
  1 / 7 

Survival Mixture Modelling of Recurrent Infections 

 

Andy H. Lee1 Yun Zhao1  Kelvin K.W. Yau2  S.K. Ng3 
1Department of Epidemiology and Biostatistics, School of Public Health, Curtin University of 

Technology, GPO Box U 1987, Perth, WA, 6845, AUSTRALIA. 

E-mail: Andy.Lee@curtin.edu.au Y.Zhao@curtin.edu.au 
2Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon 

Tong, HONG KONG. 

E-mail: mskyau@cityu.edu.hk 
3School of Medicine, Logan Campus L03, Griffith University, University Drive, Meadowbrook, QLD, 

4131, AUSTRALIA. 

E-mail: s.ng@griffith.edu.au 

 

Keywords: Accelerated failure time, Mixture model, Random effects, Recurrent infections 

 
   Recurrent infections data are commonly encountered in biomedical applications, where the 

recurrent events are characterised by an acute phase followed by a stable phase after the index episode. 

Two-component survival mixture models, in both proportional hazards and accelerated failure time 

settings, are presented as a flexible method of analysing such data. To account for the inherent 

dependency of the recurrent observations, random effects are incorporated within the conditional 

hazard function. Assuming a Weibull or log-logistic baseline hazard in both mixture components of 

the survival mixture model, an EM algorithm is developed for the residual maximum quasi-likelihood 

estimation of fixed effect and variance components parameters. The methodology is implemented as a 

graphical user interface coded using Microsoft visual C++. Application to model recurrent urinary tract 

infections for elderly women is illustrated, where significant individual variations are evident at both 

acute and stable phases. The survival mixture methodology developed enable practitioners to identify 

pertinent risk factors affecting the recurrent times and to draw valid conclusions inferred from these 

correlated and heterogeneous survival data. 

 
1  Introduction 
   Survival mixture models are often used to model heterogeneous failure time data in medical 

research (McLachlan and McGiffin (1994), De Angelis et al. (1999), Phillips et al. (2002)). Recently, 

a two-component Weibull survival mixture model was proposed by Ng et al. (2004) to analyse 

ischaemic stroke-specific survival time, in which patients are grouped into acute and chronic phases 

after the index stroke event. These two phases overlap each other in time and thus the risk of death 

cannot be described satisfactorily by fitting separate parametric model to each time period. Within the 

class of survival mixture models, the hazard rates are often assumed to be proportional. Although the 

proportional hazards assumption is appropriate in many situations, an attractive alternative is the 

accelerated failure time (AFT) model of Wei (1992), whereby the covariates can affect the survival 

experience of patients by speeding up or slowing down the survival time. The AFT model relates 

covariates linearly to the logarithm of the survival time and provides a wide range of parametric forms 

for the hazard function. 
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   Recurrent infections data are commonly encountered in medical research, where the recurrent 

events are characterised by an acute phase followed by a stable phase after the index episode. 

Although existing survival mixture models allow the specification of a cured proportion and/or the 

mixing of survival functions for lifetime distribution with overlapping phases, the issue of 

dependency of recurrent observations has not been addressed satisfactorily in the literature. Survival 

frailty models are mainly limited to a single component survival function. In the presence of 

simultaneous heterogeneity and dependency, application of such procedures may lead to inaccurate 

hazard rates and consequently incorrect inferences. Therefore, this paper aims to present a unified and 

flexible approach of modelling recurrent infections data by a finite mixture of survival distributions 

incorporating random effects.  

 

2  Two-component survival mixture models with random effects 
   Let Yij denote the jth recurrent time (j = 1, 2, …, ni) within individual i (i = 1, 2, …, M), with  
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being the total number of observations. In addition to ),,min( ijijij YCT   where Cij 

represents the random censoring time independent of Yij, a censoring indicator ij is observed: 
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Let xij be a vector of covariates associated with Tij. The survival function of T can be modelled by a 

two-component finite mixture as: 

),,()1(),(),( 21 ijijijijijij xtSpxtpSxtS      (1) 

and the corresponding probability density function of T is:  

),,()1(),(),( 21 ijijijijijij xtfpxtpfxtf      (2) 

where p denotes the proportion of observations in the acute phase, ),( ijijg xtS and ),( ijijg xtf are the 

conditional survival function and conditional density function of the gth component (g = 1, 2), 

respectively. With the concomitant information xij, effects of covariates in the acute and stable phases 

of infection can be determined. Moreover, if the second component 1),(2 ijij xtS , it reduces to the 

long-term survivor model of Yau and Ng (2001).  

 

   Under the proportional hazards assumption, the conditional hazard function for the gth component 

is given by 

)),(exp()(),( 0 ijgijgijijg xthxth      (3) 

where )(0 ijg th  is the baseline hazard function and )( ijg x  is the linear predictor relating to the 

covariate xij. The commonly used Weibull distribution may be assumed for )(0 ijg th  because it is 

flexible as either a monotonic increasing, constant, or monotonic decreasing baseline hazard. That is,  



 3 / 7 

1
0 )(

 g

ijggijg tth
 ,     (4) 

where 0, gg   are unknown parameters.  

 

   If a Weibull AFT model is assumed, the conditional hazard function for the gth component is  

))(exp(),( 1
ijggijggijijg xtxth g    ,   (5) 

which may be considered as a Weibull distribution with scale ))(exp( ijggg x and shape 

parameter g . Same as the Weibull proportional hazards model, covariates affect the scale but not 

the shape parameter in model (5). Alternatively, a log-logistic AFT model may be defined by the 
conditional hazard function: 
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Again, 0 and ,  gg   are unknown parameters. 

   For both proportional hazards and AFT settings, an unobserved random effect term can be 

introduced in each conditional hazard function to explain the variability shared by the recurrent 

observations, in the manner of Wang et al. (2007). Specifically,  

gig
T
ijijg Uxx   )( ,    (7) 

where g  is the vector of regression coefficients. Without loss of generality, the random subject 

effects Ugi are taken to be i.i.d. ),0( gN  . Based on this formulation, the vector of unknown 

parameters is ),,,,,,,,( 21212121  TTTT uup  where ],,,[ 112111 M
T UUUu   and 

].,,,[ 222212 M
T UUUu   One approach for parameter estimation is by commencing with the best 

linear unbiased predictor (BLUP) at the initial step and extends to obtain residual maximum 

quasi-likelihood (REMQL) estimators for the variance component parameters (Wang et al. (2007)). 

For given initial values of g , the BLUP estimator of   maximizes ,21 lll   where  
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Here, 1l  represents the log-likelihood of recurrent times conditional on 1u  and 2u , whereas 2l  is 

the logarithm of the joint probability density function of 1u  and 2u , with 1u  and 2u  being 

independent. The BLUP estimate of  is obtained as a solution of the equation 0/  l , which 

can be solved via an EM algorithm (Ng et al. (2004), Wang et al. (2007)). The REMQL estimates of 
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the variance components 1  and 2  are then obtained by maximizing the restricted log-likelihood 

function. Details of the EM estimation procedure and derivations for the REMQL estimates and 

asymptotic variances are omitted for brevity, but are available upon request.  

 

3  Software and model assessment 
   To implement the modelling methodology and estimation procedure described in Section 2, a 

graphical user interface is developed and coded using the Microsoft visual C++ scientific language, 

with adaptations taken from numerical library subroutines of Press and Vetterling (1992). This 

objective-orientated interface is systematically designed for visualization and manipulation of survival 

data sets. The user-defined components comprise dialogue windows featuring data input and listing, 

model specification and post-modelling graphical assessments.  

 

   The adequacy of the survival mixture models can be assessed graphically by the Cox-Snell 

residual plot. The Cox-Snell residuals are defined as: 

iijijij njMixtSe ,,2,1  ,,,2,1  ),,(ˆlog   ,   (9) 

where ),(ˆ
ijij xtS is the estimated survival function evaluated at parameter estimates ̂ . The 

Kaplan-Meier estimate, ),(ˆ
ijeK  of the survival function of these residuals are computed, and values 

of )}(ˆloglog{ ijeK are then plotted against )log( ije . 

 
4  Simulation study 
   A small scale simulation study is conducted to investigate the properties of the REMQL estimators 

under the two-component Weibull AFT survival mixture model (5) in finite sample settings. 

Following the simulation design for the Weibull proportional hazards model of Ng et al. (2004), we 

assume M = 20 subjects with ni = 25 observations each. A single continuous covariate Xij (i =1,…,20, j 

= 1,…,25) is generated from a standard normal distribution. Each individual has a probability p or 

(1p) belonging to the first or second component, respectively. Hence, for the gth (g = 1, 2) component, 

the survival time tij is generated based on the Weibull conditional probability density function fg(tij, Xij), 

with gig
T

ijijg UXX   )( , where ).,0(~ ggi NU  For the realization of censorship, let C be 

the fixed censoring time. Instead of observing the survival time of interest tij, we observe (Yij, δij), 

where Yij = min(tij, C) and 
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Without loss of generality, C is fixed to be 1000 and 500 replications are performed. The true values 

for parameters (p, λ, γ, β) of the first and second mixture component are set as (0.1, 0.05, 1.5, 0.5) and 

(0.9, 0.01, 0.5, -0.5), respectively. Two settings are considered: (1, 2) = (1, 1) and (1, 2) = (0.5, 

0.5).  
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   Results are presented in Table 1. In general, parameters p, 1 and 1 are well estimated, but the 

biases for the estimates of 2 when   = 1 are observed within the range of ±18%, whereas 2 is 

moderately biased. The observed discrepancies appear to be reasonable in terms of mean squared 

error (MSE) criterion and the sampling standard error (SE) of the estimates. 

 

Table 1: Simulation results for Weibull AFT model. 

 

Simulation 1 True value Mean MSE Sampling SE Bias 

p 0.1 0.105 0.022 0.022 0.005 

1 1 0.954 0.214 0.209 -0.046 

2 1 1.155 0.241 0.185 0.155 

1 0.5 0.548 0.182 0.176 0.048 

2 -0.5 -0.686 0.256 0.178 -0.186 

Simulation 2 True value Mean MSE Sampling SE Bias 

p 0.1 0.104 0.018 0.017 0.004 

1 0.5 0.431 0.119 0.097 -0.069 

2 0.5 0.606 0.129 0.074 0.106 

1 0.5 0.521 0.103 0.101 0.021 

2 -0.5 -0.548 0.120 0.110 -0.048 

 

 

5  Application to recurrent urinary tract infections 
   Urinary tract infection (UTI) is a common bacterial infection in elderly women aged 60 years and 

above, and one in four of these women will develop a recurrence (Franco (2005)). A retrospective 

cohort study on recurrent UTI was conducted among elderly women in residential aged-care facilities 

(Xiang et al. (2006)). Eligibility criteria for the subjects were defined to be female residents aged 60 

years or above with an institutionalisation period of at least six months. A total of 201 subjects 

satisfying the selection criteria were recruited from six aged-care institutions in Perth, Western 

Australia. 

  

   It was found that M = 93 of the 201 women experienced an index UTI episode during the two 

years follow-up period. For this subgroup of women, the outcome variable was taken to be the 

duration between successive UTI episodes. There are altogether N = 285 observations. One third of 

the cohort had no recurrence during the study period, while the maximum number of recurrent UTI 

was 17. The average age of the cohort was 85.8 (SD 8.4) years and 32 (34%) of them had a history of 

prior UTI. The mean recurrence time was 241 (SE 19.6) days.  

 

   With covariates age and history of prior UTI taken at baseline, results from fitting the survival 

mixture models are presented in Table 2. The results are comparable between the three models. It 

appears that the hazard rate of recurrent UTI is significantly associated with the subject’s history of 

prior UTI during the acute phase. Moreover, the acute phase proportion is estimated to be 74-82%. 

For all models, the random subject effects are significant in both acute and stable phases, implying 

that heterogeneity in UTI recurrence can be attributed to the differences between individual women. 
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The identification of the pertinent risk factor, namely prior history of UTI, after accounting for 

inter-subject variation, provides useful information on how the recurrent infection in the acute phase 

is affected. 

 

Table 2: Parameter estimates (standard error) from fitting two-component survival mixture models 

with random effects to the recurrent UTI data. 

 

 

 

Weibull proportional 

hazards model 

Weibull AFT model Log-logistic AFT model 

1st 

component 

2nd 

component 

1st 

component 

2nd 

component 

1st 

component 

2nd 

component 

P 0.818* 

(0.036) 

0.182  0.744* 

(0.037) 

0.256 0.737* 

(0.036) 

0.263 

 0.525* 

(0.215) 

0.521* 

(0.141) 

0.514* 

(0.206) 

0.377* 

(0.177) 

0.618* 

(0.280) 

1.175* 

(0.388) 

 1.146 2.401 1.317 2.421 1.717 4.227 

log  -6.159* 

(1.398) 

-11.610* 

(2.659) 

-7.321* 

(1.596) 

-12.361* 

(2.546) 

-9.103* 

(2.156) 

-19.419* 

(5.151) 

Age (1) -0.010 

(0.016) 

-0.044 

(0.036) 

-0.007 

(0.014) 

0.020 

(0.012) 

-0.008 

(0.014) 

0.0151 

(0.014) 

Prior UTI (2) 0.973* 

(0.276) 

-0.030 

(0.356) 

0.834* 

(0.237) 

0.165 

(0.194) 

0.942* 

(0.252) 

0.320 

(0.226) 

* p-value < 0.05 

 

   An inspection of the Cox-Snell residual plots found that the Weibull AFT survival mixture model 

provides the best fit to the recurrent UTI data among the three models. As shown in Figure 1, the 

residuals from the fitted Weibull AFT survival mixture model generally follow a straight line with unit 

slope, indicating little departure from the assumed model. 

  

 
Figure 1: Cox-Snell residual plot for Weibull AFT model fitted to the recurrent UTI data. 
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6  Conclusion 
  An integrated and flexible approach of modelling recurrent infections is proposed, in which the 

observations are correlated and their corresponding survival distribution is composed of two 

overlapping phases in time. Estimation of parameters is implemented via an EM algorithm to facilitate 

model fitting. A small scale simulation study found that the REMQL estimators for the Weibull AFT 

model behave reasonably well in finite sampling conditions. Moreover, the application on recurrent 

UTI of elderly women demonstrates how random effects can be adjusted within the survival mixture 

modelling framework. Significant individual variations are evident at both acute and stable phases, 

while a pertinent risk factor affecting the recurrent times is identified.  
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