896 ± 4.5524 0.1870 ± 2.2082 0.49 -1.8 1105 ± 22 1125 ± 79
10.18 13 17 1.31 4.62 1.8046 ± 19.5018 0.1863 ± 3.3567 0.17 17.7 1101 ± 34 935 ± 394
10.19 93 86 0.96 0.50 2.0031 ± 3.5426 0.1870 ± 2.1488 0.61 -3 1105 ± 22 1139 ± 56
10.2 107 95 0.91 0.42 1.9420 ± 3.3216 0.1874 ± 2.1254 0.64 3.2 1107 ± 22 1073 ± 51

Unmarked data has been used for a group, magmatic or detrital poulation
Data indicated by* has been used for a group, metamorphic rim/overgrowth population.
Crossed out spots/data has not been used in isoplot concordia calculations
For detrital samples (DC0411, DC0415, DC0416) crossed out spots are either non-concordant and 
or they are duplicate spots from the same grain, and not represented in concordia or probability density plots, .
For sample DC01138 and DC0420 likely xenocrystic zircons are highlighted in their Pb-Pb age with bold text.
{} indicates values close to or below detection limit
Discordance in % was calculated from the ratio between the 206Pb/238/U age over the 207Pb/206Pb age, not including errors, 
where discordant data is given as negative values and reversed discordant sopts as positive.
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