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Abstract— Hypoglycemia (or low blood glucose) is dangerous for 

Type 1 diabetes mellitus (T1DM) patients, as this can cause 

unconsciousness or even death. However, it is impossible to 

monitor the hypoglycemia by measuring patients’ blood glucose 

levels all the time, especially at night. In this paper, a 

hypoglycemic episode diagnosis system is proposed to determine 

T1DM patients’ blood glucose levels based on these patients’ 

physiological parameters which can be measured online. It can be 

used not only to diagnose hypoglycemic episodes in T1DM 

patients, but also to generate a set of rules, which describe the 

domains of physiological parameters that lead to hypoglycemic 

episodes. The hypoglycemic episode diagnosis system addresses 

the limitations of the traditional neural network approaches 

which cannot generate implicit information. The performance of 

the proposed hypoglycemic episode diagnosis system is 

evaluated by using real T1DM patients’ data sets collected from 

the Department of Health, Government of Western Australia, 

Australia. Results show that satisfactory diagnosis accuracy can 

be obtained. Also, explicit knowledge can be produced such that 

the deficiency of traditional neural networks can be overcome. A 

clear understanding of how they perform diagnosis can be 

indicated.  

Keywords- hypoglycemic episodes, Type 1 diabetes mellitus, 

diagnosis system, konwledge discovery system, artifical neural 
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I.  INTRODUCTION 

Episodes of hypoglycemia for Type 1 diabetes mellitus 

(T1DM) patients are common in insulin therapy [8]. It can 

result in unconsciousness, or seizures. More than 50% of all 

severe episodes of hypoglycemia occur at night [15], as usual 

insulin preparations do not adequately mimic the normal 

patterns of endogenous insulin secretion [19]. It is, however, 

impossible to monitor the episodes of hypoglycemia by 

measuring the blood glucose levels around the clock. 

Therefore, it is necessary to develop a diagnosis model to 

determine the episodes of hypoglycemia based on some 

available physiological measures including heart rate and QT 

interval of ECG signal, which relate to the glucose levels of 

the T1DM [12].  

To develop such diagnosis models, the statistical regression 

method [18] has been used in the diagnosis of diabetic 

nephropathy [5], acute gastrointestinal bleeding [6], and 

pancreatic cancer [4]. However, the modeling of highly 

nonlinear patients’ characteristics, and handling the fuzziness 

of the physiological measures using statistical regression 

methods, is still an issue. Neural networks [16] have been used 

to develop models for medical diagnosis purposes, where both 

the nonlinear and fuzzy nature of the patients’ data can be 

addressed. Even if they have been applied in building 

diagnosis models for various diagnoses [1, 3, 7, 10, 13], these 

models only have the capability to transform the nonlinear or 

fuzzy patients’ data into simplified black-box structures. 

Hence, no explicit knowledge can be indicated within the 

neural networks. As the neural networks are black-box in 

nature, some medical doctors may feel uncomfortable about 

using them for diagnostic purposes, although the neural 

networks may achieve better diagnosis accuracy than the other 

explicit modeling methods such as classical statistical methods. 

This could pose serious issues if one has to justify a decision 

based on the implicit outputs of the neural networks. 

Therefore, it is essential to extract explicit knowledge from the 

neural networks, so that the basis on which the decision is 

made is explicit. 

In this paper, a hypoglycemic episode diagnosis system, 

which consists of two units namely diagnosis unit and 

knowledge discovery unit, is proposed for the diagnosis of 

hypoglycemic episodes in T1DM patients. First, the diagnosis 

unit is used to determine hypoglycemic episodes in T1DM 

patients using the specified physiological parameters. Based 

on the collected TIDM patients’ data, a genetic algorithm, was 

developed which has a fitness function intended to optimize 

two goals: a) maximize the number of correctly diagnosed 

TIDM patients with hypoglycemic episodes during these 

episodes, and the number of TIDM patients in normal 

conditions diagnosed correctly in normal conditions; and b) 

minimize the number of TIDM patients with hypoglycemic 

episodes diagnosed wrongly under normal conditions, and the 

number of TIDM patients under normal conditions wrongly 



diagnosed with hypoglycemic episodes. Then, the knowledge 

discovery unit is used to extract a set of explicit rules, which 

describe the domains of physiological parameters for which 

hypoglycemic episodes occur according to the results 

produced by the diagnosis unit. The explicit rules were 

generated based on a data set generated by the diagnosis unit. 

The explicit rules are then validated by a set of testing data, 

and satisfactory results can also be found. The knowledge 

discovery system compensates for the limitation of neural 

networks in not providing explicit information.  

The performance of the proposed hypoglycemic episode 

diagnosis system is evaluated by using real T1DM patients’ 

data sets collected from Department of Health, Government of 

Western Australia, Australia. Results show that satisfactory 

diagnosis accuracy can be obtained by the hypoglycemic 

episode diagnosis system. Also, explicit knowledge can be 

extracted, thereby addressing the deficiency of traditional 

neural networks, which do not provide a clear understanding 

of how diagnosis is performed. 

II. DIAGNOSIS OF HYPOGLYCEMIC EPISODES 

Usual insulin preparations do not adequately mimic the 

normal patterns of endogenous insulin secretion, and so, 

episodes of hypoglycemia are common at night [19]. 

Therefore, diagnosis of hypoglycemic episodes is necessary 

for T1DM patients, especially at night. The blood glucose 

level of TIDM, y, can indicate whether the patients are 

hypoglycemic. It is significantly related to several 

physiological parameters, the three most significant of which 

have been identified as being: i) changes of heart rates, x1,; ii) 

corrected QT interval of electrocardiogram signal, x2,; and iii) 

rates of changes of corrected QT interval, x3. 

 

Figure 1 An illustration of the hypoglycemic episode diagnosis 

system 

Hypoglycemic episodes are those in which the patient’s 

blood glucose level is less than 3.33 mmol/l (60mg/dl) [8, 9]. 

In this paper, a hypoglycemic episode diagnosis system (shown 

in Figure 1) is proposed consisting of two main units: a) a 

diagnosis unit which is used to determine whether the patient is 

hypoglycemic based on the three most significant physiological 

parameters, x1, x2, and x3. It is trained by a genetic algorithm 

based on a set of patients’ data; and b) a knowledge discovery 

unit which is used to extract knowledge from the diagnosis unit. 

It is trained by a genetic algorithm based on a set of data 

generated by the diagnosis unit. This proposed hypoglycemic 

episode diagnosis system and its two main units are discussed 

in Section II.A and Section II.B respectively. 

A. Diagnosis unit 

The diagnosis unit is developed based on a three-layer feed-
forward neural network which is used to indicate whether or 
not the patient is hypoglycemic in relation to the patient’s three 
physiological parameters: rate of change of heart rate, x1, 
corrected QT interval of electrocardiogram signal, x2 and  rate 
of change of corrected QT interval, x3. It consists of an input 
layer including the three physiological parameters x1, x2 and x3 
which are fed in, and the output layer which produces the 
indication of hypoglycemia z = 0 or 1. The patient is in normal 
condition with z=0 if the glucose level y of the patient is higher 
than 3.3 mmol/l. Otherwise, they are in a hypoglycemic state 
with z=1 if the glucose level y of the patient is lower than 3.3 
mmol/l. The hidden layer links together the physiological 
parameters and the indication of hypoglycemia. They also 
allow for complex, nonlinear interactions between the three 
physiological parameters to produce the indication of 
hypoglycemia. The input-output relationship of the proposed 
three-layer neural network for the glucose level y is denoted as 
follows: 
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where nh denotes the number of the hidden nodes; wj, j=1, 2, …, 

nh, denotes the weight of the link between the j-th hidden node 

and the output; vij, i=1,2,3 and j=1, 2, …, hn , denotes the 

weight between the i-th input and the j-th hidden node; bj and b, 

denote the biases for the j-th hidden nodes and output nodes 

respectively; logsig(.) denotes the logarithmic sigmoid function: 

( )
1

log , .
1

sig
e α

α α
−

= ∈ℜ
+

  (2) 

To develop the neural network for the estimation of 

hypoglycemia, values of the neural network parameters (i.e. wj, 

vij, bj and b with i=1, 2, 3 and j=1, 2, …, nh) and the number of 

hidden-nodes (i.e. nh) used in the hidden layer need to be 

determined. These two settings affect not only the convergence 

of neural networks, but also the accuracy of the estimation of 

the neural network. Here, a genetic algorithm is used to 

determine the neural network parameters. The neural network 

architecture is 3- nh -1, denoted as 
knNNA , where nh  is the 

number of hidden nodes. First the neural network architecture, 

x2 

x1 

z=0 

z=1 

Hypoglycemia 

R1: If x11<x1≤x’11 and x12<x2≤x’12 and x13<x3≤x’13 then z=1 
   OR 

R2: If x21<x1≤x’21 and x22<x2≤x’22 and x23<x3≤x’23 then z=1 
   OR 

  :  :  : 
  :  :  : 

Rn: If xn1<x1≤x’n1 and xn2<x2≤x’n2 and xn3<x3≤x’n3 then z=1 
 

Normal 

x3 

Diagnosis 

unit 

Knowledge 

discovery 

unit 

y<3.3 

Patients’ 

data 



knNNA , is selected and then a neural network is constructed, 

according to the neural network architecture. After that, the 

neural network parameters (i.e.: wj, vij, bj and b with i=1, 2, 3 

and j=1, 2, …, nh) are searched by a genetic algorithm, and 

finally the trained error of the developed neural network is 

calculated. 

The genetic algorithm first generates a population of 

strings, randomly represented by the parameters of the neural 

network with an architecture 
knNNA . The neural network’s 

parameters, , ,  and 
j ij j

w v b b , are represented by the 

chromosomes of the genetic algorithms, where 

1 , , , 1j ij jw v b b− ≥ ≥ , i=1,2,3  and  j=1,2,…, nh. The length of 

the strings is equal to the total number of neural network 

parameters, which is 3 1 5 1
h h h h

n n n n+ + + = + . Then the 

fitness of each string is evaluated by a fitness function which 

is defined as: 

( )1fitness λς λ κ= + −    (3) 

where ς and κ are the sensitivity and the specificity of the 

T1DM problem represented by the string respectively, and λ ∈ 

[0 1] is a constant value to control the importance of the 

sensitivity and specificity. The objective of the genetic 

algorithm is to maximize both ς and κ, which are defined as 

follows: 
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NTP is number of true positives which imply those people 

correctly diagnosed as being sick; NFN is number of false 

negatives which imply the sick people wrongly diagnosed as 

healthy; NFP is the number of false positives which imply 

healthy people wrongly diagnosed as sick; and NTN is the 

number of true negatives which imply healthy people correctly 

diagnosed as healthy [2].  

B. Knowledge discovery unit 

It is difficult to extract explicit information from the diagnosis 

unit based solely on (1) which has an implicit structure, even 

if the hypoglycemia z of a T1DM can be determined based on 

the three physiological parameters, x1, x2 and x3 by using the 

diagnosis unit discussed in Section II.A. A methodological 

approach based on a knowledge discovery unit developed by a 

genetic algorithm is used to extract explicit rules from the 

diagnosis unit. 

Based on the diagnosis unit, the hypoglycemia z of a 

T1DM can be determined based on the three physiological 

parameters, x1, x2 and x3, where 
1

ℜ , 
2

ℜ , …. and 
n

ℜ  (shown 

in Figure 2) are the domains regarding the three physiological 

parameters, x1, x2 and x3 which produce hypoglycemia in a 

T1DM patient. Based on these domains, n rules in the 

following form can be extracted. 

 

Figure 2 An illustration of the extract rules represent the domain of 

the physiological parameters 

In this section, a knowledge discovery unit is proposed to 

extract rules from the diagnosis unit. First, a set of data 

regarding the relationship between the three physiological 

parameters and hypoglycemia is generated by the diagnosis 

unit. Then, the rules are developed by the genetic algorithm, in 

order to form a conjunction hypoglycemia with the true 

recommended domains of the three physiological parameters. 

Based on the knowledge discovery system, informative rules 

involving a domain of three physiological parameters with 

respect to the hypoglycemia can be extracted from the data 

sets. The rules generated can be represented as follows: 
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where the rules R1, R2, …. and Rn represent the domains 
1

ℜ , 

2
ℜ , …. and 

n
ℜ  of the three physiological parameters in 

Figure 2 respectively. The pseudocode of the genetic 

algorithm, which is used to search the parameters (i.e. X11, 

X11’, X12, X12’, X13, X13’, X21, X21’, X22, X22’, X23, X23’, … , 

Xn1, Xn1’, Xn2, Xn2’, Xn3, Xn3’) on the n rules  (i.e. R1, R2, …. 

and Rn), is shown as follows: 
n=1; /* where n is the number of rules 

{ 

 1n n= +  

 Initialize Ω(t)=[α 1(t), α2(t),… αPOP(t)] 

 Evaluate all αk(t) according to the fitness function defined in 

equation (3) 

 while (t<Tgen) do /* Tgen is the predefined number of 

generations 

 { 

          Parent Selection Ω(t+1) =[α1(t), α2(t), …αPOP(t)] 

         Crossover Ω(t+1) 

         Mutation Ω(t+1) 

         Evaluate all αk(t+1) according to the fitness function  

                defined in equation (3) 

         Reinsert Ω(t) by Ω(t+1) 

         t=t+1 

              } 

         
1ℜ         

2ℜ              
3ℜ                        …           

n
ℜ  

x1, x2 ,x3 

1 

0 

z 



 Select the best αk(t+1) among all strings to be the rules 

extracted from the neural network based classification unit 

} While (the accuracy of the rules is satisfactory)  

 */ The algorithm terminates if a string which ς>0.75 and 

κ>0.5  

 */ can achieve and is found.  

In the genetic algorithm, n is the number of rules extracted 

from the neural network. The larger n is, the more likely that 

the data generated by the neural network will be covered by 

the rules, and better accuracy is more likely to be achieved. 

However, a longer computational time is required to search for 

the optimal parameters of the rules. Therefore, the value of n 

is initially set at 1. If no satisfied rule can be found by the 

genetic algorithm, n is incremented by 1 before the next 

genetic algorithm run. With an increased n, a better accuracy 

rate is more likely to be achieved. 

The genetic algorithm first creates a random initial 

population Ω(t) of strings [α1(t), α2(t),… αPOP(t)] with t=0, 

while POP is the number of strings of the population. The 

string αi(t) is represented as the parameters of the n rules and 

can be denoted by: 

αi(t) = 

{ ( )11
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jk
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jk
X t  are randomly generated within the 

operation domains of three physiological parameters. Then 

each string is evaluated by the fitness function based on (3) 

that indicates the accuracy of the rules discovered. The 

objective of the genetic algorithm is to maximize the accuracy 

of the rules discovered by searching the values of the 

parameters of the rules. After assigning an accuracy score to 

each string, the string selection process uses each string score 

to determine the selection of potential strings for the next 

generation. The roulette-wheel approach, which is one of the 

most common selection methods, is used to select the strings, 

α1(t), α2(t), …αPOP(t), for the next evolutionary population 

Ω(t+1). Then, evolution of the strings is performed by 

crossover and mutation.  

The fitness function of the rule discovery system is used to 

evaluate how well a rule fits the data samples generated by the 

neural network based classification unit. Rules need to be 

evaluated during the training process in order to establish 

points of reference for the rule discovery system. The fitness 

function defined in (3) which consider the data sets as 

correctly classified, lift to be classified, and the wrongly 

classified ones are discovered. With the higher numbers of NTP 

and NTN, and the lower number of NFP and NFN, a better rule is 

generated. For a comprehensive discussion about rule-quality 

measures, the reader can refer to [11]. An illustration of a rule 

generated by the rule discovery system is shown as follows: 

1 2 3
if 1.1 1.4 and 0.2 0.6 and 0.3 0.1

       then 1

x x x

z

≤ ≤ ≤ ≤ − ≤ ≤ −

=
 

      (6) 

where ( )11
 1.10,X t =  ( )11 ' 1.40 ,X t =  ( )12

 0.20,X t =  

( )12 ' 0.60 ,X t = ( )13
 0.30,X t = −  and ( )13 ' -0.10 ,X t = are the 

values from the string of the knowledge discovery unit. To 

evaluate the fitness of the rule, 4 training data sets as shown in 

Table 1 are used. Classifications of the training data sets are 

shown in the last column of Table 1. 

• The 1-st data set is classified as NTP class, since z=1, and 

also all 20.11 =x , 5.02 =x  and 2.03 −=x  are within the 

ranges  40.11.10  1 ≤≤ x , 6.00.2 2 ≤≤ x  and 

1.00.3 3 −≤≤− x  respectively. Therefore, the data set is 

covered by the rule and is correctly classified; 

• The 2-nd data set is classified as NTN class, since z=0, and 

both 1.02 =x  and 4.03 −=x  are not within the ranges 

6.00.2 2 ≤≤ x and 1.00.3- 3 −≤≤ x  respectively. This 

means the data set is not covered by the rule but differs 

from the target class; 

• The 3-rd data set is classified as NFN class, since z=0, and 

also all 30.11 =x , 4.02 =x  and 25.03 −=x  are within 

the ranges  40.11.10  1 ≤≤ x , 6.00.2 2 ≤≤ x  and 

1.00.3- 3 −≤≤ x  respectively. This means the sample is 

not covered by the rule but matches the rule;  

• The 4-th data set is classified as NFP class, as z=1, but all 

05.11 =x , 1.02 =x  and 2.03 −=x  are within the ranges, 

 4.11.10  1 ≤≤ x , 6.00.2 2 ≤≤ x and 1.00.3- 3 −≤≤ x  

respectively. Therefore, the data set is not covered by the 

rule but is wrongly classified as belonging to the target 

class. 

In this example, the number of data sets in all NFN, NFP, 

NTP and NTN classes is 1. Thus, based on the fitness function 

(3), the score of accuracy of rule (6) is calculated as: 

( )1

               0.55 0.5 0.45 0.5 0.5

fitness λς λ κ= + −

= × + × =
 

 

Table 1 Training data for rule (6) 

Data 

sets 

x1 x2 x3 Z Class 

1
st
  1.20 0.5 -0.2 1 Ntp 

2
nd

  1.15 0.1 -0.4 0 Ntn 

3
rd

  1.30 0.4 -0.25 0 Nfn 

4
th

  1.05 0.1 -0.2 1 Nfp 
 

After assigning the score of accuracy to each string, the 

string selection process uses the score of each string to 

determine the selection of potential strings for the next 

generation. The approach of roulette-wheel, which is one of 

the most common selection methods, is proposed to select the 

strings, α1(t), α2(t), …αPOP(t), to the population Ω(t+1).  

Then, evolution of the strings is performed by crossover 

and mutation. Intermediate crossover [14], a common 

crossover operation for real encoding representation, is used in 

the genetic algorithm. Then, a mutation operation is carried 

out by randomly changing one or more parameter values in the 

selected string. The genetic algorithm stops when the best 



string matches the accuracy specified by the medical doctors. 

Otherwise, the number of rules represented by the strings is 

incremented by 1, and the genetic algorithm is restarted with 

new population strings in which the number of rules 

represented is incremented. The process continues until the 

accuracy of a set of rules can match the accuracy specified by 

the doctors. 

It is necessary to mention that a sufficient amount of data is 

required to be generated by the diagnosis unit in order for the 

knowledge discovery unit to create rules for representing the 

characteristics of the diagnosis unit. If a small amount of data 

is used for creating the rule by the knowledge discovery unit, a 

misleading rule, which applies to only some of the 

characteristics of the diagnosis unit, is likely to be created. 

Such a rule would under-fit the characteristics of the diagnosis 

unit, producing a large discrepancy between the characteristics 

of the diagnosis unit and the rule created by the knowledge 

discovery unit. A satisfactory amount of data must be 

generated by the diagnosis unit, in order for the knowledge 

discovery unit to create a rule that fits the characteristics of the 

diagnosis unit. This would produce only a small discrepancy 

between the diagnosis unit and the rule created by knowledge 

discovery unit. To ensure the quality of the rules generated by 

the knowledge discovery unit is satisfactory, another set of 

real data is used for the validation. The rules created are 

considered to be satisfactory if the validation is satisfactory. If 

unsatisfactory validation is found with the rule set, the 

performance of the rule set could be improved by generating a  

larger amount of data using the diagnosis unit. 

III. RESULTS AND DISCUSSION 

A. T1DM’s data 

The data was collected from sixteen T1DM patients ranging in 

age between 14.6±1.5 years, who were selected to participate 

in the 10-hour overnight hypoglycemia study at the Princess 

Margaret Hospital for Children in Western Australia, Australia. 

Each T1DM patient was monitored overnight for the natural 

occurrence of nocturnal hypoglycemia. The three required 

physiological parameters, rates of changes of heart rates, x1, 

corrected QT interval of electrocardiogram signal, x2, and 

rates of changes of corrected QT interval, x3, were measured; 

in addition, the actual blood glucose levels, y, were measured 

by a Yellow Spring Instrument. The actual blood glucose 

profiles for the 16 T1DM children are shown in Figure 3. 

The responses of the sixteen T1DM patients exhibited 

significant changes during the hypoglycemia phase against the 

non-hypoglycemia phase. The sampling period was around 5 

minutes and 35-40 data were collected from each patient. Three 

hundred and twenty (320) training data sets regarding y, x1, x2 

and x3 were used for developing the proposed hypoglycemic 

episode diagnosis system, and 100 testing data sets were used 

for validation purposes. 

B. Results 

The following parameter settings suggested by [17] were 

implemented on the genetic algorithm to train the diagnosis 

unit discussed in Section II.A: crossover rate = 0.8; mutation 

rate = ( )1/ 5 1
h

n + , where 5 1
h

n +  is the number of variables of 

a string and 
h

n  is the number of hidden nodes on the neural 

network; number of generations = 1000; and population size = 

500. The work described above was implemented using 

Matlab programming software. As the genetic algorithm is a 

stochastic algorithm, different neural networks could be found 

with different runs. Therefore, the genetic algorithm was run 

for 30 times, and the best result among the 30 runs was 

recorded. The sensitivity and the specificity of the optimized 

neural network with ten hidden nodes, which was found by the 

genetic algorithm with the best mean fitness, were 0.7930 and 

0.6053 respectively. The results are considered to be 

satisfactory, as the sensitivity is greater than 0.75 and the 

specificity is greater than 0.5. Therefore, the diagnosis unit 

can achieve satisfactory results; hence, patients can be 

diagnosed correctly if they experience hypoglycemia. 
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Figure 3 Actual blood glucose level profiles in the 16 T1DM 

patients 

The knowledge discovery unit discussed in Section II.B 

was implemented using Matlab programming software. The 

following parameter settings were used: crossover rate =0.8; 

and mutation rate = 1/(6 × NR), where the number of variables 

of the string is 6 × NR, and NR is the number of rules extracted 

by the knowledge discovery system. Based on the 500 data 

sets regarding to the three physiological parameters and the 

hypoglycemia generated by the diagnosis unit, the genetic 

algorithm was run 30 times. The best rule set among the 30 

runs was extracted as follows: 

 
If 1.0021 <x1<= 1.2534  &  -0.6504 <x2<= 0.3041 &  0.0362 

<x3<= 0.1112  => 0 

Or If 1.0370 <x1<= 1.0826  &  -0.1322 <x2<=  0.3351 &  -

0.1066 <x3<=  0.0244  => 0 

Or If 0.9416 <x1<=1.0768   &   -0.0727 <x2<=  0.2059 & -

0.0083 <x3<=  -0.0818 => 0 

Or If 1.0153 <x1<= 1.1753  &   -0.1374 <x2<=  0.5327 &  

0.0390 <x3<=   0.0740  => 0 

Or If 1.0740 <x1<= 1.1627  &    0.0717<x2<=  0.2226 &  -

0.0219 <x3<=  -0.2675  => 0 



Or If 0.9846 <x1<= 1.0341  &   -0.5341 <x2<= -0.7819 &  

0.0164 <x3<=  0.0546   => 0 

Or If 1.0679 <x1<=  1.1259  &   -0.5876 <x2<= 0.3072  & -

0.1534 <x3<=  0.0051  => 0 

Or If 1.0807  <x1<= 1.0862  &   -0.0942 <x2<= -0.1308 & -

0.1377 <x3<=   0.0360 => 0 

Or If 1.0226  <x1<= 1.1891  &   -0.2558 <x2<=  0.2251 & -

0.1860 <x3<=   0.0138 => 0 

Or If 1.1694 <x1<= 1.1731   &   -0.1051 <x2<=  -0.0349 &-

0.0468 <x3<=  -0.0085  => 0 

Or If 1.1229 <x1<=  1.2217  &    0.0821 <x2<=   0.2235 & -

0.0714 <x3<=   0.1527  => 0 

Or If 1.1555 <x1<= 1.1565   &    0.072 <x2<=    0.0770  &  -

0.1939 <x3<=   0.0817  => 0 

Or If 0.9406  <x1<=  1.3289 &   -0.0839 <x2<=  0.2479  &  -

0.0752 <x3<=   0.0763  => 0 

 

The sensitivity for the rule set was found to be 0.7047 and 

the specificity for this was 0.5427, when the data generated by 

the diagnosis unit was used as the inputs of the knowledge 

discovery unit. To validate the developed rule set, the 

independent 100 testing data, which were the actual measured 

data of the T1DM patients, were used. The validated sensitivity 

and the specificity were found to be 0.7911 and 0.5201 

respectively which are larger than the specified ones of 0.75 

and 0.5. Therefore, a satisfactory rule set with satisfactory 

sensitivity and specificity can be created by the knowledge 

discovery system. Based on the satisfactory rule set, knowledge 

can be extracted from the diagnosis unit which is structured in 

a black-box neural network. 

IV. CONCLUSION 

In this paper, a hypoglycemic episode diagnosis system is 

developed to determine the presence of hypoglycemic 

episodes based on the TIDM patients’ physiological 

parameters, rate of change of heart rate, corrected QT interval 

of electrocardiogram signal, and rate of change of corrected 

QT interval. It consists of two units: a) a diagnosis unit is used 

to perform diagnosis of hypoglycemic episodes in T1DM 

patients; and b) a knowledge discovery unit is used to generate 

a set of rules, which describe the domains of physiological 

parameters for which hypoglycemic episodes occur. 

The hypoglycemic episode diagnosis system was 

developed based on 420 T1DM patients’ data sets which were 

collected from 16 T1DM patients by using the genetic 

algorithm. Three hundred and twenty (320) data sets were 

used to develop the hypoglycemic episode diagnosis system 

and 100 data sets were used to validate its performance. 

Results show that the sensitivity and specificity were found to 

be 79.30% and 60.53% respectively which are considered 

reasonable. Explicit rules can be extracted from the knowledge 

discovery unit based on the proposed genetic algorithm. It is 

found that the extracted rules can achieve sensitivity of 

79.11% and specificity of 52.01%, both of which are 

satisfactory. The hypoglycemic episode diagnosis system 

compensates for the limitations of the traditional neural 

network approaches which cannot generate implicit 

information. 
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