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Abstract 

In coastal and open ocean human activities, there is an increasing demand for accurate 

estimates of future sea state. In these activities, predictions of wave heights and periods are of 

particular importance. In this study, two different neural network strategies were employed to 

forecast significant wave heights and zero-up-crossing wave periods 3, 6, 12 and 24 h in 

advance. In the first approach, eight simple separate neural nets were implemented to simulate 

every wave parameter over each prediction interval. In the second approach, only two 

networks provided simultaneous forecasts of these wave parameters for the four prediction 

intervals. Two independent sets of measurements from a directional wave buoy moored off 

the Portuguese west coast were used to train and to validate the artificial neural nets. Saliency 

analysis of the results permitted an optimization of the networks’ architectures. The optimal 

learning algorithm for each case was also determined. The short-term forecasts of the wave 

parameters verified by actual observations demonstrate the suitability of the artificial neural 
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technique. 
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1.  Introduction 

 

In recent decades, the use of numerical wind wave models has become essential for an 

adequate evaluation of wind wave characteristics. As a rule, modelling is based on 

deterministic equations or stochastic time domain approaches. However, these do not entirely 

account for the complexity and uncertainty of wave phenomena. Assessing the present status 

of spectral wind wave modelling, Liu et al. (2002) compared four prediction models and 

concluded that the models performed similarly reflecting the general trends and patterns 

presented in the observations, although the differences between the results of computations 

with different wave models themselves were of the same order of magnitude as the 

discrepancies between model results and observations. Therefore, there is still a requirement 

for new wave forecasting techniques. 

The technique of artificial neural networks (ANNs) is a potential alternative methodology. 

The inspiration for the 60-year development of ANNs was found in the biological neural 

system. Though these artificial intelligence information-processing structures are still very 

primitive compared to biological ones (Fausett, 1994), there is a wide scope of problems 

being solved thanks to the ANNs’ ability to approximate nonlinear behaviour without a priori 

knowledge of interrelations among the elements within a system (Haykin, 1999). Moreover, it 

has been proven that a feed-forward ANN with an arbitrary number of processing units is a 
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universal function approximator (Hornik, 1993). For a number of years, ANNs have been 

successfully used to solve geophysical problems in ocean, coastal and environmental 

engineering applications. Some examples include assessing the stability of rubble-mound 

breakwaters (Mase et al., 1995) and studying the storm-built beach profile predictability (Tsai 

et al., 2000), as well as predictions of the tide (Tsai and Lee, 1999), sea level (Roske, 1997; 

Makarynskyy et al., 2004), sea currents (Babovic, 1999), daily river stage (Thirumalaiah and 

Deo, 1998), wave parameters (Agrawal and Deo, 2002; Makarynskyy et al., 2002; 

Makarynskyy, 2004) and salinity variations in a tidal environment (Huang and Foo, 2002). 

In the present paper, two different approaches to neural forecasting of wave parameters are 

investigated. The first approach consists of forecasting the significant wave height Hs and 

zero-up-crossing wave period T02 over warning times of 3, 6, 12 and 24 hours sequentially. 

Thus a forecast of each parameter over every warning interval is produced by a separate 

ANN. In the second approach, only two ANNs are used to concurrently simulate Hs and T02 

over the aforementioned prediction intervals. The ANNs employed in the “sequential” 

forecasts were of relatively simple architecture, whereas much more sophisticated nets were 

developed for the “concurrent” simulations. In both cases, the initial architectures of the 

ANNs were optimised implementing saliency analysis (Abrahart et al., 2001). An 

investigation regarding the best training algorithm applicable to this case was also conducted. 

This paper commences with an outline of ANNs and brief descriptions of the saliency 

analysis technique, the employed networks and learning algorithms in Section 2. Section 3 

describes the data used. Several sets of both the sequential and concurrent ANN simulations 

with different numbers of neurons in the input, hidden and output layers are presented in 

Sections 4 and 5, respectively. These Sections also include comparisons of simulated wave 

parameters with estimated from measurements as well as some results of saliency analysis 

implementation. Section 6 presents final remarks. 
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2. Techniques and learning algorithms 

 

The neuron is the basic concept underpinning ANNs. The neuron takes an argument, 

which can be formed as a sum of a weighted input and bias, and, by means of a transfer 

function (typically a step function or a sigmoid function), produces an output. Several neurons 

can be combined into a neural layer. Furthermore, a network can contain one or more 

interconnected neural layers. The method of determining the weights and biases is called 

learning. The learning process requires a set of patterns “ input–target output”  of proper 

network behaviour. During the learning process the weights and biases of the network are 

iteratively adjusted to minimize the network performance function (the averaged squared error 

between the network outputs and the target outputs is the default case for feed-forward 

networks) urging the entire network to perform in some expected way. Each representation of 

a training set to a net is called an epoch. 

Saliency analysis is a technique revealing the relative importance of the input and/or the 

processing components of a network by intentional introduction of missing units (Abrahart et 

al., 2001). This technique was derived from the idea that an ANN, which is a parallel 

distributed processing system, should operate sufficiently well even in the case of incomplete 

input or when one of its internal components does not function properly. 

In this study, common three-layer feed-forward ANNs, with a non-linear differentiable 

log-sigmoid activation function in the hidden layer and linear transfer function in the output 

layer, were used. The numbers of neurons in the input and output layers were determined 

according to the imposed tasks and saliency analysis of the obtained results. To avoid the 

problem of overfitting that may occur while an ANN is being trained, the number of nodes in 
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the hidden layer, h, of the nets employed in the first stages of the study was computed using 

one of the empirical expressions mentioned by Huang and Foo (2002) 

 h = 2z + 1, (1) 

where z is the number of input nodes. A short description of the training algorithms (Hagan et 

al., 1996) employed in this research follows. 

The gradient descent backpropagation learning algorithm updates the weights and biases 

of artificial neural nets in the direction of the negative gradient of the performance function 

with a pre-set learning rate. This can cause slow training when the gradient is of a small 

magnitude. 

The resilient backpropagation algorithm eliminates any harmful effects due to the 

magnitude of the partial derivatives as it accounts for the derivatives’ signs. The sign is used 

to determine the direction of the weight update, which increases whenever the derivative of 

the performance function has the same sign for the two successive iterations, or decreases 

whenever the derivative changes the sign. When the derivative is zero, the update value 

remains the same. 

Although the performance function decreases most rapidly along the negative of the 

gradient, this does not necessarily produce the fastest convergence. The conjugate gradient 

algorithms perform a search along a conjugate direction to determine the step size that 

minimizes the performance function along that line. This generally produces faster 

convergence than steepest descent directions. 

The Levenberg-Marquardt algorithm was designed to approach second-order training 

speed without having to compute the second derivatives (Hessian matrix) of the performance 

index at the current values of the weights and biases. Here the Hessian matrix and the gradient 

are approximated using the Jacobian matrix that contains first derivatives of the network 

errors with respect to the weights and biases. In turn, the Jacobian matrix can be computed 
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through a standard backpropagation technique that is much less complex than computing the 

Hessian matrix itself. 

 

 

3. Data employed 

 

The data from a “ WAVEC”  buoy, which is moored offshore of Sines Harbor (Sines 1D 

buoy, 37o 55’ 16”  N, 8o 55’ 44”  W) in water 97 m deep (Fig.1) and is maintained by the 

 

 
 
Fig. 1. Location of the Sines 1D buoy station (star) at the Portuguese coast 

 

Hydrographic Institute of the Portuguese Navy, were used to train and test the ANNs 

employed. The 3-hourly values of the Hs and T02 for the period from December 4, 1999, 0000 

UTC to January 31, 2000, 2100 UTC were divided into two independent data sets. Data set 1 

was used to train the corresponding neural networks, while data set 2 served for validation 



 7

purposes. The validation of the ANNs was performed in terms of the root mean square error 

RMSE, correlation coefficient R and scatter index SI, computed as  
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where xi is the value observed at the i-th time step, yi is the value simulated at the same 

moment of time, N is the number of time increments, x is the mean value of observations, 

and y is the mean value of simulations. 

 

 

4. Sequential forecasts over four different time intervals 

 

The natural processes determining the variability of the wave parameters in the time 

domain are of different temporal scales. Therefore, a separate ANN was used to simulate each 

wave parameter for every warning time. It was assumed that a 24 h wave history represented 

by 8 measurements contains all the necessary information to simulate the wave parameters 

one (+3 h), two (+6 h), four (+12 h) and eight (+24 h) time steps ahead. The resilient 

backpropagation training algorithm was implemented to train all of these nets. The number of 

training epochs in each simulation was 1000. 

The nets used at the beginning with 8 input nodes, 17 processing neurons (see Eq. 1) and 1 

output neuron (hereafter referred to as 8x17x1, and likewise for other nets) works as follows. 
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Each input layer of 8 nodes transfers the initial information to 17 hidden processing units, 

which further fire the result of simulation to the interested user through the only output 

neuron. 

When short prediction intervals of three and six hours were concerned, the Hs was 

simulated by this net with high accuracy. The RMSE were less than or equal to 0.20 m, the 

coefficients of correlation were higher than or equal to 0.94 and the scatter indexes of these 

forecasts were less than or equal to 0.18 (Table 1). The predictions of the Hs for 12 h were 

less reliable, while the predictions with leading time of 24 h exhibited neither a reliable 

correlation pattern nor reasonable values of RMSE and SI. 

 

Table 1. Verification statistics of Hs and T02 simulations with different lead times. Here 

RMSE is root mean square error, R is correlation coefficient, SI is scatter index 

Hs T02  
Hours RMSE(m) R SI RMSE(s) R SI 

8 x 17 x 1 neurons in the input x hidden x output layers 
+3 0.14 0.97 0.12 0.88 0.89 0.14 
+6 0.20 0.94 0.18 1.13 0.81 0.18 

+12 0.37 0.82 0.32 1.56 0.64 0.24 
+24 0.77 0.40 0.66 1.93 0.41 0.30 

4 x 9 x 1 neurons in the input x hidden x output layers 
+3 0.15 0.97 0.13 0.83 0.91 0.13 
+6 0.21 0.94 0.18 1.11 0.83 0.17 

+12 0.31 0.89 0.26 1.45 0.70 0.22 
+24 0.53 0.74 0.45 1.71 0.55 0.26 

2 x 5 x 1 neurons in the input x hidden x output layers 
+3 0.15 0.97 0.13 0.82 0.91 0.13 
+6 0.21 0.94 0.17 1.11 0.83 0.17 

+12 0.34 0.84 0.27 1.39 0.72 0.21 
+24 0.53 0.69 0.45 1.69 0.54 0.26 

 
 

The T02 was also simulated reasonably well for three- and six-hour periods of forecasting. 

The RMSE were around 1s, R were higher than or equal to 0.81 and the SI were less than or 
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equal to 0.18. The predictions for 12 and 24 h were less successful showing unreliable R 

although with low values of RMSE and SI (Table 1). 

Table 1 also demonstrates an application of saliency analysis to the simulations of Hs and 

T02. The numbers of neurons in the input and hidden layers were changed twice. The 

technique of saliency analysis is usually used to assess the role of the units in the input and 

the hidden layers of ANNs. An analysis of Table 1 shows that the use of half the input nodes 

(4 units spanning 12 h history) and corresponding to the expression (1) number of hidden 

neurons improved the statistics of forecast. A further simplification of the ANN architecture 

(the 2x5x1 net) produced a mixed effect: some statistics slightly improve (for instance, the 

predictions of T02 for six hours), while others degrade (the simulations of Hs with warning 

time of 12 and 24 h). 

To illustrate these considerations, time series plots of the wave parameters estimated from 

observations and simulated by the best performing ANN (4x9x1) are displayed in Figures 2 

and 3. From an analysis of these plots it appears that all rising and falling trends were 

properly caught by the methodology proposed, especially when the shorter prediction 

intervals of 3, 6 and 12 hours are concerned. As a result, scattering of the predicted values 

around the fit line were not significant (Figs. 4-5). 

Thus, the implementation of saliency analysis revealed that the performance of the ANNs 

employed in the simulations of the Hs and T02 with leading times of 3, 6, 12 and 24 h can be, 

to some extent, improved with simplification of the initial architecture of the nets. The 

reduction of the number of units in the input and hidden layers also resulted in a faster 

training of the ANNs. 
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Fig. 2 Time series plots of significant wave heights measured by the Sines 1D buoy and 
simulated by the separate 4x9x1 ANNs for 4 different warning intervals, January 12 – 31, 
2000. 
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Fig. 3. Time series plots of zero-up-crossing wave periods measured by the Sines 1D buoy 
and simulated by the separate 4x9x1 ANNs for 4 different warning intervals, January 12 – 31, 
2000. 
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Fig. 4. Scatter diagrams of significant wave heights measured by the Sines 1D buoy versus 
simulated by the separate 4x9x1 ANNs for 4 different warning intervals, January 12 – 31, 
2000 
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Fig. 5. Scatter diagrams of zero-up-crossing wave periods measured by the Sines 1D buoy 
versus simulated by the separate 4x9x1 ANNs for 4 different warning intervals, January 12 – 
31, 2000. 
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5. Concurrent forecasts over four time intervals 

 

In the series of experiments described in this section, it was initially assumed that 

doubling the history (48 h, or 16 measurements) could reveal consistent patterns for 

concurrent simulations of the wave characteristics with the same lead times as in the previous 

section. Thus, in this case, 16 input units presented 2-day wave records to 33 hidden 

processing neurons, which in turn transferred the results of processing to 4 (number of 

warning intervals) output neurons. Later, for this specific application, an adequate size of 

these ANNs was determined, again, involving the technique of saliency analysis. 

In the first set of the experiments, the ANNs were trained with the basic gradient descent 

backpropagation algorithm in 3000 epochs. 18 sets of experiments were performed to assess 

the role of the input and hidden units of the Hs predicting net (Fig. 6). Another independent 

set of 16 similar simulations was carried out for the T02 (Fig. 7). This set had less experiments, 

because the ones with one neuron in the hidden layer equally as with one neuron in the input 

layer were skipped due to their lowest performance in the predictions of Hs (see Fig. 6). An 

analysis of the statistics in Figures 6 and 7 demonstrates that nets with fewer neurons in the 

hidden layer (16x17x4 for the significant wave height and 16x21x4 for the zero-up-crossing 

wave period) function equally well as the net 16x33x4 with 33 hidden neurons used initially. 

Similar results in terms of the RMSE, R and SI were obtained with the removal of units from 

the input layers: the ANNs 4x17x4 in the Hs simulations and 6x21x4 in the T02 simulations 

serve generally better than the other nets taking into consideration all 4 prediction intervals. 

Therefore, for the data series used, the technique of saliency analysis allowed a significant 

simplification of the ANNs’  initial architecture without a loss in accuracy while decreasing 

the computational efforts needed. 

An additional set of experiments with these nets of optimized architecture (4x17x4 for Hs  
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Fig. 6. The root mean square error, correlation coefficient and scatter index of the significant 
wave height simulations for 4 different leading times with indicated number of units in input 
x hidden x output layers. 
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Fig. 7. The root mean square error, correlation coefficient and scatter index of the zero-up-
crossing wave period simulations for 4 different leading times with indicated number of units 
in input x hidden x output layers. 
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and 6x21x4 for T02) was carried out (Table 2). This was done in order to select a better 

training algorithm by comparing the verification statistics of the simulations using the 

resilient backpropagation, Fletcher-Reeves conjugate gradient and Levenberg-Marquardt 

algorithms with the previously employed gradient descent backpropagation algorithm. An 

analysis of the presented statistics reveals that, for the case under consideration, the former 

algorithms do not exhibit any essential quantitative differences from, or advantage over, the 

gradient descent backpropagation algorithm. 

 

Table 2. Verification statistics of the significant wave height (6 x 17 x 4 net) and the zero-up-

crossing wave period (12 x 21 x 4 net) simulations with different training algorithms. 3000 

epochs. Here RMSE is the root mean square error, R is the correlation coefficient, SI is the 

scatter index 

Hs T02  
Hours RMSE(m) R SI RMSE(s) R SI 

Resilient backpropagation 
+3 0.20 0.95 0.16 1.03 0.87 0.16 
+6 0.23 0.93 0.19 1.30 0.79 0.21 

+12 0.66 0.64 0.56 2.01 0.49 0.33 
+24 0.91 0.38 0.78 2.33 0.23 0.37 

Conjugate gradient 
+3 0.17 0.96 0.14 0.89 0.89 0.14 
+6 0.23 0.93 0.19 1.30 0.75 0.21 

+12 0.46 0.79 0.37 2.16 0.35 0.34 
+24 0.75 0.53 0.65 2.31 0.16 0.37 

Levenberg-Marquardt 
+3 0.21 0.95 0.17 1.08 0.85 0.17 
+6 0.29 0.90 0.24 1.50 0.73 0.24 

+12 0.59 0.72 0.50 2.84 0.31 0.45 
+24 0.91 0.50 0.78 3.51 0.17 0.55 
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6. Concluding remarks 

 

The technique of artificial neural networks was used to predict significant wave heights 

and zero-up-crossing wave periods with warning times of 3, 6, 12 and 24 h sequentially and 

concurrently. The simulations were compared to time series of these wave parameters 

estimated off the west coast of Portugal. 

The neural forecasts generally follow the rising and falling trends present in the 

observations. Different levels of accuracy in terms of the root mean square error, correlation 

coefficient and scatter index were achieved. The ANNs’  performance changed according to 

the lead-time and the parameter being predicted. The wave parameters were better simulated 

for shorter lead times (3 and 6 h) than for longer prediction intervals (12 and 24 h). A higher 

accuracy was also noticed of the ANNs simulating the significant wave height than the ones 

forecasting zero-up-crossing wave period. The results obtained in simultaneous forecasts 

exhibited less accuracy than the predictions produced separately due to large numbers of 

input-processing-output nodes and thus more complicated interrelations among them. 

An implementation of the saliency analysis technique allowed both an estimation of the 

relative importance of the input and processing units of the ANNs and simplification of the 

net’ s architectures. To some extent, the simplifications increased the accuracy of the 

simulations. 

For the case of concurrent wave forecasts, the testing of three “ faster”  learning algorithms, 

namely, resilient backpropagation, Fletcher-Reeves conjugate gradient and Levenberg-

Marquardt, did not exhibit any significant improvement of the statistics compared to the 

results obtained with the gradient descent backpropagation algorithm. However, some of these 

algorithms provide the same or similar accuracy in fewer training epochs requiring less 

computation. 
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The case studies presented clearly demonstrate that the proposed neural methodology 

could be successfully applied to short-term wave predictions. It also implies that, before 

employing it in other geographic areas, artificial neural networks must be trained on site-

specific data sets. 
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