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Abstract: This paper proposes a modelling and simulation method of seafloor seismic 

motions on offshore sites, which are composed of the base rock, the porous soil layers and the 

seawater layer, based on the fundamental hydrodynamics equations and one-dimensional 

wave propagation theory. The base rock motions are assumed to consist of P- and S-waves 

and are modelled by the seismological model in southwest of Western Australia (SWWA). 

The transfer functions of the offshore site are calculated by incorporating the derived 

dynamic-stiffness matrix of seawater layer into the total stiffness matrix. The effect of water 

saturation on the P-wave velocity and Poisson’s ratio of subsea soil layers are considered in 

the model. Both onshore and seafloor seismic motions are stochastically simulated. The 

comparison results show that the seafloor vertical motions are significantly suppressed near 

the P-wave resonant frequencies of the upper seawater layer, which makes their intensities 

much lower than the onshore vertical motions. The simulated seafloor motions are in 

compliance with the characteristics of available seafloor earthquake recordings and can be 

used as inputs in the seismic analyses of offshore structures. 

Keywords: seafloor motion simulation; seawater layer; wave propagation theory; transfer 
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1. Introduction 

Due to the insufficiency of seafloor earthquake recordings and the lack of methodologies to 

predict seafloor seismic motions, onshore motions are commonly used as inputs in the 

seismic analyses of offshore structures. This may lead to erroneous structural response 

predictions since the seafloor seismic motions may be very different from the onshore ones. 

The effect of seawater layer on the seafloor motions has been investigated by a few 

researchers through theoretical calculations [1, 2] or statistical analyses of actual seafloor 

earthquake recordings [2, 3]. These studies indicated that the vertical-to-horizontal (V/H) 

PGA and spectral ratios of the seafloor seismic motions are much lower than those of the 

onshore motions, owing to the significant suppression effect of seafloor vertical motions near 

the P-wave resonant frequencies of the seawater layer.  

  Moreover, the seawater layer can indirectly influence the seafloor motions by changing the 

water saturation and pore pressure of subsea soil layers, which can significantly affect the 

propagation of seismic P-waves in the offshore site. Many studies have been carried out to 

investigate the dynamic behavior of fully saturated [4, 5] and nearly saturated [6] porous soils. 

Base on the concept of homogeneous pore fluid [7] and Biot’s theory for wave propagation in 

two phase media [4, 5], Yang and Sato [8] studied the effects of degree of saturation on the 

P-wave velocity and Poisson’s ratio of the soil layers; Wang and Hao [9] examined the 

influence of ground water level on the propagation of seismic waves. Both of these two 

studies [8, 9] demonstrated that the site amplification effect of vertical seismic motions can 

be significantly influenced by the saturation degree of soil layers. 
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  By considering the effects of seawater layer and water saturation of subsea soil layers on 

the site amplification of seismic waves, a simulation method of seafloor seismic motions is 

proposed in this paper. The offshore site transfer functions are theoretically derived by 

utilizing the fundamental hydrodynamics equations [10, 11] and one-dimensional wave 

propagation theory [12]. Onshore and seafloor seismic motions are both stochastically 

simulated based on the base rock motion, which is represented by the seismological model of 

southwest of Western Australia (SWWA) [13] and the corresponding site transfer functions. 

The differences between the characteristics of simulated onshore and seafloor seismic 

motions are discussed. It should be noted that the seismic surface waves may also be affected 

by the seawater layer [14], however, since they are generally neglected in engineering 

practice, the simulation of surface waves is not in the scope of this study. 

2. Dynamic-stiffness matrix of seawater layer  

In this study, the seawater is assumed as an ideal fluid in which only seismic P-waves can 

propagate. The fluid motion can be expressed with the conservation equation of mass, the 

Euler’s equation and the adiabatic equation of state [10], from which the linear wave equation 

of seismic P-waves in seawater can be derived as [15] 
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where ψ is the displacement potential defined by u=ψ, with u denoting the displacement 

vector of the fluid particle; 
2
 is the Laplace operator; cp is the seismic P-wave velocity, 

which is defined as 
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where K and ρ are the bulk modulus and density of seawater, respectively. 

  For a harmonic seismic P-wave excitation with circular frequency ω, the linear wave 

equation can be expressed with the Helmholtz equation [16] 
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  Based on the conservation equation of mass and the adiabatic equation of state, the fluid 

pressure p induced by seismic P-waves can be derived as [15] 
2p K                                 (4) 

  In the classical fluid dynamics [11], all the stress tensors of Newtonian fluid in the 

Cartesian coordinates can be expressed as 
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where μ denotes the fluid viscosity; δij equals 1 when i=j and 0 when i≠j; pf denotes the 

average normal compressive stress and can be interpreted as a scalar acting on the surface of 

an infinitesimal fluid particle. For the ideal fluid assumed in this study, μ equals zero and only 

the first part, i.e., the normal stress part in Eq. (5) remains. Additionally, pf can be replaced 

with the earthquake induced fluid pressure p as expressed in Eq. (4). 

The one-dimensional wave propagation theory presented by Wolf [12] can be used to 

calculate the dynamic-stiffness matrices of base rock and soil layers. By combining the 

hydrodynamics equations presented above, Wolf’s approach is employed in this study to 



derive the dynamic-stiffness matrix of seawater layer. The wave equation, i.e., Eq. (3) can be 

solved with the P-wave trail function: 
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where Ap denotes the P-wave amplitude; lx, ly and lz are the propagation direction cosines in 

the Cartesian coordinates. Eq. (3) is satisfied when 
2 2 2 1x y zl l l                              (7) 

Substituting Eq. (6) into u=ψ and Eqs. (4) and (5), the fluid particle displacement vectors 

and normal stresses under P-wave excitation can be obtained by taking the material damping 

of seawater into account: 
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where n represents direction x, y, or z; K
*
 and cp

*
 are the complex values of bulk modulus and 

wave velocity with the fluid damping introduced. 
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Fig. 1. Nomenclature of seawater layer for in-plane P-wave motion 

  Fig. 1 shows the nomenclature of seismic P-waves propagating in the seawater layer. The 

P-wave motion is assumed to be in-plane (x-z plane), i.e. ly=0. Thus, lx
2
+lz

2
=1 is obtained 

from Eq. (7). The depth of seawater layer and the P-wave inclined angle are represented by d 

and θp, respectively. Since the ideal fluid cannot withstand shear stress, only the vertical 

displacement and stress are concerned. A reflected P-wave with amplitude Bp is introduced to 

satisfy the two boundary conditions of displacement and stress. Based on Eqs. (8) and (9), the 

vertical displacement and stress of fluid particle can be formulated as 
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  The above two expressions can be simplified with the following notations: 
*
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where c and k denote the phase velocity and the wave number, respectively. The value of s 



equals tanθp. 

  Thus, the amplitude of P-wave propagating in the x-direction can be represented as 
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  With these two equations, the vertical fluid displacement and stress at the top (z=0) and the 

bottom (z=d) of the seawater layer can be directly obtained. By further eliminating the 

amplitude items Ap and Bp and introducing the external load amplitudes R1=−σzz1 and R2=σzz2 

in the global coordinate system as illustrated in Fig. 1, the dynamic-stiffness matrix of the 

seawater layer is derived as 
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where the subscripts 1 and 2 represent the top and bottom of the seawater layer, respectively; 

[S
W 

P ] denotes the dynamic-stiffness matrix that describes the relationship between the external 

load and displacement at the two seawater layer boundaries. 

3. Calculation of offshore site transfer functions 

The transfer functions of an offshore site, which is composed of the base rock, the porous soil 

layers and the seawater layer, can be calculated based on the derived dynamic-stiffness matrix 

of seawater layer. The base rock motions are assumed to consist of out-of-plane SH-wave or 

in-plane combined P- and SV-waves with respective incident angles [12]. The dynamic 

equilibrium equation for an offshore site can be expressed in the frequency domain as 

    SH SH SHS u P  or     P SV P SV P SVS u P                (18) 

where {uSH}, {uP-SV} and {PSH}, {PP-SV} are the displacements and load vectors of the 

in-plane SH-wave and out-of-plane combined P- and SV-waves, respectively. [SSH] and [SP-SV] 

denote the out-of-plane and in-plane total dynamic-stiffness matrices of the offshore site, 

respectively. For the in-plane motions, [SP-SV] can be obtained by assembling the derived 

dynamic-stiffness matrix of the seawater layer with those of the base rock and soil layers. The 

effect of seawater layer is neglected in the calculation of [SSH] since the S-wave cannot 

transmit in seawater. [SSH] can be directly obtained by assembling the out-of-plane 

dynamic-matrices of the base rock and soil layers as proposed by Wolf [12]. 

  The formulas for estimating the Poisson’s ratio and P-wave velocity of porous soil 

suggested by Yang and Sato [8] are substituted into Eq. (18) to consider the effect of water 

saturation on the site amplification of seismic waves. It should be noted that the out-of-plane 

motion is not affected by the water saturation level of soil layers, since the pore water does 

not influence the propagation of S-wave [8]. By solving Eq. (18) in the frequency domain at 

every discrete frequency, the offshore site transfer functions, i.e., the ratios of seafloor 

motions to outcropping motions at any three directions, can be calculated. 

4. Verification of the derived transfer function model  

To verify the above derivations, the vertical transfer function of a rock site overlaid with a 

seawater layer is theoretically calculated. The total dynamic-stiffness matrix of the 

underwater rock site described above is obtained by assembling the dynamic-stiffness matrix 

of seawater layer (Eq. (17)) with that of the base rock. By solving the in-plane dynamic 

equilibrium equation at every discrete frequency, the vertical site transfer function, i.e., the 



ratio of vertical motion at underwater base rock uzb to outcropping vertical motion uzo is 

derived as 
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and its modulus is 
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where the superscript W denotes the seawater layer; G
*
 is the shear modulus of base rock; s' 

and t' are the tangent values of incident angles of P- and SV-waves in the base rock, 

respectively. 

  It is evident that the modulus of the transfer function is always less than or equal to unity. 

The modulus tends to zero when tanksd approaches infinity, i.e.: 
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where f denotes the frequency in Hz. Eq. (22) is satisfied when 
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where n is an odd number, fn can be defined as the resonant frequencies of P-waves in 

seawater layer at which a destructive interference is induced by a phase change of P-wave 

motions at the water and base rock interface [2]. As a result, the vertical underwater motions 

will be significantly suppressed near the resonant frequencies of the seawater layer as 

compared to the vertical outcropping motions. 

  The derived vertical transfer function is compared with the models proposed by Crouse 

and Quilter [1] and Boore and Smith [2]. The former model is derived by assuming that the 

P-waves are vertically incident on an underwater base rock site and the S-waves are neglected; 

while the latter model is theoretically computed for different fault orientations by utilizing 

wavenumber integration method. To be consistent with these two studies, the depth of 

seawater layer and the incident angles of P- and SV-waves are assumed to be 60m and 90°, 

respectively. The schematic view of the base rock site overlaid with a seawater layer and the 

corresponding parameters are shown in Fig. 2. 

  As shown in Fig. 3, the derived vertical transfer function matches well with those proposed 

in the previous studies. The underwater vertical motion is significantly suppressed near the 

P-wave resonant frequency of 6.25 Hz. It is worth noting that the resonant frequency will be 

higher than 6.25 Hz if the P-waves are not vertically propagating in the seawater layer 

according to Eq. (23). Compared to the previous models, the effect of incident angle and the 

contribution of SV-waves can both be considered in the derived transfer function model. In 

other words, the previous models are special cases of the model proposed in the present study. 

Therefore, this model is believed capable of yielding more realistic representation of the 



underwater site transfer functions as compared to the previous models. Moreover, the 

calculated transfer functions for a layered subsea site can be directly used in the simulation of 

seafloor seismic motions. 
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Fig. 3. Comparison of the proposed vertical transfer function model with those suggested 

in previous studies  

5. Simulation of seafloor seismic motions  

The seismological model of southwest Western Australia (SWWA) proposed by Hao and 

Guall [13] is employed to represent the seismic motions at the free surface of base rock. This 

model is obtained by modifying the eastern North America (ENA) model [17] to best fit the 

recorded strong ground motions in SWWA. To avoid repetition, the equations of SWWA 

seismological model are not given. More detailed information regarding this model can be 

found in [13]. 

  Ground motion time histories on SWWA rock site corresponding to the upper bound event 

[13], namely Richter magnitude ML7.2 and epicentral distance 75 km, are stochastically 

simulated using the spectral representation method [18]. The Fourier amplitude spectra of 

outcropping motions can be obtained from the SWWA model. The phase angles of the 

simulated time histories are set to be random between 0 and 2π. The sampling frequency and 

upper cutoff frequency are set to be 100 Hz and 35 Hz, respectively. The time duration is 

estimated to be 25.2 s based on the model suggested in [17]. Moreover, the Jennings envelope 

function is utilized in the simulation to obtain nonstationary seismic motions. 

  Two typical onshore and offshore SWWA sites are selected to simulate seismic motions at 

respective sites, as shown in Fig. 4, in which d is the layer depth, G shear modulus, ρ density, 

ξ damping ratio, ν' Poisson’s ratio of the soil skeleton, n porosity and Sr saturation degree. It 

should be noted that in the present study the Possion’s ratio of soil skeleton of both the 

onshore and offshore site are assumed the same, but the actual Poisson’s ratio of each porous 

soil layer depends not only on the soil skeleton Poisson’s ratio but also on the water 

saturation level. The Poisson’s ratio of porous soil increases with water saturation level [8, 9]. 

For the offshore site, the depth of seawater layer is assumed to be 80 m and the degree of 

saturation is higher than that of the onshore site. The incident angles of out-of-plane SH-wave 



and in-plane P-wave are assumed to be 60˚. Considering the effects of seawater layer and soil 

saturation, the onshore and offshore site transfer functions for the horizontal in-plane (X), 

horizontal out-of-plane (Y) and vertical in-plane (Z) motions are calculated and shown in Fig. 

5. It can be observed that the transfer functions of horizontal out-of-plane motions are the 

same for the two sites because neither seawater nor soil saturation influences the propagation 

of SH-wave. However, for the in-plane motions with combined P- and SV-waves, the transfer 

functions of the offshore site are different from those of the onshore site, especially for the 

vertical in-plane motions dominated by P-wave. The seafloor vertical in-plane motion is 

significantly suppressed near the P-wave resonant frequencies of the seawater layer, i.e., 5.29 

Hz, 15.88 Hz and 26.47 Hz as shown in Fig. 5. 
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(a) Onshore site (b) Offshore site 

Fig. 4. Example onshore and offshore sites in SWWA 
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Fig. 5. Three-dimensional onshore and offshore site transfer functions 

  Considering linear elastic response only, the Fourier amplitude spectra of onshore and 

seafloor motions can be obtained by multiplying the SWWA model with the corresponding 

site transfer functions. The onshore and seafloor seismic motions are stochastically simulated 

using the calculated Fourier amplitude spectra and random phase angles. Four independent 

groups of three-dimensional seismic motions are simulated for each site. The PGAs, PGVs 

and the corresponding mean values of the generated seismic motions are summarized in Table 

1. Fig. 6 plots a typical group of simulated three-dimensional acceleration time histories on 

different sites. 

  As summarized in Table 1, the two horizontal mean PGAs of simulated outcropping 

motions are 823 mm/s
2
 and 855mm/s

2
, which are comparable with the design PGA of 0.09g 

(882 mm/s
2
) for Perth in SWWA [13]. The two horizontal mean PGAs of onshore motions are 

less than those of the outcropping motions. This is because most base rock ground motion 

energy concentrates in a frequency band higher than 5.0 Hz owing to SWWA intraplate 

source mechanism. The abundant horizontal outcropping motions with the frequencies higher 

than 5.5 Hz are deamplified, as can be observed from the onshore site transfer functions. It 

should be noted that previous studies also indicated that the SWWA soil sites amplify 



horizontal rock motions in a frequency range up to 5 Hz, but deamplify those in the 

frequency higher than 5.0 Hz [13]. On the contrary, the vertical outcropping motion is 

significantly amplified by the onshore site even at frequencies up to 25.0 Hz as shown in Fig. 

5. It should be noted that if the frequency contents of base rock motions are lower as usually 

observed in interpolate seismic motions, the horizontal ground motions would also be 

amplified. The mean PGVs of the simulated three-dimensional onshore motions are larger 

than those of the outcropping motions, due to the substantial site amplification effect at low 

frequency range. 

Table 1. PGA and PGV values of the simulated seismic motions on different sites 
Site Base rock Onshore site Offshore site 

Group No. G1 G2 G3 G4 G1 G2 G3 G4 G1 G2 G3 G4 

Horizontal in-plane motion (x-component) 

PGA(mm/s2) 845 827 799 820 493 479 503 487 520 507 552 537 

PGV(mm/s) 11.9 13.7 11.2 12.4 25.0 15.8 17.4 20.3 25.1 21.6 20.3 22.8 

Mean 823 mm/s2 12.3 mm/s 491 mm/s2 19.6 mm/s 529 mm/s2 22.5 mm/s 

Horizontal out-of-plane motion (y-component) 

PGA(mm/s2) 859 778 883 901 469 436 471 454 477 446 457 485 

PGV(mm/s) 16.1 16.0 13.3 16.5 22.2 17.4 20.7 21.6 20.9 18.7 24.0 19.8 

Mean 855 mm/s2 15.5 mm/s 458 mm/s2 20.5 mm/s 466 mm/s2 20.9 mm/s 

Vertical in-plane motion (z-component) 

PGA(mm/s2) 470 459 446 460 941 902 885 742 307 386 328 403 

PGV(mm/s) 9.7 9.1 8.9 10.8 20.5 19.2 18.6 28.6 7.8 6.9 9.2 9.1 

Mean 459 mm/s2 9.6 mm/s 868 mm/s2 21.7 mm/s 356 mm/s2 8.3 mm/s 
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(b) Onshore site 
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(c) Offshore site 

Fig. 6. Simulated three-dimensional acceleration time histories on different sites 

  For the simulated seafloor motions, the horizontal PGA and PGV values are very close to 

those of the onshore motions because of the similar horizontal transfer functions as shown in 

Fig. 5. The most striking difference between the simulated onshore and seafloor motion is in 

the vertical in-plane motion. The seafloor vertical PGA and PGV are much smaller than the 

onshore ones, owing to the effects of seawater layer and soil saturation. The average 

vertical-to-horizontal (V/H) PGA ratio is 0.72 for the seafloor motions and 1.83 for the 

onshore motions, where the horizontal PGA is calculated by the geometric average of two 

horizontal PGA values. The characteristics of the simulated seafloor motions are consistent 

with the conclusions drawn from the analyses of seafloor earthquake recordings [2], namely, 



the vertical component of seafloor seismic motions are significantly suppressed near the 

P-wave resonant frequencies of the seawater layer as compared to the onshore motions. 

6. Conclusions 

In this paper, the ground motion transfer functions for an offshore site are theoretically 

derived by considering the effects of seawater layer and soil saturation. Onshore and seafloor 

seismic motions are stochastically synthesized based on the SWWA seismological model and 

corresponding site transfer functions. The simulation results show that the difference is 

insignificant between the horizontal components of onshore and seafloor motions, while the 

vertical components of the seafloor motions are much weaker than those of the onshore 

motions. The simulated seafloor seismic motions are in line with the characteristics of 

available seafloor seismic records and can be utilized as inputs in the seismic analyses of 

offshore structures. It should be noted that the seafloor seismic motions can be simulated by 

combining the theoretically derived offshore site transfer functions with other stochastic 

ground motion attenuation models other than the SWWA model used in this study. 
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