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Abstract

In a thermal barrier coating (TBC) system with cylindrical geometry, the position of coating
plays an important role in the distribution of residual stress. In this paper, the residual stress field
in three different types of TBCs with cylindrical geometry has been analyzed. The main focus is
on the effects of substrate curvature radius, deposition temperature and coating thickness on the
residual stress distribution during a deposition process. The results show that the substrate
curvature radius significantly affects the distributions of radial and hoop residual stresses, which
are in good agreement with experimental measurements by photo-stimulated luminescence
piezospectroscopy (Wang et al., Acta Mater., 2009, 57(1):182-195). The maximum radial residual
stress locates closely to the coating/thermal grown oxide interface. However, the maximum hoop
residual stress lies in the thermal grown oxide layer, which is much more than other three layers

and presents a strong stress singularity along the thickness direction.
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1. Introduction

Thermal barrier coatings (TBCs) have been a common method to provide the thermal
resistance for gas turbine engines and other high temperature components, which can greatly
increase their durability and the fuel efficiency [1, 2]. A TBC system usually consists of ceramic
coating, thermally grown oxide (TGO), bond coat (BC) and substrate. In service, residual stresses
gradually generate and accumulate due to the mismatch of material properties, which may
eventually cause interface crack propagation and coating spallation [1-3]. Thus, the evolution of
residual stress plays an important role in predicting the life of TBCs. In the past decade, many
engineering methods have been developed to evaluate the evolution of residual stress in different
types of TBCs, such as X-ray diffraction [4-8], Raman spectroscopy [9-12], substrate removal
[13], curvature measurement [14, 15], photo-stimulated luminescence piezospectroscopy (PLPS)
[16-19] and indentation methods [20-24]. At the same time, researchers have proposed the
different forms of analytical solutions to evaluate the stress distribution of multilayer systems.
The earliest analytical model for the elastic thermal stress in a bilayer system was derived by
Timoshenko [25] based on the classical bending theory. Timoshenko’s approach has been widely
adopted by others to analyze the thermal residual stress in TBCs [26-33]. In these theoretical
works, the consideration is focused on the effects of material properties (mainly, the elastic
modulus of bond coat), coating thickness, heat conduction coefficients, interface asperity and
temperature gradient on the distribution of residual stress in TBCs during deposition or thermal
cycling. However, the coatings are usually deposited on substrates with different geometrical
shapes, e.g., the turbine blade and vane in aircraft engine. The evolution of thermal/residual stress
of coating located in the concave positions of the curved substrate may be significantly different
from that in the convex positions. Hutchinson et al. pointed out that the concavity and convexity
characteristic of substrate in multilayer TBCs would influence the residual stress distribution, and

they would profoundly affect the energy release rates of the interface delamination and crack
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propagation path during spallation [34, 35]. Qasim et al. investigated the influence of complex
geometry on contact damage in a curved brittle coating and substrate system. They found that the
local surface curvature plays an important role in the initiation and propagation of radial cracks
and fracture behavior in brittle coating [36]. Thus, it is necessary to study the effects of coating
located in different concave and convex positions of the curved substrate on the distribution of
residual stress in TBCs. On the basis of our recent work [37, 38], an analytical solution of a
four-concentric-hollow cylinder model is deduced [39]. In this paper, considering three different
types of TBCs with cylindrical geometry, our attention will focus on the effects of substrate
curvature radius, deposition temperature and coating thickness on the distribution of residual
stresses. It is expected that some valuable conclusions can be obtained for predicting the residual

stress distribution of TBCs and promoting their durability.

2. Analytical modeling

For a long cylindrical TBC, a three-dimensional stress-strain problem can be reduced to a
two-dimensional plane strain problem. Figure 1 schematically shows three different structures of
TBCs: coating located in the convex position (type Al), coating located in the concave position
(type A2), and coating deposited in both convex and concave positions of the curved substrate
(type A3). The representative positions, A, B, C, D, E and F denote the different inner or outer
surfaces in type Al, A2 and A3 TBC models, and R, represents the curvature radius of inner
surface of substrate. Here, let us first consider the case of type Al, which consists of substrate,
bond coat, TGO and ceramic coating layer from the inner to outer surfaces along the radius
direction (see Fig. 1(a)). The TBC system is assumed to be stress free at deposition temperature

T, and the original curvature radius of each layer is R; (j = 1, 2, ..., 5). After cooling to

ambient temperature, the contracted curvature radius of each layer is defined as r Gg=12,...,



5), respectively. Given that each layer is unconstrained, it can individually deform on cooling.
For example, substrate changes from the original configuration to a middle configuration, as

shown in Figs. 2(a) and (b). There is no residual stress occurred at this stage. The radii a, and
a, along the radial displacement direction can be obtained by
a=R 1 | (1)
a=R, 1 2)

where | is the thermal expansion coefficient of substrate and 7 1is the temperature change.

To be consistent with the actual configuration of a type A1 TBC system after cooling, an external

pressure P, is assumed to be applied on the outer surface of substrate. It is noted that the applied

internal pressure is zero because there is no radial pressure on the internal surface of substrate.

The deformation of substrate changes from the middle configuration («,, a,) to the actual

configuration (7, r,). The residual radial stress and hoop stress ,,, in substrate can be

imr

calculated by solving Lame equations [39],
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where E, and | denote Young’s modulus and Poisson ratio of substrate. Combining Egs. (3),



(4) with (6), hoop strains at the surfaces of substrate are
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The residual stress and strain in other three layers of the type A1 TBC can be obtained by
the similar method (see Appendix A). The interface continuities of radial displacements must be

maintained when the whole cylindrical TBC system is cooled from deposition temperature 7, to
room temperature 7,. These continuity conditions can be expressed as follows by combining Eqs.

(7), (8) with (A13 A26),
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where by, ¢, and di (k = 1, 2) are the changed inner and outer radii of bond coat, TGO and
ceramic coating layer at the middle configuration. The subscripts b, ¢ and c¢ refer to bond coat,

TGO and coating, respectively. and , are thermal expansion coefficients, E,, E,

b !

and E,  are Young’s moduli, ,, and _ are Poisson ratios, and P; (j = 1, 2, 3) indicates

the applied pressure on the substrate/bond coat, bond coat/TGO, and TGO/TBC interfaces,

respectively.

If the material properties of each layer and their original radii are given, the solutions of P,
P, P and r, (j=1,2, .., 5) can be obtained by Egs. (9 16). Then, substituting these

solutions into Egs. (3), (4) and (A7 A12), the residual radial stress and hoop stress

of a whole TBC system can be determined. Similarly, for the other two types of structures (i.e.,

A2 and A3) in Fig. 1, their residual stress fields in TBCs can be deduced using the same method.

3. Results and discussion
3.1 Effect of substrate curvature radius on residual stress

The material properties of a TBC system used in calculations are listed in Table 1 [40]. For
simplification, these material properties are temperature-independent. The original values of the
thickness of substrate, bond coat, TGO and top coating are /#; = 2000 pm, 4, = 100 um, 4, = 1 pm

and 4, = 300 pm. The corresponding substrate curvature radius R, is assumed to be 2, 4, 6, 8
and 10 mm, respectively. It is also assumed that 7, = 600 °C and 7, =20 °C. As shown in Fig.
3(a), radial stresses in all layers are tensile when the system is cooled down from 7, to 7, . This

is attributed to the lower thermal expansion coefficients of bond coat and ceramic coating
compared to substrate. The radial stresses at positions 4 and B are equal to zero, which is
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consistent with the actual TBC configuration because there is no pressure applied on these two
surfaces. The maximum residual radial stress locates within the convex coating closely to the
coating/TGO interface and its value decreases from 23 to 8 MPa when R, changes from 2 to 10
mm. That is, the maximum tensile radial stress would increase by about 65% when the substrate
curvature (1/ R ) increases by a factor of 4. As shown in Fig. 3(b), the variation of R, has a little
influence on the distribution of hoop stress. The hoop stress in substrate is tensile but
compressive in bond coat, TGO and ceramic coating. The stress distribution is similar to that
obtained by Zhang et al. [32]. The hoop stress in TGO is 2.25 GPa, which is much larger than
that in the bond coat and coating due to the stress singularity in TGO and stress discontinuity in
TBCs along the thickness direction. The similar results are also found on residual stress in a
duplex TBC system [5, 27, 28, 38]. In order to improve the life and durability of TBCs, a lot of
studies have been done by using functionally gradient materials instead of bond coat to reduce
stress singularity and stress gradient discontinuity in TBCs [41-47]. The analysis of residual
stress indicates that the stress singularity in a functionally gradient material system gradually
vanishes and a continuous stress gradient varies from the coating surface to the coating/substrate
interface [32, 48].

In the case of type A2 TBCs shown in Fig. 4(a), it is found that radial stresses in all TBC
layers are compressive after cooling from 7, to 7,. The maximum compressive radial stress
locates within the concave coating closely to the coating/TGO interface. The absolute values of

maximum radial residual stresses also decrease with the increase of R,, which is similar to that
in type Al. It changes from 50 to 10 MPa when R, increases from 2 to 10 mm. The

compressive radial stress may quickly diminish as the curvature radius increases. The hoop

stresses as a function of R, are shown in Fig. 4(b). The variation of R, influences the

distribution of hoop stresses. The hoop stress in substrate is tensile but compressive in bond coat,



TGO and ceramic coating due to the mismatch of material properties. The maximum hoop stress
locates in the TGO layer and is equal to 2.24 GPa. The compressive radial stress of each layer is
much less compared to its hoop stress, which is in good agreement with the available results [16,
32].

In type A3 TBCs shown in Fig. 5, it is of interest to see that the distribution of residual
stresses in the convex and concave regions is similar to that of type Al and A2 TBC systems.
That is, residual stress in type A3 TBCs can be approximately regarded as a superimposition of
that in type Al and A2 TBCs due to only considering thermal elastic deformation. The average
hoop stresses in the convex and concave coating positions of the type A3 TBC system are 242.7
and 260.4 MPa, respectively, as shown in Fig. 5(b). The average hoop stresses of top coating are

247.9 and 272.8 MPa for type Al and A2 TBC systems, respectively, see Figs. 3(b) and 4(b).
The slight difference among these results may be due to the different geometrical structures and
the mismatch of material properties.

As 1s known, the residual stress in TGO controls the location and rate of spallation [2]. The
TGO stress can be from 1 to 5 GPa, much more than 0.2 to 0.5 GPa in other three layers[16, 18,
19]. The evolution of residual stress in TGO closely to the coating/TGO interface is a function of

R, as plotted in Fig 6. It can be seen that radial residual stresses in type Al and A2 are consistent

well with that in the convex and concave locations of the type A3, respectively. The stress in
convex positions is tensile and changes from 10 to 20 MPa. Based on the recent work by Wang et
al. [16], a three-dimensional residual stress state in the TGO of a TBC blade measured by using
PLPS reveals a tensile radial stress being associated with a convex curvature. The tensile stress is
50 MPa when the curvature radius is 0.5 mm and it can go up to approximately 150 MPa when
the curvature radius is 0.1 mm. However, the radial stress becomes very small, about several to

25 MPa when the curvature radius exceeds to 2 mm [16]. Our results agree well with that by



PLPS measurements [16]. The compressive radial stress in the concave position varies from 45
to 10 MPa when R, increases from 2 to 10 mm. The influence of R, on the radial stress
distribution in concave position is larger than that in the convex location. However, R, plays an
important role in the distribution of residual hoop stress for different types of TBCs, as shown in
Fig. 6(b). The magnitude of hoop stress in the concave position of type A3 is 60 to 80 MPa,
which is smaller than that in the concave position of type A2. Similarly, the value of hoop stress
in the convex position of type A3 is 60 to 70 MPa, which is also smaller than that in the convex
position of type Al. In Wang’s PLPS measurements, they found out that the stress level of TGO
is independent of the curvature of a blade surface [16]. The relative contribution of the two stress
levels appears to be correlated with the -Al,O3; content of TGO, which is dependent on the
position on the blade [16]. Here, the analytical results are similar to their experimental

measurements.

3.2 Effect of deposition temperature on residual stress

As shown in Fig. 7(a), radial stresses in type Al TBCs are tensile and their values are
proportional to deposition temperature 7. The maximum radial stress locates within the convex
coating at the coating/TGO interface and its value is from 8.0 to 23.5 MPa as 7, increases from
400 to 1000 °C. The magnitude of radial residual stress on the ceramic coating surface is 11.4

MPa when T is 600 °C, which is consistent with the results by . [4]. The hoop
stresses also increase with the increase of 7, (see Fig. 7(b)). The hoop stress in substrate is

tensile, but compressive in the bond coat, TGO and ceramic coating due to the mismatch of
material properties. Especially, the average hoop residual stress in ceramic coating changes from

110 to 400 MPa as T, varies from 400 to 1000 °C, which is coincident with the available

results [4, 49, 50]. It is obvious that 7, strongly affects the distribution of hoop residual stress in



the ceramic coating. It would be a challenge on how to control a reasonable deposition
temperature range during the TBC preparation in order to obtain an ideal residual stress
distribution.

For type A2 TBCs shown in Fig. 8(a), radial stresses are compressive and their absolute
values gradually increase with the increase of 7;, which is similar to that in type A1 TBCs. The
maximum of the compressive radial stress still locates within the concave coating near the

coating/TGO interface, and its value changes from 12 to 35 MPa when 7, changes from 400

to 1000 °C. The hoop stress in type A2 TBCs is also proportional to 7;. The hoop stress in
substrate is tensile but compressive in the bond coat, TGO and ceramic coating (see Fig. 8(b)).
The hoop stress in TGO ranges from 1.4 to 3.7 GPa as 7, increases from 400 to 1000 °C,
which agrees with the order of residual stress in TGO for as-received air plasma sprayed TBCs [5,
16, 38].

The distribution of residual stresses in the convex and concave regions of the type A3 TBCs
is similar to that of the type Al and A2 TBCs, as shown in Fig. 9. The residual radial and hoop
stresses increase with the increase of 7). The radial stress is equal to zero at positions E and F,
which is consistent with that expected in an actual TBCs configuration. The radial stress is tensile
within the convex region and becomes compressive in the concave region. The distribution of
residual hoop stress in a type A3 system is approximately symmetrical. The hoop stress in TGO

increases rapidly from 1.5 to 4.0 GPa when 7, changes from 400 to 1000 °C, as shown in

Figs. 9(b). The high level of hoop residual stress in TGO of the TBC blade measured by Wang et
al. 1s about 4.0 GPa [16]. Gell et al. also studied the evolution of residual stress in TGO and
concluded that the residual stress variation is from 2.5 to 4.0 GPa [18, 19]. Our analysis is
consistent well with these experimental results.

To evaluate the effect of 7, on the variation of residual stress in TGO, the residual stress is
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extracted and shown in Fig. 10 as a function of 7;. It is found that the radial stress is tensile
when coating locates in the convex positions of substrate. It increases linearly from 5 to 18 MPa
as T, changes from 400 to 1000 °C. However, it becomes compressive in the concave coating of
substrate. Its value increases linearly from 10 to 29 MPa when 7, changes from 400 to 1000
°C. This indicates that the radial residual stress is closely related to the coating position in a
cylindrical TBC system. In addition, it is noted that the hoop stresses in TGO are compressive
and increase linearly from 1.5 to 3.9 GPa when T, changes from 400 to 1000 °C. But it is
independent of the coating positions (see Fig. 10(b)). In this case, the effect of 7, is clearly

different from the influence of R, on the residual hoop stress in TGO (see Fig. 6(b)).

3.3 Effect of coating thickness on residual stress

As shown in Fig. 11(a), radial stresses in TBC layers are tensile and increase with the
increase of 4, . The maximum radial stress locates within coating around the coating/TGO
interface and its value changes from 5 to 24 MPa as A4, increases from 100 to 600 pm. With the
increase of 7, , hoop stresses in bond coat, TGO and ceramic coating decrease, but increase in
substrate, as shown in Fig. 11(b). The results indicate that the hoop stress in coating is several
times more than its radial stress, although their amplitudes are nearly equivalent under the same
value of A . Zhang et al. studied the influence of coating thickness on residual stress in
as-sprayed FGM TBCs [32]. It is found that the distribution of residual stress of the duplex TBC
system in the current work is similar to their results.

For a type A2 TBC system, radial stresses in all layers are compressive and increase with the

increase of A, (see Fig. 12(a)). The maximum compressive radial stress locates in the concave

coating closely to the coating/TGO interface, which varies from 14 to 36 MPa when #,

11



increases from 100 to 600 um. As % increases, hoop stresses decrease in bond coat, TGO and
ceramic coating, but increase in substrate (see Fig. 12(b)), which is similar to that in type Al

TBCs. The hoop stress in bond coat is in the range of 200 to 100 MPa as %, increases from
100 to 600 m, which coincides with the results [49].

As shown in Fig. 13, the maximum radial stress for a type A3 system is proportional to the

increase of 4. The radial stress is zero at both positions of £ and F. The radial stress in concave

position is compressive, which gradually decreases and becomes tensile in the convex position
along the thickness direction. The distribution of the hoop residual stress is approximately

symmetrical, which is similar to the influence of 7, on the hoop residual stress (see Fig. 9(b)). It

is obvious that there is also a large stress singularity and stress discontinuity in TGO (see Fig.
13(b)). In our earlier work, the similar stress discontinuity in duplex TBCs with planar geometry
was discovered [38]. That is, the generation and accumulation of thermal/residual stress in all
types of duplex TBCs are inevitable due to the mismatch of material properties and the
irreversible deformation in service. To validly control the residual stress in ceramic coating, the
coating thickness should remain as thin as possible.

The evolution of radial stress in both TGO layers in convex and concave positions of type
A3 is almost identical to that in type Al and A2, respectively, as shown in Fig. 14(a). Radial
stress is tensile in the convex region and compressive in the concave regime. Their values

increase as 4, increases. However, Fig. 14(b) shows that hoop residual stress in TGO of three
types of TBC systems decrease with the increase of 4, . The average hoop residual stress changes

from 2.2to 2.1 GPawhen #, increases from 100 to 600 um.

4. Conclusions

It 1s widely believed that residual stresses generated during the deposition of coatings act as

12



pre-existing stresses and adversely affect the coatings’ performance in service. In this paper, the
distributions of residual stresses in three different types of cylindrical TBC systems during the
deposition process have been discussed. The main conclusions can be summarized as follows:

(1) The sprayed ceramic coating position strongly influences the distribution and magnitude
of residual stress in TBCs with cylindrical geometry. Under thermal elastic deformation, residual
stress in type A3 TBCs can be approximately regarded as a superimposition of that in type Al
and A2 TBCs.

(2) For a same type of TBC system, substrate curvature radius plays an important role in the
evolution of residual stress. The maximum tensile radial stress would increase by about 65%
when substrate curvature increases by a factor of 4. Hoop stress gradually increases as substrate
curvature radius increases.

(3) Residual stresses in all layers of three types of structures would increase as deposition
temperature and coating thickness increase. Therefore, to obtain a reasonable stress state in
as-received TBCs, the deposition temperature and coating thickness are suggested to be as small

as possible.
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Appendix A
The changed inner and outer radii of other three layers in the middle configuration are

defined as follows, respectively,

bh=R 1 , (A1)
by=R, 1 , (A2)
¢=R 1 (A3)
=R, 1 (A4)
d=R, 1 (A5)
d,=R;, 1 (A6)

Similarly, the different uniform pressures are applied on the inner and outer surfaces of
these three layers to match the actual configurations of cylindrical TBCs. The bond coat is
subjected to a uniform internal pressure B at r r, and an external pressure P, at r r.
TGO 1is subjected to a uniform internal pressure P, at r r, and an external pressure P, at
r r,. However, the coating is only subjected to an internal pressure P, at r r,. The residual
radial stress ,, and hoop stress ,, of other layers can be obtained by extending Lame

equations,

b, PR KR bP

Fr A
e 7 BB (A7
_ by P B bR bP A%
N p: b’ (A3)
¢, B P c¢P 4P,
trr 2 2 2 2 2 (A9)
c q r ¢ q
2 2 2 2
ce P P cP cP
e STy S S5 (A10)

2
¢ G r ¢ G
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where subscripts b, ¢ and ¢ refer to bond coat, TGO and ceramic coating, respectively. Similarly,
the hoop strain of each layer at different interfaces can be obtained by the stress-strain
relationship,
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where E,, E, and E, denote Young’s moduli of bond coat, TGO and coating, respectively.

,» , and _ are their Poisson ratios. On the other hand, hoop strains of each layer at

different interfaces can be obtained by the strain definition,

_27n =274y 1 | (A19)
= gy 2 aq a,
) U (A20)
= lr=a, a,
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The continuity conditions of hoop strain at the interfaces of multilayer TBCs should be
satisfied. That is, Egs. (7), (8) and (A13 A18) must be equal to Egs. (A19 A26), respectively.

Then, Egs. (9 16) can be obtained.

[1] A.G. Evans, D.R. Mumm, J.W. Hutchinson, GH. Meier, F.S. Pettit, Prog. Mater. Sci., 46
(2001) 505-553.

[2] N.P. Padture, M. Gell, E.H. Jordan, Sci., 296 (2002) 280-284.

[3] J.L. Beuth, S.H. Narayan, Inter. J. Solids Struct., 33 (1996) 65-78.

[4] V. Teixeira, M. Andritschky, W. Fischer, H.P. Buchkremer, D. Stover, Surf. Coat. Tech., 121
(1999) 103-111.

[5] C.M. Weyant, J. Almer, K.T. Faber, Acta Mater., 58 (2010) 943-951.

[6] J. Thornton, D. Cookson, E. Pescott, Surf. Coat. Tech., 121 (1999) 96-102.

[7] D.W. Jordan, K.T. Faber, Thin Solid Films, 235 (1993) 137-141.

[8] Q. Chen, W.G. Mao, Y.C. Zhou, C. Lu, Appl. Surf. Sci., 256 (2010) 7311-7315.

16



[9] M. Tanaka, M. Hasegawa, A.F. Dericioglu, Y. Kagawa, Materials Science and Engineering: A,
419 (2006) 262-268.

[10] W.G. Mao, Q. Chen, C.Y. Dai, L. Yang, Y.C. Zhou, C. Lu, Surf. Coat. Tech., 204 (2010)
3573-3577.

[11] M. Tanaka, R. Kitazawa, T. Tomimatsu, Y.F. Liu, Y. Kagawa, Surf. Coat. Tech., 204 (2009)
657-660.

[12] A. Gil, D. Naumenko, R. Vassen, J. Toscano, M. Subanovic, L. Singheiser, W.J. Quadakkers,
Surf. Coat. Tech., 204 (2009) 531-538.

[13] C.R.C. Lima, J. Nin, J.M. Guilemany, Surf. Coat. Tech., 200 (2006) 5963-5972.

[14] C.H. Hsueh, E.R. Fuller, Mat Sci Eng a-Struct, 283 (2000) 46-55.

[15] S.C. Gill, T.W. Clyne, Thin Solid Films, 250 (1994) 172-180.

[16] X. Wang, G. Lee, A. Atkinson, Acta Mater., 57 (2009) 182-195.

[17] B.W. Kempshall, Y.H. Sohn, S.K. Jha, S. Laxman, R.R. Vanfleet, J. Kimmel, Thin Solid
Films, 466 (2004) 128-136.

[18] M. Gell, S. Sridharan, M. Wen, E.H. Jordan, Inter. J. Appl. Ceram. Tech., 1 (2004) 316-329.

[19] M. Wen, E.H. Jordan, M. Gell, Mater. Sci. Eng. A, 398 (2005) 99-107.

[20] M. Eskner, R. Sandstrom, Surf. Coat. Tech., 177 (2004) 165-171.

[21] J. Yan, A.M. Karlsson, M. Bartsch, X. Chen, Comput. Mater. Sci., 44 (2009) 1178-1191.

[22] N. Zotov, M. Bartsch, G. Eggeler, Surf. Coat. Tech., 203 (2009) 2064-2072.

[23] A. Rico, J. Gomez-Garcia, C.J. Munez, P. Poza, V. Utrilla, Surf. Coat. Tech., 203 (2009)
2307-2314.

[24] M. Zhao, X. Chen, J. Yan, A.M. Karlsson, Acta Mater., 54 (2006) 2823-2832.

[25] S. Timoshenko, J. Opt. Soc. Am., 11 (1925) 233-255.

[26] Y.C. Tsui, T.W. Clyne, Thin Solid Films, 306 (1997) 23-33.

[27] Y.C. Tsui, T.W. Clyne, Thin Solid Films, 306 (1997) 34-51.

17



[28] C.H. Hsueh, E.R. Fuller, Scripta Mater., 42 (2000) 781-787.

[29] S.Q. Nusier, GM. Newaz, Z.A. Chaudhury, Inter. J. Solids Struct., 37 (2000) 2495-2506.

[30] X.C. Zhang, B.S. Xu, H.D. Wang, Y.X. Wu, Thin Solid Films, 488 (2005) 274-282.

[31] X.C. Zhang, B.S. Xu, H.D. Wang, Y.X. Wu, Mater. Des., 27 (2006) 308-315.

[32] X.C. Zhang, B.S. Xu, H.D. Wang, Y. Jiang, Y.X. Wu, Compos. Sci. Technol., 66 (2006)
2249-2256.

[33] M. Martena, D. Botto, P. Fino, S. Sabbadini, M.M. Gola, C. Badini, Eng. Fail. Anal., 13
(2006) 409-426.

[34] J.W. Hutchinson, J. Mech. Phys. Solids, 49 (2001) 1847-1864.

[35] S. Faulhaber, C. Mercer, M.W. Moon, J.W. Hutchinson, A.G. Evans, J. Mech. Phys. Solids,
54 (2006) 1004-1028.

[36] T. Qasim, M.B. Bush, X.Z. Hu, International Journal of Mechanical Sciences, 48 (2006)
244-248.

[37] Y.C. Zhou, T. Hashida, Inter. J. Solids Struct., 38 (2001) 4235-4264.

[38] W.G. Mao, Y.C. Zhou, L. Yang, X.H. Yu, Mech. Mater., 38 (2006) 1118-1127.

[39] J.M. Gere, S.P. Timoshenko, Mechanics of Materials, Chapman and Hall Inc, London, 1991.

[40] J. Cheng, E.H. Jordan, B. Barber, M. Gell, Acta Mater., 46 (1998) 5839-5850.

[41] W.Y. Lee, D.P. Stinton, C.C. Berndt, F. Erdogan, Y.-D. Lee, Z. Mutasim, J. Am. Ceram. Soc.,

79 (1996) 3003-3012.

[42] Y. Ootao, Y. Tanigawa, O. Ishimaru, J. Therm. Stresses, 23 (2000) 257-271.

[43] S. Rangaraj, M. Kokini, Acta Mater., 51 (2003) 251-267.

[44] H.A. Bahr, H. Balke, T. Fett, I. Hofinger, G. Kirchhoff, D. Munz, A. Neubrand, A.S.
Semenov, H.J. Weiss, Y.Y. Yang, Mater. Sci. Eng. A, 362 (2003) 2-16.

[45] S. Sharafat, A. Kobayashi, Y. Chen, N.M. Ghoniem, Vacuum, 65 (2002) 415-425.

[46] J.H. Kim, M.C. Kim, C.G. Park, Surf. Coat. Tech., 168 (2003) 275-280.

18



[47] S. Rangaraj, K. Kokini, Journal of Engineering Materials and Technology, Transactions of
the ASME, 126 (2004) 103-115.
[48] V. Teixeira, Surf. Coat. Tech., 146-147 (2001) 79-84.
[49] O. Kesler, J. Matejicek, S. Sampath, S. Suresh, T. Gnaeupel-Herold, P.C. Brand, H.J. Prask,
Mater. Sci. Eng. A, 257 (1998) 215-224.

[50] A.N. Khan, J. Lu, H. Liao, Surf. Coat. Tech., 168 (2003) 291-299.

19



Figure captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1.

10.

11.

12.

Schematic of three types of TBCs with cylindrical geometry based on the different
positions of coating: (a) Type Al, (b) Type A2, and (c) Type AS.

Schematic of the analytical model of substrate deformation on cooling, where three
configurations are (a) original (stress free), (b) middle (no residual stress) and (c) final
(residual stress), respectively.

Effect of substrate curvature radius on the distribution of residual stress in type Al
TBCs: (a) radial stress and (b) hoop stress.

Effect of substrate curvature radius on the distribution of residual stress in type A2
TBCs: (a) radial stress and (b) hoop stress.

Effect of substrate curvature radius on the distribution of residual stress in type A3
TBCs: (a) radial stress and (b) hoop stress.

The distribution of residual stress in TGO as a function of substrate curvature radius: (a)
radial stress and (b) hoop stress.

Effect of deposition temperature on the distribution of residual stress in type Al TBCs:
(a) radial stress and (b) hoop stress.

Effect of deposition temperature on the distribution of residual stress in type A2 TBCs:
(a) radial stress and (b) hoop stress.

Effect of deposition temperature on the distribution of residual stress in type A3 TBCs:
(a) radial stress and (b) hoop stress.

The distribution of residual stress in TGO close to the coating/TGO interface as a
function of deposition temperature: (a) radial stress and (b) hoop stress.

Effect of coating thickness on the distribution of residual stress in type Al TBCs: (a)
radial stress and (b) hoop stress.

Effect of coating thickness on the distribution of residual stress in type A2 TBCs: (a)
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radial stress and (b) hoop stress.

Fig. 13. Effect of coating thickness on the distribution of residual stress in type A3 TBCs: (a)
radial stress and (b) hoop stress.

Fig. 14. Effect of coating thickness on the residual stress in TGO close to the coating/TGO

interface: (a) radial stress and (b) hoop stress.
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Table 1. Material properties of the TBC system used in calculations [40], where 8YSZ refers to 8

wt.% Y,0j; stabilized ZrO,.

Properties 8YSZ TGO Bond coat Substrate
E (GPa) 48 400 200 220
u 0.10 0.23 0.30 0.31

o (10°%/°C) 9.0 8.0 13.6 14.8
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The coating position strongly influences the distribution of residual stress in TBCs.
Substrate curvature plays an important role in the evolution of residual stress.
The deposition temperature and coating thickness should be as small as possible.
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