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Abstract 

     Activation of reduced graphene oxide (RGO) using CO2 to obtain highly porous and metal-free 

carbonaceous materials for adsorption and catalysis was investigated. The facile one-pot thermal 

process can simultaneously reduce graphene oxide and produce activated RGO without introducing any 

solid or aqueous activation agent. This process can significantly increase the specific surface area (SSA) 

of RGO from 200 to higher than 1200 m2/g, and the obtained materials were proven to be highly 

effective for adsorptive removal of both anionic (phenol) and cationic (methylene blue, MB) organics 

from water. Moreover, the activated RGO materials exhibited much better activity in effective 

activation of peroxymonosulfate (PMS) to produce sulfate radicals for oxidative degradation of MB.  
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1. Introduction 

      Carbon materials, including activated carbon, carbon nanotube (CNT), and carbon black are all 

effective sorbents for pollutant removal from water or air due to their large specific surface area 

(SSA)1-3. Graphene, a new carbon material with single or multiple carbon layers and sp2-hybridized 

carbon lattice, possesses many unique features such as good electrical, thermal, and mechanical 

properties4. It is also a good sorbent candidate5 with theoretical SSA of 2630 m2/g, but the reported 

SSA values of reduced graphene oxide (RGO) derived from chemically synthesized graphene oxide 

(GO) were only less than 100 m2/g6. To improve RGO’s SSA as well as other characteristics, for 

examples, adsorption capacity, conductivity, and supercapacity, researchers have used potassium 

hydroxide to activate RGO7, 8. This method is effective, but the process is complicated and will 

introduce foreign chemicals which are difficult to remove. Carbon dioxide activation of carbon 

materials is another effective method, however, no investigation has been reported on RGO activation 

using CO2.  

Organic pollutants in water have been a big issue in water contamination. Removal of these organics 

can be achieved by several technologies. Among them, adsorption and catalytic oxidation processes are 

the most effective methods9. Catalytic oxidation can degrade organics to harmless compounds, CO2, 

H2O and inorganic ions, by the generated radicals, providing a better alternative than adsorption. 

Currently, most catalytic oxidation processes for radical generation employ metal-based materials as 

catalysts, which are expensive and could induce secondary pollution due to metal leaching and toxicity. 

Thus, using metal-free materials for organic oxidation in water is highly required for environmental 

benign processes10.  

In this study, a facile one-pot thermal process was developed to prepare activated RGO. Chemically 

synthesized GO was used as a starting material, and carbon dioxide was selected as an activation agent. 

The activated RGO (A-RGO) materials were demonstrated to be highly efficient for adsorptive 
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removal of phenol and methylene blue (MB) from aqueous solution. Moreover, the A-RGO materials 

were also tested for the catalytic oxidation of MB using peroxymonosulfate (PMS) as an oxidant. 

Based on both the adsorption and catalytic oxidation results, activated RGO materials demonstrated to 

be effective metal free carbons for green processes. 

2. Experimental 

2.1 Materials and chemicals 

     Graphite powder (purity 99.9995%), sulphuric acid (95-97%), sodium nitrate, and MB were 

obtained from Sigma–Aldrich. Potassium peroxymonosulfate (2KHSO5·3KHSO4·K2SO4 available as 

Oxone, PMS) was also obtained from Sigma-Aldrich. Hydrogen peroxide (30%) was purchased from 

Chem-Supply. Potassium permanganate, phenol and ammonia solution (28%) were obtained from Ajax 

Finechem. Hydrochloric acid (32%, analytical grade) was obtained from Biolab.  

2.2 Synthesis of GO 

   The Hummer’s method was used to synthesize GO from graphite powder11. Briefly, graphite (2 g) 

was mixed with NaNO3 (1 g) and H2SO4 (50 mL) at 0 oC, then KMnO4 (6 g) was slowly added into the 

system. Then, the mixture was stirred at room temperature for 30 min after being kept at 0 oC for 2 h. 

Distilled water (100 mL) was slowly added into the system, the temperature was kept well below 98 oC 

for 3 h. The mixture was further treated with 5% H2O2 (50 mL), filtered and washed with distilled 

water. The obtained GO was dried at room temperature under vacuum condition. 

2.3 Thermal reduction of GO and activation of RGO 

     The dried GO was first added into a quartz boat and put into a tubular furnace. A N2 flow (50 

mL/min) was then introduced to remove air for 2 h. The temperature started to increase to 250 oC 

within 90 min and was maintained at that temperature for 30 min to transform GO to RGO. The 

temperature was then increased to 800 oC at a rate of 5 oC/min. After that, N2 was switched to CO2 at 

the same gas flow rate to perform activation process. Different activation times (25, 60, and 75 min) 
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were used to obtain A-RGO-25, A-RGO-60, and A-RGO-75 samples. After the activation process, CO2 

flow was changed to N2 and the temperature dropped down naturally to room temperature.  

2.4 Characterization of carbon materials 

     Surface area and pore size measurements of GO, RGO and A-RGO samples were carried out by N2 

adsorption analysis at −196 °C using a Gemini 2360. All samples were degassed at 100 °C for 4 h prior 

to the adsorption experiments. SSA was derived from the Brunauer-Emmett-Teller (BET) equation and 

pore volume was obtained using the adsorption value at p/p0 = 0.95. The pore size distribution was 

obtained by the Barrett−Joyner−Halenda (BJH) method. FT-IR spectra of these materials were 

recorded on a Perkin-Elmer Spectrum 100 with a resolution of 4 cm-1 in transmission mode at room 

temperature. TGA was performed by heating the samples in an air flow at a rate of 100 mL/min using a 

Perkin-Elmer Diamond TG/DTA thermal analyzer with a heating rate of 10 °C/min. The samples for 

Raman analysis were prepared by pressing the powder using the hydraulic presser and carefully placed 

on the slide until analyzed. The spectra were acquired on a Bruker instrument. 

2.4 Batch adsorption experiments of phenol 

      Batch adsorption experiments were performed on a model TU-454 Bench Top Shaking Incubator   

(Thermoline Scientific, Australia) with a shaking speed of 150 rpm. Typically, bottles containing about 

10 mg RGO or A-RGO were first filled with 50 mL phenol solutions with desired concentrations. Then 

they were sonicated for 2 h and placed in the shaker (25 oC) for 24 h. The concentrations of phenol 

were analyzed using a HPLC with a UV detector at the wavelength of 270 nm. The column used was 

C-18 and the mobile phase was a solution of 30% CH3CN and 70% water. 

2.5 Adsorption and catalytic degradation of MB 

      The adsorption of MB was performed in 250 mL beakers with magnetic stirring. Typically, 12 mg 

prepared materials were dispersed in 200 mL, 10 ppm MB solution. The solutions were then kept 
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stirring at 150 rpm and water samples were taken out at varying time intervals. The solution samples 

were separated by a centrifuge and analyzed by a Jasco V-570 UV-visible spectrometer at 663 nm.  

For the catalytic degradation process, the same quantity of a catalyst was used for every batch test. 

PMS at 0.05 g was charged into MB solution to start the catalytic oxidation process. After certain time 

intervals, 1 mL of solution was withdrawn by a syringe and filtered by 0.45 μm Millpore film and 0.5 

mL methanol was injected into the filtered solution as a quenching reagent. The obtained mixtures were 

analyzed by the Jasco V-570 UV-vis spectrometer. In addition, H2O2 was also used as an oxidant for 

MB oxidation with A-RGO. A similar process as above was carried out with addition of 0.5 mL (30 

wt%) H2O2. 

3. Results and Discussion 

3.1 Characterization of activated RGO samples 

Before the activation process, GO were first pretreated at 250 oC in N2 atmosphere. This 

pretreatment process can remove the oxygen containing groups (Fig. 2) and reduce the GO to RGO 

preliminarily12. The activation process with CO2 at 800 oC was then performed, and the production 

yields of activated RGO (mt/m0) at different activation periods are shown in Fig. 1a. The yield 

decreased greatly with a longer activation time, which is due to oxidation reaction between RGO and 

carbon dioxide at high temperature13. This reaction can slit RGO sheets and produce porous surface of 

RGO to increase the SSA7. The obtained samples were then characterized by nitrogen adsorption at 

−196 °C to probe porous structure and the adsorption isotherms are shown in Fig. 1b. No porous 

structure could be observed for RGO (Fig. 1c, line 1). After short-time activation, the porous structure 

started to develop, and the majority of pores are narrowly distributed at 2.3 nm (Fig. 1c, line 2). Higher 

amounts of larger micropores and some mesopores were produced at longer activation periods (Fig. 1c, 

line 3). This porous structure can significantly increase the SSA of RGO. The SSA values at varying 

activation time are shown in Fig. 1d. It was found that the SSA of RGO increased significantly after 



6 
 

activation and reached the maximum at the activation time of 60 min. Longer activation period, 

however, reduced SSA, which can be explained by the results of pore structure variation (Fig. 1c). A 

large amount of mesopores with pore size larger than 5 nm were produced on A-RGO-60, which 

resulted in increased SSA. While these pores (diameter ≥ 5 nm) completely disappeared when the 

activation time was increased to 75 min (Fig. 1c, line 4). These larger mesopores have been 

transformed into macropores which cannot be detected by N2-adsorption, making A-RGO-75 

presenting decreased SSA7, 14. Therefore, 60 min is the optimized activation time to obtain porous RGO 

with the highest SSA.  

 

Figure 1 

 

     Fourier transform infrared spectroscopy (FT-IR) spectra of the activated RGO samples are shown in 

Fig. 2. Several characteristic peaks (1719 cm-1 and 1612 cm-1 for COO group; 1039 cm-1 for C-O group) 

could be observed from Fig. 2a to confirm the successful preparation of GO. Nearly all of the 

functional groups disappeared during the thermal reduction process (250 oC) in N2 atmosphere (Fig 2b). 

The subsequent activation by CO2 will partially split and oxidize the RGO sheets at the same time, and 

generate some new functional groups (~1550 cm-1 for C=O and ~1100 cm-1 for C-O) on the edges and 

surface of the RGO.  

Figure 2 

   The formation of porous structure will result in an increase in the SSA of RGO, and this has been 

proven by N2 adsorption (Fig. 1). On the other hand, the activation will change the stability of graphene 

at the same time, and this conclusion can be supported by thermogravimetric analysis (TGA, Fig. 3). 

The TGA curves were obtained in air atmosphere at a heating rate of 10 oC/min. The combustion 

temperature was found to be in an order: RGO<A-RGO-75<A-RGO-60<A-RGO-25. As shown in Fig. 
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3a for RGO, a slight weight loss occurred until the temperature was raised to 440 oC. Then the carbon 

skeletons of RGO started to be broken down due to combustion in air, which shows a characteristic 

weight loss between 440~600 oC. As for the samples after activation, the combustion temperature was 

increased by 80~100 oC. In this investigation, CO2 activation occurred at 800 ºC. Before introduction 

of CO2, thermal treatment in N2 could further reduce GO by removing oxygen functional groups. It has 

been proved that the C/O ratio was no more than 7 when the treatment temperature is ~250 oC. While 

the C/O ratio could be higher than 13 if the temperature reached ~800 oC12, 15. Therefore, the delay in 

combustion on A-RGOs could be attributed to the removal of residual oxygen containing groups during 

continuing thermal reduction process of GO at high temperature, making the activated RGO more 

thermally stable in air atmosphere. Meanwhile, the activation process by CO2 can produce active edge 

defects and functional groups on the RGO. The burn-off temperature became lower at increased 

activation time.  

Another important evidence to show the activation process is Raman spectra (Fig. 4). All Raman 

spectra of the obtained materials (Fig. 4a-d) show strong D bands centered at 1320 cm-1, implying the 

presence of a large amount of defects. The ID/IG follows this order: RGO (2.717)<A-RGO-25 

(2.864)<A-RGO-60 (2.934)<A-RGO-75 (3.162). The intensity ratio of D- and G-peaks (ID/IG) will be 

increased with decay of size of the perfect graphene units. The above order indicates that activation 

process will break up the typical sp2 structure and produce new active edges and functional groups. 

Longer activation time will produce more decay on the surface of RGO.  

Figure 3 

Figure 4 

3.2 Adsorption of Phenol  

     The obtained RGO samples were tested for phenol adsorptive removal from aqueous solutions, and 

the Freundlich model was employed to analyze the adsorption isotherms (Fig.5). This model assumes 
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that adsorption occurs on a heterogeneous surface through a multilayer adsorption mechanism, and that 

the adsorbed amount increases with the concentration according to the following equation: qe=KFCe
1/n, 

where qe and Ce are the equilibrium concentrations of the adsorbate in sorbent and solution, 

respectively. KF is the Freundlich constant related to the adsorption capacity (mg/g·(mg/L)n), equal to 

the amount adsorbed at the value of Ce equal to unity and n is the empirical parameter representing the 

energetic heterogeneity of the adsorption sites (dimensionless). R2 is the value of coefficient of 

determination1. The Freundlich parameters are shown in Table 1. It can be found from the adsorption 

results that the KF follows the order: RGO (0.688) < A-RGO-25 (3.79) <A-RGO-75 (5.321) < A-RGO-

60 (6.403). This order is conformed well to the SSA results. In addition, the R2 values are very close to 

1, indicating that the adsorption isotherms are very well modeled by the Freundlich equation. 

Compared to activated carbon (Ce=50 mg/L, qe~130 mg/g) and CNT (Ce=50 mg/L, qe~20 mg/g), the 

activated graphene (A-RGO-60) has a much better capacity (Ce=50 mg/L, qe~200 mg/g) towards 

phenol adsorption in the tested concentration range16, 17. 

Table 1  

Figure 5 

3.3 MB adsorption and catalytic oxidation 

       Before the catalytic oxidation, the dynamic adsorption behavior of RGO and A-RGO samples for 

MB was first investigated. As shown in Fig. 6a, MB adsorption on the obtained materials is a fast 

process, and equilibriums could be reached in about 90 min for all the materials. The adsorption ability 

follows the same order as in phenol adsorption: RGO < A-RGO-25 <A-RGO-75 < A-RGO-60. This 

order is also conformed well to the SSA results. For the RGO, only less than 30% MB removal can be 

obtained, and the removal efficiency was increased to higher than 65% on the A-RGO-60.  



9 
 

 Fig. 6b shows the oxidative MB degradation efficiency with the addition of PMS catalyzed by the 

obtained materials. PMS was able to degrade ~80% MB in 4 h by self-oxidation without the presence 

of a catalyst. With the addition of carbon catalysts, MB removal process becomes much faster. The 

overall removal efficiency of MB follows an order: A-RGO-60 >A-RGO-25 >A-RGO-75 >RGO. For 

RGO, 100% MB removal would be achieved in 4 h, and this time can be reduced to 1.5 h on A-RGO-

25, 1.0 h on A-RGO-60, and 2 h on A-RGO-75.  

It was reported in our previous study that structure defective graphene was able to effectively 

activate PMS to produce active sulfate radicals10. The oxygen functional surface species, such as 

ketonic (C=O) groups, are rich in electrons and thus have a great potential to coordinate a redox 

process. The mechanism for PMS activation and MB oxidation are shown in Eqs.(1-4). The catalytic 

activities of the materials depend on the presence of oxygen containing groups. The RGO was obtained 

at a relatively low temperature (250 oC) with little functional groups (Fig.2). After 25 min treatment in 

CO2 at 800 oC, some functional groups would be generated by CO2. At increased activation period, 

more oxygen containing groups would be produced (Fig. 2). A-RGO-60 has the higher level of 

functional groups and catalytic activity in PMS activation. Meanwhile, heterogeneous oxidation of MB 

will be involved MB adsorption process and higher SSA will promote MB adsorption on carbon 

surface. Taking both the adsorption and catalytic ability together, A-RGO-60 was the best material for 

MB removal from aqueous solution. 

HSO5
— + C=C-O → SO4

•— + C=C-O+ + HO—                                                 (1) 

HSO5
— + C=C-O+ → SO5

•— + C=C-O + H+                                                      (2) 

SO4
•— + MB+ → SO4

•—MB+ → several steps → SO4
2- + CO2 + H2O            (3) 

SO5
•— + MB+ → SO5

•—MB+  → several steps → SO4
2- + CO2 + H2O            (4) 

 

      Another oxidant, H2O2, is widely used for hydroxyl radical generation and organic oxidation. In this 

investigation, H2O2 was also tested for MB catalytic oxidation using A-RGO-75 as the catalyst, and the 
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result is shown in Fig. 6c. The A-RGO-75 was selected for the tests due to its moderate adsorption 

capacity and characteristics of activated graphene structure. It is seen that overall MB degradation 

efficiency at the presence of H2O2 is higher than that of adsorption, suggesting that A-RGO-75 also 

exhibited activity in H2O2 activation. Compared with PMS activation, A-RGO-75 presented much 

lower activity in H2O2 activation to generate hydroxyl radicals. In terms of MB degradation, only 50% 

MB was removed when H2O2 was used. Moreover, no further MB could be removed at extended period 

to 4.5 h. Some investigations on H2O2 activation by activated carbon have shown that activated carbon 

presented low activity in activation of H2O2 to produce hydroxyl radicals18, 19. 

4. Conclusions 

 CO2 activation process was successfully employed to produce porous reduced graphene oxide (A-

RGO) from chemically synthesized GO using a facile one-pot thermal method. Activation time 

influences porous structure, chemical functionality, adsorption capacity and catalytic activity of A-

RGO. The resulted materials show much higher SSA and are very efficient for the adsorptive removal 

of phenol and MB from aqueous solutions. The RGO and A-RGO materials were also found to be 

effective in metal free activation of PMS for oxidation of MB. These A-RGO materials can be green 

materials for environmental-benign processes in adsorption and catalysis. 

 

Acknowledgement  

This project is partially supported by the Australian Research Council under project No: 

DP130101319.  

 

References 

1.  S. J. Zhang, T. Shao, H. S. Kose and T. Karanfil, Environ Toxicol Chem, 2012, 31, 79-85. 



11 
 

2. L. M. Zhang, S. O. Diao, Y. F. Nie, K. Yan, N. Liu, B. Y. Dai, Q. Xie, A. Reina, J. Kong and Z. 

F. Liu, J. Am. Chem. Soc., 2011, 133, 2706-2713. 

3. J. G. Hou, Z. Wang, W. B. Kan, S. Q. Jiao, H. M. Zhu and R. V. Kumar, J Mater Chem, 2012, 

22, 7291-7299. 

4. Y. W. Zhu, S. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv Mater, 

2010, 22, 3906-3924. 

5. P. Bradder, S. K. Ling, S. Wang and S. Liu, J. Chem. Eng. Data, 2011, 56, 138-141. 

6. B. Tryba, A. W. Morawski and M. Inagaki, Carbon, 2005, 43, 2417-2419. 

7. T. G. Xu, L. W. Zhang, H. Y. Cheng and Y. F. Zhu, Appl. Catal. B, 2011, 101, 382-387. 

8. S. Murali, J. R. Potts, S. Stoller, J. Park, M. D. Stoner, L. L. Zhang, Y. W. Zhu and R. S. Ruoff, 

Carbon, 2012, 50, 3482-3485. 

9. P. R. Shukla, S. Wang, H. Sun, H. M. Ang and M. Tade, Appl. Catal. B, 2010, 100, 529-534. 

10. H. Q. Sun, S. Z. Liu, G. L. Zhou, H. M. Ang, M. O. Tade and S. B. Wang, ACS Appl Mater 

Inter, 2012, 4, 5466-5471. 

11. W. S. Hummers Jr and R. E. Offeman, J Am Chem Soc, 1958, 80, 1339-1339. 

12. C. D. Zangmeister, Chem Mater, 2010, 22, 5625-5629. 

13. M. Turmuzi, W. R. W. Daud, S. M. Tasirin, M. S. Takriff and S. E. Iyuke, Carbon, 2004, 42, 

453-455. 

14. K. S. Xia, Q. M. Gao, S. Q. Song, C. D. Wu, J. H. Jiang, J. Hu and L. Gao, Int J Hydrogen 

Energ, 2008, 33, 116-123. 

15. H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. 

Prud'homme, R. Car, D. A. Saville and I. A. Aksay, J Phys Chem B, 2006, 110, 8535-8539. 

16. V. Fierro, V. Torne-Fernandez, D. Montane and A. Celzard, Micropor Mesopor Mat, 2008, 111, 

276-284. 



12 
 

17. A. H. Norzilah, A. Fakhru'l-Razi, T. S. Y. Choong and A. L. Chuah, J Nanomater, 2011, Artn 

495676. 

18. H. T. Gomes, S. M. Miranda, M. J. Sampaio, J. L. Figueiredo, A. M. T. Silva and J. L. Faria, 

Appl. Catal. B, 2011, 106, 390-397. 

19. A. Rey, J. A. Zazo, J. A. Casas, A. Bahamonde and J. J. Rodriguez, Appl. Catal. A, 2011, 402, 

146-155. 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

 

Tables 

Table 1: The coefficients of the Freundlich isotherms for phenol adsorption. 

Materials KF (mg/g·(mg/L)n) 1/n n R2 

RGO 0.688 1.246 0.802 0.967 

A-RGO-25 3.79 0.979 1.021 0.975 

A-RGO-60 6.403 0.915 1.093 0.994 

A-RGO-75 5.321 0.906 1.103 0.993 
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Figure Captions 

Fig. 1. (a) Effects of CO2 activation time upon yield; (b) Nitrogen adsorption isotherms of RGO and 

activated RGOs at 77 K; (c) Pore size distribution of RGO and activated RGOs; (d) Effects of CO2 

activation time upon SSA. 

Fig. 2. FT-IR of GO (a), RGO (b), A-RGO-25 (c), A-RGO-60 (d), and A-RGO-75 (e) 

Fig. 3. TGA curves of RGO (a), A-RGO-25 (b), A-RGO-60 (c), and A-RGO-75 (d) in air atmosphere. 

Fig. 4 Raman spectra of RGO (a 0.30), A-GRO-25 (b 0.35), A-RGO-60 (c 0.34), and A-RGO-75 (d 

0.32). 

Fig. 5. Phenol adsorption isotherms of RGO and activated RGO materials at 25 oC 

Fig. 6 (a) MB adsorption removal by RGO based materials; (b) MB removal with PMS as oxidant and 

A-RGO materials as adsorbents and catalysts; (c) MB removal with different oxidants catalyzed by A-

RGO-75 
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