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Abstract 

The exceptionally preserved Devonian reef complexes of the Canning Basin, 

Western Australia, provide an excellent opportunity for testing the utility of different 

chronostratigraphic methods. In order to construct a robust temporal framework for 

the reef system, an Australian Research Council Linkage Project (LP0883812) 

utilised an integrated approach involving sequence stratigraphy, 

magnetostratigraphy, chemostratigraphy and biostratigraphy. This thesis contributed 

the biostratigraphic component to this larger chronostratigraphic project, as well as 

investigated the novel application of marine microvertebrates in chemostratigraphy.  

Conodont biostratigraphy provided the finest temporal resolution of slope facies but 

was less successful in reefal platform facies due to a paucity of biostratigraphically 

useful conodonts. Microvertebrate taxa offered a potential solution for correlation of 

reefal platform and marginal environments as they occurred where other more 

traditional biostratigraphical taxa, such as palynomorphs, corals, brachiopods, 

ammonoids and conodonts, were absent or long ranging.   

A rich microvertebrate fauna was recovered from measured sections of outcropping 

Frasnian slope and Famennian to Tournaisian ramp facies along the Lennard Shelf, 

northern Canning Basin. Thelodont (jawless fish) scales were recorded from both 

Late Devonian strata, with the Famennian aged scales (Late marginifera CZ) 

representing the youngest thelodont scales discovered to date. The recovery of 

Frasnian phoebodont shark teeth revealed previously undocumented morphological 

variation in Phoebodus bifurcatus and Phoebodus latus. In addition, revised 

phoebodont age ranges in the Canning Basin are now more comparable to those of 

the global phoebodont zonation. The discovery of a new species, Diademodus 
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dominicus sp. nov., provides the first evidence of this genus in Gondwana. A total of 

fourteen chondrichthyan species, twelve of which had not previously been 

documented in the Canning Basin, were identified from the Famennian-aged Bugle 

Gap Limestone and Virgin Hills Formation. In addition, a diverse shark fauna, 

including teeth from Ageleodus sp. Thrinacodus ferox, Cladodus thomasi, 

Protacrodus aequalis and Protacrodus sp., are described from early Tournaisian 

ramp facies of the Laurel Formation. The presence of Thrinacodus ferox and 

Protacrodus aequalis, in addition to the absence of Thrinacodus biscuspidatus, 

indicates an age range of sulcata to duplicata Conodont Zones for the lower Laurel 

Formation. Prior to this work, only a general Tournaisian Age, based on conodonts, 

could be attributed to this formation.  

Microvertebrate fossils were analysed to determine if the preserved δ18O signatures 

were viable proxies in palaeoclimatic reconstructions and chemostratigraphic 

correlation. Gas isotope ratio mass spectrometry, which involved testing 

homogenised tissues, indicated δ18Omicrovertebrate signatures were typically depleted by 

2-4‰ when compared to conodont apatite, which is considered to record primary O-

isotope ratios. Secondary ion mass spectrometry enabled targeted in-situ analyses of 

enamel, dentine and bone microvertebrate tissues. Hypermineralised microvertebrate 

tissues (enamel, acrodin, ganoine) were identified as consistently hosting δ18O 

signatures comparable to associated conodont elements. In addition, results indicate 

that less mineralised tissues, such as dentine and bone, are more susceptible to 

alteration of the constituent phosphate and should be avoided in O-isotope analysis. 

The fidelity of O-isotopes in microvertebrate bioapatite indicates that these common, 

environmentally ubiquitous Phanerozoic microfossils have the potential to act as a 
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substitute for other oxygen-isotope media which may be facies-controlled or affected 

by diagenesis (e.g. bulk-rock or fossil carbonates).  

The Famennian chondrichthyan biofacies model was found applicable to both Late 

Devonian and Early Carboniferous strata. Although the Early Carboniferous saw an 

increase in the diversity of sharks and the niche space they occupied, those sharks 

with a crushing dentitions showed continuous occupation of the shallow, near shore 

environments from the Late Devonian to the Early Carboniferous.  

Late Devonian microvertebrate fossils, described herein, indicate a significant 

cosmopolitan fauna existed within the Canning Basin. Cosmopolitan phoebodont 

species, present along the northern margins of Gondwana and throughout Laurussia, 

were recorded in Frasnian sediments of the Lennard Shelf. In the Famennian, taxa 

such as Thrinacodus tranquillus, Protacrodus serra, Deihim mansureae and 

Lissodus lusavorichi indicate faunal relationships with northern Gondwana and to a 

lesser extent, the South China terrane.  By the Carboniferous, the shallow water 

chondrichthyan faunas previously shared with the South China and the Indochina 

regions appear to have decreased, with only pelagic taxa in common. The data from 

the microvertebrates supports global reconstructions including northward separation 

of South China from Gondwana. 

The results indicate microvertebrate fossils offer not only a powerful biostratigraphic 

tool but may also provide additional palaeoecological and palaeoenvironmental 

information in addition to a potential proxy for use in chemostratigraphy. The 

utilisation of microvertebrates in biostratigraphy and chemostratigraphy will enhance 

the successfulness of integrated chronostratigraphic approaches, particularly where 

correlation of restricted facies is involved. 
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1.0 Introduction 

1.1 Background  

Chronostratigraphy is the branch of geology that studies the rock record in 

relation to time and integrates event or sequence stratigraphy, magnetostratigraphy, 

biostratigraphy and chemostratigraphy to determine the temporal context of 

geological events. The main aim of these methods is to correlate temporally 

equivalent strata. A successful ARC Linkage Project “Chronostratigraphic 

framework for the Devonian Canning Basin - a multidisciplinary study of 

environmental change” (LP0883812) aimed to take an integrated approach to 

establish a high-resolution chronostratigraphic framework for the Middle to Upper 

Devonian Canning Basin reef systems, where extensive carbonate platforms provide 

one of the best exposed and least deformed examples of ancient reef systems in the 

world (Playford et al., 2009). Despite nearly 350 km of reef outcrop along the 

Lennard Shelf, exposure is discontinuous and correlation between different sections 

and facies has proved difficult (Playford, 1976; Playford et al., 2009, Playton et al., 

2013). In order to improve chronostratigraphic resolution for the Canning Basin, the 

Linkage Project (LP0883812) aimed to utilise magnetostratigraphy (see Appendix 1) 

for the first time in the Lennard Shelf, refine sequence stratigraphy (Appendix 2) for 

the Devonian, establish enhanced chemostratigraphy (see Appendix 3) and develops 

microvertebrate biostratigraphy from the Late Devonian to the Early Carboniferous. 

Conodont biostratigraphy provides the correlative control for the sequence 

stratigraphic, magnetostratigraphic and chemostratigraphic methods in addition to 

providing the temporal ranges for microvertebrate taxa. The aim is to incorporate 
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data from Western Australia into global schemes and improve global 

chronostratigraphy for this time interval. 

 

1.1.1 Microvertebrate Biostratigraphy 

The main focus of this thesis is to determine the utility of microvertebrates 

from the Canning Basin, Western Australia in biostratigraphy and 

chemostratigraphy. Biostratigraphy is an effective tool for relative dating and 

chronostratigraphic correlation. Conodonts and ammonoids are well studied in the 

Palaeozoic and have proved useful in determining depositional ages in the Canning 

Reef slope and basinal facies (Glenister and Klapper, 1966, Druce, 1976; Becker, 

2000; Becker et al., 1993; Klapper, 2007; summaries in Playford et al., 2009, 

appendix 1, 2). Nevertheless, conodont and ammonoid taxa have been of limited use 

in resolving time intervals from sub-surface samples and restricted backreef and 

lagoonal facies (Seddon, 1970; Nicoll and Druce, 1979; Becker et al., 1991). 

Trinajstic and George (2009) recovered co-occurring conodonts and 

chondrichthyans at Horse Spring (Virgin Hills Formation) and noted the potential for 

chondrichthyans to be useful for dating more restricted depositional environments in 

Western Australia where conodonts were absent or long ranging. Chondrichthyan 

biozones have been determined for the Frasnian and Famennian based on the teeth of 

Phoebodont sharks (Ginter, 2000). However, a lack of data has meant that these 

microvertebrate biozones, with the exception of the Gneudna and Virgin Hills 

formations (Trinajstic and George, 2009), have not been applied in Western 

Australia. Microvertebrates however, have been utilised for both outcrop and 

subsurface correlation in Ordovician to Early Devonian strata (see Trinajstic et al., 
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2014; Chapter 2 herein). The Frasnian macrovertebrate fauna of the Canning Basin is 

well described (see Long and Trinajstic, 2010 for a review), in comparison to 

vertebrate faunas from earlier and later Devonian strata (Long and Trinajstic, 2000; 

Trinajstic et al., 2014). Despite the use of microvertebrates such as thelodonts 

(Trinajstic and George, 2009; Hairapetian et al., 2015); acanthodians (Burrow et al., 

2012) and placoderm scales (Trinajstic, 1999) for correlation of Frasnian strata 

across the northern margins of Gondwana, the significant endemic component of the 

Canning Basin macrofauna (Long and Trinajstic, 2010) limits their use to more 

regional correlation in north-western Australia. 

In eastern Australia vertebrate biozonation for the Palaeozoic is more finely 

resolved, covering both marine and non-marine strata (Young, 1995; Young and 

Turner, 2000; Turner and Burrow, 2000). These zonations have culminated from 

extensive studies of both thelodont and acanthodian scales as well as the teeth and 

scales of chondrichthyes from over 20 Ages (e.g. Turner, 1986, 1991; Turner and 

Long, 1987; De Pomeroy, 1996; Turner and Young 1997; Young, 1997; Burrow et 

al., 1998; review in Burrow et al., 2010).  These works have led to a better 

understanding of faunal distribution and biogeography and highlighted major faunal 

and temporal differences between eastern and north-western Australia. Current data 

suggest that the Western Australian fauna is more similar to that occurring along the 

northern Gondwanan margin than to that in eastern Australia and Antarctica (Burrow 

et al., 2010; Young et al., 2000; Trinajstic et al., 2014, Hairapetian et al., 2015). This 

premise; however, requires further investigation as it is possible that a lack of data 

from Western Australian sites has influenced the interpretation of these faunal 

relationships. 
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1.1.2 Faunal turnover in the Late Devonian and Early Carboniferous 

The Givetian to end Famennian represented a period of continuous reef 

building in the Canning Basin (Playford and Lowry, 1966; Southgate et al., 1993, 

Wood, 2000). However, the nature of the reefs changed from metazoan-microbial 

dominated (Givetian-Frasnian) to microbial-dominated build-ups in the Famennian, 

following the Frasnian-Famennian (F-F) extinction event, recognized as one of the 

five greatest biotic crises of the Phanerozoic (Playford et al., 1984; Sepkoski et al., 

1996; George, 1999; Wood, 2000; House, 2002; Stephens and Sumner, 2003). 

Although both the Late Devonian extinction events resulted in numerous species 

level extinctions in the marine biosphere, the taxa affected varied, with the Frasnian-

Famennian event mostly affecting marine invertebrate species (McGhee, 1982; 

Copper, 1986; Sepkoski, 1996; Hallam, 1989), and the Late Famennian Hangenberg 

event, which coincided with the cessation of reef building in the Canning Basin 

(Playford et al., 2009), affecting primarily vertebrate groups (Walliser, 1996; Sallan 

and Coates, 2010; Blieck et al., 2010).  

Both conodont (e.g. Klapper, 2007) and ammonoid (e.g. House, 1973; 

Becker, 2001; Becker and House, 2009) faunas show the same patterns of extinction 

in the Canning Basin as seen in Europe, North America and North Africa. More 

specifically, a decrease in species diversity is observed around the F-F boundary at 

Conodont Zone (CZ) 13a, followed by a recovery phase during CZ 13b and a further 

decrease in diversity at CZ 13c (Becker, 2000; McNamara and Feist, 2006; Klapper, 

2007; Feist and McNamara, 2007, 2013; McNamara et al., 2009; Girard et al., 2010). 

These decreases in faunal diversity correspond to the lower and upper Kellwasser 

events. Sallan and Coates (2010) recognised key global changes in vertebrate faunas 

from the Late Devonian to Early Carboniferous. These included a decrease in the 
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diversity of agnathans and placoderms during the Famennian and final disappearance 

of the placoderms at the end Devonian. The chondrichthyians, sarcopterygians and 

tetrapod groups in contrast, saw increased radiation in the Carboniferous. Analysing 

these recognised events in the Canning Basin is difficult as only limited data is 

available on the vertebrate fauna that inhabited the Famennian to Tournaisian ramp 

facies and Famennian fore reef facies of the Canning Basin.  

 

1.1.3 Recognising major geological boundaries    

The major biotic crises that occurred around the Frasnian-Famennian 

boundary are often associated with the deposition of anoxic black shale facies 

(Hallam and Wignall, 1997; Bond et al., 2004; Becker and Kirchgasser, 2007).  

These same facies however, are not present in either outcrop or subsurface in the 

Canning Basin (Becker et al., 1991; George et al., 2014). It has been hypothesized 

that local tectonic activity may be responsible for the lack of these anoxic facies 

(Chow et al., 2004). Despite the lack of characteristic lithological changes, carbon 

isotope stratigraphy has identified excursions associated with the F-F boundary in 

the Canning Basin (Stephens and Sumner, 2003; George et al., 2014; Hillbun et al., 

2015) that correspond to globally recognised δ13C excursions. Correlative δ18O 

global excursions are also recorded across the F-F boundary (e.g. Joachimski and 

Buggisch, 2002). More data are needed to determine if the δ18O excursions are 

present across extinction boundaries in the Canning Basin as only minimal data 

exists surrounding these boundaries (Playford et al., 1989; Talent et al., 1993).  

 Due to its resistance to post-mortem modification, bioapatite has become a 

preferred medium for eliciting Palaeozoic O-isotope records (Joachimski et al., 2009; 

2004). The oxygen isotope ratios of conodont fluorohydroxyapatite have been used 
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for palaeoenvironmental reconstructions and the identification of major shifts in sea 

water temperature and chemistry associated with key geological boundaries (e.g. 

Trotter et al., 2008; Sun et al., 2012). However, the general lack of conodont fossils 

in restricted facies of the Canning Basin limits their practical use in O-isotope 

analysis to slope and basinal facies. It has been suggested that microvertebrate 

remains may be used as a substitute for conodonts in chemostratigraphy (Žigaitė et 

al., 2009; 2010; Barham et al., 2012). Analyses of Palaeozoic marine vertebrate 

fossils however, have often yielded δ18O values depleted in 18O when compared to 

the δ18O values of associated conodont elements (Joachimski et al., 2004). One of 

the contributing factors in this depletion may lie in the analytical technique 

employed. Teeth and scales from fossil gnathostomes are typically heterogeneous, 

comprising tissues that are mineralised to different degrees. Traditionally, 

heterogeneous tissues were homogenized prior to analysis as a single entity via gas 

isotope ratio mass spectrometry (GIRMS). The typical depletion in 18O using this 

method, likely results from analysing incorporated dentine and/or bone which is 

more susceptibility of diagenetic alteration due to its less mineralised tissues. Tissue 

specific analysis, using secondary ion mass spectrometry (SIMS), on modern shark 

teeth has determined significant variation in δ18O values between tissues (Žigaitė and 

Whitehouse, 2014). Crucially however, the data obtained from hypermineralised 

tissue revealed that enamel hosted δ18O values are reflective of the water mass in 

which it precipitated. Using SIMS on Palaeozoic vertebrate elements to elicit O-

isotope signatures has yet to be performed, but may prove useful as a 

chemostratigraphic tool across open, shallow, restricted and fresh- water facies. In 

addition, if primary O-isotopes signals can be identified in vertebrate fossils, this 
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technique has the ability to be applied on fossil vertebrate material as old as the 

Ordovician.  

 

1.1.4 Objectives 

1. Define a high-resolution microvertebrate chronology between platform and 

basin within the Canning Basin for late Givetian through Early Carboniferous 

strata, and correlate this to known global records for intercontinental 

correlation.  

2. Utilise microvertebrate fossil groups to examine the extent of faunal overturn at 

key horizons during, and at the end of, the Late Devonian within a robust 

sedimentological-stratigraphic framework independently dated by conodonts. 

3. Utilise geochemical signatures (notably oxygen isotopes) in conodonts and 

microvertebrate as independent indicators of environmental change and potential 

proxies for chemical stratigraphy; in order to approximate palaeo- sea-surface 

temperature and hydrology fluctuations that are not expressed in the 

sedimentological record of the Canning Basin.  

 

1.2 Materials and methods 

 To avoid repetition in this thesis, details of the geological settings studied are 

presented as part of the published papers which comprise subsequent chapters and 

Appendices 1, 2 and 3. The following section presents a more detailed methodology 

than appropriate for submission in published papers. 

 

1.2.1 Sample origin and stratigraphic techniques 
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 Sections at Horse Spring, Casey Falls and South Oscar Range were initially 

measured and sampled by Ted Playton and Eric Tohver in 2008. In 2012 sampling 

for chemo- and magnetostratigraphic analysis as well as conodont fossils was 

undertaken by Ted Playton, Kelly Hillbun, Eric Tohver, Jerone Hansma and Kate 

Trinajstic and Roger Hocking. Subsequent remeasuring of the sections was 

undertaken in 2013 by Kate Trinajstic and myself, which including photographing 

and structural measurements of the sections, in additional to further bulk rock 

sampling (20 kg) for conodont and microvertebrate biostratigraphy. Half of each 

sample collected was curated at the Geological Survey of Western Australia as a 

reference. Samples used for the extraction of Givetian macro- and microvertebrate 

remains were collected in 2012 by Peter Haines and Kate Trinajstic from a site near 

Cadjebut Mine. Microvertebrate fossils from the Fairfield Group were sourced from 

unprocessed rocks collected in 2011 and 2013.  

 

1.2.2 Extraction of microvertebrates 

 The extraction of microfossils from the rock matrix followed the 

methodology of Jeppsson et al. (1999). Carbonate rock samples weighing between 

five and 20 kg were each submerged in a 10% buffered acetic acid solution at 

Macquarie and Curtin universities. At 48 hour intervals rocks and microfossil 

residues were removed from acid and rinsed in water. Rocks and large fragments 

were returned to acid and the process repeated. If macrovertebrate remains were 

exposed following digestion, rocks were thoroughly rinsed in water and left to dry. 

Cyanoacrelate was then used to coat, support and protect the remains. Once dry the 

material was resubmerged in the acetic acid solution. Vertebrate remains used for 

isotopic analysis were not coated in any substance. 



   

9 
 

 Residues resulting from disaggregation of the rock were either separated 

using a heavy liquid fractionation (Macquarie University) method or sieved (0.125 

mm sieve; Curtin University) before being left to dry at room temperature (~24° 

Celsius). The residues were placed in picking trays and investigated under a Nikon 

stereomicroscope.  A fine (No. 00), moistened paintbrush was used to isolate 

microvertebrate remains and transfer them to cavity slides. 

 For SEM imaging, specimens were mounted on adhesive carbon tape, which 

was fixed to 10 mm diameter aluminium stubs. Specimens photographed using a 

Zeiss Evo 40XVP SEM at the Centre for Materials Research at Curtin University 

were coated with 5 µm of platinum.  Delicate specimens were left uncoated and 

imaged using a Hitachi TM-3030 desktop SEM at Applied Geology at Curtin 

University. Specimens were subject to variable pressures and accelerating voltages 

ranging from 5-15 kV. Larger fossil specimens were photographed using a Nikon 

D7100 with a Tokina 100 mm macro lense. 

 Microvertebrate remains described herein were placed within cavity slides 

and fixed to the base using methylcellulose. Larger specimens were stored in vials 

lined in tissue paper. Specimens were registered in the collections at the Western 

Australian Museum (WAM). 

 

1.2.3 Description of microvertebrates and biostratigraphic control 

  Classification of vertebrate remains was based on either one or a combination 

of: comparison to type material; comparison to registered museum specimens; 

previously determined character states and published diagnosis (Turner, 1991; 

Goujet and Young, 1995; Lund and Grogan, 1997; Grogan et al., 2012). If precise 

taxonomic determination to species rank was not possible, open nomenclature to the 
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family and/or genus level was employed. Descriptive terminology for thelodont taxa 

followed that of Märss and Ritchie (1998), Märss et al., (2007) and Žigaitė and 

Goujet (2012), while those of Cappetta et al. (1993) and Ginter et al., (2010) were 

used in the description of chondrichthyan fossils.  

  Age constraints for Frasnian and Fmaennian microvertebrate fossils were 

provided by associated conodont elements. For the Frasnian, the 13-division 

Montagne Noir (MN) Conodont Zonation (CZ) (Klapper, 1989, 2007) modified by 

Girard et al., (2005) was followed. For the Famennian, the standard conodont 

Zonation (Zeigler and Sandberg, 1990) was employed. The conodont zonation of 

Nicoll and Druce (1979) was used for Carboniferous strata.  

 

1.2.4 Gas Isotope Ratio Mass Spectrometry (GIRMS) analysis 

 Analyses of phosphatic micro remains and standards were carried out at the 

Stable Isotope Laboratory at Geozentrum Nordbayern, Friedrich-Alexander 

University of Erlangen-Nürnberg, under the supervision of Prof. Michael 

Joachimski. 

 

The methodology was as follows: 

1) Biogenic apatite samples comprising well preserved, clean microfossils 

weighing between 0.5 and 2.2 mg (exact weights of each sample were recorded 

on a 6 decimal Mettler Toledo AT20 scale) were picked and isolated in 2 ml 

plastic vials. Approximately 1 mg aliquots of the standards NBS120c and 

Tübingen apatite were prepared into 2 ml plastic vials in parallel with the 

unknowns.  
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2) 33 μl of 2M HNO3 was added to each vial of phosphatic material (standards 

and unknowns) weighing between 0.5 and 1.5 mg. 66 μl of 2M HNO3 was 

added to samples weighing in excess of 1.5 mg. Samples were left for 48 hours 

to dissolve. This process resulted in a clear solution over a minor organic 

residue situated at the base of the vial.  

3) 2M KOH was added to the vials in equivalent volumes (33 μl or 66 μl) as the 

acid in step 2 to neutralise the solutions.  

4) Equivalent volumes (33 μl or 66 μl) of 4% HF was added to the samples in 

order to precipitate liberated Ca2+ ions from the solution.  

5) Vials were placed within a Heraeus multifuge and centrifuged for 10 minutes 

at 3000 rpm to separate the clear phosphate-bearing solution from the calcium 

fluoride precipitate and organic residues. The supernatant was subsequently 

pipetted into new vials. Washings, resulting from the addition of ~20 μl of 

distilled water into residual vials, were also pipetted into the fresh containers to 

optimise phosphate solution yields. The old vials containing the calcium 

fluoride and organic precipitate were then discarded.  

6) 500 to 1000 μl of silver amine solution (0.34 g AgNO3, 0.28 g NH4NO3, 1 ml 

25% NH3) was added to each of the sample vials. Initial addition of the silver 

amine solution caused the development of a yellow cloudiness. Sufficient 

silver amine solution must be added until the liquid becomes transparent.  

7) The vials were placed within an oven at 60o Celsius and left for between 8 and 

24 hours until all the ammonia had evaporated and Ag3PO4 crystals formed, 

lining the vial.  
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8) Approximately 1.5 ml of distilled water was added to, and then pipetted out of, 

each of the vials in order to dissolve and remove chemical residues whilst 

leaving the insoluble Ag3PO4 crystals intact.  

9) Step 8 was repeated three times in order to remove all remaining chemical 

residue. Each time the vials were filled with 1.5 ml of water, they were placed 

in an ultrasonic bath for 15 minutes.  

10) After removal from the ultrasonic bath, the final distilled water washings were 

pipetted out leaving the Ag3PO4 crystals. The vials were then placed in an oven 

at 60o for 24 hours until dry. Once dry the samples were left at room 

temperature before being weighed with a Mettler Toledo AT20 scale. 

11) The dry Ag3PO4 crystals were removed from the vials into a clean mortar. 

Foreign contaminants were carefully removed under a microscope with a 

sterilised pin.  

12)  Using a clean pestle, the Ag3PO4 were ground and homogenised into a fine 

powder, followed by transferal of the sample into a new, labelled 2 ml plastic 

vial. 

13) Between 0.10 and 0.40 mg of homogenised Ag3PO4 was measured into small 

0.2 ml silver (Ag 99.99) foil caps. These were then folded to seal in the sample 

and expel any air. A total of three analyses were taken from each sample and 

placed within a gridded sample tray. The position of each sample was recorded 

on to a master sheet.  

14) The folded silver caps were placed within the sample carousel of the TC-EA 

(high temperature reduction furnace) before being dropped one at a time into 
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the machine. At 1450 °C the silver phosphate is reduced and CO forms as the 

analyte gas (Vennemann et al., 2001). The CO is transferred in a helium stream 

through a gas chromatograph via a Conflo III interface to a ThermoFinnigan 

Delta Five Plus mass spectrometer and reported in ‰ relative to Vienna 

Standard Mean Ocean Water (Vienna Standard Mean Ocean Water). Accuracy 

and reproducibility of results were maintained via: 

a) Comparing and averaging the results of triplicate analyses of each 

sample. 

b) Running both international (NBS120c) and internal (Tübingen apatite 

and a synthesised Ag3PO4) standards at the beginning, middle and end of 

every day.  

c) Standards of either NBS120c or Tübingen apatite prepared in the same 

batch as the other samples and tested as unknowns every fourth run.  

d) Monitoring standard gas throughflow and backgrounds on the 

instrumentation. 

15) Results were adjusted for variation, attributed to machine ‘drift’, by monitoring 

the values of tested isotopic standards.  

 

1.2.5 Secondary Ion Mass Spectrometry (SIMS) analysis 

 Vertebrate fossils were placed within beakers containing 50 ml of distilled 

water and then transferred to a sonic bath for 1-3 minutes (with regular visual 

inspections to avoid damage) in order to remove any abiogenic grains or detritus. 

The fossils were then removed and left to dry for 48 hours. Microvertebrate remains, 

with single pieces of Carcharhinus plumbeus tooth fragments and Durango apatite 
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standard grains, were placed within a 10 mm diameter circle on double sided tape 

adhered to a glass plate. Large teeth were cut labio-lingually using a Dremel rotary 

tool then sanded with 1200 grit sandpaper prior to mounting on the tape along the cut 

surface. A 25 mm plastic tube, acting as the mould, was placed on the tape with the 

collection of adhered fossils centrally located. Struers EpoFix epoxy resin was 

carefully mixed according to manufacture instructions and sonicated in order to 

remove all bubbles. The mixture was then slowly poured into the slightly tilted 

mould and allowed to flood across the surface in order to reduce bubble formation. 

For mounts bearing larger fossil fragments, the moulds were also placed in a vacuum 

flask in order to assist resin impregnation. All mounts were filled to ~10 mm (to 

account for any leakage as well as loss of volume during curing) and left for a 

minimum of 48 hours to set.  

Once cured the mount was removed from the mould and adhesive tape and 

cut to an initial thickness of 5 mm, removing the irregular meniscus of the mount. 

The face bearing fossils was initially ground used a 1200 grit sandpaper to remove 

any obvious signs of relief and expose the fossil tissue of interest. The mount was 

then fixed in a Struers Rotopol-35 polishing machine and polished with 

consecutively finer Largo polishing discs and corresponding Struers Diapro diamond 

suspensions (9 µm, 3 µm and 1 µm) until the scratches from the previous polishing 

were sufficiently reduced. The duration for each polishing stage reduced with 

successively fine cloths to prevent topographic relief. Struers DP-Lubricant was used 

with each polishing run to prevent scratching of the mount face. After each polishing 

session, the mounts were rinsed and then placed into a clean 50 ml beaker containing 

distilled water. Three minutes cleaning in an ultrasonic bath was used to remove any 

residual diamond paste. Mounts were then inspected under a stereomicroscope to 
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determine if further polishing was required. Once polishing was complete, the 

mounts were cleaned with detergent, distilled water and ethanol prior to being coated 

with 30 nm of gold.  

 Detailed procedure using the CAMECA IMS 1280 is provided in the 

materials and methods of Chapter 6. 

 

1.4 Thesis Overview 

Chapter 1 introduces the Canning Basin and its importance as a study area due 

to the preservation of Late Devonian reef complexes and Late Devonian to Early 

Carboniferous ramp deposits. The chapter introduces the various methods used to 

correlate different facies and the issues associated with these techniques. 

Microvertebrate fossils are introduced as a tool in biostratigraphic and 

chemostratigraphic based correlation.  

Chapter 2 is a peer reviewed paper detailing the Palaeozoic vertebrate fossils 

of Western Australia spanning the Ordovician to the Permian. Contribution towards 

this paper included both a review on microvertebrate taxa from various ages and 

formations in the Lennard Shelf, as well as information on the use of microfossils in 

both regional and global correlation as well as providing data for biogeographic 

recontructions. 

 Chapter 3 provides additional data on a previously described Frasnian 

Phoebodont fauna from the Canning Basin. This includes refined age ranges for 

known taxa as well as the first documentation of other shark species from the 

Lennard Shelf. In addition, a new species of filter feeding shark is described. The 

Famennian shark fauna of the Canning Basin is described in detail for the first time 

in this chapter and includes species previously undescribed from the basin.  
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 Chapter 4 focuses on the discovery of Famennian thelodont genera. This 

taxon had been previously thought extinct at the Frasnian-Famennian boundary. The 

presence of the youngest known thelodont remains in the Canning Basin offer the 

potential for a thelodont biostratigraphic scheme to extend into the latest Devonian. 

Faunal connections between the central Iran and north-western Australia are further 

explored. Contributions to this chapter included the sampling, figuring and writing 

up of the Australian material as well as contributions toward the figures of the 

Iranian based thelodont scales.  

Chapter 5 provides an analysis of 18 shark species from the latest Devonian 

to Early Tournaisian. This chapter provides the first known Canning Basin 

occurrences of many cosmopolitan shark taxa. Faunal links with other areas of 

Gondwana are expanded on from previous chapters.   

Further uses of microvertebrates in stratigraphic correlation are explored in 

Chapter 6. In order to employ microvertebrates as a basis for chemostratigraphic 

correlation, the identification of original O-isotope signatures is necessary. This 

chapter explores the O-isotope fidelity and ecological and palaeoenvironmental 

significances of signal from a range of taxa in addition to analysing the differences in 

O-isotopes between specific tissues. This chapter is included as a corrected version 

following recommendations by the examiners. The final version submitted to the 

journal of Palaeogeography, Palaeoclimatology, Palaeoecology is included as 

Appendix 1. 

Chapter 7 summarises the major findings of this thesis, including: newly 

resolved biostratigraphic schemes using microvertebrates in the Canning Basin; the 

implications of the newly discovered shark species for palaeogeographical 

http://www.journals.elsevier.com/palaeogeography-palaeoclimatology-palaeoecology
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reconstructions; and the potential for hypermineralised tissue in microvertebrates to 

be used in palaeoenvironmental reconstructions and chemostratigraphy. 
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2.1 Abstract 

A diverse vertebrate fauna, comprising both micro- and macrovertebrate remains, is 

known from the Palaeozoic of Western Australia. However, it is the Late Devonian 

fauna of the Gogo Formation that shows exceptional preservation and which is the 

best known. Advances in tomographic techniques, both micro-CT and synchrotron, 

have revealed new histological data providing information on bone growth, muscle 

attachments and the evolution of teeth. The fishes from the Gogo Formation have 

also revealed new information on the evolution of reproductive structures and live 
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birth in early vertebrates. Recent work on the Frasnian reefs that crop out along the 

Lennard Shelf and mineral drillcore through Palaeozoic sedimentary rocks have 

yielded scales of agnathan thelodonts, and the bones, teeth and scales of sharks, 

acanthodians and osteichthyans, all of which have increased our knowledge of 

Ordovician-Late Devonian microfaunas in the Canning Basin, contributing to our 

understanding of biostratigraphy and correlation within Australia and globally. Less 

work has been undertaken in the Carnarvon Basin, although like the Canning Basin 

this has concentrated on Late Devonian strata. More recently, work has commenced 

on describing Early Carboniferous faunas from the Canning, Carnarvon and 

Bonaparte Basins. All this work is providing information on faunal patterns and 

exchange of vertebrates through the Palaeozoic. However, the palaeogeographic 

evidence provided by the vertebrates is sometimes at odds with palaeogeographic 

reconstructions based on palaeomagnetic evidence and further investigation is 

required to resolve these differing interpretations. 

 

2.2 Introduction 

 Palaeozoic fossil fishes of Western Australia, particularly those from the 

Gogo Formation Lagerstätten located in the Canning Basin, have been invaluable for 

investigating major evolutionary transitions due to the exceptional preservation and 

diversity of the fauna. The gnathostomes (jawed vertebrates) recovered from the 

Gogo Formation in the Kimberley region comprise members of all the major groups 

and demonstrate key evolutionary shifts from the development of jaws and teeth, the 

first expression of live-young bearing invertebrates, to the emergence of stem 

tetrapods. However, and unlike many other sites in the State, to date no jawless 

vertebrates have been recovered from this site. In contrast to the excellent 
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preservation found in the fossils of the Gogo Formation, those from the more 

southerly Carnarvon Basin are disarticulated but show high faunal diversity.  

 In Western Australia the fossil record of Palaeozoic fishes includes both 

microvertebrate and macrovertebrate remains (Long and Trinajstic, 2000, 2010; 

Burrow et al., 2010). The majority of the research conducted to date has been on the 

Devonian, especially Late Devonian marine faunas, with studies on Ordovician, 

Silurian, Carboniferous and Permian fossils less common. There are no reports of 

Cambrian vertebrate fossils from Western Australia, although rare, purported 

vertebrate fossils of this age are known from deposits in central Australia (Young et 

al., 1996). Studies on Western Australian Ordovician to Early Devonian taxa are 

restricted to microvertebrate faunas recovered from mineral drillcore. However, the 

extensive outcrops of Devonian reefs in the Canning Basin are rich in both macro- 

and microvertebrate faunas and numerous studies on both have been undertaken.  

 In the early 20th century predominantly morphological descriptions and 

taxonomic studies were undertaken. In the latter part of the 20th century research 

began to focus on biostratigraphy, particularly in the areas of marine-non-marine 

correlation under the UNESCO: IUGS IGCP328 Palaeozoic Microvertebrates project 

led by Alain Blieck, Susan Turner and Gavin Young (Blieck and Turner, 2000). 

Unlike many of the currently used invertebrate zone fossils including conodont 

elements, Palaeozoic fish often occur in transitional environments, with the same 

species inhabiting marine, nearshore and/or non-marine facies. Some marine units 

bearing microvertebrates are extremely well dated through tying the vertebrate 

faunas to standard conodont zonations (Trinajstic and George, 2009). In continental 

rocks microvertebrates are often the only age indicators preserved. Since 1980 there 

has been to recover microvertebrate remains from Gondwanan Palaeozoic rocks 
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from Australia and neighbouring countries (Long, 1990; Turner, 1982a, b, 1991, 

1993, 1997; Young, 1986, 1987; Basden et al., 2000; Young and Turner, 2000; 

Burrow, 2002; Macadie, 2002; Burrow et al., 2010; Young et al., 2010). 

Morphological studies of macrovertebrates have recently taken the forefront again 

with the advent of new computerised tomographic techniques, allowing for the first 

time non-destructive histological ‘sectioning’ of dermal plates and in situ teeth and 

scales at high resolution. The fossils from the Gogo Formation have been significant 

in the utilisation of these new technologies in answering questions on the evolution 

and development of teeth (Rücklin et al., 2012) and scales (Qu et al., 2013a, b), 

muscle attachments to bone (Sanchez et al., 2012, 2013), soft tissue preservation 

(Trinajstic et al., 2013) and reproduction in vertebrate animals (Long et al., 2008, 

2009; Ahlberg et al., 2009; Trinajstic and Johanson, 2014; Trinajstic et al., in press 

a). Knowledge of the diversity and stratigraphy of vertebrate faunas from the three 

Palaeozoic basins in Western Australia is variable, with some faunas, e.g. the Gogo 

fauna, having been more studied than others, e.g. the Moogooree Limestone and 

Utting Calcarenite faunas. However, recent research has given greater insights into 

the diversity, taxonomy, phylogeny and biogeographic relationships of the Western 

Australian faunas and indicates differences from the longer-studied faunas in central 

and eastern Australia.  

 

2.3 Canning Basin  

 The Palaeozoic Canning Basin is characterised by deposition of fine-grained 

marine clastics and carbonates on extensive carbonate platforms and marine shelves 

(Cadman et al., 1993). Vertebrate fossils are known from Ordovician to 

Carboniferous sedimentary rocks. One of the most studied areas is the Upper 



   

32 
 

Devonian reef complexes, which are well exposed along the Lennard Shelf and form 

a belt ~350 km long and up to 50 km wide (Hocking et al., 2008). However, the units 

can be discontinuous at times, narrow and devoid of complete sections due to margin 

collapse, as is evident in the Napier Range (Shen et al., 2008). The Frasnian strata of 

Western Australia, especially those in the Canning Basin, have had more numerous 

studies undertaken on them than those in other areas and ages, yielding a variety of 

macro- and microvertebrate fossils (Long, 1993). The strata are divided into a 

number of formations representing different reef facies, some of which are laterally 

equivalent. For example, the contemporaneous Gogo, Saddler and Pillara formations 

represent basinal, slope and backreef facies, respectively (Playford et al., 2009). 

 

 
Figure 2.1. Thelodont scales from Wilson Cliffs 1, Kidston Sub-basin. (A) Isolated scales with grains 

of quartz attached. (B) Eroded head scale in lateral view. (C) Body scale in anterior view showing 

linear micro-ornament. (D) Detail of micro-ornament. (E) Body scale in lateral view. (F) Head scale 

in crown view. 
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The best known of these in respect to vertebrate fauna is the early Frasnian Gogo 

Formation, which represents the basinal facies of the reef complex (Long and 

Trinajstic, 2010). This fauna is represented exclusively by macroremains.  

 The Virgin Hills Formation extends from the lower Frasnian to the 

uppermost Famennian and represents both basinal and reef slope facies (Playford et 

al., 2009).Rare macrovertebrate remains, mostly of isolated placoderm plates, have 

been recovered from the Famennian part of the measured section whereas 

microvertebrates are common from the Frasnian and Famennian reef-slope facies 

(Trinajstic and Long, 2009; Hansma et al., 2015).  

 

2.4 Vertebrate fossils of the Canning Basin  

2.4.1 Ordovician  

 The first description of an Ordovician fish from the Canning Basin was based 

on fragmentary dermal armour in core recovered from Kidson 1 well, attributed to a 

new genus and species of arandaspid (jawless fish) Ritchieichthys nibili (Sansom et 

al., 2013). Prior to this discovery, reports of Ordovician vertebrate taxa from 

Australia, including remains from Early to mid-Ordovician, were restricted to 

marginal marine deposits in central and southeast Australia (Ritchie and Gilbert-

Tomlinson, 1977; Young, 1991, 1997, 2009). Arandaspid fishes are also known from 

central South America (Bolivia) (Gagnier et al., 1996) and Oman in the Arabian 

Peninsula (Sansom et al., 2009) indicating a perigondwanan distribution, in a 

narrow, nearshore environment. This is part of the Gondwanan Evolutionary 

Assemblage of Blieck and Turner (2003) and Turner et al. (2004).  
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2.4.2 Silurian  

Fossil vertebrates from the Silurian of Western Australia are represented solely by 

microfossils recovered from boreholes. These primarily comprise thelodont and  

 

Figure 2.2. Givetian vertebrate remains from the Cadjebut Formation, Canning Basin. (A) 

Chondrichthyan tooth gen. et sp. indet. in labial view. (B) Chondrichthyan scale in crown view. (C) 

Placoderm neural spine. (D, E) Arthrodire infragnathal biting division; (D) left lateral view, (E) right 

lateral view. (F) Ptyctodont left preorbital plate in visceral view. Scale bar: 0.5 mm in A-C; 0.1 mm in 

D-E; 5 mm in F.  

 

acanthodian micro-remains with rare scales attributed to actinopterygians. Upper 

Silurian horizons in Pendock 1A well yielded scales tentatively attributed either to 

the thelodont Loganellia sp. cf. L. grossi (V N Karatjute-Talimaa pers comm., 1994) 

or more probably cf. Niurolepis sp. (per. obs. ST) and acanthodian Nostolepis cf. 
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alta and ?stem actinopterygian Andreolepis. These taxa suggest correlation with Late 

Silurian (Ludlow) in Iran and northern Europe and suggest a relative closeness 

between northern Gondwana and Laurentia, rather than any massive oceanic barrier 

at this time. Upper Silurian horizons in Kempfield 1 yield scales similar in 

morphology to Thelodus parvidens from Avalonia and Laurentia, and in addition 

those from a possible Silurian level in Gingerah Hill 1 resemble other European 

loganelliids and Niurolepis susanae from Iran, although these have not yet been 

formally described (Burrow et al., 2010; Turner, 2014). There are no known later 

Ordovician to Early Silurian vertebrates anywhere in Australia probably because of 

the Hirnantian into Early Silurian glaciation (Turner et al., 2004).  

 

2.4.3 Devonian  

2.4.3.1 Emsian-Eifelian  

 Early Devonian (late Pragian?-Emsian) scales of the thelodont Turinia 

australiensis (Figure 2.1A-F) and unnamed acanthodians were described from the 

Wilson Cliffs 1 borehole (Gross, 1971) from the Tandalgoo Red Beds (now named 

Tandalgoo Formation), a unit underlying the well-known reef complexes of the 

southern Canning Basin. The recognition of thelodont scales led to the re-dating of 

the strata from Permian to Early Devonian, demonstrating the utility of 

microvertebrates in dating rocks in the absence of conodonts, or where conodonts are 

undiagnostic. The type material was redescribed and refigured by Turner (1995). The 

assemblage also includes placoderm dermal scales and bone fragments, an 

onychodont tooth and a single shallow-marine unidentified conodont element 

(personal observation, CJB, ST). Turner (1997) reviewed known records of T. 

australiensis in relation to conodont data across Australia.  



   

36 
 

2.4.3.2 Givetian  

 The Givetian Cadjebut Formation represents a restricted marine environment 

and to date only a small number of invertebrate fossils of low diversity have been 

reported. In 2010 isolated tooth plates were recovered by Peter Haines (GSWA) and 

identified (by KT) as those of a ptyctodont placoderm. Further collecting in 2011 

yielded a single chondrichthyan tooth of indeterminate affinity (Figure 2.2A) and 

chondrichthyan scales (Figure 2.2B). Additional 3D-preserved placoderm material 

was also collected including vertebral elements (Figure 2.2C), dermal plates and 

tooth plates (Figure 2.2D, E) representing new genera and species of arthrodires, and 

dermal plates from the headshield of a ptyctodont (Figure 2.2F). Elsewhere in 

Australia, placoderm remains are common components in Lochkovian to Famennian 

strata throughout eastern Australia (Young, 1993; Parkes, 1995; Turner et al., 2000; 

Burrow, 2003), as well as in early Givetian strata in the MacDonnell Ranges of 

central Australia (Young et al., 1987; Young and Goujet, 2003; Young, 2005). Their 

rarity in Lower Devonian strata of Western Australia is possibly a result both of lack 

of outcrop as well as lack of exploration.  

2.4.3.3 Frasnian  

 The first fishes were collected from the Gogo Formation in the 1940s by Curt 

Teichert who identified placoderm fossils, which he recognised as being similar in 

morphology to the European coccosteids (Long, 2006). It was not until Harry 

Toombs from the British Museum (Natural History) (BMNH) visited the University 

of Western Australia in 1955 and was given material to prepare using his new acetic 

acid technique that the full extent of this find was realised (Figure 2.3A1-3). The 

limestone concretions were found to contain fossils preserved in 3D with the original 

bones intact and undistorted (Figure 2.3B). Toombs returned and represented the  



   

37 
 

 

Figure 2.3. Vertebrate remains of the Gogo Formation, Canning Basin. (A1-3) Gogonasus andrewsae 

head at various stages of acetic acid preparation. (B) A split nodule in the field containing a 

palaeoniscoid in part and counterpart. (C)Arthrodire Incisoscutum ritchiei head and trunk shield in 

lateral view. (D) Head and trunk shield of Bothriolepis sp. (E) Austroptyctodus gardineri 

(counterpart) in lateral view. (F) Head of Griphognathus whitei in lateral view.  (G) Onychodus 

jandemarrai in lateral view. (H) Compagopiscis croucheri upper tooth plate in ventral view. (I) CT 

scan of upper tooth plate of Compagopiscis croucheri showing histological detail; (J) lower tooth 

plate of C. croucheri in lateral view. (K) Mineralised muscle fibres from Incisoscutum ritchiei. (L) 

Mineralised biofilm surrounding muscle fibres in Eastmanosteus calliaspis. (M1) Eastmanosteus 

calliaspis with nuchal gap musculature preserved; (M2) detail of nuchal gap musculature. Scale bar: 1 

cm in A-J, M; 50 μm in K, L. Images A-G from Long, 1995; J from Trinajstic, 2009. 
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BMNH in two major expeditions, which systematically collected fish and 

crustaceans from the Gogo Formation in 1963 and 1967, in collaboration with the 

Western Australian Museum and Hunterian Museum (Glasgow, Scotland). The 

Gogo Formation has to date yielded 45 species of fish (Long and Trinajstic, 2010), 

the majority being arthrodire placoderms (25%) (Figure 2.3C), with antiarchs (10%) 

(Figure 2.3D), and ptyctodonts (5%) (Figure 2.3E), recovered in lesser numbers. Of 

the osteichthyans, palaeoniscoids (Figures 2.3B, 5C, D) represent the next most 

abundant group (24%), followed by dipnoans (20%) (Figure 2.3F), and 

osteolepiforms (2%) (Figure 2.3G). More recently, a single acanthodian was 

described by Burrow et al. (2012). In addition two sharks and a coelacanth have been 

prepared but await full description. Long and Trinajstic (2010) gave a recent review 

of the faunal composition and so only a brief overview of discoveries post-2010 will 

be presented here.  

 With the advent of new technologies, including micro CT and synchrotron 

tomography, the first non-destructive examinations of histological structures of the 

fishes from the Gogo Formation have been undertaken (Long et al. 2008; Sanchez et 

al. 2013; Trinajstic et al. 2013). The ontogenetic history is largely conserved within 

the dermal bones preserved as lines of arrested growth (Sanchez et al. 2012, 2013). 

This characteristic has enabled changes in growth of the jaws to be ascertained and 

led to significant advances in our understanding of the development of teeth (Figure 

2.3H-J) in some early jawed vertebrates (Smith and Johanson, 2003; Rücklin et al., 

2012). The presence or absence of teeth in placoderms has been a controversial 

topic, particularly since the proposition by Smith and Johanson (2003) that teeth 

were secondarily developed in arthrodire placoderms from ‘toothless’ ancestors. 

Synchrotron scans of the jaws of an arthrodire (Compagopiscis) showed the pulp 
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canal within each tooth became infilled during growth (Rücklin et al., 2012). This 

discovery supports Smith and Johanson’s (2003) hypothesis that the dental structures 

in arthrodires are true teeth, and teeth might have evolved at least twice in early 

vertebrate evolution. Studies on the antiarch Bothriolepis (Figure 2.3D) show tooth-

like structures on biting surfaces that are consistent with the histology of the dermal 

armour, further indicating that teeth and jaws may not have evolved simultaneously 

(Rücklin et al., 2012), as antiarchs are considered to be basal phylogenetically to 

arthrodires (Zhu et al., 2013). 

 Reconstructing the soft anatomy of extinct animals has often been a pipe 

dream in palaeontology, and has until recently mostly relied on functional 

interpretation and the preservation of muscle scars on the skeleton. The interolateral 

plate (= clavicle) of placoderms was hypothesised to be the site of the 

coracobrachialis muscle (Johanson, 2003). Synchrotron studies of the interolateral 

plate from Compagopiscis a placoderm from Gogo revealed the presence of 

numerous embedded extrinsic fibres indicating muscle attachment points. The 

principal fibre alignments are anteroposterior in the anterior part of the attachment 

and anterodorsal in the more dorsal part indicating the presence of two muscles 

(Sanchez et al., 2012), where previously only one muscle had been predicted 

(Heintz, 1932; Miles, 1969; Johanson, 2003). Changes in the distribution of 

osteocyte lacunae within the bone indicated where deep enthesis (connective tissue 

between the tendon and the bone) of tendon-attached muscles formed, often leaving 

a muscle scar on the external bone, whereas more shallow muscle insertions left no 

muscle scars (Sanchez et al., 2012). These superficial muscle entheses had not 

previously been predicted on the basis of visual examination of the bone and so the 

number of muscles present in these extinct organisms has been underestimated 
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(Trinajstic et al., 2012). Thus not only can the synchrotron reveal the site of muscle 

attachment but also the type of attachment. This technique, pioneered on Gogo fish, 

has made the reconstruction of soft anatomy far more accurate than previously 

realised.  

 The exceptional preservation of fossils in the Gogo Formation is not 

restricted to the preservation of bone but includes mineralised muscles also 

preserved in 3D, in placoderms, chondrichthyans and palaeoniscoids. Initially only 

small amounts of muscle were recovered from under the dermal plates of the 

headshield (Figure 2.3K, L), which had collapsed onto themselves forming a closed 

micro-environment providing the condition conducive to soft-tissue preservation 

(Trinajstic et al., 2007). Low pH and rapid burial were important factors in the 

preservation of the muscle tissues but recent research on invertebrate taxa from the 

Gogo Formation has shown that the action of sulfur-reducing bacteria prior to burial 

was also significant in the mineralisation of soft tissues (Melendez et al., 2013). In 

some instances individual cells are replicated by a single crystal of apatite, exactly 

replicating the structure of muscle and nerve fibres (Trinajstic et al., 2007). The 

recognition that mineralised soft tissues were present in the fossils (vertebrate and 

invertebrate) from Gogo led to different preparation techniques, reduced 

concentrations of acid and virtual preparation through synchrotron scanning. Using 

these techniques nearly all the postcranial musculature within the arthrodire 

Compagopiscis croucheri and the nuchal gap muscles in Incisoscutum ritchiei and 

Eastmanosteus calliaspis (Figure 2.3M1 -M2 ) have been identified (Trinajstic et al., 

2013). The significance of this discovery was that more muscles were found to be 

present in the neck than originally predicted from studies based on comparative 

morphology. Although the presence of paired head elevator and depressor muscles 
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was predicted based on functional consideration, the division of the head elevators 

into medial and lateral muscles had not (Trinajstic et al., 2013). In addition, the 

presence of the cucullaris muscle, a head depressor muscle presumed to be common 

to all jawed vertebrates, was confirmed for the first time. A second group of 

specialised muscles, which had never been predicted, was found to be present in the 

ventral body wall (Trinajstic et al., 2013). Although their function is yet to be 

determined, their position at the junction of the trunk armour and the tail suggests 

that they play a role in minimising shear during tail propulsion (Trinajstic et al., 

2013).  

 Although sexual dimorphism had been recognised in ptyctodonts (Watson, 

1934, 1938), it was not until the identification of claspers in the ptyctodontid 

Ctenurella (Ørvig 1960) that the possibility of internal fertilization in ptyctodonts 

was suggested (Patterson, 1965). In a review of the Scottish 

ptyctodont Rhamphodopsis, Miles (1967), noted it was impossible at that time to 

determine whether the mode of copulation in ptyctodonts resulted in oviparity or 

viviparity. This conundrum was finally solved when a single embryo (Figure 2.4A) 

was discovered in the ptyctodontid Materpiscis attenboroughi, which demonstrated 

beyond doubt the presence of internal fertilisation with live birth almost 200 million 

years earlier in the fossil record then previously known (Long et al., 2008; Trinajstic 

et al., 2012). One of the most crucial pieces of evidence in the determination of 

embryos in placoderms was the presence of the mineralised umbilical cord (Figure 

2.4A) in M. attenboroughi (Long et al., 2008). Following this discovery, three 

embryos, previously identified as scales, were recorded from Austroptyctodus 

gardineri (Figure 2.4B) (Long et al., 2008). Male claspers had previously been 

identified by Miles and Young (1977) in Austroptyctodus (Figure 2.4C). Small 
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dermal plates had also been recovered from the abdominal area of an arthrodire I. 

ritchiei (Figure 2.4D, E), but the absence of any evidence for sexual dimorphism and 

the honeycomb nature of the bone, which was originally interpreted as being the 

result of digestion, meant that these plates were identified as prey items (Dennis and 

Miles, 1981). Comparison with the honeycomb nature of the embryonic plates in the 

ptyctodonts (Figure 2.4F) allowed the reinterpretation of the arthrodire plates as 

embryonic bones (Long et al., 2009). The presence of an articulation surface on the 

pelvic girdle of Austrophyllolepis, interpreted as for claspers (Long et al. 2009), 

suggested that sexual dimorphism also occurred in arthrodires. The final piece of the 

puzzle was revealed with the discovery of a male clasper (Figure 2.4G-I) in I. ritchiei 

(Ahlberg et al., 2009), which could be distinguished from the pelvic girdle (Figure 

2.4G, I, J) and in Holonema westolli (Figure 2.5A, B) confirming sexual dimorphism 

with viviparity in ptyctodont and arthrodire placoderms (Trinajstic et al., in press a). 

Soft tissues have also been recovered in the first and only acanthodian, 

Halimacanthodes ahlbergi described from the Gogo Formation (Burrow et al., 

2012). The body outline is preserved in the resin-embedded side of the nodule, and 

was therefore protected during acetic acid preparation. The specimen represents a 

juvenile, as there is no scale cover in the mid-body region of the fish and there are a 

low number of growth zones in the scales. These features have been recognised as 

indicating a juvenile stage from comparison with the ontogenetic series in 

Lodeacanthus gaujicus (Upeniece, 1996) from the Frasnian Lode Quarry, Latvia. 

The Gogo acanthodian shows a close affinity to Howittacanthus kentoni from the 

Frasnian lacustrine mudstones of Mt Howitt, Victoria (Long, 1986).  

 The palaeoniscoid actinopterygians or ray-finned fishes have been revised in 

recent years by Choo et al. (2009) and Choo (2011), who have extended the  
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Figure 2.4. Reproductive structure in placoderms from the Gogo Formation. (A) Materpiscis embryo 

with detail of the mineralised umbilical cord indicated by a white arrow. (B) Austroptyctodus 

gardineri, internal view with 2 embryos within the rectangular outline. (C) Male clasper from 

Austroptyctodus gardineri. (D) Internal view of Incisoscutum ritchiei with embryonic bones within 

the rectangular outline. (E) Close up of embryonic plate from Incisoscutum ritchiei. (F) Embryonic 

plate from Austroptyctodus gardineri. (G) Internal view of Incisoscutum ritchiei showing male 

clasper (black arrow) and pelvic girdle (white arrow). (H) Detail of male clasper from Incisoscutum 

ritchiei; (I) close up of male clasper (black arrow) and pelvic girdle (white arrow) in Incisoscutum 

ritchiei. (J) Female specimen of Compagopiscis croucheri showing the pelvic girdle (white arrow). 

Scale bar: 1 cm in A, B, D, G, H, J; 1 mm in C, F; 2 mm in E; 5 mm in I. 

 

actinopterygian faunal list of the site to five taxa, from the original two described by 

Gardiner (1984). The Gogo actinopterygians also show preserved soft tissues (Figure 

2.5C) and, in rare cases, organs including the gut, gill area and liver (Trinajstic et al., 

in press b). The anatomical positions of these organs are comparable to those of 

extant actinopterygians. The path of the intestine is identified, as the cavity where 
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the intestine ran has been infilled with calcite cement. Although this sort of 

replacement precludes preservation of gut contents (Trinajstic et al., in press b), 

conodont animals recovered from within the abdominal cavity (Nicoll, 1977) and the 

branchial region (Figure 2.5D) of two specimens indicate that these fish were 

carnivores, consistent with the diet indicated by their dentition (Choo et al., 2009).  

 Most recent work on Gogo lungfishes includes description of new taxa of 

holodontid lungfishes including Xeradipterus (Clement and Long, 2010) plus a new 

species of rhinodipterid, Rhinodipterus kimberleyensis (Clement, 2012). Clement 

and Long (2010) also reported the first record of a marine lungfish showing air 

breathing adaptations based on a specimen of Rhinodipterus from the Gogo 

Formation with cranial rib articulations on its braincase.  

 The tetrapodomorph fish Gogonasus andrewsae (Long, 1985) is now known 

from several relatively complete specimens (Holland and Long, 2009) (Figure 2.3A). 

Holland (2013) has recently described the pectoral girdle and fin in detail. Large 

holes on top of the head are identified as spiracles in this genus and were suggested 

as accessory breathing structures by Long et al. (2006). Recent work on the 

physiology of the modern air-breathing fish Polypterus now confirms that spiracular 

breathing was common in basal osteichthyans and most likely explains why fish like 

Gogonasus have such large spiracles (Graham et al., 2014).  

 The other important aspect of the exceptional preservation from the Gogo 

Formation has been the ability to identify and compare isolated scales from the 

contemporaneous Gneudna Formation, Carnarvon Basin (see below) and the Virgin 

Hills Formation, Canning Basin. The variation in scale morphology present in 

palaeoniscoids is exhibited in key features including shape and ornamentation, 

enabling identification of the body area from which isolated scales originated. 
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Following Esin (1990), different squamation areas in the Gogo palaeonsicoids have 

been recognised, enabling two species, Moythomasia durgaringa and Mimia toombsi 

to be identified from the Gneudna Formation (Figure 2.5E, F) (Trinajstic, 1999c, 

2000) and scales from M. durgaringa to be identified from the Virgin Hills 

Formation (Trinajstic and George, 2009) and Hull Range (Chow et al., 2013), 

Canning Basin, providing biostratigraphic constraints for these strata. In addition 

scales from the placoderm Holonema westolli Miles 1971 (Figure 2.5B) were also 

identified in the Gneudna Formation (Figure 2.5B1) based on the description of a 

complete tail recovered from the Gogo Formation (Trinajstic, 1999a).  

 As noted above, the Gogo Formation fishes are further contributing important 

information on reproduction in early jawed fishes, including viviparity as an early 

vertebrate reproductive strategy, multiple embryos and ontogenetic series, which 

enable questions of taxonomy, phylogeny and development to be addressed 

(Johanson and Trinajstic, 2014; Trinajstic et al., in press b).  

2.4.3.4 Virgin Hills Formation: Frasnian  

 The microvertebrate fauna described from a measured section at Horse 

Spring in the Canning Basin is dominated by thelodont scales (Figure 2.5G, H) and 

phoebodont teeth (Figure 2.5I) with a smaller number of acanthodian and 

palaeoniscoid scales as well as protacrodont teeth also recovered (Turner, 1997; 

Trinajstic, 2000; Trinajstic and George, 2009). The discovery by Trinajstic (2000) 

represented the first record of the thelodont Australolepis seddoni (Figure 2.5G, H) 

co-occurring with conodonts and extended the known stratigraphic range to as young 

as the standard Montagne Noire conodont zone 10 (CZ10 MN) (Trinajstic and 

George, 2009). This thelodont is a useful index fossil that defines the early Frasnian 

in East Gondwana (Turner, 1997). The presence of A. seddoni scales in the Hull 
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Range has confirmed the Frasnian age of back-reef facies, which are difficult to date 

with conodonts and ammonoids (Chow et al., 2013). The biogeographic range of A. 

seddoni is now known to have extended westwards along the northern margin of 

Gondwana with new discoveries in Iran and possibly Poland (Turner et al., 2002; 

Hairapetian et al., 2015).  

 Numerous small acanthodian scales have also been recovered from the lower 

beds of the Horse Spring section and their generic morphology and lack of ornament 

led to them to be placed in open nomenclature (Trinajstic and George, 2009). 

Following the description of Halimacanthodes ahlbergi the scales from Horse 

Spring have now tentatively been referred to this taxon (Burrow et al., 2012). 

Smooth-crowned acanthodiform scales are common components in Frasnian strata 

(Burrow et al., 2010). Other taxa that co-occur in the Virgin Hills and Gogo 

formations are scales attributed to the palaeoniscoid Moythomasia durgaringa and 

tooth plates from the lungfish Chirodopterus australis.  

 Teeth of phoebodont sharks (Figure 2.5I) have also been recovered from the 

Horse Spring section (Trinajstic and George, 2009) and can be correlated with the 

standard phoebodont zonations elsewhere in Australia and worldwide (Young and 

Turner, 2000, Ginter et al., 2010). Although known to have a global (at least 

Palaeotethyan) range, phoebodont taxa had not been recorded in Western Australia 

until their recovery from conodont residues at Horse Spring (Trinajstic and George, 

2009). Phoebodonts have proved useful for biostratigraphy in Givetian to Famennian 

strata (Ginter et al., 2010) and their range into the Famennian has recently been 

reported in Western Australia (Roelofs et al., 2013).  

2.4.3.5 Napier Formation: Frasnian  
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 Long (1988) recorded a large upper tooth plate (supragnathal) of a 

ptyctodontid placoderm identified as cf. Campbellodus sp. from the Napier 

Formation in the Canning Basin. In addition, a microvertebrate fauna including 

scales from thelodonts, acanthodians, chondrichthyans and actinopterygians, and 

teeth from at least three species of stethacanthid and cladodont sharks have been 

recovered from beds throughout the section at South Oscar Range.  

2.4.3.6 Virgin Hills Formation: Famennian 

 A single large placoderm, Westralichthys, was recovered from the crepida 

conodont zone of the Virgin Hills Formation by Curt Teichert and this was 

subsequently prepared and described by Long (1987). In 2009, Peter Haines 

identified bone from a large placoderm in a measured section at Casey Falls, from 

close to where the original specimen was thought to have been recovered. The new 

specimen was excavated from the rock in 2011 and is currently undergoing 

preparation. The plates represent the trunk armour of a large dinichthyid and have 

been tentatively identified as belonging to Westralichthys, but they await formal 

description. Towards the top of the section there is a breccia where large isolated, but 

broken, placoderm plates are present. It has not been possible to identify these 

fragmentary remains but as they occur in a horizon above strata dated by conodonts 

as mid-Famennian, this confirms a Famennian age for the uppermost beds. 

Placoderms did not survive the end-Famennian extinction event, and therefore a 

younger Carboniferous age for the upper part of the section measured at Casey Falls 

is ruled out.  

 The measured section at the Casey Falls locality yielded few 

microvertebrates, mostly shark teeth, with a small number of acanthodian and 

palaeoniscoid scales. Preliminary work on the shark fauna confirms the presence of 
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phoebodonts, as elsewhere in Australia (Turner 1982b, 1993; Young and Turner 

2000). The ramp facies, above the Casey Falls section, is dominated by a diverse 

shark assemblage, which includes teeth from protacrodontids, stethacanthids, 

lonchidiids and the phoebodont Thrinacodus tranquillus. Numerous palaeoniscoid 

scales and teeth and lower numbers acanthodian, scales are also present. 

Interestingly, thelodonts, phoebodonts and porolepiformes are yet to be recorded 

from the Gogo Formation, even though these taxa are known from the Frasnian and  
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Figure 2.5. Vertebrate remains from the Gogo, Virgin Hills and Gneudna Formations. (A) Head 

shield of Holonema westolli. (B) Body scales and clasper (white arrow) Holonema westolli from the 

Gogo Formation; (B1) body scale of Holonema westolli from the Gneudna Formation. (C) 

Moythomasia durgaringa in lateral and internal view showing mineralised soft tissue (white arrow). 

(D) Gogosardinia with conodont (rectangular outline) in the branchial regions. (E) Moythomasia 

durgaringa type A scale and (F) type B scale from the Gneudna Formation. (G, H) Scales from 

Australolepis seddoni in crown view Virgin Hills Formation, Horse Spring, Canning Basin. (I) 

Phoebodus bifurcatus tooth in crown view Virgin Hills Formation, Horse Spring, Canning Basin. (J) 

Scale from Australolepis seddoni in crown view, Gneudna Formation, Carnarvon Basin. (K) 

Cheiracanthus sp. body scale in crown view. (L) Phoebodus sp. tooth in crown view, Gneudna 

Formation. (M1) Emerikodus tooth in lingual view from the Gneudna Formation; (M2) line drawing 

of Emerikodus. (N1) Head shield plates of Kimbryanodus from the Gneudna Formation; (N2) line 

drawing of reconstruction of the head shield of Kimbryanodus, (O) Marginal plate in lateral view of 

Kimbryanodus from the Gneudna Formation. (P) Lower tooth plate of Kimbryanodus from the 

Gneudna Formation. (Q) Palaeoniscoid scale Gogosardinia coatesi in crown view from the Gneudna 

Formation. Scale bar: 2 cm in A; 1 mm in B, F-M, Q; 2 mm in E; 1 cm in O, N; 5 mm in P. 

 

Famennian Virgin Hills and Napier formations in the Canning Basin. This is 

probably a reflection of the preferred environments of these fish, with thelodonts 

typically in shallower marine, marginal marine to freshwater settings (Turner 1997). 

Phoebodont sharks, apart from one thrinacodont from the late Mississippian of the 

USA, are only known from isolated teeth but typically occur in marine rocks (Ginter 

and Turner 2010).  

 

2.4.3.7 Napier Formation: Famennian  

 One of the earliest records of Famennian aged vertebrate material in the 

Canning Basin is from Barker Gorge, in the Napier Range. The fossil was collected 

by H P Woodward in 1906 and identified as: ‘…a large Devonian fish (new to 

science) allied to Coccosteus’ by his father Henry Woodward, then Keeper of 

Geology at the British Museum (Glauert, 1910 p. 112). A Smith Woodward, who 

took over as Keeper from Henry Woodward (no relation) in 1901, agreed writing: 

‘The Western Australian Fossil looks remarkably like a piece of a large Devonian 

Coccostean, hitherto unknown in the Australian Region’ (Glauert, 1910 p. 113). 

Etheridge (1918) described (but did not figure) similar material collected in 1916 by 
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H Basedow from ‘near Old Napier Downs homestead’ as the stromatoporoid 

Stromatoporella kimberleyensis. During a study of the stromatoporoids from the reef 

complexes, Cockbain (1976) re-examined the Woodward and Basedow material and 

concluded that it was not a stromatoporoid: additional testing including thin 

sectioning and X-ray diffraction analyses confirmed the original identification as 

arthrodire bone (R S Miles in Cockbain, 1976). The recovery of further vertebrate 

fossils from the area has been scant, with a single sharks tooth Stethacanthus cf. 

thomasi recovered from mineral drill core (NRD103) at Napier Range and a single 

tooth of Thrinacodus ferox recovered from Napier Range 1 well located east of 

Chedder Cliffs and dated as Late Famennian (Chow et al., 2004), based on the 

associated conodont fauna. Vertebrate remains have been recovered in outcrop from 

Chedder Cliffs however, with the exception of some incomplete placoderm dermal 

plates, most are so broken they are impossible to identify. Conodont samples from 

Barker River have yielded a single phoebodont tooth and some isolated 

‘ctenacanthid’ type scales.  

 

2.4.4 Carboniferous 

 There is a major environmental change towards the end of the Famennian 

with the cessation of reef building; the marine habitats of the Carboniferous period 

are dominated by carbonate ramps. The end Famennian is also marked by a major 

extinction event that affected vertebrates and marked the demise of the placoderms 

(although the number of families was already reduced after the Frasnian-Famennian 

extinction event) and a major radiation of sharks and actinopterygians, which is 

reflected in the shallow-water facies of the Laurel Formation in the Canning Basin. 

Palaeoniscoid remains (teeth, scales and radial bones) and acanthodian scales 
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dominate the fossiliferous units. Turner (1982a) identified Thrinacodus ferox from 

Oscar Hill and renamed earlier Lower Carboniferous shark material described by 

Thomas (1957). Edwards (1997) found teeth of a new Thrinacodus sp. from a trench 

dug across the Upper Devonian-Lower Carboniferous by Mawson et al. (1988) to 

obtain conodont data; Ginter and Sun (2007) named this taxon Thrinacodus 

bicuspidatus and its range is within the basal Tournaisian in China and Western 

Australia. Recent work (Roelofs et al., 2013) has also uncovered shark teeth, scales 

and spines from 21 different taxa including Ageleodus sp., Thrinacodus ferox (Figure 

2.6A), Stethacanthus spp., Protacrodont spp., (Figure 2.6B, E), Deihim mansureae, 

Cassisodus sp., Helodus spp. (Figure 2.6C), Lissodus spp.), Orodus sp. (Figure 

2.6D) and a ctenacanthid sp. (Figure 2.6F). A partial tooth from a large stethacanthid 

shark is also of note as it bears strong affinities to teeth in a fragmented but 3D 

preserved partial jaw and palate from a large specimen of Stethacanthus sp. from the 

Bonaparte Basin (Turner 1991; Turner in Jones et al., 2000; Turner et al., 1994; 

Burrow et al., 2010). This indicates the presence of large predatory sharks early in 

the Carboniferous across north Western Australia (Burrow et al., 2010). 

 Further work on the diverse shark fauna of the Viséan Utting Calcarenite, 

Weaber Group, of the Bonaparte Basin has brought to light at least 18 different taxa 

of eugeneodontid and other sharks as well as sarcopterygian and actinopterygian 

remains (Chambers, 2003; Burrow et al., 2010).  

 

2.5 Carnarvon Basin  

 Fish fossils are mostly known only from Late Devonian sediments in the 

Carnarvon Basin. The early Frasnian Gneudna Formation is interpreted as being 

deposited along a shallow marine shelf (Hocking et al., 1987). Conformably 
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overlying and interfingering with the Gneudna Formation is the Munabia Sandstone 

where deposition was initially in a tidal environment grading up to a braided-fluvial 

system (Moors, 1981) with conodonts indicative of marine incursion in the upper 

part of the section (Nicoll, 1979; Hocking et al., 1987). The Frasnian-Famennian  

 

Figure 2.6. Carboniferous microremains from the Laurel Formation, Canning Basin. (A) Thrinacodus 

ferox tooth in crown view. (B) Partial Protacrodus sp. tooth whorl in crown view. (C) Lissodus sp. 

tooth in lingual view. (D) Lissodus sp. tooth whorl in crown view. (E) Protacrodus sp. scale in basal 

view. (J) Ctenacanthid scale in crown view. Scale bar: 0.4 mm. 

 

boundary occurs within the Munabia Sandstone and the upper part of the section 

grades into the Famennian Willaraddie Formation, which is at least partly laterally 

equivalent (Gorter et al., 1998). During the latest Devonian and into the Tournaisian 

a shallow sea transgressed across the region, reflected by the deposition of the 

Moogooree Limestone (Hocking, 1990). The Permian Byro Group represents cold-

water facies, predominantly comprising black shale deposited under anoxic 
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conditions in the outer offshore zone and a lighter coloured shale deposited under 

less-restricted conditions in the inner offshore zone (Hocking et al., 1987). The 

changes in bathymetry are thought to reflect tectonic events related to the breakup of 

Gondwana (Hocking et al., 1987).  

2.6 Vertebrate fossils of the Carnarvon Basin  

2.6.1 Devonian  

2.6.1.1 Frasnian  

 The Gneudna Formation is laterally discontinuous, with most 

palaeontological studies (vertebrate and invertebrate) having been concentrated on 

the type section. The Gneudna type section was described as depauperate in fossil 

taxa (Dring, 1980), however, this statement is only accurate for the invertebrates: the 

fish fauna is now known to be one of the most diverse marine vertebrate assemblages 

of this age, with nearly 20 taxa present, the majority of which are represented as 

microfossils (Turner and Dring, 1981; Trinajstic, 1999a, b, c; Long and Trinajstic, 

2000; Trinajstic, 2001a, b; Trinajstic and George, 2009).  

 George Seddon (1969) discovered the first vertebrate fossils in conodont 

residues and determined the remains as either teeth or scales belonging to fish 

species. Dring (1980) recovered additional fish remains and recorded the presence of 

placoderms, palaeoniscoids, acanthodians and lungfish; only the thelodonts were 

formally described following Turner’s identification of some of Seddon and Dring’s 

scales, formally described as Australolepis seddoni by Turner and Dring (1981). This 

was the first evidence of the thelodonts surviving the Givetian/Frasnian extinction 

event and into the Late Devonian and at the time represented the youngest 

occurrence of thelodonts in the world. Scales of A. seddoni (Figure 2.5J) have been 
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used by Turner (1997) to define the early-mid-Frasnian zone in East Gondwana. So 

far this species is confirmed from Frasnian deposits CZ 4-10 of the Gneudna and 

Virgin Hills formations, Western Australia (Trinajstic and George, 2009) and eastern 

Iran (Hairapetian et al. 2006).  

 Following these discoveries, a rich microvertebrate fauna was described that 

includes additional scales types from Australolepis seddoni, tail scales from the 

arthrodire Holonema westolli (Figure2. 5B1 ), body scales from the palaeoniscoids 

Mimia gardineri (Figure 2.5E) and Moythomasia durgaringa (Figure 2.5F), 

acanthodian scales recently identified as coming from Homalacanthus ahlbergi and 

Cheiracanthus sp. (Figure 2.5K), tooth plates from the lungfish Chirodipterus 

australis, porolepiform scales, phoebodont teeth (Figure 2.5L), and a new genus of 

shark Emerikodus (Figure 2.5M1, M2). At the time of these descriptions (Trinajstic, 

2000) the vertebrate fauna was considered far more diverse than that recovered from 

the Gogo Formation because shark, acanthodian and coelacanths had not yet been 

discovered in it (Long and Trinajstic, 2010). As noted, thelodonts, phoebodonts and 

porolepiformes are yet to be recorded from the Gogo Formation although these taxa 

are known from the Frasnian and Famennian Virgin Hills and Napier Formations in 

the Canning Basin.  

 In addition to the microvertebrates a small number of macrovertebrates have 

also been found, with placoderm remains the most common. An anterior dorsolateral 

plate (WAM 91.4.35), part of the shoulder armour, attributed to the actinolepid 

placoderm Groenlandaspis sp. was identified by Long (1993). Groenlandaspids 

occur in the Early-Middle Devonian Wuttagoonaspis fauna in central New South 

Wales and the Toomba Range southern Queensland (Ritchie, 1973, 1975; Young, 

1993; Young and Goujet, 2003), and right through the Middle and Late Devonian 
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successions throughout Australia. Although common in purported freshwater facies 

of this age and yet known to have a global occurrence, Groenlandaspis has not been 

reported from the Gogo Formation (Long and Trinajstic, 2010). 

 Other placoderm material comprises plates from the trunk armour and 

includes a right mesial lateral 2 plate, an anterior ventrolateral plate and an anterior 

dorsolateral plate of Bothriolepis and a head shield plate (nuchal plate) from the 

arthrodire Holonema westolli. The most complete placoderm remains are from the 

ptyctodont Kimbryanodus described by Trinajstic and Long (2009) (Figure 2.5N1, 

P). The holotype comprises the dermal plates that make up the shoulder girdle and 

represent the only articulated remains recovered. However, one bed, in the lower part 

of the section, contains a large number of isolated, but associated plates, including a 

complete set of dermal head (Figure 2.5 N1, N2 ) and trunk shield plates and some 

endochondral elements of the braincase (Trinajstic and Long, 2009). This ptyctodont 

is one of four species known from Western Australia, the other three occurring in the 

Gogo Formation. A phylogenetic analysis (Trinajstic and Long, 2009) places this 

taxon as closely related to Materpiscis and Austroptyctodus, both endemic to the 

Gogo Formation.  

 Long (1985) referred the lungfish, originally ascribed by Seddon (1969) to 

Dipterus cf. digitatus, to Chirodipterus australis. Many new specimens of isolated 

lungfish tooth plates have been found throughout the section and one partial dipnoan 

braincase from near the top of the section. Comparisons with the Gogo osteolepiform 

Gogonasus andrewsae (Long, 1985, name amended) show that the Gneudna 

specimens are significantly larger. Large sigmoid-shaped symphyseal teeth and a 

nearly complete dentary lined with large conical teeth suggest affinity with the genus 

Onychodus, in particular to Onychodus jandemarrai from Gogo Formation 
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(Andrews et al., 2006), although the Gneudna species is much larger with more 

robust teeth (Long and Trinajstic, 2000). Isolated rounded scales with regions of 

small upturned flat tubercles have been referred to an indeterminate porolepiform, 

with the scales somewhat similar to those of Glyptolepis sp. (Jarvik, 1980 figure 

178).  

 The dipnoan genera Chirodipterus and Adololopas, as well as the placoderms 

Bothriolepis and Holonema, are found in the top of the section, which lies in the 

falsiovalis conodont zone and has been dated as lower Frasnian. Holonema is 

represented both in the Gneudna and the Gogo Formations by the species H. westolli 

(Trinajstic, 1999a). The palaeoniscoid species, including scales attributed to juvenile 

specimens, recorded from the Gneudna and Gogo Formations are Moythomasia 

durgaringa (Trinajstic, 1997, 1999a, b) and Mimia toombsi (Trinajstic, 1999c), both 

species occurring throughout the section. Choo et al. (2009) described three 

additional palaeoniscoid taxa from the Gogo Formation. One of these, Gogosardina 

coatesi, has scales with linear ornament, which indicates that the juvenile scales from 

the Gneudna Formation (Trinajstic, 1999b) were misidentified and thus need to be 

attributed to Gogosardina coatesi (Figure 2.5Q).  

2.6.1.2 Frasnian-Famennian  

 A scant macrovertebrate fauna including remains of Bothriolepis sp., 

Holonema sp. and indeterminate scales of an osteolepiform sarcopterygian was 

collected from the lowermost outcrops of the Munabia Sandstone and described by 

Long (1991). These fossils constitute the only record of macrovertebrates from this 

horizon; however, collecting and processing by CJB in 2011 revealed a similar 

microvertebrate fauna to the underlying Gneudna Formation. Long (1991) attributed 

the fauna to a likely Frasnian age based on the similarities in shape and dermal 
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ornament of the Munabia Holonema anterior median ventral plate to the Gogo 

Holonema westolli plates.  

2.6.1.3 Famennian  

 As with the Canning Basin, vertebrate fossils are rare in Famennian strata of 

the Carnarvon Basin. Within the Willaraddie Sandstone, John Long in 1995 first 

collected placoderm remains preserved as natural impressions including plates from 

Bothriolepis and a phyllolepid posterior ventrolateral plate. Recently in 2011, Eva 

Papp (ANU) collected additional phyllolepid plates but these are undiagnostic. 

Phyllolepids are widespread in the Givetian and younger rocks in Gondwana (around 

Australia, Antarctica, Turkey, Venezuela) but do not occur until the Late Devonian 

(Famennian) in the Northern Hemisphere (Europe, Russia, Greenland, North 

America) following the post-Givetian Laurentia-North Gondwana collision and thus 

a Gondwanan origin for the group was proposed by Young (2005).  

 

2.6.1 Carboniferous  

 The Moogooree Limestone has yielded a rich microvertebrate fauna that has 

yet to be formally described, although there is a preliminary report (Trinajstic and 

George, 2009). Abundant actinopterygian (palaeoniscoid teeth, radial bones and 

scales) and acanthodian (scales) (Figure 2.7B) remains have been recovered. The 

chondrichthyan taxa show great diversity with representatives of the Phoebodontidae 

(Thrinacodus ferox Figure 2.7A, Thrinacodus bicuspidatus Figure 7C), 

Protacrodontidae (Deihim mansureae Figure 2.7D-E, Protacrodus sp.), 

Stethacanthidae (Stethacanthus sp. Figure 2.7F), Ctenacanthidae (scales) and 

Helodontidae (Helodus sp.) present. The diverse shark assemblage shows strong 

affinities with the Canning Basin shark fauna as well as with faunas from 
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Queensland (Turner, 1990; Burrow et al., 2010), South China (Wang and Turner, 

1995; Ginter and Sun, 2007), Morocco (Derycke, 1992) and Iran (Hairapetian and 

Ginter, 2009).  

 

Figure 2.7. Carboniferous microremains from the Moogooree Formation, Carnarvon Basin. (A) 

Palaeoniscoid scale in crown view. (B) Acanthodian scale in crown view. (C) Thrinacodus 

bicuspidatus tooth in labial view. (D) Stethacanthid sp. tooth in crown view. (E) Deihim mansureae 

tooth in lingual view. (F) Deihim mansureae tooth in occlusal view. Scale bar: 0.4 mm. 

 

2.6.2 Permian  

 In contrast to eastern Australia (Turner 1993), the Permian record of fossil 

fishes in Western Australia is sparse, with chondrichthyans the only taxon so far 

represented. The first shark tooth to be recognised from Permian strata in the 

Carnarvon Basin comprises 15 teeth arranged along a common spiral root and was 

designated as Edestus davisii by Woodward (1886). The specimen was collected in 

the valley of the Arthur River, although as the tooth whorl was not found in situ its 
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exact locality could not be determined. The discovery represented the first record of 

a novel group of chondrichthyans characterised by the presence of a continuous 

spiralled tooth whorl. The first description of this unique shark was of Helicoprion 

bessonowi from the Ural Mountains by Karpinsky (1899) and in his monograph he 

referred the tooth recovered by Woodward to his new genus Helicoprion. However, 

Eastman (1902) referred the Western Australian tooth whorl to the genus 

Campyloprion, which he had erected, and Hay (1909) referred the material to 

another genus Lissoprion. Controversy remained as to the exact taxonomic affinities 

of the Western Australian tooth whorl until in 1937 a second specimen comprising 5 

teeth was recovered from the bed of the Minilya River near Wandagee Station, 

although, it too was not in situ. Two years later a third specimen was recovered in 

situ (Teichert. 1940) from the Wandagee Stage (Teichert, 1939) [now Wandagee 

Formation (Condon, 1967)] and this new material confirmed the interpretation of 

Karpinsky (1912) that Woodward’s original Western Australian tooth whorl 

belonged to the genus Helicoprion, and all three specimens were referred to 

Helicoprion davissi by Teichert (1940).  

 Helicoprion has a worldwide distribution and its importance in 

biostratigraphy and correlation was documented early (David and Sussmilch, 1931). 

However, it is the unique morphology of the continuous spiralled tooth whorl and 

how it functioned that has intrigued scientists the most. Karpinsky (1899) variously 

reconstructed the spiral tooth whorl at the extreme anterior of the upper mouth, on 

the leading edge of the dorsal fin and even on the tail, although most recent 

reconstructions show the tooth whorl overhanging the lower jaw (Long, 1995). 

Computerised tomographic scans of the only Helicoprion specimen to preserve 

endoskeletal elements associated with the tooth whorl have revealed that it occupied 
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the complete mandibular arch (Tapinila et al., 2013). The largest teeth on the tooth 

whorl were positioned at the back of the mouth and the shark is interpreted to have 

eaten soft prey such as squid, using a saw-like motion to slice prey (Tapinila et al., 

2013).  

 

2.7 Biogeography  

2.7.1 Ordovician  

 The distribution of arandaspids indicates interchange between Australia and 

South America via northern Gondwana with occurrences in Bolivia, Argentina and 

Oman as well as central and western Australia (Sansom et al., 2013), with all 

occurrences in a narrow environmental range in nearshore facies. The Larapinta 

seaway must have been open between the latter two regions, at least intermittently in 

the Middle to Late Ordovician to allow dispersal from the Amadeus to the Canning 

Basin (Blewett, 2012).  

 

2.7.2 Silurian  

 The rare vertebrate faunas recovered from the Silurian of Western Australia 

show possible affinities with mid to Late Silurian assemblages from Iran, the Baltic 

and northern Eurasia, and possibly South China (Hairapetian et al., 2008; Burrow et 

al., 2010; Turner, 2014), all in deposits that are also from shallow marine to 

evaporitic environments. The faunas differ markedly from those of a similar age in 

southeastern Australia (Burrow et al., 2010). Porosiform poracanthodid remains are 

found in several of the eastern Australian deposits, but are so far lacking from 

Western Australia. The only described thelodont known from eastern Australia is a 

purported turiniid, Turinia fuscina (Turner, 1997). This form, however, is similar to 
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that described as Niurolepis susanae in Iran; for now it is best left as ?Turinia 

fuscina (Burrow et al., 2010). The new Western Australian thelodont(s) 147 

resemble thelodontidid and loganelliid taxa found elsewhere in northern Gondwana 

and parts of Laurentia; there are possible links also with rare thelodont scales found 

in Indonesia (Turner et al., 1995; Hairapetian and Ginter, 2009).  

 

2.7.3 Devonian  

2.7.3.1 Emsian 

 The key taxon of the Wilson Cliffs borehole assemblage, Turinia 

australiensis (Figure 2.1A-D), has an interesting transcontinental distribution. In 

southeastern Australia, all occurrences of Turinia australiensis sensu stricto, both 

marine and non-marine, are of late Pragian to early Emsian age (Turner, 1997). 

Distribution of T. australiensis and closely related species extends westward from 

beds referred to the Cravens Peak Formation, western Queensland, from the Mulga 

Downs Group, Darling Basin, western New South Wales, and Mt Winter beds of the 

Pertnjara Group, Amadeus Basin, central Australia (Young et al., 1987; Turner, 

1997), on to the type locality of Wilson Cliffs in the Canning Basin, and other 

boreholes in Western Australia (Burrow et al., 2010; Turner, 2014). These records 

indicate periodic shallow-water marine incursions of the predominantly non-marine 

basins of central Australia, following the alignment of the older ephemeral Larapinta 

seaway.  

2.7.3.2 Frasnian  

 The common vertebrate fauna in the three Palaeozoic Basins of Western 

Australia supports tectonic data indicating a connection, via the North West Shelf, 

between the Carnarvon and Canning Basins (Stuckmeyer and Totterdell, 1992). 
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There are also greater faunal similarities between the marine faunas of Western 

Australia and those of northern and western Gondwana, consisting primarily of what 

are now South America, Africa, Iran and the Arabian Peninsula and Armorica than 

with the faunas of East Gondwana comprising eastern Australia, Antarctica and 

south-eastern parts of China, a pattern similar to that seen with certain invertebrates 

(Feist and McNamara, 2007, 2013; McNamara et al., 2009). This may reflect the fact 

that the vertebrate faunas of eastern Australia come from predominantly 

marginal/non-marine facies. However, an alternative hypothesis is that during the 

early Frasnian, eastern Australia was influenced by different ocean currents, which 

favoured migration to regions other than Western Australia. Klapper (1989) reported 

a similar pattern in the biogeographic relationship of conodonts, and concluded that 

migration of cosmopolitan species (both offshore and nearshore) was affected mainly 

by oceanic currents. A palaeogeographic map indicating the main palaeocurrents 

supports this view (Hairapetian et al., 2015), with the coast of Western Australia 

influenced by different currents than the shores of what is now eastern Australia.  

2.7.3.3 Famennian-Carboniferous  

 The Famennian is characterised by a more cosmopolitan vertebrate fauna 

(Young et al., 2010, Hairapetian et al., in press). This is reflected primarily in the 

occurrence of chondrichthyan taxa common to the Canning, Carnarvon and 

Bonaparte basins in Western Australia.  

 

2.8 Conclusions 

 In general, studies over recent decades have increased the known biodiversity 

of Palaeozoic vertebrate taxa from that part of Gondwana that is now Western 

Australia. Both new exploration and re-study of former drill cores and sites is 
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yielding much new data, which is proving valuable in biostratigraphical studies and 

understanding of how this part of Gondwana was positioned at that time.  

 The significance of the macro- and microvertebrate faunas of Western 

Australia is their remarkable preservation, predominantly 3D, and in the majority of 

cases showing the fine histological details of the original hard tissues, without 

recrystallisation or other diagenetic processes obscuring their structure. The 

exception is the vertebrates from the Famennian Willaraddie Sandstone, where they 

are preserved as impressions, although 3D latex casts can be made of these. This has 

allowed significant breakthroughs in understanding of vertebrate faunas in Western 

Australia. The Gogo Formation area is also now noted as a rich and important 

contribution to Australian and global geoheritage (Long, 2004, 2006; Turner, 2009); 

the astonishing detail of preservation is grounds enough for putting this area forward 

for World Heritage status.  

 The recognition of variation in morphology, both ontogenetic and regional 

variation on articulated macrovertebrate fossils from the Gogo Formation, has made 

the identification of isolated scales to generic and, in some cases, to species level 

possible at other sites in Western Australia and globally. This has increased the 

known range of some taxa and also enabled the greater use of microvertebrate taxa 

for correlation, and phylogenetic, biostratigraphic and biogeographic studies.  
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3.1 Abstract 

A diverse microvertebrate fauna is described from the Virgin Hills and Napier 

formations, Bugle Gap Limestone Canning Basin, Western Australia. Measured 

sections at Horse Spring and Casey Falls (Virgin Hills Formation) and South Oscar 

Range (Napier Formation) comprise proximal to distal slope carbonates ranging in 

age from the Late Devonian Frasnian to middle Famennian. A total of 18 

chondrichthyan taxa are identified based on teeth, including the first record of 

Thrinacodus tranquillus, Cladoides wildungensis, Protacrodus serra and Lissodus 

lusavorichi from the Canning Basin. A new species, Diademodus dominicus sp. nov. 

is also described and provides the first record of this genus outside of Laurussia. In 

addition, the upper range of Australolepis seddoni has been extended to Late 

Devonian conodont Zone 11, making it the youngest known occurrence for this 

mailto:brett.roelofs@postgrad.curtin.edu.au
mailto:milo.barham@curtin.edu.au
mailto:K.Trinajstic@curtin.edu.au
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species. The Virgin Hills and Napier formations microvertebrate faunas show close 

affinities to faunas recovered from other areas of Gondwana, including eastern 

Australia, Iran, Morocco and South China, which is consistent with known conodont 

and trilobite faunas of the same age. 

 

3.2 Introduction 

 The Canning Basin, Western Australia (Figure 3.1) is well known for the 

preservation of Devonian reef complexes as well as both invertebrate and vertebrate 

fossils (Playford et al., 2009; Klapper, 2007; Becker et al., 1993), many of which 

have proved important in studies of biostratigraphy and correlation. Conodont and 

ammonoid faunas have both been extensively used in biostratigraphy over the past 

century with conodont zonations established for the Frasnian (Glenister and Klapper, 

1966; Klapper, 2007; Nicoll and Playford, 1993; Metzger, 1994) as well as 

ammonoid zonations for the Frasnian and Famennian (Peterson, 1975; Becker et al., 

1993; Becker, 2000) recognised in the Canning Basin. These fossils have proven 

useful in determining ages of slope and basin strata enabling successful correlation 

across physically disconnected localities (Glenister and Klapper, 1966; Becker et al., 

1993; Becker, 2000). However, correlation between slope and platform facies within 

the Canning Basin remains problematic as many conodont and ammonoid faunas are 

absent or undiagnostic in shallow water environments. In contrast, microvertebrates 

have proven useful in correlating such environments (Turner, 1997; Hairapetian et 

al., 2000; Trinajstic and George, 2009). To date, globally correlative microvertebrate 

zonations are best resolved for the Silurian and early to middle Devonian (Turner, 

1993; Young, 1995; Burrow and Simpson, 1995; Valiukevicius, 1995; Burrow, 

1996, 1997; Turner, 1997; Burrow and Turner, 1998, 2000; Basden et al., 2000; 
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Valiukevicius and Kruchek, 2000). Furthermore, a Late Devonian zonation scheme 

based on phoebodont sharks has been established from the Frasnian to the end 

Famennian (Ginter and Ivanov, 1995a; Ginter, 2000; Jones and Turner, 2000; Young 

and Turner, 2000). Where known, the Devonian shark fauna of Western Australia 

(Trinajstic and George, 2009; Trinajstic et al., 2014) has been correlated to the 

Frasnian phoebodont zonation of Ginter and Ivanov (1995a). However, to date little 

work has been published on Famennian shark taxa from Western Australia. 

Thelodont zonation has also recently been extended into the Famennian (Hairapetian 

et al., 2015), although the known taxa are currently restricted to Iran and north-

western Australia because other thelodonts appear to have become extinct at the end 

of the Givetian in other areas of the world (Turner, 1997; Trinajstic, 2001; Märss et 

al., 2007). 

Detailed taxonomic studies on vertebrate faunas of Frasnian-age strata have 

been undertaken in the Carnarvon (Turner and Dring, 1981; Long, 1991; Trinajstic 

and George, 2009) and Canning basins of Western Australia (Long and Trinajstic, 

2000; Trinajstic and George, 2009; Long and Trinajstic, 2010) with a greatest 

number of studies in Western Australia been done on the Frasnian macrovertebrate 

faunas of the Gogo Formation (see Trinajstic et al., 2014 for a review). 

Biostratigraphic studies into vertebrate faunas, from both the Canning and Carnarvon 

basins however, are less common. 

The utility of Western Australian microvertebrates to date strata has been, in 

part, due to the ability to identify isolated scales through comparison with the 

exceptionally preserved fauna from the Frasnian Gogo Formation. This has been 

most successful with placoderms (Trinajstic, 1999a), acanthodians (Burrow et al., 
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2010) and palaeoniscoids (Trinajstic, 1999b). However, a single articulated shark 

(Long and Trinajstic, 2010), which is not comparable with any of the isolated teeth 

 

Figure 3.1. Simplified geological map of the Devonian Reef complexes of the Lennard Shelf, 

northern Canning Basin, showing the South Oscar Range, Horse Spring and Casey Falls measured 

sections and main facies types (modified after Playford et al., 2009).  

 

recovered so far, has been reported from the Gogo Formation. A second, incomplete 

specimen comprising Meckle’s cartilage, a shoulder girdle and associated teeth has 

highlighted the high degree of heterodonty present in Frasnian sharks and the 

recognition of this variation is important when diagnosing species from isolated 

teeth. Previous microvertebrate studies in the Canning and Carnarvon basins have 

revealed the presence of the youngest-recorded thelodont scales, first in early 
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Frasnian strata of the Carnarvon Basin (Turner and Dring, 1981) and later, younger 

scales in the middle Frasnian (Trinajstic and George, 2009) and middle Famennian 

of the Canning Basin (Hairapetian et al., 2015).  

In contrast to Frasnian vertebrate faunas, Famennian macrovertebrates from 

Western Australia are rare (Trinajstic et al., 2014), with bothriolepid and phyllolepid 

placoderms reported from the Willaraddie Sandstone in the Carnarvon Basin (Long 

and Trinajstic 2000) and coccosteid and dinichthyid placoderms described from the 

Napier and Virgin Hills formations in the Canning Basin (Long, 1987; Trinajstic et 

al., 2014). Microvertebrate taxa from the Famennian in Canning Basin are even more 

understudied than those of the Frasnian with only a few reports of dipnoan, 

acanthodian and chondrichthyan remains from the Gumhole Formation and lower 

parts of the Yellow Drum Formations (Young, 1987; Turner, 1993; Edwards, 1997; 

Burrow et al., 2010; Trinajstic et al., 2014). Although rare, thelodont scales as well 

as the teeth of Stethacanthus cf. thomasi and Thrinacodus ferox Turner, 1982, and a 

possible late Famennian otolith have been reported from the Middle to Late 

Famennian in the Napier Formation (Turner, 1993; Trinajstic et al., 2014; 

Hairapetian et al., 2015). Even with a small number of Famennian microvertebrate 

fossils, the presence of Thrinacodus ferox and Famennian thelodonts, indicates a 

faunal connection with other areas in north Gondwana.  

This work readdresses a previous lack of study through the description of a 

microvertebrate fauna recovered from measured sections (Figure 3.2; Table 3.1) that 

encompass distal slope to platform top facies and crop out along the Lennard Shelf in 

the Canning Basin of Western Australia. The discontinuous nature of the reef 

complexes has meant the use of microvertebrates adds a significant control to how 

the Lennard Shelf carbonate system is correlated and reconstructed. Microvertebrates 
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recovered from sampled strata are compared with the known age ranges reported 

from other sites globally as well as those species previously described from north-

western Australia. In addition to providing the first comprehensive study into Late 

Famennian chondrichthyans within the Canning Basin, this work also determines 

faunal links between the Canning Basin and other areas along the margins of 

northern Gondwana and southern Laurussia.  

 

3.3 Materials and methods 

Carbonate rock samples (~20 kg each) were processed in a 10 % buffered 

acetic acid solution at Macquarie and Curtin universities (following the methodology 

of Jeppsson et al., 1999), with resulting residues further separated by either heavy 

liquid fractionation (Macquarie University) or sieving (0.125 mm sieve; Curtin 

University) before being picked under a Nikon stereomicroscope. Both conodont and 

microvertebrate remains were well preserved with the conodont elements indicating 

a Conodont Alteration Index (CAI) of 1. For SEM photography, specimens were 

mounted on adhesive carbon tape fixed to 10 mm diameter aluminium stubs and 

coated with 5 µm of platinum. Specimens were imaged using a Zeiss Evo 40XVP 

SEM at the Centre for Materials Research at Curtin University as well as a Hitachi 

TM-3030 desktop SEM at Applied Geology at Curtin University with accelerating 

voltages ranging from 5-15 kV and under variable pressure. 

The 13-fold Montagne Noir (MN) conodont Zonation (Klapper, 1989, 2007) 

modified by Girard et al. (2005) was used to determine the age ranges of the 

associated Frasnian microvertebrates recovered in this study, as it provides greater 

resolution than that of Zeigler and Sandberg (1990). The standard conodont Zonation 

(Zeigler and Sandberg, 1990) is used in the Famennian.  
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Microvertebrate specimens are housed at the Western Australian Museum 

(WAM). 

 

3.4 Geological Setting 

Throughout the Devonian, the Canning Basin (Figure 3.1) occupied an 

equatorial position, approximately 12-14º south of the equator, along the northern 

margins of Gondwana (Scotese and McKerrow, 1990). Development of the basin 

was initiated during the Ordovician. Following a period of uplift and erosion in the 

early Devonian, extension during the middle Devonian to Early Carboniferous led to 

rapid subsidence of the NW trending Fitzroy Trough along the northern margin of 

the Canning Basin (Drummond et al., 1991). The margin successions include the late 

Givetian to late Famennian reef complexes, which are well exposed along the inner 

Lennard Shelf, and include numerous well-preserved fossilised fringing reefs and 

atolls (Playford, 1980). Difficulty in correlating Frasnian and Famennian sections 

within the Lennard Shelf is partly due to a complex underlying topography on which 

the reef was established, as well as depositional heterogeneity (Playford et al., 2009). 

Tectonic activity during the period of reef building (Chow et al., 2013) and 

deformation following post-depositional exhumation have also added to a 

fragmentary Frasnian and Famennian record across the basin (Playford et al., 2009). 

 

3.4.1 Studied sections 

3.4.1.1 Casey Falls 

 A section was measured at Casey Falls (18°44 0" S, 126°05'8" E; Figures 3.1 

and 3.2) approximately 80 km south east of Fitzroy Crossing (Figure 3.1). The 

measured section represents 420 m of toe-of-slope to upper slope carbonate 
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sediments of the Virgin Hills Formation and overlying Bugle Gap Limestone, 

respectively. The lower 100 m of the section mainly comprises resedimented silty 

skeletal to non-skeletal wackestone/packstones derived from platform, margin and 

slope environments. The upper 320 m consists mostly of stromatactoid microbial 

boundstones and microbially stabilised packstones and grainstones (Playton et al., 

2013). Minor platform derived skeletal-peloidal packstones and grainstones occur in 

the upper 40 m of the section. The Frasnian strata within the section are limited to 

the first 2 m of the section and range from Conodont Zones (CZ) 13a to 13b, with 

zone 13c not resolvable. The Frasnian-Famennian boundary is located between 2.2 

and 7.9 m above the section base, however finer biostratigraphic resolution was 

impossible at this level due to a paucity of conodonts. Overlying Famennian 

sediments, from 7.9 m, yield conodont zones from Late triangularis to Late 

marginifera CZ. Additional samples were taken from poorly outcropping beds 

approximately 580 m north (samples 1984-95 and 1984-96) and 600 m (samples 

1984-97 and 1984-98) north-north-east from the top of the measured section at 

Casey Falls with conodonts indicating a Late marginifera age. These samples 

represent the shallow water carbonate derived material of the Bugle Gap Limestone. 

3.4.1.2 South Oscar Range 

 The section measured at the southern end of South Oscar Range (17°54'53" 

S, 125°17'56" E, Figures 3.1 and 3.2) spans 585 m of the Napier Formation and 

represents an the seaward side of an offshore island and fringing reef complexes 

(Playford et al., 2009). The preserved sequence comprises transported slope facies 

dominated by platform derived packstones and grainstones/rudstones with 

commonly occurring peloids, coated grains and skeletal fragments. Debris deposits 

consisting of allochthonous blocks and megabreccias of reefal margin material can 
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occur locally and are concentrated in particular parts of the section, reflecting brittle 

failure of the early-lithified bound margin. Bioclasts are abundant throughout the 

entire section and dominated by branching and laminar stromatoporoids (in the 

Frasnian; George, 1999; Stephens and Sumner, 2003), crinoids, corals and  

 

Figure 3.2. Simplified stratigraphic columns of the sections at Horse Spring, Casey Falls and South 

Oscar Range, showing main facies types and locations of recovered microvertebrate remains 

(modified after Playton et al., 2013). 
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brachiopods. The Frasnian beds range from MN 6 to 13b CZ and in addition to 

conodonts, yielded chondrichthyan teeth and scales as well as acanthodian scales. 

The Frasnian-Famennian boundary was located between 228.7 and 233 m above the 

section base. The Famennian portion of the section ranges from Upper triangularis 

to marginfera CZ with only the uppermost bed containing microvertebrate remains 

including acanthodian and palaeoniscoid scales as well as the youngest thelodont 

scales currently known (Hairapetian et al., 2015).  

3.4.1.3 Horse Spring 

 The section measured at Horse Spring (GSWA reference section WCB 364) 

is located approximately 42 km east of Fitzroy Crossing, at the northern extremity of 

the Hull and Horse Spring Ranges (18°41'11'' S, 126°05'12''; Figures 3.1 and 3.2). 

The section represents a lower slope succession dominated by platform derived 

skeletal to non-skeletal packstones and grainstones, slope derived rudstones, and 

margin-derived megabreccias. Stromatolitic and stromatactoid boundstones are 

minor and found in Frasnian beds, representing periods of deep-water in situ 

encrustation. The section at Horse Spring has been previously dated using conodonts 

(Klapper, 1989; 2007) and goniatites (Becker et al., 1993), with the Frasnian-

Famennian boundary located between 34.6 and 36.6 m above the section base.  A 

diverse Frasnian microvertebrate fauna has also been recorded by Trinajstic and 

George (2009) with scales of the thelodont Australolepis seddoni Turner and Dring, 

1981 recorded as occurring with conodont elements and phoebodont teeth for the 

first time, thus allowing the age of A. seddoni to be constrained to  MN 4-10 CZ. The 

phoebodont teeth were also correlated to the known phoebodont based zonation of 

Ginter and Ivanov (1995a). 
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Table 3.1. Distribution and abundances of microvertebrate remains from sections measured at Horse 

Spring, South Oscar and Casey Falls, Canning Basin, Western Australia. Abbreviations: Fr = 

Frasnian.  

 

 

3.5 Systematic Palaeontology 

Class Thelodonti Jaekel, 1911 

Order Thelodontiformes Kiaer, 1932 

Family Turiniidae Obruchev, 1964 

 

 

 

Localities 
 
 

 

 

Age 

 

Samples 

 

Taxa 

Casey Falls 

(CL) 

South 

Oscar 

(SO) 

Horse Spring 

(VHS) 

Fr Famennian Fr Fr 

C
L

-9
 

C
L

1
2
7
.5

 

C
L

-4
7
1

 

1
9
8
4
-9

4
 

1
9
8
4
-9

6
 

1
9
8
4
-9

7
 

1
9
8
4
-9

8
 

S
O

-2
0
0

 

V
H

S
-3

0
8

 

V
H

S
-3

1
0

 

V
H

S
-3

1
1

 

V
H

S
-3

1
2

 

V
H

S
-3

1
5

 

Australolepis seddoni             1 

Phoebodus bifurcatus         2 1  1 2 

Phoebodus fastigatus          1 4 8 1 

Phoebodus cf. fastigatus           1 2  

Phoebodus latus          4 3 1  

Phoebodus sp. 1            1  

Diademodus dominicus          2    

Thrinacodus tranquillus  1 3   7 2       

Stethacanthus sp. 1   1    1       

Cladoides cf. 

wildungensis 
1            1 

Ctenacanthiform gen. et 

sp. indet 1  
       1      

Ctenacanthiform gen. et 

sp. indet 2 
     1  1      

Protacrodus serra    1  1        

Deihim mansureae   1  1 2 4       

Deihim cf. mansureae       2       

Deihim sp. 1   1           

Protacrodontidae gen. et 

sp. indet. 1 
   1          

?Protacrodontidae fam. 

gen. sp. indet. 
      1       

Lissodus lusavorichi       2       

Total 1 1 6 2 1 11 12 2 2 8 8 13 5 
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Genus Australolepis Turner and Dring, 1981 

Type species. Australolepis seddoni Turner and Dring, 1981 

Australolepis seddoni (Turner and Dring, 1981) 

(Figure 3.3A) 

 

1969. Fish tooth type b; Seddon, p 30, fig. 2a-b. 

1981. Australolepis seddoni sp. nov.; Turner and Dring, 43, figs. 3A-P, 4A-K. 

1981. Nikoliviid gen. et sp. indet. Turner and Dring: 46, fig. 6A-C. 

1993. Australolepis seddoni Turner and Dring, 1981; Turner 1993, p. 183, fig. 8.3. 

1997. Australolepis seddoni Turner and Dring, 1981; Turner 1997, p. 309, fig. 8. 

2000. Australolepis seddoni Turner and Dring, 1981; Long and Trinajstic, p. 472, 

fig. 1. 

2000. Australolepis seddoni Turner and Dring, 1981; Yazdi and Turner, p. 225, fig. 

2.1. 

2001. Australolepis seddoni Turner and Dring, 1981; Trinajstic, p. 239, fig. 2A-L, 

fig. 4. 

2002. Australolepis seddoni Turner and Dring, 1981; Turner et al., p. 151, fig. 8. 

2009. Australolepis seddoni Turner and Dring, 1981; Trinajstic and George, p.  647-

648, p. l1, figs 1-8.  

2013. Australolepis seddoni Turner and Dring, 1981; Chow et al., pl. 1C. 

2014. Australolepis seddoni Turner and Dring, 1981; Hairapetian et al., in press. 

Material. One broken scale from the Virgin Hills Formation, Horse Spring, sample 

VHS-315. 
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Description. A damaged scale, less than 1 mm in length, with part of the base and 

neck not preserved. Unornamented, conically shaped crown possessing six primary 

ribs radiating from the apex, with the two anterior ribs bifurcating towards the crown 

base (Figure 3.3A). The posterior of the scale is complete and preserves a shallow 

neck separating the crown from the elliptical base that has a well-developed pulp 

canal surrounded by tubercular swellings.  

Remarks. Scales attributed to A. seddoni are found along the northern margins of 

Gondwana (Yazdi and Turner, 2000; Turner et al., 2002; Märss et al., 2007; 

Hairapetian et al., 2006; Trinajstic and George, 2009) and their presence in mainly 

shallow-water facies indicate that they inhabited a near-shore, marine to marginal 

marine environment (Burrow, 1997; Turner, 1999; Märss et al., 2007). Within the 

Canning Basin, the majority of scales (46) have been recovered from the Virgin Hills 

Formation at Horse Spring (Trinajstic and George, 2009; this work). This locality 

represents a distal slope environment formed in depths in excess of 200 m (Playford 

et al., 2009). This is in contrast to the high numbers (730) recovered from the 

shallow marine environment of the contemporaneous, Gneudna Formation, 

Carnarvon Basin, Western Australia (Turner and Dring, 1981; Trinajstic, 2001) and 

suggests that the scales were transported downslope, to deeper water prior to 

fossilization. This transport and likely consequential abrasion might have contributed 

to the lack of fine ornament, diagnostic for the taxon. However, as the co-occurring 

phoebodont teeth preserve the delicate lateral carinae and striations on the cusps, this 

explanation no longer seems likely for all scales. Another possibility for the absence 

of ornament is intraspecific variation, with both ornamented and non-ornamented 

scales present in shallow water facies at Hull Range (Chow et al., 2013). 
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Distribution and stratigraphic range. Associated conodont elements extend the 

upper-known age range of A. seddoni in the Canning Basin from MN 10 CZ to MN 

11 CZ. As the upper age of the Gneudna Formation type section is constrained by 

the remains of A. seddoni, the youngest age for the Gneudna may now be extended 

to MN 11 CZ. Outside Australia scales of A. seddoni have been reported in the 

Shishtu Formation, Shotori Range, eastern Iran and Chahriseh section, Esfahan, 

Central Iran from falsiovalis to rhenana CZ (= MN 1-10 CZ) (Yazdi and Turner, 

2000; Turner et al., 2002; Hairapetian et al., 2006).  

 

Class Chondrichthyes Huxley, 1880 

Subclass Elasmobranchii Bonaparte, 1838 

Order Phoebodontiformes Ginter, Hairapetian and Klug, 2002 

Family Phoebodontidae Williams, 1985 

Genus Phoebodus St. John and Worthen, 1875 

Type species. Phoebodus sophiae St. John and Worthen, 1875 

Phoebodus bifurcatus Ginter and Ivanov, 1992 

(Figure 3.3B-E) 

 

1991. Phoebodus sp.; Ginter 1991: p. 74, pl. 8, figs. 1-2. 

1992. Phoebodus bifurcatus sp. nov.: Ginter and Ivanov, p. 65-66, figs 4A-F, 5D-H, 

6A. 

1995a. Phoebodus bifurcatus Ginter and Ivanov, 1992; Ginter and Ivanov,  pl. 1, 

figs. 5-6. 

1995. Phoebodus bifurcatus Ginter and Ivanov, 1992; Ginter, p. 61, fig. 1F-G. 
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1995. Phoebodus bifurcatus Ginter and Ivanov, 1992; Turner and Youngquist, p. 

390-391, fig. 1. 

1995. Phoebodus bifurcatus Ginter and Ivanov, 1992; Wang and Turner, p. 65, pl. 7, 

fig. 7. 

2009. Phoebodus bifurcatus Ginter and Ivanov, 1992; Trinajstic and George, p. 648, 

fig. 9. 

2010. Phoebodus bifurcatus Ginter and Ivanov, 1992; Hairapetian and Ginter, p. 

360-361, fig. 2B-C. 

Material. Six teeth from the Virgin Hills Formation, Horse Spring, samples VHS-

308, VHS-310, VHS-311, VHS-315. 

Description. Teeth with three lingually inclined cusps bearing a thin, lateral carinae 

extending from the bases of the cusps to the apices and lacking a distinct neck 

between the base and crown (Figure 3.3B-E). The cusps are generally of nearly equal 

size however the size of the central cusp is significantly reduced in one specimen 

(WAM 14.8.2, Figure 3.3D). The base is characterised by a labially directed 

semicircular arch which defines the lingual border and varies between specimens 

from strongly (Figure 3.3C) to weakly bifurcated (Figure 3.3E). A distinct button is 

lacking on most specimens, although a rounded thickening, close to the lingual rim is 

sometimes present (Figure 3.3E). A large foramina is located in the centre of the 

lingual arch and in some specimens there are smaller adjacent canal openings.  

Remarks. The teeth typical of Phoebodus bifurcatus Ginter and Ivanov, 1992 are 

characterised by having five ornamented cusps and a bifurcating base with a distinct 

button surrounded by foramina (Ginter and Ivanov, 1992). However, tricuspid forms, 

lacking intermediate cusplets, are known from the Confusion Range, Utah, USA and 

were attributed to juveniles (Turner and Youngquist, 1995). Within the Canning 
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Basin only tricuspid forms of Ph. bifurcatus have been identified but were 

previously attributed to juvenile sharks based on deeply bifurcated bases, an 

indistinct button and lack of ornament on the cusps (Trinajstic and George, 2009, pl. 

1, Fig. 9). The teeth attributed to juvenile individuals have been found in association 

with adult forms in the South Urals, Holy Cross Mountains and central Iran (Ginter 

and Ivanov, 1992; Hairapetian and Ginter, 2010) whereas in the Confusion Range, 

Utah, USA and the Canning Basin only juvenile teeth have been reported. Here we 

question the assignment of these tricuspid teeth to juvenile sharks as the size of some 

deeply bifurcated, tricuspid teeth (Figure 3.3C-D, measuring up to 1.2mm from 

furthest point on the lingual margin of the base to the labial edge), recovered from 

Horse Spring, are of comparable or larger size than other teeth attributed to adult 

forms previously reported (Ginter and Ivanov, 1992, fig. 4B-F)). It is also unlikely 

that these larger teeth are symphyseal due to the asymmetry of the base and crown 

on one specimen (WAM 14.7.4, Figure 3.3C). This would leave the possibility that 

the Canning Basin teeth, and potentially other smaller tricuspid teeth, represent 

sexual dimorphism (e.g. Peyer 1968; Bass et al., 1973; Pfeil, 1983; Straube et al., 

2008), a sub species of Ph. bifurcatus, intraspecific variation or even a separate, 

closely related species.  

Distribution and stratigraphic range. In the Canning Basin, Australia Ph. 

bifurcatus has only been recorded from MN 11 CZ; within the Holy Cross 

Mountains, Poland, South Urals, Russia, southern China and Utah, USA Ph. 

bifurcatus ranges from MN 11-12 CZ; in Kale Sardar, eastern Iran the range extends 

from the rhenana-lower linguiformis Zones (MN 11-13b CZ). 

 

Phoebodus fastigatus Ginter and Ivanov, 1992 
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(Figure 3.3F-H) 

1973. Phoebodus floweri Wells, 1944; Gross, p. 131. pl. 35, fig. 7a-b.  

1990. Phoebodus limpidus sp. nov.; Ginter, p. 75-76, pl. 4, fig. 6a-b. 

1992. Phoebodus fastigatus sp. nov.: Ginter and Ivanov, p. 66-67, fig. 3A-B, G. 

1993. Phoebodus sp.: Liszkowski and Racki, fig. 3F, H, K. 

1995. Phoebodus fastigatus Ginter and Ivanov, 1992; Ginter, p. 59, fig. 1C-D. 

1995. Phoebodus aff. fastigatus Ginter and Ivanov, 1992; Wang and Turner, p. 65, 

pl. 7, fig. 6. 

1997. Phoebodus cf. Ph. fastigatus Ginter and Ivanov, 1992; Turner, p. 112-113, figs 

4, 11, 12. 

1998. Phoebodus fastigatus Ginter and Ivanov, 1992; Kaufmann, pl. 13, figs. 1-4. 

2000. Phoebodus fastigatus Ginter and Ivanov, 1992; Ginter and Ivanov, p. 327, pl. 

1, fig. E. 

2003. Phoebodus fastigatus Ginter and Ivanov, 1992; Aboussalam, pl. 27, figs 13-

16. 

2004. Phoebodus fastigatus Ginter and Ivanov, 1992; Ginter, fig. 2H-J.  

2004. Phoebodus fastigatus Ginter and Ivanov, 1992; Hampe et al., p. 494-495, fig. 

5. 

2007. Phoebodus fastigatus Ginter and Ivanov, 1992; Liao et al., p. 173. fig. 3A-M. 

2008. Phoebodus fastigatus Ginter and Ivanov, 1992; Ginter et al., p. 170, text fig. 

2E-H.  

2009. Phoebodus fastigatus Ginter and Ivanov, 1992; Trinajstic and George, p. 649-

650, fig. 11-16. 
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Material. Fourteen teeth from Virgin Hills Formation, Horse Spring, samples VHS-

310, VHS-311, VHS-312 and VHS-315. 

Description. Teeth with three main cusps. The medial cusp is approximately a third 

of the length of the lateral cusps and one half to one third the size at the base of the 

lateral cusps (Figure 3.3F-H). When present the accessory cusps are reduced in size, 

approximately half the size of the central cusp. The lateral cusps are long and slender 

with some specimens bearing slight torsion (Figure 3.3F). The central and lateral 

cusps are all rounded in cross section (Figure 3.3G), however, the labial faces of the 

cusps vary between teeth from smooth (Figure 3.3H) to ornamented with faint to 

strongly developed striations (Figure 3.3F). The base is rectangular to trapezoidal in 

outline, extending further mesio-distally than labio-lingually and bearing a straight to 

slightly convex thin lingual edge. The lingual face of the base is perforated by 

numerous small foramina with a round to slightly ovoid centrally located button 

(Figure 3.3F).  

Remarks. The teeth are attributed to Phoebodus fastigatus Ginter and Ivanov, 1992 

based on the thin elongate lingual base with a straight lingual margin and centrally 

located ovoid button (Ginter and Ivanov 1992). The tooth crowns vary from the 

diagnostic thin elongate recurved lateral cusps (Figure 3.3F-G) to shorter more 

robust cusps with less distal divergence (Figure 3.3H). A smooth labial cusp face is 

described as a diagnostic feature of Ph. fastigatus (Ginter and Ivanov, 1992, 2000) 

and one of the features distinguishing it from Ph. bifurcatus. This feature is not 

present in all teeth from the Canning Basin with faint to coarse cristae observed here 

and on teeth previously described by Trinajstic and George (2009, pl 1, fig. 11-16). 

As there is no correlation between tooth size and the presence of or lack of ornament, 

these differences are attributed to intraspecific variation rather than ontogeny. 
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Distribution and stratigraphic range. This species ranges from MN 6-11 CZ in the 

Canning Basin, Western Australia. Worldwide the range is greater, from the Givetian 

to Frasnian rhenana CZ in the USA, Morocco, Mauritania, Spain, Poland, China, 

Russia and eastern Australia.  

 

Phoebodus cf. fastigatus (Ginter and Ivanov 1992) 

(Figure 3.3I-J) 

Material. Three teeth from the Virgin Hills Formation, Horse Spring, sample VHS-

312.  

Description. Three small teeth, measuring less than 0.5 mm mesio-distally across 

the base, with damage to both the cusps and bases (Figure 3.3I-J). Crowns with three 

to five lingually inclined cusps, comprising a main central cusp, two lateral cusps 

and, when present, smaller intermediate cusplets (Figure 3.3J). The lateral cusps, 

when preserved, are slightly larger in size than the medial cusp and in one specimen 

show torsion towards the apex of one lateral cusp (Figure 3.3I). When present, the 

intermediate cusps are small and fused to the base of the mesial margin of the lateral 

cusps. Prominent striations are present on the labial faces of the cusps, whereas the 

lingual faces are smooth. The base forms a roughly rectangular to trapezoid outline 

and is perforated by numerous small foramina. A rounded oval button is often 

difficult to determine on most specimens, however a faint outline can be seen, 

positioned centrally on one specimen (Figure 3.3I). 
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Figure 3.3. Late Frasnian phoebodonts from the Virgin Hills Formation, Horse Spring, Canning 

Basin, Western Australia. A - Australolepis seddoni scale, WAM 14.7.3, sample VHS-315, in crown 

view; B-E, Phoebodus bifurcatus teeth in occlusal view. B - WAM 14.8.1, sample VHS-315; C - 

WAM 14.7.4, sample VHS-310; D - WAM 14.8.2, sample VHS-315; E - WAM 14.7.5, sample VHS-

310. F-H, Phoebodus fastigatus teeth in occlusal view. F - WAM 14.7.9, sample VHS-311; G - WAM 

14.7.11, sample VHS-312; H - WAM 14.7.10. I-J, Phoebodus cf. fastigatus in occlusal view. I - 

WAM 14.8.5, sample VHS-311; J - WAM 14.7.12, sample VHS 310. K-O, Phoebodus latus. K - 

WAM 14.8.3, sample VHS-312, in labial view; L - WAM 14.7.7, sample 311, in occlusal view; M - 

WAM 14.7.8, sample 312, in lingual view; N - WAM 14.9.13, sample VHS-312, in occlusal view; O 

- WAM 14.8.4, sample 311, in labial view; P, Phoebodus sp. 1 WAM 14.7.6, in lateral and occlusal 

views. Scale bar 0.5 mm.  
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Remarks. The teeth described here are too poorly preserved for a definitive 

diagnosis, however they share similarities to the teeth attributed to the ornamented 

forms of Ph. fastigatus in this work. When preserved, the lingual margin of the base 

in Ph. cf. fastigatus is thin; a diagnostic feature of Ph. fastigatus (Ginter and Ivanov 

1992), however, the cusps of Ph. cf. fastigatus are ornamented with strong striations, 

ovoid in cross section and lack a distinct rounded button. The bases are not well 

enough preserved for an outline to be determined. Despite poor preservation, in one 

specimen the base appears lingually narrow (Text-fig. 3I). The teeth described here 

are consistently smaller than other teeth attributed to Ph. fastigatus and this may be 

evidence of ontogenetic variation. Furthermore the teeth commonly lack a distinct 

button, a feature attributed to juvenile forms in both Phoebodus gothicus Ginter, 

1990 and Phoebodus bifurcatus (Ginter and Ivanov 1992). One tooth (WAM 14.7.10, 

Text-fig. 3G) may represent an intermediate form between teeth designated Ph. 

fastigatus and the smaller teeth of Ph. cf. fastigatus as it possesses an elongate lateral 

cusp and more prominent ovoid button similar to Ph. fastigatus, but exhibits the 

coarse cristae and smaller size of Ph. cf. fastigatus. Therefore an ontogenetic series is 

supported by the presence of this transitional form. 

Distribution and stratigraphic range. This species ranges from MN 6-11 CZ in the 

Canning Basin, Western Australia. Worldwide the range is greater, from the Givetian 

to Frasnian rhenana CZ in the USA, Morocco, Mauritania, Spain, Poland, China, 

Russia and eastern Australia.  

 

Phoebodus latus Ginter and Ivanov, 1995a 

(Figure 3.3K-O) 
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1992. Phoebodus sp. A Ginter and Ivanov 1992, p. 70, fig. 7A-1. 

1993. Phoebodus sp. Liszkowski and Racki, p. fig. 5L-M. 

1995a. Phoebodus latus sp. nov.; Ginter and Ivanov, p. 355, pl. 1, figs 3-4. 

1995b. Phoebodus latus Ginter and Ivanov, 1995b; Ginter and Ivanov, p. 19, fig. 1. 

1995. Phoebodus latus Ginter and Ivanov, 1995b; Ginter, fig. 1E. 

2009.Phoebodus latus Ginter and Ivanov, 1995b; Trinajstic and George, pl. 1, fig. 

18-19. 

2011. Phoebodus latus Ginter and Ivanov, 1995b; Ivanov and Lucas, fig. 2A-B. 

Material. Eight teeth from the Virgin Hills Formation, Horse Spring, samples VHS-

310 VHS-311 and VHS-312. 

Description. The teeth here attributed to Phoebodus latus Ginter and Ivanov, 1995a 

are highly variable with three different morphotypes identified here. The first 

morphotype (Figure 3.3K-L) comprises five to seven smooth and almost straight 

conically shaped cusps with well-developed lateral carinas. The cusps diverge from 

the centre of the crown, which is defined by a central cusp with a base approximately 

25% smaller than the base of the two lateral cusps (Figure 3.3K-L). A pair of 

intermediate cusplets, slightly smaller than the medial cusp, are present on all 

specimens. One specimen (WAM 14.7.7, Figure 3.3L) exhibits a second pair of 

small broken cusplets fused at the base of the lateral cusps. The base is roughly 

trapezoidal in outline, thickened along the lingual edge and slightly arched. A faint 

outline of an ovoid button is preserved. 

A single, well preserved tooth represents the second morphotype (Figure 

3.3M). The crown comprises three main cusps of almost equal size with a pair of 

intermediate cusplets approximately a third of the length of the lateral cusps. The 

cusps are ovoid in cross section and all lingually directed, with the medial and lateral 
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cusps extending beyond the lingual margin of the base (Figure 3.3M). The cusps 

exhibit a well-defined lateral carina as well as striations on the labial faces. The 

lingual faces of the cusps are smooth .The base forms a roughly rectangular outline 

with the very faint outline of a centrally located ovoid button. 

Morphotype three (Figure 3.3N-O) is characterised by three main cusps and 

two pairs of intermediate cusplets, all of which are smooth with well-developed 

lateral carinas and a slight lingual inclination. The size of the central cusp ranges 

from small (Figure 3.3O), with the basal width approximately half of the size of the 

first intermediate cusplets, to significantly larger (Figure 3.3N), almost the same size 

as the lateral cusps. The second pair are approximately half the size of the 

intermediate cusplets. The base is arched and slightly bifurcated (Figure 3.3N) along 

the lingual rim which is also perforated by a horizontal row of foramina. The mesio-

distally elongate button is positioned toward the edge of the lingual rim of the base 

(Figure 3.3N). 

Remarks. The crown morphology of Phoebodus latus Ginter and Ivanov, 1995a is 

highly variable with the presence of intermediate cusplets greater than other known 

species attributed to Phoebodus (Ginter 2008). The third morphotype (Figure 3.3N-

O) resembles other Ph. latus teeth recovered from the South Urals, Russia and the 

Holy Cross Mountains, Poland (Ginter and Ivanov 1992, fig. 7A). The tooth also 

bears strong resemblance to another tooth from Horse Spring, previously described 

by Trinajstic and George (2009, pl 1. fig. 18-19). The first and third morphotypes 

identified here lack the ornament on the labial faces of the cusps (Figure 3.3K, O) 

seen in other examples of Ph. latus (Ginter and Ivanov, 1995a). The crown of the 

second morphotype more closely resembles other teeth from Ph. latus (Figure 3.3M) 

with the presence of three almost equally sized main cusps ornamented with ridges 
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on the labial faces. However the base does not show the diagnostically distinct ovoid 

button positioned close to the lingual rim (Figure 3.3M). There appears to be a great 

deal of diversity attributed to Ph. latus that would suggest a high degree of 

heterodonty. Until more specimens are found, it is difficult to determine whether the 

teeth attributed to Ph. latus in the Canning Basin are products of heterodonty or if 

they represent intraspecific variation.  

Distribution and stratigraphic range. Within the Canning Basin, the range of this 

species is confined to MN 9-11 CZ. In other regions, the species is longer ranging, 

from the falsiovalis to linguiformis conodont Zones (MN 1-13b) in Poland, the 

Middle and South Urals, and Timan of Russia. 

 

Phoebodus sp. 1 

(Figure 3.3P) 

Material. One tooth from the Virgin Hills Formation, Horse Spring, sample VHS-

312. 

Description. A robust tooth comprising two lingually inclined, almost equally sized 

laterally diverging cusps, which are rounded in cross section and bear a single faint 

lateral carina on the inner face (Figure 3.3P1-2). There is no evidence of a third cusp 

forming. The base is asymmetric and perforated by numerous pores concentrated 

along the basal rim (3P2). The base is thickest along the lingual rim, forming a 

rounded bulbous edge. A well-defined circular button is located centrally on the base 

and reaches almost to the lingual edge. A rounded, striated labiobasal thickening 

extends from the base (Figure 3.3P1). 

Remarks. The thin, smooth cusps, which are rounded in cross section, and the 

centrally located spherical button are similar to the morphological features that 
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diagnose Ph. fastigatus (Ginter and Ivanov 1992 fig. 3A-B). In addition, the tooth 

shares a similar cusp morphology to teeth from the same horizon, attributed to Ph. 

fastigatus (Figure 3H). However, the bicuspid crown, asymmetric outline of the base 

and thickened lingual rim makes an accurate diagnosis problematic. It is suggested 

that these differences are pathological, and that the tooth is most likely from Ph. 

fastigatus. However, as less than 1% of chondrichthyan teeth, both fossil and extant 

(Becker et al., 2000) are known to exhibit pathology, the diagnosis of Ph. fastigatus 

cannot be confirmed and until further teeth are recovered this tooth is placed in open 

nomenclature. 

 

Genus Thrinacodus St. John and Worthen, 1875 

Type species. Thrinacodus nanus St. John and Worthen, 1975 

Thrinacodus tranquillus Ginter, 2000 

(Figure 3.4A-C) 

2000. Thrinacodus tranquillus sp. nov.; Ginter, p. 374-377, figs 2a-C, 3a-F, 4a-C, 

5h-k. 

2000. Thrinacodus cf. ferox (Turner); Long and Hairapetian, p. 214-216, fig. 4n. 

2002. Thrinacodus tranquillus Ginter, 2000; Ginter et al., p. 186-188, text-fig. 9F-h, 

pl. 2, fig. h, pl. 3, fig. h, pl. 11, figs h-I. 

2008. Thrinacodus tranquillus Ginter, 2000; Derycke et al., p. 988, text-fig. 4(1-2). 

2009. Thrinacodus tranquillus Ginter, 2000; Hairapetian and Ginter, p. 191, text-fig 

9c-d. 

2010. Thrinacodus tranquillus Ginter, 2000; Ginter et al., p. 41, fig. 33A. 

2010. Thrinacodus tranquillus Ginter, 2000; Ginter and Turner, p. 1668, fig. 2C. 
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Material. Four teeth from the Virgin Hills Formation, Casey Falls, samples CF-

127.5 and CF-471; ten teeth from the Bugle Gap Limestone, Casey Falls, samples 

1984-97 and 1984-98. 

Description. A total of three morphotypes are attributed to Thrinacodus tranquillus 

in this work. The first morphotype (Text-fig 4A), is the most common and features a 

symmetrical crown with three sub-equal cusps, often with one dominant lateral cusp. 

When preserved, the lingually extended base is positioned asymmetrically in relation 

to the crown. A centrally located canal is present on the occlusal face of the base, 

which also shows slight torsion towards the distal end. 

The second morphotype (?symphyseal teeth sensu Ginter 2000; symphyseal 

tooth Ginter pers comm.), represented by a single tooth (Figure 3.4B), comprises a 

symmetrical crown with three thin, straight, equally sized and lingually directed 

cusps, each with lateral carinae and faint striations on the labial face. The base is 

thin, extends lingually further than the cusp apices and bears a small nutritive canal 

approximately half way down the occlusal face of the base. There is no obvious sign 

of torsion towards the end of the base. 

The third morphotype is represented by a single asymmetric tooth (WAM 

14.7.29, Figure 3.4C) that is characterised by a crown consisting of three unequal 

cusps. The straight, lingually directed central cusp is preserved with lateral carinae 

and faint striations on the labial face. The thin base extends further lingually than the 

apex of the central cusp and is curved distally in relation to the crown. The posterior 

end of the base is contorted toward a vertical orientation with a small nutritive canal 

located approximately half way down the occlusal face.  

Remarks. These teeth largely conform to the diagnosis of Thrinacodus tranquillus 

Ginter, 2000, and the differences between the tooth forms are attributed to 
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heterodonty. Previous work (Ginter, 2000; Ginter et al. 2002; Duncan 2003; Ginter 

and Turner, 2010) has suggested the presence of two tooth types; the first with a 

flattened base positioned asymmetrically in relation to the crown and a smaller 

almost completely symmetrical form (Duncan, 2003). The first morphotype (Figure 

3.4A) is the most common tooth form attributed to Th. tranquillus and has been 

reported from various locations across northern Gondwana (Ginter and Turner 

2010). The second, smaller morphotype (Figure 3.4B), which has had its assignment 

to Th. tranquillus recently questioned (Ginter and Turner, 2010), is less common and 

with few examples recorded from the Montagne Noire (Ginter, 2000). Based on 

reconstructions of tooth placement within thrinacodont jaws (Turner,1982; Ginter et 

al. 2002; Duncan 2003), the supposed symmetrical symphyseal teeth only comprise a 

small proportion of teeth thus likely lower yields of these teeth are to be expected. 

A third morphotype (Figure 3.3.4C) has been attributed to Th. tranquillus 

with similar teeth previously recorded from Montagne Noire and Oum El Jerane and 

Tizi Nersas, Morocco, conversely these specimens were designated Thrinacodus cf. 

ferox (Ginter ,2000, fig. 2; Ginter et al., 2002, fig. 9A-E). It was suggested by Ginter 

et al., (2002) that the teeth of Th. cf. ferox may represent the lateral most teeth of Th. 

tranquillus, which was supported by the presence of intermediate forms between the 

typical teeth of Th. tranquillus and Th. cf. ferox. A similar variety of tooth forms is 

present in the Canning Basin, however the teeth are recovered from Late marginifera 

CZ dated deposits making their attribution to the Th. ferox unlikely as it is regarded 

as a late Famennian to late Tournaisian species (Ginter and Turner, 2010). 

Distribution and stratigraphic range. In the Canning Basin this species is recorded 

from the Late marginifera CZ. A similar age rhomboidea or Late marginifera CZ is 

recorded for Chahriseh, Iran (Long and Hairapetian, 2000; Ginter et al., 2002; 
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Hairapetian and Ginter, 2009) and also a marginifera CZ for Hunan, China (Lelièvre 

and Derycke, 1998). In Oum El Jerane and Tizi Nersas, Morocco this species ranges 

from rhomboidea or Late marginifera CZ to Middle to Late expansa (Ginter et al., 

2002; Derycke et al., 2008). Younger known occurrences have been recorded from 

the Late trachytera CZ, Holy Cross Mountains, Poland, Lower to upper expansa CZ, 

Thuringia, Germany and expansa CZ in Montagne Noire. Within the South Urals the 

range of this species is recorded from the Late expansa to Early praesulcata CZ 

(Ivanov, 1996).  

 

Genus Diademodus Harris, 1951 

Type species. Diademodus hydei Harris, 1951 

Diademodus dominicus sp. nov. 

(Figure 3.4D-E) 

Etymology. In honour of Mr Dominicus ‘Tim’ Mueller, M.Sc., who guided the 

careers of many aspiring geoscientists.  

Holotype. Specimen WAM 14.7.1 from the Virgin Hills Formation, Horse Spring, 

Canning Basin, Western Australia; sample VHS-310; Frasnian, MN 11 CZ; Figure 

3.4D.  

Material. Two teeth from the Virgin Hills Formation, Horse Spring, sample VHS-

310.  

Diagnosis. Teeth with a multicuspid phoebodont type crown comprising three cusps 

and three to four pairs of intermediate cusplets (Figure 3.4D). The cusps are thin and 

ovoid in cross section, becoming circular towards the cusp apex and bearing 

prominent lateral carinae. A slight lingual inclination is present on all cusps with the 
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larger lateral cusps recurving occlusally. The base is highly arched, trapezoid in 

outline and becoming narrower labially (Figure 3.4E2). The labial margin is rounded 

and perforated by a row of foramina. A mesio-distally elongate hump occupies the 

majority of the baso-labial shelf with the labial margin abutting the base of the cusps. 

There is a slight decrease in height of the shelf towards the lingual margin. 

Description. Distinctive teeth with symmetrical crowns that fan out mesio-distally 

and comprise three mains cusps and three to four pairs of lateral cusps (Figure 3.4D-

E). The medial cusps are broken in both specimens, however the bases are 

approximately half the width of the lateral cusps. A pair of small, first lateral 

cusplets are independent of the medial cusp but are fused at the base with the second 

lateral cusplets which are slightly smaller in size than the lateral cusps. In one 

holotype (WAM 14.7.1, Figure 3.4E) a small fourth cusplet is present and erupts 

from the base of the lateral cusp. The preserved cusps appear ovoid in cross section 

(elongate labio-lingually), at the base and exhibit smooth lingual and labial faces 

with well-developed lateral carinae. No discernible crown-base interface is present 

on the labial faces of the teeth. The base is highly arched (Figure 3.4E1), 

approximately twice as long mesio-distally as it is labio-lingually (Figure 3.4E2). A 

roughly trapezoid to almost rectangular shape of the base can be determined, with 

rounded lingual corners. A row of foramina is present running along the lingual rim. 

An ovoid button is positioned centrally on the base extending between the third 

lateral cusplets and gradually dissipates towards the lingual margin of the base. The 

labial face of the button preserves the openings to a row of canals and terminates 

abruptly, close to the base of the crown.  

Remarks. The teeth of the type specimen Diademodus hydei Harris, 1951 are 

partially obscured in matrix thus similarities to the genus are based on the visible 
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labial tooth face of Diademodus hydei as well as comparison to the other member of 

this genus, Diademodus utahensis Ginter, 2008. The teeth of Diademodus all share 

the typical phoebodont tooth crown but can be differentiated on the number of 

intermediate cusplets (Ginter 2008). The cusp arrangement and variation in cusplet 

size present in D. dominicus sp. nov (Figure 3.4E) is similar to D. utahensis (Ginter 

2008, fig. 1B) and differs from the original description of D. hydei which was 

figured having two prominent central cusps and intermediate cusplets of almost 

equal size (Harris, 1951, fig. 3b), however, reinterpreted by Ginter (2008) as 

possessing a single prominent central cusp. The teeth of D. dominicus sp. nov are 

further distinguished as some cusplets are fused at the base with the adjacent cusp or 

cusplets, a feature not apparent in D. hydei or D. utahensis. The lingual face of teeth 

from D. dominucus sp. nov. most closely resemble those of D. hydei as these teeth 

lack both the mesio-distal extension of the base beyond the crown as well as the 

presence of a baso-labial shelf, features both present in D. utahensis. The tooth is 

distinguished from both D. hydei and D. utahensis by a shorter mesio-distal length of 

the base which is also significantly arched. The basal outline of D. dominicus sp. 

nov. narrows lingually and is substantially different from that of D. utahensis which 

forms a trapezoid shape becoming wider lingually and slightly compressed centrally 

on the lingual margin. The orolingual hump of D. dominicus is also far more 

prominent than that of D. utahensis. We believe these differences are significant 

enough for the establishment of the species Diademodus dominicus sp. nov. 

Despite the low number of teeth recovered from D. utahensis and the 

obscured nature of teeth from D. hydei, heterodonty within each species is so far 

limited to variation in the number of intermediate cusplets, reported in D. utahensis 

(Ginter 2008) and D. domincus sp. nov.. Ginter (2008) suggests that anterior teeth of 
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D. utahensis may be narrower and speculates they would be similar in form to teeth 

attributed to Ph. fastigatus (in Ginter 2008, fig. 3B). This would appear more likely 

than the teeth of D. dominicus sp. nov. representing anterior D. utahensis teeth as the 

base and cusp morphology is far more similar between D. utahensis and the Ph. 

fastigatus tooth examples. 

 

Order Symmoriida Zangerl, 1981 

Family Stethacanthidae Lund, 1974 

Genus Stethacanthus Newberry, 1889 

Type species. Physonemus altonensis St. John and Worthen, 1875. 

Stethacanthus sp. 1 

(Figure 3.4F-G) 

Material. One tooth from the Virgin Hills Formation, Casey Falls, sample CL-471; 

one tooth from the Bugle Gap Limestone, Casey Falls, sample 1984-97. 

Description. Small teeth, less than 1 mm mesio-distally and consisting of a slender 

prominent central cusp and two smaller, slightly diverging lateral cusps 

approximately one third of the size of the medial cusp (Figure 3.4F-G1). A pair of 

small intermediate cusplets is present with one specimen possessing a second pair of 

cusplets on the distal side of the lateral cusps (Figure 3.4F1-2). Thin vertical striations 

extend from the base to tip on the lateral and intermediate cusps on the well 

preserved cusps. The base forms a distinct triangular outline (Figure 3.4G2), 

extending beyond the crown mesio-distally with rounded edges and a low profile. 

The apex of the lingual projection on the base is slightly thickened and possesses 

multiple foramina along the lingual rim.  
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Remarks. The teeth described here possess characters found in other stethacanthid 

tooth types including upright, unconnected cusps ornamented in sub-parallel cristae 

and a base lacking a labial depression. The triangular shaped lingual extension of the 

base (Figure 3.4G2) is a common feature of Moroccan stethacanthid teeth (Ginter et 

al., 2002, pl. 10C) and also seen in other Famennian teeth from the Montagne Noire 

(Ginter, 2000, fig 7C) and Dalmeh, Iran (Long and Hairapetian, 2000, fig 4l). The 

teeth from the Canning Basin also appear to exhibit a thickening around the lingual 

 

Figure 3.4. Shark teeth from the middle Famennian at Casey Falls (A-C, F-G) and Upper Frasnian at 

Horse Spring (D-E). A-C, Thrinacodus tranquillus in occlusal view. A - WAM 14.7.15, sample 1984-

97; B - WAM 14.7.16, sample 1984-97; C - WAM 14.7.29, sample 1984-98. D-E, Diademodus 

dominicus sp. nov. teeth, sample VHS-310. D - WAM 14.7.2, in lingual view; E - WAM 14.7.1, 

holotype, in lingual and occlusal views; F-G - Stethacanthus sp. 1. F - WAM 14.7.26, sample Cl-471, 

in lingual and labial views; G - WAM 14.7.27, sample 1984-98 in lingual and occlusal views. A-E, 

scale bar = 0.5 mm; F-G, scale bar = 0.5 mm. 

 

apex of the base, which is similar to a tooth from Dalmeh, Iran (Long and 

Hairapetian 2000, fig. 4e) but lack a well-formed labial boss. One tooth variant 

(WAM 14.7. 26, Figure 3.4F) exhibits a sixth cusp, a feature not usually found in 

Famennian stethacanthid teeth from Morocco and Iran (Ginter et al., 2002). Further 
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specimens are required to determine if this tooth represents a non-typical variant of 

Stethacanthus sp. 1 or if there is a degree of heterodonty within this species.  

 

Order Ctenacanthiformes Glikman, 1964 

Family Ctenacanthidae Dean, 1909 

Genus Cladoides Maisey, 2001 

Cladodoides wildungensis Jaekel, 1921 

(Figure 3.5A) 

1921. Cladodoides wildungensis sp. nov.: Jaekel, 1921.  

1991. Stethacanthus sp.; Ginter, p. 75, pl. 8: 4, pl. 9: 2, 3. 

1992. Cladodus cf. C. thomasi Turner; Ivanov et al., p. 89, pl. 36: 3, 4. 

1992. Stethacanthus thomasii Turner [sic]; Derycke, p. 39-40, fig. 14, pl. 2: 10, 11. 

1995b. Stethacanthus cf. thomasi Turner; Ginter, fig. 2A. 

1996. “symmoriid with button partially divided”; Ginter and Ivanov, fig. 4C. 

1996. “stethacanthid?”; Ginter and Ivanov, fig. 5C, D. 

2000. Stethacanthus cf. thomasi (Turner); Ginter and Ivanov, pl. 1: J. 

2002. Stethacanthus resistens sp. nov.; Ginter et al., figs 2, 3, 4C-I, 5C. 

2010. Cladodoides wildungensis Jaekel; Ginter et al., fig. 66A-J. 

Material. Two teeth from the Virgin Hills Formation, Horse Spring, sample VHS-

310; Casey Falls, sample Cl-9. 

Description. Symmetrical teeth with five lingually inclined and strongly diverging 

cusps. The central cusp is large, almost twice the width at the base of the lateral 

cusps (Figure 3.5A1). The intermediate cusps are significantly smaller, 

approximately half the height of the lateral cusps. Both the lingual and labial faces of 
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the cusps are ornamented with sub parallel ridges. The base is ovoid in outline, 

slightly arched and elongated mesio-distally, extending beyond the crown. A small 

baso-labial projection is preserved on one tooth (Figure 3.5A 2-3), between the distal 

edges of the medial cusp. Due to abrasion, only the remnants of a mesio-distally 

elongate button are preserved on both teeth. One tooth (Figure 3.5A1) preserves an 

outline of a button, extending the distance between the two intermediate cusps, as 

well as a series of grooves, presumably once pore canals running labio-lingually. 

Remarks. Ginter et al. (2010) recognises two morphotypes of Cladodoides 

wildungensis Jaekel (1921). The first morphotype, characterised by its larger size 

and long, slender medial cusp; and the second smaller morphotype, to which the 

Canning Basin teeth are here assigned, that are less than two mm across the length of 

the base with diverging cusps ornamented in coarse sub-parallel cristae. The teeth 

described here are markedly similar to the holotype of C. wildungensis (figured in 

Ginter et al., 2010, fig. 66l) as well as resembling teeth from Poland (Ginter et al. 

2002, fig. 2C-F) designated Stethacanthus resistens. Ginter et al., (2010) suggests 

that it is possible that some, if not all teeth previously attributed to Stethacanthus 

resistens belong to the C. wildungensis. If so, at appears C. wildungensis is 

considerably cosmopolitan in nature.  

Distribution and stratigraphic range. This species ranges from MN 11 CZ- lower 

crepida in the Canning Basin, Western Australia. Due to a degree of synonymy with 

S. cf. thomasi a definitive range is difficult to ascertain, however a range from the 

Upper Frasnian - middle Famennian is likely in Poland, Moravia, Germany, 

Morocco and Russia. 

 

Ctenacanthiform gen. et sp. indet 1 
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(Figure 3.5B) 

Material. One tooth from the Napier Formation, South Oscar Range, sample SO-

200. 

Description. This highly symmetrical tooth is well preserved, by comparison to 

other teeth in the sample, and possesses five slender, lingually inclined cusps that fan 

out mesio-distally (Figure 3.5B1 -2). A large prominent central cusp is flanked by two 

smaller intermediate cusps. The lateral cusps are approximately two thirds the length 

of the medial cusp and diverge at approximately 45 degrees to the medial cusp. In 

labial view, the cusps appear more triangular and connected at the bases (Figure 

3.5B3). All cusps are ovoid in cross section and ornamented on both the lingual and 

labial faces with strong vertical striations. The base is trapezoid in shape extending 

further lingually than labially and broadest along the lingual margin (Figure 3.5B2). 

The base is thickest in a trapezoid area between the labial edge of the lingual button 

and lateral cusps. A thin baso-labial projection is present with a row of foramina. A 

well developed, ovoid shaped button is positioned close to the lingual border and 

perforated by a row of four large foramina (Figure 3.5B1).  

Remarks. The tooth shares commonalities between many cladodont-like teeth 

outlined by Duffin and Ginter (2006). The connection of the tooth cusps by an 

enameloid or orthodentine layer (Figure 3.5B3) excludes this tooth from belonging to 

the symmoriids and stethacanthids (sensu Duffin and Ginter, 2006). The tooth lacks 

a baso-labial depression as seen in Cladodus and Ctenacanthus and is thereby more 

similar to Cladoides which may also lack this feature. The baso-labial shelf is 

straight which is characteristic of Cladoides but is far more developed in 

Ctenacanthiforme gen. et. sp. indet 1 and this projection may obscure the presence of 

any baso-labial depression. The tooth is differentiated from other Ctenacanthiformes 
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based on the strongly rounded or biconvex central cusp and lateral cusps, which are 

almost two thirds the size of the central cusps. The tooth is referred to the 

Ctenacanthiformes, perhaps temporally, based on the orthodentine or enameloid 

connective tissue present between the cusps and similarities with the genus 

Cladoides.  

 

Ctenacanthiform gen. et sp. indet 2 

(Figure 3.5C) 

Material. One tooth from the Virgin Hills Formation, Casey Falls, sample 1984-97; 

one tooth from the Napier Formation, South Oscar Range, sample SO-200.  

Description. Heavily abraded teeth with a large medial cusp flanked by four smaller 

triangular shaped cusps consisting of a pair of small lateral cusps and a pair of 

intermediate cusplets approximately half the size of the lateral cusps (Figure 3.5C1-

2). The medial cusp is inclined slightly and convex along the lingual edge in cross 

section. Where the outer enameloid is preserved on the central cusp, faint vertical 

striations can be observed. The intermediate and lateral cusps do not show any 

ornamentation with the lateral cusps diverging at a 45 degree angle. A distinct rim is 

preserved on the labial face of the teeth and marks the crown base interface (Figure 

3.5C1-2). The base extends lingually almost three times the width of the crown and 

forms a large dome shape that extends beyond the crown mesio-distally (Figure 

3.5A2). A very faint ovoid button, approximately twice as long as it is wide, is 

preserved on one specimen and positioned closer to the lingual margin than the 

crown (Text- fig. 3.5A2). A series of foramina perforate the lingual face of the base 

with a single large nutritive canal positioned centrally along the lingual margin. The 
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labial face of the base in both specimens is highly abraded (Figure 3.5A3), however 

remnants of a thickened baso-labial shelf and slight depression are present.  

Remarks. These teeth have been attributed to the Ctenacanthiformes based on 

features shared with other members of this group. The prominent central cusp and 

diminished lateral and intermediate cusps are similar to Cladodus conicus Agassiz, 

1843 although the base on the tooth from the Canning Basin specimens is much 

thicker and the striations preserved on the cusps are coarser. The central cusp is 

flattened along the labial face and exhibits a convex lingual face, and in this respect 

closely resembles Cladodus. The significant abrasion to the labial faces of the teeth 

does not allow further taxonomic refinement. The teeth do feature a unique rim 

running across the crown base interface that is not typically seen in other cladodont 

type teeth.  

 

Figure 3.5. Ctenacanthiform teeth from the Famennian at Casey Falls (A) and South Oscar Range (B-

C). A, Cladoides wildungensis, WAM 14.7.14, sample CL-9, in lingual, occlusal and labial views. B, 

Ctenacanthiform gen. et. sp. indet 1, WAM 14.7.19, sample SO-200, in lingual, occlusal and labial 

views; C, Ctenacanthiform gen. et. sp. indet 2, WAM 14.7.20, sample SO-200, lingual, occlusal and 

labial views. A-B, scale bar = 0.5 mm; C, scale bar 1 mm.  
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Distribution and stratigraphic range. Frasnian conodont Zone 13b to Late 

marginifera conodont Zone in the Canning Basin, Western Australia.  

 

Cohort Euselachii Hay, 1902 

Order indet. 

Family Protacrodontidae Zangerl, 1981 

Genus Protacrodus Jaekel, 1925 

Type species. Protacrodus vetustus Jaekel, 1925 

Protacrodus serra Ginter, Hairapetian and Klug, 2002 

(Figure 3.6A-B) 

1990. “Cladodus” sp.; Ginter, p. 77, pl. 4, fig. 9. 

2000 .Protacrodus cf. vetustus Jaekel; Ginter, p. 378-379, fig. 8. 

2002. Protacrodus serra, sp. nov.; Ginter, Hairapetian and Klug, p. 195, figure 11; 

pl. 2, figs. L-N; pl. 11, figs. A-C. 

2007. Protacrodus serra Ginter, Hairapetian and Klug, 2002; Gillis and Donoghue, 

p. 40, fig. d-e. 

2007. Protacrodus cf. serra Ginter, Hairapetian and Klug, 2002; Ginter and Sun, p. 

711, 4C. 

2010. Protacrodus serra Ginter, Hairapetian and Klug, 2002; Ginter et al., p. 87, fig. 

80A-C. 

2011. Protacrodus serra Ginter, Hairapetian and Klug, 2002; Ginter et al., p. 168, 

fig. 10I-J. 

Material. Two teeth from the Bugle Gap Limestone, Casey Falls, samples 1983-94; 

1984-97.  
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Description. The teeth described here can be assigned to morphotype one of 

Protacrodus serra (Ginter et al., 2002, fig. 11 C-E) and comprise asymmetrical 

crowns with three cusps directed distally to one side (Figure 3.6A). The medial cusp 

is large, over twice the size of the lateral cusps with a narrow labio-lingual profile. 

Both the lingual and labial faces of the cusps are ornamented in strong cristae. In one 

specimen (WAM 14.7.23, Figure 3.6B), a row of small pointed cusplets is present 

along the crown base interface on the labial face. The base is narrow lingually, with 

a slightly extended and straight lingual rim (Figure 3.6B) that is perforated by a large 

canal located centrally. The labial face of the base does not protrude and is 

perforated by a row of small foramina (Figure 3.6A2). 

Remarks. Evaluating variation present in the teeth of different shark taxa is difficult 

as odontological studies remain incomplete (Straube et al., 2008). The presence of 

labial cusplets (Figure 3.6B) on P. serra may be evidence of intraspecific variation 

or the presence of sexually based heterodonty which is seen in the dentition of some 

fossil (Parmley and Cicimurri, 2003) and extant shark species (Raschi et al., 1982). 

The same labial cusplets are apparent in other teeth attributed to P. serra from Iran 

(Ginter et al., 2002, pl. 2L-M; Ginter et al., 2011, text-fig 10I-J), which rules out 

regional influences for variation. Cusplets also appear on teeth independent of size 

(Figure 3.6A-B) and morphotype (Ginter et al., 2002, pl. 2L-M) which makes 

ontogenetic variation unlikely.  

Distribution and stratigraphic range. This species has an older occurrence in the 

Canning Basin, Western Australia (Lower crepida to Upper marginifera Zone) as 

compared to other areas of the world where it occurs in the Early expansa Zone in 

Dalmeh, Iran, Late expansa Zone, Tizi and Oum El Jerane, Morocco and probable 

expansa Zone Khor Virap, Armenia. In China this species has been recorded from 
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the middle Tournaisian. Another protacrodont species, D. masureae (Burrow et al., 

2010) is known to range from the Late Devonian into the Carboniferous. 

  

Genus Deihim Ginter, Hairapetian and Klug, 2002 

Type species. Deihim mansureae Ginter, Hairapetian and Klug, 2002 

Deihim mansureae Ginter, Hairapetian and Klug, 2002 

(Figure 3.6C-D) 

2000. ?Protacrodus sp. Long and Hairapetian, p. 217-218, fig. 4O. 

2000. Protacrodus sp. cf. “P. aequalis“ sensu Ginter and Turner; Yazdi and Turner, 

p. 226, figs 3.4-7, 4.4.  

2002. Deihim mansureae gen. et sp. nov.; Ginter, Hairapetian and Klug, p. 191-193, 

figure 10; pl. 1, fig. r; pl. 2, fig. k; pl. 4, figs F-G, J-M; pl. 5, figs A-M. 

2005. Polycrodontidae insertae sedis Derycke-Khatir, p. 76, pl. VII, figs 7-10. 

2005. Bobbodus sp. Derycke-Khatir, p. 95-96, pl. XII, figs 1-2. 

2009. Deihim mansureae Ginter, Hairapetian and Klug, 2002; Hairapetian and 

Ginter, p. 176, 179, fig. 2D, 4H. 

2010. Deihim mansureae Ginter, Hairapetian and Klug, 2002; Hairapetian and 

Ginter, p. 362, fig. 3A. 

2010. Deihim mansureae Ginter, Hairapetian and Klug, 2002; Ginter et al., p. 88, fig. 

81A-J. 

2011. Deihim mansureae Ginter, Hairapetian and Klug, 2002; Ginter et al., p. 166, 

169, 8A-E, 11C. 

2011. Deihim mansureae Ginter, Hairapetian and Klug; Ivanov and Lucas, p. 60, fig. 

8. 
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2013. Deihim mansureae Ginter, Hairapetian and Klug; Habibi et al., p. 30, fig. 4. 

Material. One tooth from the Virgin Hills Formation, Casey Falls, sample CL-471 

and seven teeth from the Bugle Gap Limestone, samples 1984-96, 1984-97, 1984-98.  

Description. Four morphotypes were originally assigned to the species Deihim 

mansureae Ginter et al. (2002), of which, two are represented here (Figure 3.6C-D). 

A single tooth attributed to morphotype one (Figure 3.6D1-2) appears to possess a 

significantly worn central and lateral cusps with only the base of the crown 

preserved. The base of a large main central cusp can be distinguished, flanked by 

two smaller highly fused lateral cusps. Cristae is present on the base of the lateral 

cusps on the lingual face. The labial face of the crown possesses three large, robust 

cusplets (Figure 3.6D2), immediately above the base. The crown-base interface on 

the lingual face is highly arched and defined by a shallow groove. The base is 

narrower, mesio-distally, than the crown and extends lingually with a series of deep 

canals. 

Two teeth (Figure 3.6C1-2), assigned to morphotype four were recovered and 

are characterised by an elongate central cusp and two well-spaced diverging lateral 

cusps approximately a third of the size of the medial cusp. Sub-parallel cristae are 

present on both the labial and lingual faces of each cusp. Four cusplets are present 

above the crown-base interface on the labial face. The base is roughly ovoid in 

outline (Figure 3.6C2) and does not extend beyond the crown mesio-distally. The 

lingual face of the base forms an arch, protruding lingually and is perforated by a 

few foramina.  

Remarks. The teeth described here conform to the diagnosis of D. mansureae with 

the presence of a prominent central cusp and lateral cusps that bear strong cristae, on 

a convex crown-base interface. A row of labial cusplets are also present above the 
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crown base interface is also characteristic of this species. The teeth assigned to 

morphotype four resemble those of Ginter et al. (2010, pl. 5 D-F) with the presence 

of a slender central cusp with two lateral cusps, approximately half the size of the 

central cusp and diverging at 45 degree angles. These teeth also appear less 

perforated by foramina on the lingual face of the base and lack the fusing of the 

central and lateral cusps that is seen in the other morphotypes of this species.  

Distribution and stratigraphic range. D. mansureae ranges from the Late 

marginifera CZ to possibly the Tournaisian in the Canning Basin. An older 

occurrence of this species is known from the rhenana (MN 11 CZ) in Kale Sardar 

area of Iran (Hairapetian and Ginter 2010). In the Famennian of Iran and Armenia D. 

mansureae ranges into the Upper crepida conodont Zone. Teeth attributed to this 

species have also been found in the Sly Gap Formation, New Mexico, USA (Ivanov 

and Lucas 2011), however no concise age range beyond the Late Devonian and Early 

Carboniferous can be ascertained.  

 

Deihim cf. mansureae 

(Figure 3.6E) 

Material. Two teeth from the Bugle Gap Limestone, Casey Falls, sample 1984-98. 

Description. Teeth with prominent central cusps and two smaller lateral cusps 

approximately one third the size of the medial cusp, diverging at approximate 45 

degree angles (Figure 3.6E1). Each cusp is rounded with sub parallel striations on 

both the labial and lingual faces. A row of seven rounded cusplets, ornamented in 

strong cristae are present on the base of the crown along the labial face (Figure 

3.6E2). The base is ovoid in outline, extending lingually and possessing a single 
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small pore located centrally on the lingual rim. On the labial face the base is thin and 

forms an undulated contact with the crown.  

Remarks. These teeth are similar to the morphotype 1 of Deihim mansureae as they 

comprise a crown with a large central cusp with two strongly diverging lateral cusps, 

all ornamented in a strong cristae as well as a row of lingual cusplets along the labial 

face of the tooth. The cusplets present on the teeth described here are unusual but  

 

Figure 3.6. Protacrodont teeth from Casey Falls. A-B, Protacrodus serra. A - WAM 14.7.21, sample 

1984-97, in lingual and labial views; B - WAM 14.7.23, sample CL-471, in occlusal view; C-D - 

Deihim mansureae. C - WAM 14.7.25, sample 1984-98, in lingual and occlusal views; D - WAM 

14.7.28, sample 1984-97, in lingual and occlusal views; E, Deihim cf. mansureae, WAM 14.7.24, 

sample 1984-98, in lingual and labial views; F, Deihim sp. 1, WAM 14.7.17, sample CL-471, in 

lingual, baso-labial and occlusal views  Scale bar 0.5 mm.  
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bear a strong resemblance to the cusplets on a tooth from D. mansureae in central 

Iran (Hairapetian and Ginter 2009, figs. 5H2-3). Despite the similarities with D. 

mansureae, the tooth lacks both the arched lingual groove associated with the crown 

base interface as well as the series of deep pore canals on the lingual face diagnostic 

of this species (Ginter et al. 2002).These features are also lacking on a tooth 

attributed to Protacrodus cf. vetustus from the Montagne Noire (Ginter 2000, fig. 

8C). The Montagne Noire tooth shares the similar sub-parallel cristae to the teeth 

from the Canning Basin, however it lacks labial cusplets. 

 

Deihim sp.1 

Figure 3.6F 

Material. One tooth from Bugle Gap Limestone, Casey Falls, sample CL-471.  

Description. A well preserved, almost symmetrical tooth with a prominent central 

cusp and two pairs of highly fused lateral cusplets (Figure 3.6F1). Cusps are 

ornamented on the lingual face in strong cristae along the base of the cusps with a 

single ridge running up the centre of the central cusp. A crown-base interface is 

prominent, marked by a groove on both the lingual and labial faces of the tooth 

(Figure 3.6F1). A triangular labial peg is positioned at the base of the central cusp 

with accompanying smaller projections on either side (Figure 3.6F2-3). The base is 

approximately the same height as the central cusp with a straight lingual edge and 

rounded distal margins. A series of foramina are present on the lingual face of the 

base in almost two rows, one slightly below the crown base interface and another 

close to the lingual rim (Figure 3.6F1). A large articulation socket is present on the 

baso-labial face of the base (Figure 3.6F2). 
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Remarks. The tooth described here comprises a large central cusp with diverging 

cusps ornamented in strong cristae which are diagnostic of the genus Deihim (Ginter 

et al., 2002). Further similarities include the presence of a crown base interface 

separating a lingually extended base perforated by a series of canals. Despite the 

similarities, Deihim sp. 1 comprises a central cusp which is more prominent than that 

found on morphotype 1 of D. mansureae and it also lacks the characteristic labial 

cusplets. Instead the tooth from the Canning Basin bears small tubercle-like 

projections above the crown base interface on the extended labial face of the crown. 

The general morphology of Deihim sp. 1 also bears a slight resemblance to 

Protacrodus orientalis Li, 1988 with the high central cusp, fused laterals and a labial 

projection of the central cusp (Li, 1988, pl. 1, fig. 2), however the size difference in 

the cusps excludes this tooth from P. orientalis (Ginter et al., 2002). There is also a 

very strong resemblance to another tooth attributed to P. orientalis from the 

Menggongao Formation, South China (Lelièvre and Derycke, 1998, fig. 7B) which is 

narrower mesio-distally with the same cusp morphology and deep base. Recently, 

the inclusion of P. orientalis as a species of Protacrodus has been questioned (Ginter 

et al., 2010). It is possible P. orientalis belongs to the genus Deihim and the tooth 

from the Canning Basin represents a less abraded form of this species.  

 

Protacrodontidae gen. sp. indet. 1 

(Figure 3.7A) 

Material. One tooth from the Bugle Gap Limestone, Casey Falls, sample 1984-94.  

Description. Highly elongate and slightly arched tooth comprising a prominent 

pyramidal central cusp accompanied by four to five fused lateral cusps 

approximately a quarter of the size of the central cusp (Figure 3.7A1). Both the labial 
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and lingual faces of the cusps are ornamented in coarse wavy cristae directed 

towards the cusp apices. Approximately 80% of the lingual face of the base is 

broken, however the preserved section is the same height as the lateral cusps and 

extends both lingually and further mesio-distally than the crown on one side (Figure 

3.7A2). A small number of foramina are present on the lingual face of the base. The 

labial margin of the base is thin and perforated by small foramina and lacks a distinct 

crown base interface (Figure 3.7A2). 

Remarks. The tooth is placed under Protacrodontidae based on the coarse cristae 

and lack of articulation devices also found in other Devonian Protacrodonts as well 

as its occurrence within the middle Devonian. The tooth is also similar to a partial 

tooth of a ?Protacrodontid (Ginter and Sun 2007, fig. 4E) from Muhua, southern 

China in that it shares the highly elongate shape, with extensively fused lateral cusps 

flanking a prominent central cusp and a well-developed cristae. However, the tooth 

described here lacks the festoon-like sculpture on the lower aspect of the crown 

present on the Chinese tooth (Ginter and Sun 2007).  

 

?Protacrodontidae fam. gen. sp. indet. 

(Figure 3.7B) 

Material. One tooth from the Bugle Gap Limestone, Casey Falls, sample CL-471. 

Description. A mesio-distally elongate tooth with a crown consisting of highly fused 

cusps that are almost indistinguishable. Strong cristae are present on the labial and 

lingual faces as well as the occlusal surface (Figure 3.7B1-3). The labial face of the 

crown is higher and slopes lingually. The distal margins of the crown taper inward to 

the crown-base interface, whereas the labial and lingual faces are almost straight. 

The base is roughly rectangular in outline with a slightly thickened, protruding 
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lingual margin. A row of pore canals are present along the lingual face of the base 

(Figure 3.7B2), where as possible remnants of canals are present on the labial face 

(Figure 3.7B3). 

Remarks. Teeth with coarse cristae, a reduced base lacking both a lingual extension 

and articulation devices are common among Devonian protacrodonts. The crown of 

the tooth described here, retains more highly fused cusps than other protacrodont 

teeth and in this respect it more closely resembles an orodont. The reduced base and 

lack of distinct margin between the crown and base along the labial margin appear 

similar to the lingual face of the teeth attributed to P. serra and P. aequalis Ivanov 

1996. The samples taken above the section measured at Casey Falls are dominated 

by protacrodontid-type teeth (Protacrodus serra, Deihim mansureae, D. cf. 

mansureae, Deihim sp. 1, Protacrodontidae gen. et sp. indet.; Table 3.1), which 

could suggest it belongs to the family Protacrodontidae and is highly modified, 

possibly representing a lateral crushing tooth.  

 

Order Hybodontiformes Cappetta, Duffin and Zidek, 1993 

Superfamily Hybodontoidea Owen, 1846 

Family Lonchidiidae Herman, 1977 

Genus Lissodus Brough, 1935 

Type species. Hybodus africanus Bloom, 1909. 

Lissodus lusavorichi Ginter, Hairapetian and Grigoryan, 2011 

(Figure 3.7C) 

2011 Lissodus lusavorichi sp. nov.: Ginter, Hairapetian and Grigoryan: 160, fig. 

10E-F. 
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Material. Two teeth from the Virgin Hills Formation, Casey Falls, sample 1983-94.  

Description. The tooth crown is broadly triangular with a well-developed occlusal 

crest (Figure 3.7C1). The crown extends laterally beyond the base terminating in 

triangular shoulders. The crown base interface is slightly arched on the lingual face 

and prominent on the labial face (Figure 3.7C2). A well-developed labial peg is 

present and accompanied by small cusplets or tubercle like projections. The base is 

typically euselachian, projecting lingually with a rounded margin. A series of deep, 

elongated canals perforate the lingual face of the base (Figure 3.7C1). 

Remarks. The teeth from Casey Falls are attributed to Lissodus lusavorichi Ginter et 

al. 2011, as they possess the same smooth broad triangular crown, well developed 

occlusal crest and horizontal longitudinal crown shoulders as well as the tubercles 

associated with the labial peg. The presence of this species represents the oldest 

record of the family Lonchiididae in the Canning Basin.  

Distribution and stratigraphic range. The species has been previously described 

from the expansa zone in Dalmeh, Iran and probable expansa zone, Khor Virap  

 
Figure 3.7. Shark teeth from the Casey Falls. A, Protacrodontidae gen. et. sp. indet 1, WAM 14.7.22, 

sample 1984-94, in occlusal and labial views; B, ?Protacrodontidae gen. et sp. indet WAM 14.7.31, 

1984-98,.in occlusal, lingual and labial views; C, Lissodus lusavorichi, WAM 14.7.30, sample 1984-

98, in labial and lingual views. A, scale bar 0.5 mm; B-C, scale bar 0.5 mm.  
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Armenia. Its presence in the Upper marginifera conodont Zone in the Canning 

Basin, refines the lower age range of this species. 

 

3.6 Discussion 

3.6.1 Biostratigraphy 

 Thelodonts have been successfully used in biostratigraphy since the 1960’s 

(Gross, 1967) with current global zonation schemes (in Gradstein et al., 2012) 

developed for the Silurian (Turner, 1973; Bassett et al., 1982; Märss et al., 1995; 

Blom, 1999; Talimaa, 2000) and Devonian (Turner, 1995a, 1999; Blom and Goujet 

2002; Hairapetian et al., in press). Subsequent to the Givetian-Frasnian boundary, 

thelodonts are restricted to the margins of northern Gondwana (Turner, 1997; 

Trinajstic 2001; Märss et al., 2007) and there is a marked reduction in diversity with 

the Turinidae Family represented by the species Australolepis seddoni (Seddon, 

1969; Turner and Dring, 1981; Trinajstic and George, 2009), Turinia hutkensis 

(Blieck and Goujet, 1978; Hairapetian et al., 2006) and a new genus and species of 

turiniid (Hairapetian et al., in press). Of these, A. seddoni has been particularly useful 

in defining shallow water Frasnian strata in northern Gondwana (Turner et al., 2002). 

The species is known from the falsiovalis to rhenana conodont Zones (MN 1-10 CZ) 

in Iran and provided a lower Frasnian age constraint for the Chariseh section (Turner 

et al., 2002). Within Australia this species is now recognised as ranging from MN 6-

11 CZ and has been previously used to constrain a Frasnian age for the base of the 

Gneudna Formation type section in the Carnarvon Basin (Turner and Dring, 1981; 

Trinajstic and George, 2009). Within the Canning Basin A. seddoni has been used to 

confirm a Frasnian age for the Hull platform (Chow et al. 2013). Although the 
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increased range of A. seddoni, decreases the ability to obtain more finely resolved 

ages for strata, its confinement to the Frasnian still makes this species an important 

zone fossil. 

 The phoebodont taxa recovered in this study conform to previously established 

age ranges obtained for these species in the Canning Basin (Trinajstic and George, 

2009) with the exception of Phoebodus latus where the range has been extended 

from MN 10 CZ to MN 11 CZ. This newly extended range of Ph. latus in the 

Canning Basin brings it closer in line with the known upper age range for this 

species (MN 13 CZ) in the Southern Urals and South Timan in Russia as well as the 

Holy Cross Mountains in Poland (Ginter and Ivanov 1995b; Ivanov 1999; Ivanov 

and Lucas 2011). The extension of the known age ranges for A. seddoni and Ph. 

latus in the Canning Basin indicates further refinement of the age ranges for other 

Phoebodont taxa such as Ph. bifurcatus and Ph. fastigatus is likely with further 

collecting. Work so far undertaken describing the phoebodont fauna from the 

Canning Basin (Trinajstic and George 2009), has proven their utility in 

biostratigraphy as well as increasing the geographic distribution in which these 

species can be used. 

 A disappearance in phoebodont fauna is seen in the section at Horse Spring 

from MN 11 CZ and occurs too early to be attributed to the global Kellwasser 

Events. Despite the distinct anoxic black limestones and shales associated with the 

Kellwasser horizons not being recognised in the Canning Basin (Becker et al., 1993), 

perturbations are recorded in the faunas. Reductions in the species diversity and 

abundances are recorded within conodonts (Klapper, 2007), ammonoids (Becker et 

al., 1993) and trilobites (Feist and McNamara, 2013) in the Canning Basin which are 

also seen in the rest of the world. The absence of microvertebrates at Horse Spring 
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above MN CZ 11 was previously noted by Trinajstic and George (2009) who 

suggested post depositional dolomitisation as the main factor contributing to the lack 

of microvertebrates. However, this does not seem to be the cause as microvertebrates 

are often recovered from dolomitised beds. In addition, conodonts were found in the 

dolomitised beds from 13-19 m (Figure 3.2) in the section at Horse Spring where 

microvertebrate fossils were lacking. A global non-occurrence of the Phoebodus 

bifurcatus group from the linguiformis Zone (MN 13b CZ) in the Frasnian to the 

Famennian late crepida conodont Zone has been identified in the Northern 

Hemisphere (Ginter and Ivanov, 1995b; Ginter et al., 2002). Ginter et al. (2002) 

suggests the disappearance mainly resulted from global cooling (Copper, 1998) 

rather than fluctuations in sea level or anoxia. Given the much earlier disappearance 

of phoebodonts in the section at Horse Spring, and no evidence of major temperature 

excursions in sea surface temperatures during the MN 11 CZ (Joachimski et al., 

2004), it is not likely temperature fluctuations are the reason for the disappearance of 

a phoebodont non-occurrence at Horse Spring. 

 Another notable global change recorded towards the end of the Frasnian is 

the semichatovae Transgression (Sandberg et al., 1997). This event occurs at the 

base of the MN 11 Zone and coincides with the absence of phoebodont taxa in the 

Canning Basin. Despite reported localised tectonic overprinting (Southgate et al., 

1993; George and Chow, 2002; Chow et al., 2013), evidence of a longer-term 2nd 

order transgressive event is observable in these sections. The effect of these localised 

and global events may be highly influential in the faunal changes and extinctions 

seen in the basin (George and Chow, 2002). The phoebodont group has been 

previously noted as niche sensitive (Ginter and Turner, 1999), which may explain 

their apparent confinement to specific sites in the Canning Basin. Following any 
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ecological disturbance within the Horse Spring area, a migration of phoebodont taxa 

may have occurred. In this scenario, the disappearance in MN 11 CZ would reflect a 

movement of these sharks rather than the extinction seen in other areas of the world, 

such as Poland at the linguiformis CZ (13b) (Ginter et al., 2002). It is important to 

note that a re-emergence of the phoebodont group in the Famennian is present along 

both the North and Eastern margins of Gondwana as well as Laurussia (Ginter and 

Turner, 1999; Ginter and Ivanov, 2000; Ginter et al., 2002). Interestingly, this re-

emergence is not reflected in the studied sections here and could indicate the factor 

or factors influencing the non-occurrence of phoebodonts in the Canning Basin were 

potentially long lasting and perhaps localised. A collecting bias can also not be 

ignored as there have only been limited studies in the Canning Basin focusing on 

Frasnian microvertebrate faunas. 

 The current phoebodont based zonation established for the Famennian 

(Ginter and Ivanov, 1995b; Gradstein et al., 2012) has not yet been correlated in the 

Canning Basin and this is partly due to the study of Famennian vertebrates being in 

its infancy. The sections described also do not encompass the open shelf 

environment where this scheme is most applicable (Ginter et al., 2002) and may 

account for the lack of Phoebodus teeth in the Famennian dated intervals. Despite a 

lack of Phoebodus species in the Bugle Gap Limestone, the recovered shark species 

exhibit comparable ages for the same species found in other areas of the world. Of 

these, Thrinacodus tranquillus has been recorded as occurring from the Middle to 

Late Devonian in Laurussia and North Gondwana (Ginter and Turner, 2010). The 

presence of this species in the Canning Basin makes it one of the oldest global 

occurrences (Upper marginfera CZ) with similar ages recorded in Morocco, South 

China and Iran (Lelièvre and Derycke, 1998; Hairapetian and Long, 2000; Ginter et 
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al., 2002). The oldest report of the protacrodont Deihim mansureae is from the Late 

Frasnian, rhenana (MN 11 CZ) in Kale Sardar area of Iran (Hairapetian and Ginter, 

2010). This species is far more widespread in the Famennian, extending from the 

east of Laurussia (Ivanov and Lucas, 2011) to the north-west of Gondwana. An 

Upper crepida conodont Zone is recorded as the upper range of D. mansureae in 

both Iran and Armenia. In the Canning Basin, Australia the range extends further, 

from Upper marginifera CZ, into the lower Tournaisian (Burrow et al., 2010). Two 

other shallow water shark species, Protacrodus serra and Lissodus lusavorichi, been 

recorded from the expansa CZ of the Khor Virap region in Armenia and Dalmeh in 

Iran (Ginter et al., 2011). The presence of both P. serra and L. lusavorichi in the 

Canning Basin extends the lower age range of these species from the expansa 

conodont Zone to Upper marginifera. Like D. mansureae, an increased Famennian 

distribution of Th. tranquillus, L. lusavorichi and P. serra in Northern Gondwana is 

established. The presence of small, shallow water genera such as Deihim, Lissodus 

and Protacrodus across the margins of North Gondwana, would support the presence 

of a continuous shallow platform and reef environmental (Golonka, 2007) suitable 

for faunal exchange. 

 

3.6.2 Biogeography and chondrichthyan assemblages 

 Chondrichthyan biofacies present in the depauperate Famennian intervals of 

the Virgin Hills and Napier formations are often difficult to determine. These 

intervals often comprise largely shallow water and slope derived material. This 

results in the microvertebrate remains often not representing an original environment 

of habitation. In contrast to the described sections, samples taken from the shallow 

fore-reef deposits of the Bugle Gap Limestone (Guppy et al., 1958; Playford and 
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Lowry, 1966; Playford et al., 2009) preserve a more original chondrichthyan 

biofacies. A diverse shark genera including Thrinacodus, Stethacanthus, 

Protacrodus, Deihim and Lissodus were present in these shallow water facies. 

Despite the low numbers of teeth recovered from the Bugle Gap Limestone, the 

proportionally higher number of protacrodont and hybodont type sharks (62% of the 

overall number of teeth) as well as the absence of Phoebodus and Jalodus, is 

indicative of a shallow water Protacrodus biofacies (Ginter, 2000, 2001). Similar 

assemblages have also been recorded in Famennian strata from both Dalmeh and 

Chahriseh, Iran (Ginter et al., 2002; Hairapetian and Ginter, 2010).  

 An increase in cosmopolitanism is seen in many Late Devonian marine 

groups, including brachiopods (Copper, 1998), ammonoids (House, 1973), trilobites 

(McNamara and Feist, 2006), crustaceans (Rode and Lieberman, 2005), conodonts 

Girard et al., 2010) and fish (Ginter and Turner, 1999; Burrow et al., 2010). This 

faunal exchange between areas was likely driven by the closure of the Rheic Ocean 

(Nance et al., 2012; Domeier and Torsvik, 2014) during the Late Devonian, 

culminating in an increased proximity of Laurussia and Gondwana (Young, 2003; 

Burrow et al., 2010; Young et al., 2010). This period also saw the rifting of the 

Palaeotethys resulting in a separation of the north China, Indochina, Tarim and 

South China blocks from Gondwana (Metcalfe, 1984, 2011). Connections between 

South China and north-west Australia were maintained in the Late Devonian by the 

occurrence of an extensive, shallow water shelf (Golonka, 2007; Metcalfe, 2011; 

Golonka and Gaweda, 2012). Previous work on Late Devonian conodonts (Burrett et 

al., 1990; Girard et al., 2010) and fish (Long, 1993) support a close relationship 

between the two areas. In addition, Trinajstic and George (2009) had previously 

shown close affinities, in regards to the temporal ranges, of the Frasnian 
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phoebodonts Ph. fastigatus and Ph. bifurcatus in the Canning Basin and South 

China. The presence of a likely shallow water taxon, Deihim sp.1 (Figure 3.6G1-3) in 

both the Canning Basin and Menggongao Formation of South China (Lelièvre and 

Derycke, 1998, figure 7B), would support the presence of a shallow water platform 

between the two areas into the middle part of the Famennian. Determining the extent 

of faunal exchange further into the Famennian or even Carboniferous is difficult to 

determine as studies into shark faunas of these ages are limited for the north west of 

Australia. However Th. ferox has been reported in the late Famennian in both South 

China and Australia (Long and Burrett, 1989). The similarities between the tooth 

identified here as Protacrodontidae sp. 1 (Figure 3.7A1-2) found in a middle 

Famennian of the Virgin Hills Formation and a tooth from the middle Tournaisian in 

Muhua, South China (Ginter and Sun, 2007, fig. E1-2) provides further support for a 

close connection between China and Australia (Metcalfe, 2001) however, further 

data from microvertebrates are required.  

Clear links between the shark taxa in the north-west of Australia and other 

parts of Laurussia, South China and Northern areas of Gondwana are demonstrated 

here. Despite the similarities, there is also a degree of endemism amongst some of 

the shark species present in the Canning Basin. This is not unusual as endemism in 

some conodont (Klapper, 1995, 2007) and many placoderm (Long, 2006) species has 

also been noted. Of the Frasnian taxa Diademodus dominicus sp. nov. had not been 

previously recorded outside of Laurussia. The presence of this species along the 

eastern margins of North Gondwana would also suggest a greater distribution of this 

genus than previously recognised. Of the other phoebodontids, Phoebodus tooth 

forms found in the Horse Spring section often possess unusual features. These 

include the tricuspid form of Ph. bifurcatus which appear relatively common in the 
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Canning Basin but rare in other areas of the world. The teeth of Ph. fastigatus also 

differ from the diagnostic smooth cusps, often possessing cusps with heavy 

ornament on the labial face. In addition to the Frasnian taxa, there are two types of 

ctenacanthiform and a species of Stethacanthus that have not been found anywhere 

else. Despite an increased cosmopolitanism in Devonian shark faunas, a considerable 

endemic component is present in the Canning Basin. The mechanisms for this are 

difficult to determine and may be the result of lack of sampling, although unique 

palaeoenvironmental conditions or environmental niches might have existed in this 

part of East Gondwana (north-western Australia) at this time. 

 

3.7 Conclusions 

A largely undescribed chondrichthyan fauna ranging in age from MN 11 CZ 

in the late Frasnian to the late marginifera Zone in the middle Famennian was 

recorded from the Virgin Hills Formation, and the Bugle Gap Limestone, and Napier 

Formation in the Canning Basin. The section at Horse Springs reveals a similar 

diversity of phoebodonts to that previously described by Trinajstic and George 

(2009). A new species of diademodont, Diademodus dominicus sp. nov., a genus 

which until now had only previously been described from Laurussia was recovered 

from the phoebodont-rich beds. This species, in addition to variation in Phoebodus 

fastigatus, as well as newly described cladodont and stethacanthid teeth, reveals a 

potentially endemic Frasnian component to the Canning Basin. 

The Famennian Bugle Gap limestone and uppermost beds of the section at 

Casey Falls reveals a diverse shark fauna that had not been previously described 

from the Canning Basin. Many of these, including Th. tranquillus, C. wildungensis, 

P. serra, D. mansureae and L. lusavorichi, represent ages similar to or the same as 
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those previously described for these species. The presence of this shark fauna in the 

Canning Basin also allows for a more comprehensive understanding of species 

distribution in the Famennian. A number of genera including Phoebodus and 

Protacrodus occur in both eastern Australia and Western Australia (Turner and 

Young, 2000), however, these new reports on chondrichthyans from the Canning 

Basin indicate stronger faunal links between the Canning Basin and other areas of 

Gondwana such as Iran and Morocco as well as Poland and the United States of 

America in Laurussia. In addition, faunal similarities between South China and the 

Canning Basin are present, with some shark species indicating potential faunal 

exchange extending into the Late Famennian and possible Early Carboniferous. 
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4.1 Abstract 

Microvertebrate samples from the Upper Devonian Hojedk section, southeastern 

Iran, and the Napier Formation, northwestern Australia, have yielded scales of 

agnathan thelodonts, dated as early/mid-Famennian (crepida-marginifera/trachytera 

conodont zones). These scales are referred to Arianalepis megacostata, a new genus 

and species, and Arianalepis sp. indet., a second indeterminate species of this new 

turiniid genus. Further recorded scales of Australolepis seddoni from the Napier 

Formation confirm the age range for this taxon as extending into the late Frasnian. 

The new remains post-date the previously youngest thelodonts from Iran and 

Western Australia and provide the first evidence of thelodonts surviving the 

Frasnian-Famennian extinction events. 
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4.2 Introduction  

 Thelodonts (jawless fishes) have a long history in the fossil record, appearing 

at least by the Late Ordovician (Turner et al., 2004) and becoming extinct at some 

point before the end of the Devonian along with most other agnathans, with the 

exception being the extant cyclostomes (Märss et al., 2007). Despite the relative lack 

of taxa based on articulated remains compared to scales (c. 25: c. 140), the latter 

have proved useful in biostratigraphic correlation for many decades, particularly 

between shallow-marine and non-marine sequences (e.g. Turner, 1993, 1997; papers 

in Blieck and Turner, 2000). Although articulated taxa are fewer (Märss et al., 2007), 

most are known from Silurian deposits and none are known from the Southern 

Hemisphere or in post-Emsian or younger sediments. The youngest known 

occurrences of thelodont taxa were previously reported from Western Australia and 

Iran as isolated scales in Frasnian strata (Turner and Dring, 1981; Trinajstic, 2000, 

2001; Turner et al., 2002; Trinajstic and George, 2009) until the discovery in the 

early 2000s of the first Famennian thelodont scales from Iran (Hairapetian and 

Turner, 2003; Turner and Hairapetian, 2005; Hairapetian, 2008). Here we report in 

detail the first Famennian thelodonts that co-occur with conodont elements and 

jawed vertebrate assemblages in the Hojedk section in the north of Kerman, 

southeastern Iran (Figure 4.1), and also the recent discovery of thelodont scales from 

a mid-Famennian sequence in the South Oscar Range, Canning Basin, northwestern 

Australia (Figure 4.2). The Iranian scales are placed within a new turiinid genus 

Arianalepis gen. nov., which represents the youngest known thelodont remains; the 

Australian material is more sparse and so its assignment is less certain. These new 

discoveries furthermore support the closeness of faunal relationships in the mid-

Palaeozoic of northern Gondwana, especially between Iran and Australia. In 
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addition, the finds offer an opportunity to further establish and extend 

biostratigraphic schemes utilizing thelodont taxa in the Devonian (Turner, 1997; 

Long and Trinajstic, 2000; Young and Turner, 2000). 

 

4.3 Geographical and geological setting 

4.3.1 Iran 

 The Hojedk section (c. 4 km west of Haruz village and c. 48 km north of 

Kerman; 30843′N, 5780′E; Figure 4.1) is measured on the southeastern flank of Kuh-

e-Kanseh Mountain, Kerman Province, central Iran. The stratigraphy of the Hojedk 

Devonian strata has recently been studied in detail by Wendt et al. (2005), 

Gholamalian and Kebriaei (2008) and Gholamalian et al. (2013). The underlying 

Lower (?) Devonian/Eifelian Padeha Formation commences with a breccia unit 

followed by sandstones and dolomites. There is a disconformity at the top of the 

Padeha Formation, where a sandstone unit is overlain by a dolomitic horizon of the 

Bahram Formation containing small gastropods, large plates of the placoderm 

Holonema and plant remains; the unit has been dated as late Givetian based on 

conodonts (see Gholamalian and Kebriaei 2008). The limestones in the uppermost 

Bahram Formation are overlain with an apparent major temporal unconformity by 

dolomites of the Permian Jamal Formation. Conodont samples collected from the 

limestone beds in the upper part of the section, however, revealed an early 

Famennian age, from the Lower Palmatolepis crepida Zone (see Gholamalian and 

Kebriaei, 2008, fig. 1, table 1, pp. 183-184).  

The new thelodont material came from Sample R4, a red sandy limestone bed 

in the uppermost part of the section, just below the level of the Devonian/Permian  
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Figure 4.1. Stratigraphy and location of the studied Iranian sequence. Simplified stratigraphic column 

of the Hojedk section in central Iran showing the main facies and fish-bearing horizons; the asterisk 

marks the bed with thelodont scales. Map of Iran showing the location of the section. Photograph of 

the Hojedk section showing the Bahram Formation (B) and the Permian Jamal dolomites (J). The 

distinct level of the unconformity is indicated by the arrow. 
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unconformity (Figure 4.1) (Hairapetian and Turner 2003; Turner and Hairapetian 

2005; Hairapetian 2008). The bed is now dated as early Famennian based on 

conodonts and fish remains. Associated with the thelodont scales are conodont 

elements indicative of a shallow-water fauna, including Icriodus alternatus cf. 

helmsi Sandberg and Dreesen, 1984, Icriodus cornutus Sannemann, 1955, 

Pelekysgnathus inclinatus Thomas, 1949, Polygnathus semicostatus Branson and 

Mehl, 1934 and the Polygnathus communis group Branson and Mehl, 1934, dating of 

which spans the Middle-Upper Palmatolepis crepida Zone (Hairapetian, 2008). The 

new thelodont taxon is associated with stratigraphical index chondrichthyan species 

from the Hojedk section (Figure 4.1); the assemblage comprises several 

chondrichthyan and actinopterygian taxa, with shark teeth of phoebodonts 

Phoebodus gothicus gothicus Ginter, 1990, Phoebodus turnerae Ginter and Ivanov, 

1992 and Phoebodus aff. Turnerae Ginter and Ivanov, 1992, the protacrodonts 

Protacrodus sp. and Deihim mansureae Ginter, Hairapetian and Klug, 2002, the 

cladodontomorphs Ctenacanthus sp. and Elasmobranchii gen. et sp. indet., as well as 

sarcopterygian and actinopterygian scales, all supporting an early Famennian age 

(Ginter et al., 2002; Hairapetian, 2008, fig. 4). 

 

4.3.2 Australia 

 A section through the proximal slope facies of the Napier Formation was 

measured at South Oscar Range (17855′S, 125817′E; Figure 4.2) (Playton et al., 

2013), located along the southwestern edge of the Lennard Shelf in the Kimberley 

Region of NW Western Australia (Playford et al., 2009). The Napier Formation 

unconformably overlies Proterozoic basement and in outcrop ranges from early 

Frasnian to late Famennian. The lithology of the measured section is predominantly  
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Figure 4.2. Stratigraphy and location of the studied Australian sequence with simplified stratigraphic 

column of the South Oscar Range (SOC) section in the Canning Basin, Western Australia, showing 

the main facies and fish-bearing horizons (after Playton et al., 2013). Map of the Lennard shelf 

showing the location of the studied section, with inset map of Australia showing the location of the 

Canning Basin. Photograph of the South Oscar Range section in the Napier Formation. 
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limestone with the basal part of the section comprising marginal and slope-derived 

mega breccias with minor dolomitic microbial boundstones, rudstones and breccias. 

The upper interval of the South Oscar Range section from approximately 185 m 

consists mainly of platform-derived skeletal packstone-grainstone facies as well as in 

situ stromatactoid boundstones and skeletal-peloid-coated packstones to grainstones. 

Overlying the mixed slope facies of the Napier Formation are the siliciclastic shelf 

deposits of the uppermost Devonian to Lower Carboniferous Fairfield Group 

(Playford and Lowry 1966). The Frasnian-Famennian boundary is placed within 

the upper part of the section, between 223.8 and 233.2 m, with its location based on 

conodont data (Hansma et al., 2015) in addition to the last occurrence of Frasnian 

stromatoporoids (Hurley, 1986; Playford et al., 1989). 

The new thelodont material comes from Sample South Oscar Range (SOC) 

600 in the uppermost bed of the section and co-occurs with acanthodian and 

palaeoniscoid scales. This horizon has been dated as ranging from the Upper 

Palmatolepis marginifera to Palmatolepis trachytera conodont zones, which is 

supported by the overlap of Palmatolepis gracilis gracilis Branson and Mehl, 1934, 

and Palmatolepis minuta minuta Branson and Mehl, 1934 in Sample SOC 600. A 

lower Palmatolepis rhomboidea age is not supported because Scaphignathus velifer 

Helms, 1959 is not known below the Upper Palmatolepis marginifera conodont 

Zone within the Canning Basin and this taxon has been recovered below from 

Sample SOC 500 (Figure 4.2). The Frasnian conodont succession at South Oscar 

Range is conformable with the Montagne Noire (MN) conodont zonation (Klapper 

1989). 

Additional thelodont scales identified here as Australolepis seddoni Turner 

and Dring, 1981 (Figures 4.3 and 4.4) have been found in the lower part of the 
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section (SOC 124), dated as Frasnian MN Zone 10. Immediately above this horizon 

(MN 13b), there are shark teeth of Stethacanthus sp. as well as palaeoniscoid and 

acanthodian scales. The Frasnian part of the section has a diverse palmatolepid 

conodont fauna indicative of open-marine conditions (Sandberg and Ziegler 1979). 

 

4.4 Materials and methods 

 A buffered solution of 10% acetic acid was employed to extract the Iranian 

Sample R4 residue and specimens were then picked using a sieve of 0.177 mm 

mesh. Sixteen thelodont scales (Figure 4.5-7) have been found, most of which are 

broken and reddish brown in colour (Figure 4.7). The scales are densely covered 

with adhering sedimentary quartz grains, which are not easy to remove with a needle 

(Figure 4.7).  

 

 

Figure 4.3. Scale of Australolepis seddoni WAM 13.10.2 from Sample SOC 124, South Oscar Range 

section, Canning Basin, Western Australia. A1, crown view; A2, dorsolateral view. Scale bar 0.2 mm. 
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 Scanning electron micrographs were prepared in Esfahan with a Leica 360 

scanning electron microscope and in the Institute of Palaeobiology, Polish Academy 

of Sciences (Warsaw, Poland) using a Philips XL 20. The Iranian specimens are 

deposited in the Department of Geology, Azad University, Esfahan (AEU). 

 

 

 

Figure 4.4. Drawings of scales of Australolepis seddoni WAM 13.10.2 (A); WAM 13.10.3 (B) from 

Sample SOC 124, South Oscar Range section, Canning Basin, Western Australia. A1, crown view; 

A2, ventral view; B1, crown view; B2, ventral view. Scale bar 0.2 mm. Bulk rock samples (20 kg) 

were taken within the measured South Oscar. Range section  
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 Acid digestion of the carbonates in 10% acetic acid and heavy-liquid 

separation of the residue was undertaken at Macquarie University and the 

fractionated residues returned for picking. One of two scales recovered from SOC 

124 was photographed using a Zeiss EVO 40XVP and both scales were drawn while 

magnified using a binocular microscope. One scale from SOC 600 was photographed 

using a Leica XX2V 7S stereomicroscope camera version 3.4.1 at the Western 

Australian Museum and drawn under a binocular microscope. Owing to the paucity 

and poor preservation of the SOC 600 scale, scanning electron microscope or 

histological work was not possible. Specimens are deposited in the Western 

Australian Museum (WAM). The 13-fold Frasnian conodont zonation, first proposed 

for the MN succession (Klapper ,1989) and subsequently modified to a 15-fold 

zonation (Girard et al., 2005), was used to describe the stratigraphic ranges of the 

conodont and vertebrate taxa recovered from the Canning Basin sections. The 

standard conodont zonation of Ziegler and Sandberg (1990) were used for both 

sections to describe Famennian age ranges and for the Frasnian in the Iranian 

sections, because the ranges of MN zonal markers have not yet been replicated for 

Iran. 

 

4.5 Systematic Palaeontology 

Thelodonti Jaekel, 1911 

Order Thelodontiformes Kiaer in Kiaer and Heintz, 1932 

Family Turiniidae Obruchev, 1964 

Australolepis seddoni Turner and Dring, 1981 

(Figures 4.3 and 4.4) 



   

173 
 

Material: WAM 13.10.2; one scale. 

Locality and geology. South Oscar Range, Canning Basin, Western Australia 

(17855′ S, 125817′ E). Bed SOC 124, CZ 10, reef, margin and slopederived skeletal 

limestone: Upper Devonian Napier Formation. 

Stratigraphic range. Australia: Napier Formation, South Oscar Range, Canning 

Basin: MN Zone 10, MN Zones 6-10, Virgin Hills Formation, Horse Spring, 

Canning Basin; earliest Frasnian to MN Zone 10 in the Gneudna Formation type 

section, Carnarvon Basin, Western Australia (Turner and Dring, 1981; Trinajstic, 

2000, 2001; Turner et al., 2002; Trinajstic and George, 2009). In Iran the range 

extends from the early Frasnian Mesotaxis falsiovalis Zone, MN Zones 1-3, to, in the 

Chahriseh section, Palmatolepis hassi Zone, MN Zone 10 (Hairapetian et al., 2000; 

Yazdi and Turner, 2000). 

Description. The scales measure less than 1 mm in length with an elliptical base and 

triangular crown, terminating in a sharp apex. The anterior face of the tripartite 

crown has two bifurcating ribs that fuse to form a single rib that extends to the crown 

apex (Figures 4.3 and 4.4, drawing A1). The anterior ribs are ornamented with small 

tubercles (Figure 4.4, drawing A1). A well-developed, ridged lateral lappet is present 

at the medial region of the scale (Figures 4.3 and 4.4, drawings A1, B1). The lateral 

extent of the lappet curves posteriorally and bifurcates to form two anteriorward-

pointing projections (Figure 4.4, drawing B1).The posterior lappets are reduced 

compared with the medial lappets and lack the terminal projections. The mesial face 

adjoins the central ridge. A shallow neck separates the crown from a narrow base, 

which does not possess an anterior spur. The base exhibits the lobate thickenings 

typical in scales of this species (Figure 4.4, drawings A2, B2). An elongate pulp 

canal is visible on the underside of the scale. 
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Figure 4.5. Scanning electron micrographs of early Famennian thelodont scales of Arianalepis 

megacostata gen. et sp. nov. from sample R4, Hojedk, Kerman Province, Iran. A, B, head scales; C, 

cephalopectoral scale; and D-G, trunk scale. A, AEU 720 in crown view; B, AEU 721 in lateral crown 

view; C, AEU 722 in lateral view; D, AEU 723 in antero-crown (D1) and lateral (D2) view; B, AEU 

724 in lateral view; F, AEU 725 in crown view; G, AEU 726, holotype in antero-crown (G1) and 

lateral (G2) view. Scale bar 0.2 mm. 
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Figure 4.6. Drawings of scales of Arianalepis megacostata gen. et sp. nov. from sample R4, Hojedk, 

Kerman Province, Iran. A, AEU 720 in crown view; B, AEU 721 in lateral crown view; C, AEU 722 

in lateral view; D, AEU 723 in antero-crown (D1) and lateral (D2) view; E, AEU 724 in lateral view; 

F, AEU 725 in crown view (F1) and ventral (F2) view; G, AEU 726, holotype in antero-crown (G1) 

and lateral (G2) view. Scale bar 0.2 mm. 

 

Histology. As only two single scales were recovered no thin sections were made. 

However, the large pulp cavities are typical of turiniid histology (Märss et al., 
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2007). 

 
Figure 4.7. Photographs of early Famennian thelodont scales from sample R4, Hojedk, Kerman 

Province, Iran, to show colour and taphonomic nature of the adhering quartz grains. (A) AEU 782 in 

crown (A1) and lateral-crown views (A2); (B) AEU 783 in lateral crown view; (C) AEU 783, in basal 

view; (D) AEU 784 in antero-crown (D1) and lateral-crown (D2) view; (E) AEU 785 in crown view. 

Scale bars, 0.2 mm. 

 

Taphonomic analyses. The scale is pristine. The crowns are uniformly light 

brownish in colour with a white base, typical of thelodont scales, where the two hard 

tissues - dentine in the crown and neck, and aspidin in the base (see e.g. Märss et al., 

2007) - are often present, with very different colours related to the varying 

mineralization effects based on the porosity of the tissue. No diagenetic alteration is 

detectable and associated conodont remains have a conodont alteration index (CAI) 

of 0.5. 

Remarks. These scales conform to the original diagnosis of A. seddoni (Turner and 

Dring, 1981) and are attributed to this taxon. Their small size, gracile construction, 

bifurcating crown ribs and smooth shallow neck, with a base wider than the crown, 
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are all consistent with the type diagnosis. Small tubercles are present on the crown 

ribs, which are also seen in scales from Horse Spring (Turner, 1997; Trinajstic and 

George, 2009). Following currently accepted concepts of squamation patterns (Märss 

et al., 2007), the scales originate from the cephalopectoral region of the body. 

The scale conforms to those from the known uppermost range of A. seddoni (MN 

Zone 10) within Australia based on well-constrained conodont remains (Trinajstic 

and George, 2009). 

 

Genus Arianalepis gen. nov. 

Etymology. From ‘Ariana’, an old name for the country of origin of the first 

Famennian thelodonts; and Greek: lepis, a scale. 

Diagnosis. As for type and only species. Stratigraphic range. Early Famennian, 

crepida Zone.Type and only species. Arianalepis megacostata sp. nov. 

Remarks. The Iranian and Western Australia thelodont scales are the youngest to be 

recorded to date; those from Iran were reported earlier and considered tentatively to 

be within the family Turiniidae, which is the only clade found thus far in post-

Lochkovian Gondwana (Hairapetian and Turner, 2003; Märss et al., 2007). 

Hairapetian and Turner (2003) and then Märss et al. (2007) retained them as an 

undetermined turiniid taxon. However, as there are significant morphological 

differences from earlier turiniid taxa and considering their much younger age, the 

new scales are referred here to a new genus (see further discussion below). 

 

Arianalepis megacostata gen. et sp. nov. 

(Figure 4.5-7) 

2003 new turiniid Hairapetian and Turner: 26-27. 



   

178 
 

2005 new turiniid Turner and Hairapetian: 24. 

2007 Turiniidae gen. et sp. indet. Marss et al.,: 110. 

Type specimens. Holotype: AEU 726, trunk scale (Figures 4.5, micrographs G1, G2 

and 6, drawings G1, G2); paratypes: 15 scales (Figure 4.7A-E), AEU 720-725, 782-

790.  

Type locality and stratigraphy. Section c. 4 km W of Haruz village; 30843′N, 

5780′E, SE Kuh-e-Kanseh Mt, Hojedk, c. 48 km N of Kerman, central Iran. Sample 

R4, red sandy limestone bed, Bahram Formation, Late Devonian, early Famennian, 

crepida Zone. 

Stratigraphic range. crepida Zone, early Famennian. 

Etymology. From Latin mega ‘large’ and costata,‘ribs’ for the ribbed nature of the 

crowns. 

Diagnosis. Turiniid with robust medium-sized scales with a few simple coarse ribs 

on crowns. Base is horizontally extended with anterior basal extensions. 

Description. The scales all show a robust structure and measure less than 1 mm in 

length. The head scales are rounded as in most thelodonts with robust crowns having 

a few, up to eight, strong ribs. There are eight ribs radiating from a high, rounded 

central apex to a shallow neck; wide troughs separate the ribs (Figures 4.5, 

micrographs A, B and 6, drawings A, B). Cephalopectoral scales are poorly 

preserved but can be seen to be more elliptical (Figure 4.5, micrograph C and 6, 

drawing C). The crowns exhibit simple coarse ribbing and well developed bases. 

 Trunk scale crowns (Figures 4.5, micrographs D2-G2 and 6, drawings D1, 

D2, G1, G2) are characterized by simple coarse ribbing and a protruded, prominent 

median area, which can be flat and horizontally placed as in the holotype scale 

shown in Figure 4.5, micrograph G1, G2. One scale (Figure 4.5, micrograph F) 
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shows a smooth, wide median and two lateral areas at a lower level. Another scale 

shown in side view (Figure 4.5, micrograph E) exhibits the high crown with ribs 

down to the shallow neck and the horizontally placed base with the scale axis at 

around 458. Some indication of split ribs is seen in other scales (Figure 4.7). The 

anterior base is developed into a single, thick basal root or spur, which extends in a 

lateral plane (Figure 4.5, micrograph F). The holotype scale (Figures 4.5, 

micrographs G1, G2 and 6, drawings G1, G2) exhibits a relatively deeper base with 

an incomplete anterior anchoring root directed vertically downwards. 

Unlike many turiniid taxa, especially in Gondwana (e.g. Turner 1997), there 

is no sign of microornament on the crown surface of any scales but this is probably a 

factor of the removal of the external shiny layer of dentine (see taphonomic remarks 

below).  

Histology. Owing to the relatively few scales and poorly preserved material, direct 

histological studies were not possible. However, all exhibit the typical single 

rounded pulp opening in the base found in thelodontidid scales as is usual in turiniids 

(cf. Märss et al., 2007); a quite large pulp cavity is seen in Figure 4.5, micrograph B, 

and remnants of the pulp canal in Figure 4.5, micrograph C. Based on comparison 

the crowns are formed of typical thelodont orthodentine and the base of aspidin. As 

noted above, the outer layer of dentine (vasodentine called ‘enameloid’ by some 

workers) is not as shiny as normal and the dentine tubules of the crown are exposed 

clearly in some scales (Figure 4.5, micrographs G1, G2). The pulp cavity is 

relatively large and the scales are neither in their first dentine crown ‘cap’ stage nor 

senescent with large overgrown bases with closed pulp openings.  

Taphonomic remarks. There are two possibilities that could explain why some of 

the Iranian thelodont scales are densely covered with adhering sedimentary quartz 
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grains (e.g. Figures 4.5, micrographs G1, G2 and 7A-E). This could imply reworking 

and mean that the thelodont scales are older than the other remains, that is, not 

Famennian, and the presence in some scales of crown ribs divided into two might 

support this, as there is a similarity to the older Iranian turiniid Turinia hutkensis 

Blieck and Goujet, 1978. However, comparing the state of preservation of the 

thelodont scales with the other fish microfossils, they are identical in preservation 

and with the same deep red colour taken from the surrounding rock/grains. The 

conodont elements were also checked for evidence of reworking but all are light grey 

in colour, indicating an identical and low CAI, so that reworking does not seem to be 

a possibility. 

 Therefore, this leaves the alternative option that the fossils are diagenetically 

affected and therefore we need to look at post-depositional environmental conditions 

to account for these changes. The most likely explanation is that the phenomenon is 

a consequence of water chemistry after the scales were shed or lost from the dead 

animal; there is no sign of algal or fungal boring as seen in certain marginal 

environments (e.g. Märss et al., 2007). Other Gondwana samples of turiniid scales 

show similar adhering grains, such as those from central Australia and New Zealand, 

but these scales also show more extreme diagenetic effects such as silicification or 

loss of tissue structure (Turner, 1997; Macadie, 2002). 

 

?Arianalepis sp. indet. 

(Figures 4.8 and 4.9) 

Material.WAM 13.10.1; one cephalopectoral scale.  

Locality and stratigraphy. The South Oscar Range section (17855′S, 125817′E) 

lies 42 km NW of Fitzroy Crossing, South Oscar Range, Canning Basin, Western 
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Australia. Sample SOC 600, white crinoidal packstone, Napier Formation, Late 

Devonian, Middle Famennian, marginifera/trachytera conodont zones. 

Stratigraphic range. Middle Famennian, marginifera/trachytera conodont zones. 

 

 
Figure 4.8. Transmission microphotographs of scales of ?Arianalepis sp. indet. WAM 13.10.1 from 
sample SOC 600. A1 and A2 in lateral view. Scale bar 0.2 mm. 

 

Description. The one almost complete specimen is a young, medium-sized (0.8 mm) 

robust scale with a small break anteriorly across the crown, neck and base (Figures 

4.8A2 and 4.9, drawing A1-3). The total range of the number of ribs cannot be 

determined; however, 12 broad crown ribs are reconstructed based on the spacing of 

the ten preserved ones. The ribs radiate from a dome-shaped apex with a centrally 

raised point directed posteriorly (Figures 4.8A1 and 4.9, drawing A4). Two of the 

medial anterior ribs bifurcate halfway between the crown apex and neck-crown 

interface. Deep troughs separate the ribs, which diminish at a deep, narrow neck 

(Figure 4.8A1 and 4.9, drawing A4). A series of small crenulations occurs on the 

terminal dorsal edge of each rib (Figure 4.9, drawing A2). 
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Figure 4.9. Drawings of scale of ?Arianalepis sp. indet. WAM 13.10.1 from SOC 600. A1 and A2, 

lateral view; A3, basal view; A4, crown view. Scale bar, 0.2 mm. 

 

Histology. Histology was not possible as only a single scale was recovered. 

However, the complete scale exhibits the typical large pulp cavity of a 

morphogenetically young turiniid scale where dentine has not yet grown 

centripetally to form a narrow pulp opening on the base. 

Taphonomic analyses. The colour of the scale is uniformly white with no evidence 

of biogenic alteration. Numerous, well-preserved acanthodian scales are also present 

within Sample SOC 600, suggesting a deeper-marine environment where thelodonts 

are relatively scarce (cf. Märss et al., 2007). The associated conodont elements are 
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pristine with a CAI of 0.5. There is no evidence to suggest reworking in this sample 

as the conodont assemblage conforms to the other assemblages immediately below 

Sample SOC 600. 

Remarks. The scale from SOC 600 is referred tentatively to the new genus 

Arianalepis with indeterminate species, on the basis of similar morphology of a 

crown with few coarse ribs. Not being a body scale, however, specimen WAM 

13.10.1 generally resembles all turiniid head scales and probably lacks diagnostic 

features. The head scale from SOC 600 has a higher number of radiating ribs: 12 

compared with 8, and also seems to be more robust than the specimens from Hojedk. 

This might be because of normal variation, the different age of the scales, or 

dependent on the age of the individual animal (Märss et al., 2007). 

Microcrenulation of scale crowns also seems to be phylogenetically 

significant in the Turiniidae; however, the relatively poor preservation of the 

Iranian scales means that micro-ornament is not preserved and, because most turiniid 

taxa do exhibit some ornament on the ribs, the crenulations in the Australian scale 

may just be due to variation within individual scales or within species. 

For now we tentatively place the Australian scales within the genus 

Arianalepis gen. nov. based on the single scale.  

 

4.6 Comparison and discussion 

 The scales of Arianalepis megacostata gen. et sp.nov. from Hojedk are 

superficially more simple than other turiniid species from the Devonian of 

Gondwana and, interestingly, are most like those of the late Silurian Turinia fuscina 

Turner, 1986 of southern Australia, and mid-Late Devonian taxa, such as T. 

hutkensis Blieck and Goujet, 1978. The single complete scale from South Oscar 
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Range shows some resemblance to the scales of Jesslepis johnsoni Turner, 1995 in 

being relatively robust, having bifurcating and deeply dissecting ribs, and a large 

pulp cavity. The complete scale from South Oscar Range can be distinguished based 

on the greater number of ribs, which do preserve microcrenulations. 

The scales from Hojedk and South Oscar Range are distinguishable from any 

known species. Most interesting is that these youngest thelodont scales have large 

robust crowns and bases unlike the slightly older taxa known from Iran and Western 

Australia, especially Australolepis seddoni, which has delicate ribbing and sculpture 

on the crowns. Other older Devonian taxa from the same region are Turinia 

antarctica Turner and Young, 1992 and J. johnsoni from the Givetian of eastern 

Australia and Antarctica (Turner 1995, 1997). 

T. hutkensis of Iran is most similar to scales from Thailand and Antarctica 

(see Turner and Young, 1992; Turner, 1997). Some of the Turinia cf. hutkensis 

scales from the Chahriseh locality resemble Turinia pagoda Wang, Dong and Turner, 

1986 and Turinia spp. from the western Yunnan Province and A. seddoni in their 

out-turned ridges. Scales that share features with T. hutkensis, such as the 

tight crown double-ribbing, have also been found in the central Australian basins and 

were earlier thought to be related to the older Turinia australiensis (Turner, 1997: 

see Table 4.1). Could Australolepis be the result of paedomorphic evolution from T. 

hutkensis or T. pagoda? Heterochrony in the morphogenesis would leave all the 

scales with wide-open pulp cavities throughout life and shallow bases with only 

small anterior prongs, and with a base capable of only thickening sporadically, 

resulting in the lobate papillae that are typical of A. seddoni bases (cf. Figure 4.9, 

drawing A2).  
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Table 4.1. Turiniid taxa from the Middle (Givetian) and Upper (Frasnian and Famennian) Devonian 

of Gondwana. Abbreviations: CEIM, central-east Iran microcontinent; NT, Northern Territory; QLD, 

Queensland; SA, South Australia; SS, Sanadaj Sirjan; WA, Western Australia. 
 

 

 

 Turinia hutkensis and T. antarctica both share the fine ultrastructual lines on 

the crown, seen in earlier T. australiensis (see e.g. Turner, 1997; Marss et al., 2007) 

but these are not apparent in A. seddoni (Figure 4.4A1-2) or A. megacostata gen. et 

sp. nov. (Figure 4.7, photographs A1, D2) although the latter does have the double 

ribbing seen in some scales of T. hutkensis. 

 Historically, studies on Laurasian/Laurentian thelodonts have been more 

numerous than those on Gondwana (Märss et al., 2007). This disparity began to be 

addressed especially during IGCP work from the 1980s onwards, when several new 

thelodont taxa and increased stratigraphic ranges were reported from Gondwanan 

faunas (e.g. Blieck et al., 1980; Turner et al., 1981, 2000; Turner, 1986; Wang et al., 
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1986; Turner and Young, 1992; Young and Turner, 2000; Trinajstic, 2001; 

Hairapetian, 2008; Trinajstic and George, 2009, table 1). Most notable was the 

discovery that thelodont taxa survived the Givetian-Frasnian boundary event (Turner 

and Dring, 1981). Turiniid remains recovered from the Aztec siltstone in Antarctica 

(Turner and Young ,1992) have shown a potential age range from the middle 

Givetian to the early Frasnian based on faunal associations with Antarctilamna 

(Young, 1993). However, the presence of the spore Geminospora lemurata Balme, 

1960 has dated this unit as Givetian (Young 1988; Young and Turner 2000). 

Thelodont remains were first found in the Middle Devonian of Iran in the 1970s and 

other taxa in Australia, Thailand and China in conodont-dated strata (e.g. J. johnsoni 

in Queensland) (Turner and Janvier ,1979; Blieck et al., 1980; Hamdi and Janvier, 

1981; Turner, 1997). 

 The first early Frasnian thelodont scales, A. seddoni, were recorded from the 

Gneudna Formation, Carnarvon Basin, of Western Australia (Turner and Dring, 

1981). Spore assemblages (Balme, 1988) gave a possible Givetian to Frasnian age 

for the lower part of the section; however, microvertebrate assemblages suggested a 

Frasnian age for the whole section (Trinajstic, 2001). In the last decade thelodont 

scales identified as T. hutkensis and A. seddoni were reported from the early-middle 

Frasnian of Iran (e.g. Yazdi and Turner, 2000; Turner et al., 2002) and poorly 

preserved scales possibly from A. seddoni were recovered from slightly younger 

Frasnian strata in the Canning Basin of Western Australia (Turner, 1997, 1999). 

Until recently, this was the youngest record of any thelodont taxon (Turner, 1997). 

Ranges for thelodonts have been further refined in Western Australia based on the 

co-occurrence of thelodonts and phoebodonts in conodont-dated sequences at Horse 

Springs, with the age range of A. seddoni extended into the upper Frasnian 
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(Trinajstic and George, 2009). Younger thelodont scales were recovered from 

younger early Famennian strata in the Canning Basin of Western Australia; however, 

as the preservation was poor these were not formally identified (Turner, 1997, 1999). 

Subsequent studies by Hairapetian and Turner (2003) and Hairapetian (2008) 

reported the first Famennian scales in Iran. 

 

4.6.1 Palaeobiogeography 

 The continuance of thelodont taxa into the Famennian may suggest a 

displacement post the Givetian-Frasnian extinction and the foundation of a refuge in 

Northern Gondwana (Kauffman and Harries, 1996; Harries et al., 1996). As the 

Frasnian and Famennian turiniid fish are found in shallow to very shallow water, 

‘challenging’ environments, for example, marginal, lagoonal and hyper-saline, were 

they then pre-adapted or opportunistic survivors and thus these new taxa are 

evidence of a survival lineage? There is no sign yet of any thelodont in the 

immediate earliest Famennian ‘bloom’ of recovery, but with evidence now in two 

disparate parts along the Palaeotethyan southern shore we consider Arianalepis gen. 

nov. as a Lazarus taxon. Few agnathan fishes survived the massive Late Devonian 

extinctions and until recently only two thelodont taxa, T. hutkensis from the early-

middle Frasnian of Iran (Turner et al., 2002) and A. seddoni from the early-late 

Frasnian (MN zones 6-10) of Western Australia and Iran (Yazdi and Turner, 2000; 

Trinajstic, 2001; Turner et al., 2002; Trinajstic and George, 2009; Burrow et al., 

2010) were known. However, now at least one thelodont genus with one or more 

species appears to have weathered the Frasnian-Famennian extinction and appears to 

represent a surviving Lazarus taxon (Kauffman and Harries, 1996). Australolepis 

seddoni is now known from the Gneudna and Virgin Hills formations of Western 
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Australia and the Shotori Range and Chahriseh sections in Iran (Turner, 1997; Yazdi 

and Turner, 2000; Turner et al., 2002; Trinajstic and George, 2009). To date, scales 

have been recovered from different facies including distal and medial slope and back 

reef in the Canning Basin (Chow et al., 2013), as well as shallow carbonate ramp in 

Iran and the Carnarvon Basin (Hocking et al., 1987; Wendt et al., 2002; Trinajstic 

and George, 2009). A few possible Australolepis scales are recorded from the Late 

Devonian of Holy Cross Mountains (M. Ginter and S. Turner, pers. obs. 1990). The 

presence of thelodonts in sediments from Hull Range, Western Australia, has 

confirmed an early Frasnian age for these strata (Chow et al., 2013), where 

previously the date could only be constrained to the late Givetian-early Frasnian. 

This demonstrates again the utility of microvertebrates in general and thelodont 

scales in particular to help date strata where conodonts and other open-marine taxa 

are absent. The first appearance has been linked to conodonts by Long and Trinajstic 

(2000). The younger Frasnian Australolepis scales from the Horse Spring section 

(GK 364), Canning Basin, Western Australia, were also identified as A. seddoni 

(Trinajstic and George, 2009). Scales from A. seddoni are therefore being reported 

from a number of sections throughout northern and East Gondwana and are proving 

useful for correlating early to late Frasnian sections. 

Most thelodonts had died out in the Early to early Mid-Devonian and after 

this the only taxa are known outside of the Laurentian continental terranes (Turner, 

1997; Turner et al., 2004). Later Middle and Late Devonian thelodonts are known 

in East and northern Gondwana as far ‘south’ as Antarctica, that is, possibly up to 

50-608S in Gondwana (Turner, 1997; Märss et al., 2007). From the records now 

available, it seems that the turiniids were most widespread in Gondwana in the Early 
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to Mid-Devonian, with restriction in range by late Frasnian times to Iran and 

Western Australia. 

The fact that at least a small population of thelodonts seems to have survived 

the Frasnian-Famennian Kellwasser extinction events and lived well into the 

Famennian is most surprising. We can only speculate on the factors that protected 

these turiniids from that dramatic time in vertebrate evolution (e.g. Hart, 1996). 

However, it is clear that the area was home to several thelodont taxa from the late 

Silurian (Hamedi et al., 1997; Turner, 1997; Hairapetian et al., 2008) onwards and 

their ability to adapt to high-latitude climatic zones must have been in their favour. 

Chen et al., (2002) have attributed a major transgression and eutrophic fluctuations 

that led to severe algal blooms especially in low-latitude continental shelves to 

related anoxic events. Now it is certain that least one thelodont taxon and possibly 

more did weather the Frasnian-Famennian extinction events with recovery and 

survival of the turiniids. 

 Blieck and Goujet (1978) and Turner (in Turner and Tarling, 1982; Turner, 

1997) considered the relationship of Iranian thelodonts to others in Asian localities. 

We have seen above further evidence of the Gondwanan distribution of turiniid 

thelodonts and showed the links between Iran and Western Australia in the Mid- to 

early Late Devonian, supporting a Palaeotethyan dispersal route in shallow water 

between Gondwana and Euramerica (Laurentia) in the Mid-Late Devonian along the 

northern Gondwana shoreline. Other vertebrate taxa show a similar biogeographical 

pattern: Ginter et al. (2002) discussed the Famennian Acanthodian populations of the 

Palaeotethys; the youngest known ischnacanthiform Grenfellacanthus zerinae Long, 
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Burrow and Ritchie, 2004 exhibits a similar pattern with a possible second species of 

Grenfellacanthus occurring in the early Famennian of Chahriseh, Iran (Long et al., 

2004; C. Burrow, pers. comm. August 2013). 

 Lebedev and Zakharenko (2010) put forward a new hypothesis of vertebrate 

provinces for the Givetian, one of which is the Phyllolepid-Thelodont Province; 

several taxa of phyllolepid placoderms being endemic and earlier in East and 

northern Gondwana, whereas turiniid thelodonts occur there later. However, they 

seem to have been unaware that thelodonts did exist in western Gondwana in the 

Early Devonian (Turner et al., 2004) and also that thelodonts occur in the Broken 

River, North Queensland/China realm in the Mid-Devonian (Turner, 1997).  

 

 

Figure 4.10. Palaeogeographical map showing the position of the Famennian thelodont localities in southeastern Iran 

and Western Australia during the Late Devonian (Famennian). Base map after Golonka (2007) and Lebedev and 

Zakharenko (2010), with modifications. 

Although they put northern Gondwana further south, the south of central Iran 

including Hojedk is positioned in the subtropics. 

 A different opinion on the palaeoposition of central Iran was presented on a 

recent map by Torsvik and Cocks (2013, fig. 10), which they considered at c. 408S. 
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This southern latitude still might be feasible as thelodonts are thought to have been 

able to live in relatively high latitudes (see Turner, 1997). 

 

4.7 Conclusions 

 The new genus and species of turiniid thelodont, Arianalepis megacostata 

gen. et sp. nov., found in the Upper Devonian (early Famennian) Bahram Formation 

of the Hojedk section of Iran, and a further uncertain species referred tentatively here 

to the same genus from the Upper Devonian (middle Famennian) Napier Formation 

of Western Australia, are younger than the previously youngest known thelodonts 

from Iran and Western Australia. These are the first thelodont scales known from 

the early-middle Famennian in both countries and worldwide, and their presence 

provides new data for biostratigraphic correlation between Iran and  Australia. The 

conodont successions at South Oscar Range and in the Hojedk section constrain the 

dating. 

 Most agnathan fishes did not survive the Frasnian-Famennian event and so 

the presence of a survivor ‘Lazarus’ thelodont taxon is surprising. Arianalepis 

megacostata gen. et sp. nov. in northern Gondwana (central Iran) and the turiniid 

?Arianalepis sp. indet. in East Gondwana (Western Australia) provide evidence of 

the only thelodont lineage surviving the Frasnian-Famennian extinction. These 

records extend the evolutionary history of the Thelodonti by some 2-6 Ma beyond 

the Kellwasser events into the crepida (Kerman) to Upper marginifera/trachytera 

(South Oscar Range) zones. 

We emphasize here that it is now necessary to seek more diligently for 

further examples in the Famennian of the broad northern and eastern Gondwana 

area, especially in the carbonates of Western Australia. 
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5.1 Abstract 

Teeth from 18 shark taxa are described from Upper Devonian to Lower 

Carboniferous strata of the Lennard Shelf, Canning Basin, Western Australia. Spot 

samples from shoal facies in the upper Famennian Gumhole Formation and shallow 

water carbonate platform facies in the Tournaisian Laurel Formation yielded a 

chondrichthyan fauna including several known species, in particular Thrinacodus 

ferox, Cladodus thomasi, Protacrodus aequalis and Deihim mansureae. In addition, 

protacrodont teeth were recovered that resemble formally described, yet unnamed, 

teeth from Tournaisian deposits in North Gondwanan terranes. The close faunal 

relationships previously seen for Late Devonian chondrichthyan taxa in the Canning 

Basin and the margins of northern Gondwana are shown here to continue into the 

mailto:brett.roelofs@postgrad.curtin.edu.au
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mailto:arthur.mory@dmp.wa.gov.au
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Carboniferous. However, a reduction in species overlap for Tournaisian shallow 

water microvertebrate faunas between the Canning Basin and South China is evident, 

which supports previous studies documenting a separation of faunal and terrestrial 

plant communities between these regions by this time. The chondrichthyan fauna 

described herein is dominated by crushing type teeth similar to the shallow water 

chondrichthyan biofacies established for the Famennian and suggests some of these 

biofacies also extended into the Early Carboniferous. 

 

5.2 Introduction 

 The Late Devonian saw an increase in the cosmopolitanism of many 

vertebrate taxa across parts of North and East Gondwana, and extending into South 

China and south-east Asia (Young et al., 2010). A shallow seaway along the 

northern margins of Gondwana is thought to have, at least in part, facilitated large 

scale faunal exchanges during this period (Lebedev and Zakharenko, 2010). At that 

time, the Canning Basin was located on the north-west corner of the East 

Gondwanan margin, which was contiguous with the North Gondwanan margin, with 

South China and south-east Asian landmasses further north (Golonka, 2007; 

Metcalfe, 2011). The Canning Basin was thus situated at the junction of major 

terranes and is therefore an ideal study area to evaluate Late Devonian faunal 

exchanges between these landmasses. Common faunal components between the 

Canning Basin and areas in South China and south-east Asia are known for several 

vertebrate groups from the Late Devonian, including placoderms (Young, 1984; 

Young et al., 2010) and chondrichthyans (Trinajstic and George, 2009; Roelofs et 

al., 2015). In addition, the jawless thelodonts are known from the uppermost 

Devonian in Iran (Hairapetian et al., 2015) North Gondwana and north-western 
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Australia (Trinajstic, 2001; Hairapetian et al., 2015). Of these groups, only the 

sharks survived the Devonian-Carboniferous extinctions (Janvier, 1996). Whether 

the same chondrichthyan taxa persisted into the Carboniferous in intermediate 

regions between the Canning Basin and areas surrounding South China and the 

northern margin of Gondwana, is difficult to resolve. This is partly due to a 

significant faunal overturn in the Early Carboniferous with subsequent radiations of 

many groups including osteichthyes, chondrichthyes and tetrapods (Janvier, 1996; 

Sallan and Coates, 2010). In addition, Early Carboniferous tectonic movements, such 

as the northwards migration of the South China block, led to increased separation 

between this terrane and East Gondwana (Scotese and McKerrow, 1990). 

 Recent studies on Carboniferous shark faunas of Western Australia have been 

limited. Earlier works (Thomas, 1957, 1959) described a rich shark assemblage from 

the Lower Carboniferous Laurel Formation that included both “cladodont” and 

“bradyodont” teeth (for a review see Trinajstic et al., 2014). In addition, Turner 

(1982) described a species of ctenacanthiform, Cladodus thomasi Turner, 1982, and 

attributed associated teeth to the genus Helodus. Edwards (1997) detailed further 

chondrichthyan genera from a trench across the Devonian-Carboniferous boundary, 

approximately 45 km north-west of Fitzroy Crossing (Figure 5.1). Despite the 

paucity of published material, some similarity of the shark fauna between north-

western and eastern Australia was recognised by Turner (1982). Here we aim to 

show the extent of the faunal links between the Canning Basin and the margins of 

Palaeo-Tethys along North and East Gondwana and southern Laurussia. 

 In addition to providing information on faunal ties, the rich chondrichthyan 

assemblage (Table 5.1), comprising 16 taxa from the Laurel Formation, allows a 

detailed analysis of a shark fauna from Tournaisian shallow water facies. The  

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures
http://palaeo-electronica.org/content/2016/324-583/1396-d-c-boundary-sharks-table
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Figure 5.1. Simplified geological map of the Upper Devonian and Lower Carboniferous Fairfield 

Group outcrop, Lennard Shelf, northern Canning Basin, showing sampled sites at Oscar Hill and 

Laurel Downs (after Druce and Radke, 1979). 

 

association between chondrichthyan taxa and the environments they inhabited has 

been analysed by Ginter (2000, 2001), who established three shark biofacies based 

on the percentages of shark teeth in Famennian pan-tropical regions. This biofacies 

model has been applied to a shallow water Famennian shark assemblage from the 

Canning Basin (Roelofs et al., 2015). Here we test if the Famennian shark biofacies 

model is applicable for the Carboniferous. This is in light of the Late Devonian mass 

extinction that caused significant niche reorganisations in which the placoderms, the 
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dominant faunal component of the Devonian (Young, 2010) and the last of the 

thelodonts, which had survived into the Famennian only in Western Australia and 

Iran (Hairapetian et al., 2015), became extinct. 

 

5.3 Geological setting 

 Extensive carbonate platforms with associated slope and basin facies 

developed along the northern margin of the Canning Basin, northern Western 

Australia from the late Givetian to late Famennian (Playford et al., 2009). Outcrops 

of these deposits extend along the Lennard Shelf for approximately 350 km and are 

amongst the world’s best preserved examples of a Devonian reef complex (Hocking 

et al., 2008; Playford et al., 2009). Near the end of the Famennian an abrupt 

regression along the northern margin of the basin led to exposure, erosion and minor 

karstification of the reef platform prior to a change to ramp facies including 

carbonate, mudstone and sandstone, of the Fairfield Group (Druce and Radke, 1979; 

Southgate et al., 1993) (Figure 5.2). Along the southern, basin-ward margin of the 

Lennard Shelf and throughout much of the Fitzroy Trough, deposition of mostly 

fine-grained siliciclastic facies with minor carbonate appears to have been 

continuous into the Tournaisian. These southern basin-ward facies are only known 

from the subsurface and are largely attributed to the Upper Famennian Luluigui and 

Clanmeyer formations (Willmott, 1962). However, this part of the succession needs 

revision (Jones, 1987) given the somewhat arbitrary formation designations for 

petroleum wells in Druce and Radke (1979). 

 The oldest stratigraphic unit of the Fairfield Group, the Gumhole Formation, 

consists mostly of bioclastic and oolitic sandy limestone with interbedded carbonate, 

siltstone and shale. The formation is best exposed at Oscar Hill, approximately 19 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f2
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km west-northwest of Fitzroy Crossing (Druce and Radke, 1979). Within the 

Horseshoe Range and Red Bluffs, the Gumhole Formation overlies a birdseye 

limestone likely to be the uppermost facies of the Nullara Limestone, whereas Druce 

and Radke (1979) and Edgell (2004) claim the Gumhole Formation overlies the 

Luluigui Formation in the Napier and Oscar Ranges. The overlying Yellow Drum 

Formation (Figure 5.2) consists of a series of massive calcareous sandstone and 

carbonate beds, with minor mudstone, breccia and evaporitic facies. 

 

 

Figure 5.2. Stratigraphy and correlation of Upper Devonian and Lower Carboniferous units of the 

Lennard Shelf (after Playford et al., 2009; Smith et al., 2013). Approximate temporal positions of the 

sampled localities: 1, OH4; 2, 198480; 3, 198404; 4, LG-1; and 5, TS-1. Abbreviations: Fm, 

Formation; and Lst, Limestone. 

 

The Devonian-Carboniferous boundary has been located in a trench 1 km 

northwest of Linesman Creek (Figure 5.1), excavated by researchers from Macquarie 

University, Sydney, Australia. In this section the boundary was placed at 7.5 m 

above the base of the Yellow Drum Sandstone based on the first appearance of the 

conodont Siphonodella sulcata Huddle, 1934. Unfortunately little data from the 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f2
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures
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trench has been published apart from brief mentions by Andrew et al., (1994) and 

Burrow et al., (2010), the latter incorrectly indicating a location near Oscar Hill. The 

boundary also appears to lie within the Yellow Drum Formation in many petroleum 

wells, including near the base of BMR Noonkanbah 4 (Figure 5.1) based on 

palynomorphs (Playford, 1976) and conodonts (Nicoll and Druce, 1979); however, 

the position of the boundary in these sections is approximate at best.  

A transgressive interval in the Early Carboniferous following deposition of 

the Yellow Drum Formation led to the development of lagoonal and shallow ramp 

facies of the Laurel Formation, the uppermost unit of the Fairfield Group (Figure 

5.2). The formation is poorly exposed in a 2-10 km wide belt southwest of the 

Napier and Oscar Ranges, with somewhat better exposures in the vicinity of Twelve 

Mile Bore. The Laurel Formation is characterised by a series of interbedded 

fossiliferous calcarenite, siltstone, sandstone and minor dolomitic beds, and contains 

a diverse fauna including bryozoans and corals (Thomas, 1959), foraminifera 

(Edgell, 2004), ostracods (Jones, 1959, 1974), rare ammonoids (Glenister and 

Klapper, 1966) and fish (Thomas, 1957, 1959; Turner, 1982; Long, 1989; Burrow et 

al., 2010). Studies of the brachiopod (Veevers, 1959; Thomas, 1971) and conodont 

(Glenister and Klapper, 1966; Nicoll and Druce, 1979) faunas indicate a general 

Tournaisian age, later revised to early to mid-Tournaisian by Jones (1995). 

 

5.4 Materials and methods 

The examined teeth were extracted from 5 kg rock samples collected in 2012 

from carbonate beds exposed at Oscar Hill and on Laurel Downs Station, Canning 

Basin, Western Australia (Figure 5,1). Samples were dissolved in buffered acetic 

acid following the methodology of Jeppsson et al. (1999). Residues were  

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f2
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f2
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures
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Table 5.1. Distribution and abundance of Devonian and Carboniferous chondrichthyan teeth from the 

Lennard Shelf, Canning Basin, Western Australia. 

 

washed and sieved (mesh size of 0.250 mm) before being picked under a Nikon 

stereomicroscope. 

Teeth used for imaging under a scanning electron microscope (SEM) were 

adhered to carbon tabs on 10 mm aluminium stubs. The mounted fossils were then 

coated with 10 µm platinum and imaged using a Zeiss Evo 40XVP SEM at the 

Centre for Materials Research at Curtin University. A Hitachi TM-3030 desktop 

SEM at the Department of Applied Geology (Curtin University) was also used for 

imaging fragile teeth. Imaging was undertaken using accelerating voltages ranging 

from 5 to 15 kV under variable pressure. 

The standard conodont zonation of Ziegler and Sandberg (1990) cannot be 

readily applied to the Famennian shallow water facies in the Canning Basin due to 

 

                                      Localities 

Oscar Hill 

(Famennian) 

Laurel Downs 

(Tournaisian) 

Taxa                                  Sample OH-2 OH-4 LG-1 198404 198480 TS-1 

Ageleodus sp. - - - 1 - 3 

Phoebodus cf. turnerae - 1 - - - - 

Thrinacodus ferox - - 5 8 12 9 

Stethacanthus? sp.  - - - 2 - - 

Cladodus thomasi - - - 4 1 8 

Cladodoides cf. wildungensis - - - 3 1 2 

Cladodontomorphi indet. sp. - - - - 1 - 

Ctenacanthiform gen. et sp. indet 1 - - - 3 1 4 

Ctenacanthiform gen. et sp. indet 2 - - - - - 1 

Protacrodus aequalis - - - - - 1 

Protacrodus sp. 1 - - - - - 1 

Deihim mansureae 1 - - 12 2 6 

Dalmehodus cf. turnerae - - 7 11 - 2 

Protacrodontidae gen. et sp. indet - 1 - - - - 

Lissodus sp. - - - - - 1 

Hybodontoidea gen. et sp. indet. - - - - - 1 

Euselachii gen. et sp. indet  - - - 6 2 9 

Holocephali gen. et sp. indet.  - - - 7 - 9 

Total 
1 2 12 57 20 57 

3 146 
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the dominance of polygnathids and paucity of palmatolepids (Klapper, 2007; Mory 

and Hocking, 2011). However, it is possible to indirectly correlate the succession at 

Oscar Hill to the standard conodont zones (CZ) using ammonoids (Becker and 

House, 2009). Similarly, the Carboniferous conodont zonation of Nicoll and Druce 

(1979) is dominated by shallow-water conodont genera, the ranges of which are 

strongly tied to local facies, and so do not provide a direct correlation to the standard 

zonation. According to Jones (1995), the conodont faunas from the Laurel Formation 

do not extend above the range of Siphonodella (Tn 1-2) in spite of the paucity of that 

genus. 

All microvertebrate specimens are housed in the Western Australian Museum 

(WAM). 

 

5.4.1 Sample Localities 

5.4.1.1 Oscar Hill 

 Two samples (OH2, OH4) were taken in 2012 from large cross stratified, 

sandy oolitic grainstone beds at the base of Oscar Hill (Figure 5.1, 18° 04' 07" S, 

125° 26' 41" E), approximately 15 km north west of Fitzroy Crossing. That section 

consists mainly of ooidal and bioclastic sandstone deposited within a shoal 

environment (Druce and Radke, 1979). Previous work at Oscar Hill documented a 

diverse fauna including ostracods (Jones and Thomas, 1959), brachiopods (Veevers, 

1959), goniatites (Teichert, 1949), corals (Hill, 1954) and bryozoans (Ross, 1961). 

Numerous crinoid, bivalves, and gastropod fossils have also been identified (Druce 

and Radke 1979) but are yet to be described. Conodont faunas (Nicoll and Druce, 

1979; West Canning Basin [WCB] section 002) place the section within the 

Devonian Icriodus platys Assemblage Zone (A.Z.), equivalent to the 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures
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praesulcata conodont zone of Ziegler and Sandberg (1990). A range of vertebrate 

material has been reported from the Oscar Hill area including arthrodire plates 

(Druce and Radke, 1979) and dipnoan remains (Young, 1987). Shark teeth have been 

previously found in the area (Edwards, 1997 unpublished thesis; Burrow et al., 2010) 

with some beds yielding abundant orodont teeth. 

 

5.4.1.1 Laurel Downs 

 Exposure of the Lower Carboniferous Laurel Formation on Laurel Downs 

station (Figure 5.1) is poor and largely confined to thin shallowly dipping limestone 

beds. Muddy intervals are weathered and covered by black soil. Determining 

detailed stratigraphic relationships between sections is hindered by poor exposure 

and numerous faults. Spot samples from thickly bedded, fossiliferous silty 

boundstone contain intact bryozoans, brachiopods and tabulate corals (Sample 

198404, Figure 5.1, locality 18° 01' S, 125° 18' E). Samples TS-1 (Figure 5.1, 18° 

01' S, 125° 17' E), 198480 (Figure 5.1, 18° 02' S, 125° 20' E) and LG-1 (Figure 5.1, 

18° 01' S, 125° 19' E) were extracted from a series of sandy bioclastic grainstone 

beds containing a rich ichthyolith fauna as well as minor, disarticulated brachiopod 

valves and crinoid ossicles. Conodonts from sample 198404 include Bispathodus 

aculeatus plumulus Rhodes, Austin, and Druce, 1969 and Clydagnathus 

cavusformis Rhodes, Austin, and Druce, 1969, indicating an Early Carboniferous 

age. 

 

 

 

 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures
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5.5 Systematic Palaeontology 

Class CHONDRICHTHYES Huxley, 1880 

Family INCERTAE SEDIS sedis 

Genus AGELEODUS Owen, 1867 

Type Species. Ctenopychius pectinatus Agassiz, 1838 

Ageleodus sp. 

Figure 5.3.1-4 

Material. Four incomplete teeth: one tooth from sample 198404, and three teeth 

from TS-1, Laurel Formation, Laurel Downs, Tournaisian. 

Description. Labio-lingually compressed crown that is slightly arched along the 

occlusal margin (Figure 5.3.1-3). The crown comprises a single row of four to five 

unornamented triangular cusps, decreasing in size distally (Figure 5.5.3.1). Most 

teeth bear cusp apices with a slight lingual inclination that are typically worn flat or 

slightly rounded (Figure 5.3.2-3). One specimen, WAM 15.6.33, (Figure 5.3.4) 

preserves three pointed triangular cusps with little wear. Shallow, vertical grooves 

originating at the juncture of the cusps are present on the top half of both crown 

faces. On one tooth (WAM 15.6.34, Figure 5.3.2), the crown is labio-lingually 

convex between the base of the cusps and the crown base interface. The lateral sides 

of the crown are rounded and taper mesially to a shallow depression along the 

crown-base interface (Figure 5.3.1-3). The labio-lingually flattened base is short and 

bears small foramina and longitudinal furrows.  

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
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Remarks. Due to the high level of heterodonty previously recorded for Ageleodus 

pectinatus Agassiz, 1838 and the absence of multiple complete teeth from the 

samples, species determination is not possible. The teeth do share similarities with 

 

Figure 5.3. Late Devonian and Early Carboniferous shark teeth from the Lennard Shelf, Canning 

Basin, Western Australia. 1-4,Ageleodus sp., WAM 15.6.23, sample 198404, in lingual view (1), 

WAM 15.6.34, sample TS-1, in labial (2) and lingual (3) views, and WAM 15.6.33, sample TS-1, in 

lingual view (4); 5-7, Phoebodus cf. turnerae, WAM 15.6.28, sample OH-4, in occlusal (5 ), labial (6) 

and lateral (7) views; 8-11, Thrinacodus ferox , WAM 15.6.32, sample LG-1, in occlusal view (8 ), 

WAM 15.6.8, sample 198404, in occlusal view (9), WAM 15.6.11, sample 198404, in lateral view 

(10), and WAM 15.6.9, sample 198404, in occlusal view (11); 12-16, Stethacanthus ? sp., WAM 

15.6.6, sample 198404, in occlusal view (12), and WAM 15.6.7, sample 198404, in basal (13), lingual 

(14), occlusal (15) and labial (16) views. Scale bar length: 1-4, 1 mm; 5-7, 0.5 mm; 8-11, 0.25 

mm; 12, 0.5 mm;13-16, 0.5 mm. 

 

other known Ageleodus species. One partial tooth crown (WAM 15.6.33, Figure 

5.3.4) possesses the pointed triangular cusps typical of the Late Devonian Ageleodus 

pectinatus Downs and Daeschler, 2001 and the Ageleodus teeth described by 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
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Lebedev (1996, figure 13). The rounded apicies on one tooth (WAM 15.6.23, Figure 

5.3.1) are similar to Ageleodus altus Garvey and Turner, 2006 from the 

Carboniferous of Victoria, Australia. As cusp morphology appears to diagnose 

different species of Ageleodus, it is possible more than one species inhabited the 

Canning Basin at this time. However, given the large amount of variation in the 

small sample size, it is more likely physical wear has contributed to the cusp shape 

than species specific morphology. 

 

Subclass ELASMOBRANCHII Bonaparte, 1838 

Order PHOEBODONTIFORMES Ginter, Hairapetian and Klug, 2002 

Family PHOEBODONTIDAE Williams, 1985 

Genus PHOEBODUS St. John and Worthen, 1875 

Type Species. Phoebodus sophiae St. John and Worthen, 1875 

Phoebodus cf. turnerae 

Figure 5.3.5-7 

Material. One tooth from sample OH-4, Gumhole Formation, Oscar Hill, 

Famennian. 

Description. Tooth within complete crown, comprising a single medial cusp flanked 

by two mesio-distally diverging lateral cusps (Figure 5.3.5-6). The central cusp is 

broken with a faint sub ovoid basal outline (Figure 5.3.5). The lateral cusps are 

rounded along the lingual margins and flattened on the labial face. Faint vertical 

striations are preserved on the baso-labial face of one cusp (Figure 5.3.6). The base 

is sub-rectangular in outline with well-rounded margins (Figure 5.3.7). A large 

lenticular button, with a single medially located canal, is positioned centrally on the 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f3
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lingual face of the base and extends between the mesial margins of the lateral cusps 

(Figure 5.3.5). The labial face of the base is thickened and borders a well-developed 

concave under-surface. 

Remarks. This tooth resembles Phoebodus turnerae Ginter and Ivanov, 1992 in 

having a rounded, lingually extended base and hemispherical button perforated by a 

large canal along its lingual face. The thin, sub-parallel cristae diagnostic of this 

species are not clearly recognisable on this tooth; however, faint ornament is present 

on the baso-labial face of the broken lateral cusp (Figure 5.3.6). The rounded nature 

of the tooth and low relief of the button may be due to abrasion consistent with the 

high energy shoal facies from which this tooth was recovered. The current upper age 

range for Ph. turnerae is from the lower (crepida CZ) to middle (marginifera CZ) 

Famennian (Ginter et al., 2010) whereas the Oscar Hill area is dated as latest 

Famennian (Nicoll and Druce, 1979), and suggests either the tooth does not belong 

to Ph. turnerae, or the range of Ph. turnerae extends into the late Famennian in the 

Canning Basin. Further phoebodont teeth need to be recovered, along with more 

precise age constraints, before the taxonomy of this tooth can be resolved. 

 

Genus THRINACODUS St. John and Worthen, 1875 

Type Species. Thrinacodus nanus St. John and Worthen, 1875 

Thrinacodus ferox (Turner, 1982) 

Figure 5.3.8-11 

v. 1982 Harpago ferox sp. nov.; Turner, pp. 119, 121-122, figs. 2-4. 

v. 1985 Harpagodens ferox Turner; Wang and Turner, pp. 226-227, pl. 2, figs. 11-

12. 
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v. 1989 Harpagodens ferox Turner; Wang, pp. 105-106, pl. 28, figs. 6-7, pl. 29, fig. 

2a, b, pl. 30, figs. 1-4. 

v. 1991 Thrinacodus (Harpagodens) ferox Turner; Turner, fig. 6, pl. 2, fig. G. 

v. 1992 cf. Thrinacodus ferox Turner; Kietzke and Lucas, p. 18, fig. 2D-H. 

v. 1993 Thrinacodus ferox Turner; Turner, fig. 8.7F. 

v. 1996 Thrinacodus ferox Turner; Ginter and Ivanov, p. 267, figs. 1, 2C-D. 

v. 1999 Thrinacodus ferox Turner; Ginter, p. 34, pl. 3, figs. 1-3, 5-7. 

v. 1999 Thrinacodus sp. Ivanov, p. 273, pl. 4, figs. 2-4. 

v. 2001 Thrinacodus ferox Turner; Ginter, p. 719, figs. 3C-E, 4A-C. 

v. 2003 Thrinacodus incurvus Duncan, pp. 119-120, figs. 5-6. 

v. 2010 Thrinacodus ferox Turner; Ginter and Turner, p. 1669, fig. 3A-H. 

v. 2010 Thrinacodus ferox Turner; Ginter, Hampe and Duffin, p. 41, fig. 33B-F. 

v. 2011 Thrinacodus ferox Turner; Habibi and Ginter, pl.1, fig. A-B. 

v. 2011 Thrinacodus ferox Turner; Ivanov and Lucas, p. 55, fig. 3A-L. 

v. 2012 Thrinacodus ferox Turner; Behan, Walken and Cuny, p. 1249, fig. 3A-M. 

Material. Eight teeth from sample 198404, 12 from TS-1, and nine teeth from 

sample LG-1, Laurel Formation, Laurel Downs, Tournaisian. 

Description. Tricuspidate teeth with symmetrical (Figure 5.3.11) to highly 

asymmetrical forms (Figure 5.3.10). All cusps are strongly inclined lingually, 

circular in cross section and typically bear faint striations on both lingual and labial 

faces. The symmetrical tooth form (WAM 15.6.9, Figure 5.3.10-11) is incomplete 

but comprises a crown and three cusps with equally sized basal circumferences. 

Asymmetrical teeth comprise one enlarged lateral cusp, a second medial cusp 

approximately one-third to two-thirds its size and the third smaller lateral cusp 

varying from a quarter of the size of the central cusp to equal in proportion. The 
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tooth base is elongate lingually and when preserved, shows a greater than 45 degrees 

of torsion towards the distal end of the base. A large canal is present on the occlusal 

face of the base (Figure 5.5.3.8-11) with a few smaller foramina on both the lingual 

and labial faces of the base (Figure 5.5.3.10). 

Remarks. We consider both the symmetric and asymmetric teeth to be from the one 

species due to the gradation from symmetric to asymmetric forms recovered from the 

sample. The presence of just one symmetrical tooth (Figure 5.3.11) supports 

Turner’s (1982, figure 5) reconstruction of the Thinacodus ferox Turner, 1982 jaw 

placing the symmetrical forms in a symphyseal position of the jaw and the 

asymmetric teeth in more lateral positions. The teeth with lower degrees of 

symmetry (Figure 5.3.9) were not figured in the original description (Turner, 1982) 

but appear similar in form to end member teeth figured in a reconstruction of 

Thrinacodus incurvus Newberry and Worthen, 1866 by Duncan (2003). 

Among the teeth attributed to Th. ferox, are six significantly smaller teeth. 

These teeth typically have a well-formed base; however, the cusps are shorter than in 

larger specimens and bear well-rounded apices (Figure 5.3.8). It is possible the teeth 

belong to juvenile specimens and the susceptibility to wear contributed to the well-

rounded cusps. 

Distribution and stratigraphic range. In Australia Th. ferox is recorded 

from the latest Famennian in Queensland (Turner, 1982) and Tournaisian in both the 

Canning and Carnarvon basins of Western Australia (Trinajstic et al., 2014) and New 

South Wales (Turner, 1982). Globally, Th. ferox is known from the Famennian in 

southern China (Wang, 1993), Germany (Ginter, 1999), Morocco (Derycke, 1992; 

Derycke et al., 2008) and Utah, USA (Ginter, 2001). Teeth have also been recorded 

around the Devonian-Carboniferous boundary in New Mexico, USA (Kietzke and 
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Lucas, 1992). Thrinacodus ferox is known from the Mississippian in the South Urals 

and Moscow syncline Russia (Ivanov, 1996), Belgium (Delsate et al., 2003), Ireland 

(Duncan, 2003). 

 

Superorder CLADODONTOMORPHI Ginter, Hampe and Duffin, 2010 

Order SYMMORIFORMES Zangerl, 1981 

Family STETHACANTHIDAE Lund, 1974 

Genus STETHACANTHUS Newberry, 1889 

Stethacanthus ? sp. 

Figure 5.3.12-16 

Material. Two teeth from sample TS-1, Laurel Formation, Laurel Downs, 

Tournaisian. 

Description. The description is primarily based on the most intact specimen (WAM 

15.6.7, Figure 5.3.12-16) in which the tooth crown includes three (Figure 5.3.14-16) 

to four cusps (Figure 5.3.12). The tooth possesses a distinct and highly elongate 

medial cusp with a basal width occupying approximately one-third of the mesio-

distal length crown (Figure 5.3.14-16). Two small, rounded lateral cusps are directed 

approximately 45 degrees from the centre of the tooth. The larger specimen (WAM 

15.6.6, Figure 5.3.12) bears a single smaller, laterally-divergent cusplet between the 

medial and lateral cusp. The cusps are relatively smooth apart from very faint 

vertical ridges on specimen WAM 15.6.7 (Figure 5.3.16). In the smaller specimen 

(WAM 15.6.7) the base extends lingually beyond the crown and is roughly 

rectangular in outline (Figure 5.3.15). The lingual margin is rounded with a small 

central indentation. The lateral margins of the base extend furthest at the corner of 

the lingual margin. In the larger specimen the base is asymmetrical, having a roughly 
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ovoid outline (Figure 5.3.12). A distinct crown-base interface is lacking on the labial 

face of the tooth (Figure 5.3.16) with only a slight thickening along the baso-labial 

margin. An ovoid button, approximately the same width as the base of the central 

cusp (Figure 5.3.14), is located close to the lingual margin of the tooth base. A large 

canal opening is positioned in the centre of the button (Figure 5.3.14) with the 

opposing end on the underside of a very shallow concave base (Figure 5.3.13). 

Remarks. Stethacanthid affinities are suggested by the elongate and thin, biconvex 

central cusp, the lack of a baso-labial depression (with slight labial projection under 

the main cusp) and a large foraminal opening on the lingual face of the orolingual 

button (Duffin and Ginter, 2006). Furthermore, the larger tooth, which bears a single 

intermediate cusplet, suggests some of the teeth belonging to this species may be 

pentacuspid. 

 

Order CTENACANTHIFORMES Glikman, 1964 

Family CTENACANTHIDAE Dean, 1909 

Genus CLADODUS Agassiz, 1843 

Cladodus thomasi Turner, 1982 

Figure 5.4.1-7 

v. 1959 “Cladodont”; Thomas, p. 36, fig. 4a.  

v. 1982 Cladodus thomasi sp. nov.; Turner, pp. 125, 127, figs. 6C, 7J. 

Material. Four teeth from sample 198404, two teeth from sample 198480, eight 

teeth from TS-1, Laurel Formation, Laurel Downs, Tournaisian. 

Revised diagnosis. Teeth with nine cusps; a large central cusp, a pair of large lateral 

cusps and three smaller pairs of intermediate cusplets (Figure 5.5.4.1-4). The central 
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cusp is the largest followed by the outer cusps, which diverge in a slight distal 

direction. The first and third lateral cusps are small, approximately a quarter to one- 

 

Figure 5.4. Ctenacanthiform teeth from the Lower Carboniferous Laurel Formation, Laurel Downs, 

Lennard Shelf, Canning Basin, Western Australia. 1 - 7, Cladodus thomasi, WAM 15.6.50, sample 

198404, in lingual view (1), WAM 15.6.25, sample 198404, in occlusal view (2 ), WAM 15.6.12, 

sample 198404, in lingual (3) and labial views ( 4), WAM 15.6.19, sample 198404, partial platform 

and crown in lingual view (5), and WAM 15.6.13, sample TS-1, in occlusal (6) and labial (7) 

views; 8 - 12, Cladodoidescf. wildungensis, WAM 15.6.15, sample 198404, in lingual (8), occlusal 

(9) and labial (10) views, WAM 15.6.16, sample 198404, in labial (11) and lingual (12) views. Scale 

bar length: 1 - 7, 1 mm; 8 - 10, 0.25 mm; 11 - 12, 0.5 mm. 

 

third the size of the lateral cusps (Figure 5.4.5). The second pair of intermediate 

cusplets are almost equal in size to the outer lateral cusps. Converging ridges are 

present on the base of the main cusp (Figure 5.4.7) whereas the lateral cusps all bear 

strong, non-bifurcating ridges (Figure 5.4.6-7). The central cusp bears a slight 

depression along the baso-labial face and is rounded along the lingual face. A 

secondary row of small labial cusplets is present on the crown base of larger teeth 

(Figure 5.4.6-7). The basal outline is lozenge shaped in smaller teeth (Figure 5.4.2) 
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becoming trapezoid in larger specimens (Figure 5.4.6). An elongate oro-lingual 

button bearing four canal openings abuts the lingual margin. Small foramina 

accompany the pore canals on the lingual and the occlusal surface of the oro-lingual 

button. A row of small foramina also occur within an arched groove on the labial 

surface immediately below the crown-base interface (Figures 5.4.4, 5.4.7). A baso-

labial shelf extends between the first set of lateral cusplets and is slightly thickened 

at the distal edges (Figures 5.4.4, 5.4.7). A shallow depression is present on the 

labial underside of the base, which also bears multiple canal openings. The lingual 

portion of the base is flattened under the oro-lingual button but may be flared 

occlusally along the distal edges of the lingual margin (Figures 5.4.1, 5.4.3). 

Description. Teeth range in size from 2.2 mm to 90 mm in length, mesio-distally. 

The crown includes a prominent triangular central cusp, which is flattened to 

depressed along the labial margin and convex along the lingual face (Figure 5.4.6). A 

pair of lateral cusps and three pairs of intermediate cusplets flank both sides of the 

medial cusp. The outermost cusps are the largest and approximately one quarter 

larger than the second lateral cusplets. The first and third pairs of intermediate 

cusplets are of smaller size, ranging from a quarter to half the size of the lateral 

cusps (Figures 5.4.3, 5.4.5). Prominent, non-bifurcating ridges are present on both 

the labial and lingual faces of each lateral cusp. Larger specimens (Figure 5.4.6-7) 

show a small row of cusplets along the baso-labial face of the crown. Small teeth 

show a more lenticular outline to the base (Figure 5.4.2). A roughly trapezoid basal 

outline with rounded edges (Figure 5.4.6) is present in larger specimens. An elongate 

ovoid button, extending between the inner margins of the second pair of lateral 

cusps, is positioned close to the lingual rim and is perforated by four canal openings 

on the lingual face. A small baso-labial shelf, between the first lateral cusps, borders 
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an often weakly developed baso-labial depression below the central cusp (Figure 

5.4.4). 

Remarks. The original diagnosis of Cladodus thomasi Turner, 1982 was based on a 

small tooth from the Upper Bundock Formation, Queensland (Holotype UQG 

F73007) as well as a tooth partially obscured by matrix (Thomas, 1959, figure 4a) 

collected from the Laurel Formation in the vicinity of Twelve Mile Bore (Figure 

5.1). The teeth recovered here, also collected from the Laurel Formation, conform to 

the original diagnosis for this species in addition to providing further diagnostic 

characters which allow for these teeth to be reassigned to the genus Cladodus. The 

central cusp morphology of C. thomasi, with its flattened labial face and convex 

lingual surface (Figure 5.4.6), is quite different to the biconvex cusp-type 

in Stethacanthus. Cladodus thomasi is further differentiated from Stethacanthus by 

multiple intermediate cusps. The baso-labial shelf and elongate oro-lingual ridge, 

typical of the genus Cladodus, are also found in C. thomasi. 

The new specimens of C. thomasi from the Canning Basin have highlighted 

previously undescribed variation in tooth morphology. Differences are typically seen 

in the basal outline with smaller teeth possessing a more lozenge shaped outline that 

becomes more trapezoid in form as the size of the tooth increases. Further variation 

is present in some of the larger teeth (Figure 5.4.6-7) which bear a second small row 

of labial cusplets. These accessory cusplet rows are also found in other 

Carboniferous ctenacanthiform teeth such as Tamiobatis vetustus Eastman, 1897 

(Williams, 1998, figure 5A-B) and Saivodus striatus Agassiz, 1843 (Ginter et al., 

2010, figure 72A-B). 

Several Famennian cladodont teeth, possessing a single intermediate cusplet, 

were previously attributed to “Stethacanthus” thomasi (Derycke, 1992, plate 2:10-
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11; Hampe, 2000, plate 2:1-4). Given the morphological variation and large number 

of teeth, it is clear the teeth of C. thomasi possess three sets of intermediate cusplets, 

independent of the tooth size. This suggests the teeth figured in Derycke (1992) and 

Hampe (2000) are unlikely those of C. thomasi but instead belong to another 

ctenacanthiform shark. The tooth (MCD 177) formally figured by Derycke (1992, 

figure 14, plate 2: 10, 11) was synonymised firstly with Stethacanthus resistens 

Ginter, 2002 and then with Cladodoides wildungensis by Ginter et al., (2010), who 

also suggested many of the teeth formally attributed to “Stethacanthus thomasi” 

belong to C. wildungensis. 

Cladodus thomasi was considered as a junior synonym of Stethacanthus 

obtusus Trautschold, 1874 by Lebedev (1996); however, Hampe (2000) noted 

S.obtusus had a greater number of cusps than C. thomasi in addition to more 

foramina along the edge of a less distinguished button and therefore the species 

determination of S. thomasi was retained. The holotype of C. thomasi (Turner, 1982, 

figure 6C) is an asymmetric tooth possessing eight cusps. The newly recovered teeth 

of C. thomasi indicate the possession of nine cusps is common for these teeth, 

similar to S. obtusus. The lingual button appears more developed in C. thomasi, as 

noted by Hampe (2000) and typically possesses four large foramina on the lingual 

face. In comparison, S. obtusus is described as possessing two to six large foramina. 

The larger forms of C. thomasi, comparable in size to S. obtusus figured by Lebedev 

(1996), possess a distinct secondary row of cusplets along the labial face of the tooth, 

a feature lacking in the 40 specimens of S. obtusus. Further distinguishing C. 

thomasi from the Canning Basin is the shape of the base, which takes on a more 

trapezoid form in larger specimens compared to the lozenge shape seen in S. 

obtusus. The baso-labial shelf is also more elongate in S. obtusus, than C. 
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thomasi, extending to the medial cusplets. In C. thomasi the baso-labial shelf only 

extends between the distal margins of the first pair of intermediate cusplets. We 

believe these differences are sufficient for C. thomasi to be retained as a distinct 

species. 

We note there are similarities between the teeth, designated here as C. 

thomasi and Tamiobatis sp. (Ginter and Sun, 2007) from Muhua, south China, 

including the presence of three pairs of intermediate lateral cusplets, that alternate in 

height, as well as a basal outline, which extends lingually furthest in front of the 

lingual button. However, the teeth from the Canning Basin are distinct in that they 

lack a small lateral cusplet often present in the teeth from Muhua and have a far 

more angular basal outline. The teeth of Tamiobatis sp. (Ginter and Sun, 2007) also 

lack the row of accessory labial cusplets despite being of comparable size to the teeth 

of C. thomasi. Another member of the genus, Tamiobatis vetustus Eastman, 1897 

(Williams, 1998), is known for the presence of labial cusplets, however they are 

present behind the main cusp, a feature not found in the teeth of C. thomasi (Figure 

5.4.7). Although there are some features of the genus Tamiobatis, which are present 

in the teeth of C. thomasi, the greater number of morphological differences precludes 

these teeth from being assigned to Tamiobatis. 

Distribution and stratigraphic range. Given the revised diagnosis, C. thomasi is 

restricted to the Lower Carboniferous of Australia. Teeth have been recovered from 

the Lower Carboniferous upper Bundock Formation, North Queensland and from the 

Tournaisian Laurel Formation, Canning Basin, Western Australia. 

 

Cladodoides cf. wildungensis 

Figure 5.4.8-12 
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Material. Three teeth from sample 198404, one tooth from sample 198480, two 

teeth from sample TS-1, Laurel Formation, Laurel Downs, Tournaisian. 

Description. The pentacuspid crown comprises a large triangular central cusp with a 

pair of distally diverging lateral cusps and small (approximately two thirds the size 

of the lateral cusps) intermediate cusplets (Figure 5.4.8-12). Cusp faces are 

ornamented in coarse, predominantly parallel ridges converging toward the cusp 

apex (Figures 5.4.8, 5.4.12). The labial face of the central cusp is flattened with a 

slight baso-labial depression. The base is lenticular in outline (Figure 5.4.9) and 

extends furthest in front of the central cusp. The crown-base interface is marked by a 

low arch along the labial face (Figure 5.4.8). The lateral end of the base extends 

beyond the crown in most specimens; however, this is significantly less extended in 

one specimen (Figure 5.4.12). A row of small pores is present along the crown base 

interface on the labial side. An ovoid button extends between the distal margins of 

the intermediate cusplets and is positioned centrally along the occlusal edge of the 

baso-lingual rim. The baso-labial thickening lies between the intermediate cusps and 

does not protrude far lingually (Figures 5.4.10, 5.4.12). 

Remarks. The teeth bear a resemblance to the teeth originally described 

as Stethacanthus resistens by Ginter (2002) and later synonymised with Cladodoides 

wildungensis Jaekel, 1921 (Ginter et al., 2010). The teeth from the Canning Basin 

share the pentacuspid crown and strong divergence of the lateral cusps seen in the 

smaller tooth forms of C. wildungensis (Ginter et al., 2010, figure 66F). The basal 

features are also comparable, with an elongated lenticular base extending beyond the 

crown foot as well as possessing the mesio-distally elongated lingual button. Despite 

these similarities, the cusps on the Canning Basin teeth appear shorter and more 

robust than those seen in teeth attributed to C. wildungensis, including the holotype 
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(Ginter et al., 2010, figure 66). Similar teeth with shorter cusps are evident in a tooth 

from the Famennian of north-western Iran (Hampe, 2000, plate 2.1-4). Whether 

these Carboniferous forms belong to C. wildungensis is difficult to determine given 

the limited number of teeth recovered. 

 

Cladodontomorphi indet. sp. 

Figure 5.5.1-5 

Material. One tooth from sample 198404, Laurel Formation, Laurel Downs, 

Tournaisian.  

Description. Asymmetrical tooth comprising five cusps with a large laterally 

inclined medial cusp and a pair of diverging lateral cusps approximately twice the 

size of the intermediate cusplets (Figure 5.5.1). There are fine ridges on the cusp 

faces with bifurcating ridges on the basal margins of the lateral cusps (Figure 5.5.1-

3). The labial face of the crown is concave at the base with a row of small pores 

along the base-crown limit. The lingual extension of the base is short and almost 

trapezoid in outline, extending furthest between the mesial margins of the lateral 

cusps (Figure 5.5.4-5). There is a slight lateral extension of the base where it forms a 

laterally directed point (Figure 5.5.4). The lingual torus hosts a highly elongate ridge, 

which along the lingual face. The oro-lingual ridge is thickened at its termination 

point on one distal end and gradually reduces its size at the other (Figure 5.5) The 

baso-labial shelf is thickest between the accessory cusps, becoming less distinct at 

one distal margin as opposed to thickening at the other end (Figure 5.3-4). The 

underside of the tooth bears a shallow depression under the lingual torus that 

deepens below the main cusp (Figure 5.5.4). 

Remarks. This tooth bears a few features associated with the genus Cladodus. These 
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include a central cusp, which is short and triangular in form, as well as an elongate 

 

Figure 5.5. Ctenacanthiform teeth from the Lower Carboniferous Laurel Formation, Laurel Downs, 

Lennard Shelf, Canning Basin, Western Australia. 1 - 5, Cladodontomorphi indet. sp., WAM 15.6.5, 

sample 198404, in lingual (1), lateral (2), labial (3 ), basal (4) and occlusal (5) views; 6 -

 11, Ctenacanthiform gen. et sp. indet. 1, WAM 15.6.24, sample 198404, in lingual view (6), WAM 

15.6.36, sample TS-1, in lingual view ( 7), WAM 15.6.35, sample TS-1, in lingual view (8), WAM 

15.6.37, sample TS-1, in labial (9) and lateral (10) views, and WAM 15.6.35, sample TS-1, in labial 

view (11); 12 - 15, Ctenacanthiform gen. et sp. indet 2, WAM 15.6.3.8, in lingual (12 ), occlusal (13), 

labial (14) and basal (15 ) views. Scale bar length: 1-5, 10 mm; 6-11, 0.5 mm; 12-15, 5 mm. 

 

baso-labial shelf and long oro-lingual ridge. The tooth resembles Cladodus 

marginatusAgassiz, 1843 (figured in Duffin and Ginter, 2006, figure 3A-G) with its 
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broad, robust based central cusp directed distally to one side. In addition, the central 

cusp is biconvex apart from the baso-labial portion where a shallow depression 

develops. In contrast to C. marginatus, the tooth here bears much finer ridges that 

cover the entirety of each cusp. In C. marginatus the ridges terminate approximately 

halfway up the cusp from the crown-base interface, with the majority of the upper 

central cusp surface remaining smooth. 

 

Ctenacanthiform gen. et sp. indet. 1 

Figure 5.5.6-11 

Material. Three teeth from sample 198404, one tooth from sample 198480, four 

teeth from sample TS-1, Laurel Formation, Laurel Downs, Tournaisian. 

Description. The tooth crown comprises a bulbous central cusp flanked by a pair of 

intermediate cusplets and a pair of lateral cusps diverging distally from the crown 

centre (Figure 5.5.6-8). The intermediate cusplets erupt from a more labial position 

on the crown (Figure 5.5.9-11) and are strongly fused mesially and distally with the 

neighbouring cusps. Both cusp faces bear ridges, rarely bifurcating at the base. The 

base forms a lenticular outline, extending lingually and, in some specimens, mesio-

distally beyond the crown base (Figure 5.5.6). The lingual face of the base forms a 

steep angle between the lingual margin and the crown-base interface. In some 

specimens the basal height along the lingual face exceeds that of the crown. An oro-

lingual ridge is often poorly developed; however, a series of canals can be found on 

some specimens, running from the lingual edge of the oro-lingual ridge to almost the 

crown base interface (Figure 5.5.6). A row of foramina along an elongate baso-labial 

shelf extend between the far lateral cusps (Figure 5.5.9). 
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Remarks. The tooth crowns are quite distinct in comparison to other cladodont type 

teeth in that the cusps are highly fused, up to two-thirds of the intermediate cusps 

with the lateral and central cusps (Figures 5.5.9, 5.5.11). Low profiled and similarly 

fused teeth belonging to Tamiobatis vetustus Eastman, 1897 were recovered from the 

Cleveland Shale of Ohio, USA (Williams, 1998, figure 5E-F). Williams (1998) 

suggested these teeth represent the posterior teeth of the shark thereby indicating an 

unusual degree of heterodonty in this group of sharks. Whether this explains the 

unusually compact nature of the teeth described here is unclear. The differences in 

mesio-distal elongation, suggests these teeth occupy a range of positions in the jaw 

rather than just representing the posterior teeth of one species. The small sample size 

makes it difficult to correlate any impacts of ontogeny on tooth form. However, a 

comparison between the smallest tooth (Figure 5.5.7) and the largest tooth (Figure 

5.5.6), suggests the highly compacted nature of the cusps is not a feature of either 

juvenile or adult teeth but is a unique character for this species. 

 

Ctenacanthiform fam. gen. et sp. indet. 2 

Figure 5.5.12-15 

Material. 1 partial tooth from sample TS-1, Laurel Formation, Laurel Downs, 

Tournaisian. 

Description. Only a small distal portion of the central cusp and part of the lingual 

torus are preserved (Figure 5.5.12-15). The remnant of a large central cusp as well as 

the basal outline of a lateral cusp and intermediate cusplet can be detected. The baso-

lingual face of the lateral cusp is approximately twice the size of the basal outline of 

the intermediate cusplet (Figure 5.5.13). Approximately one-third of the distal side 

of the central cusp is preserved. The basal part of the central cusp shows a slight 
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convexity of the lingual face, whereas the labial face is flattened. In unabraded areas, 

the lingual faces of both the central and lateral cusps bear thin vertical striae (Figure 

5.5.12-13). The distal limit of a baso-labial depression can be seen on the central 

cusp (Figure 5.5.14). A row of faint foramina runs along the crown-base interface on 

the labial side of the tooth. The base extends lingually with the preserved part of the 

crenulated lingual rim showing a gentle curvature (Figure 5.5.15). Part of a well-

defined, elongate oro-lingual button is positioned midway between the crown base 

and the lingual margin and extends from the broken face of the tooth to the base of 

the intermediate cusp. A thickened but incomplete baso-labial shelf lies between the 

broken edge of the distal margin of the central cusp and the mesial margin of the 

lateral cusp. 

Remarks. The small fragment of the tooth does not preserve many of the diagnostic 

features in their entirety and makes any in depth comparisons difficult. The 

preserved end of the baso-labial shelf extends to the basal part of the lateral cusp and 

appears slightly thickened. The preserved section of the oro-lingual ridge is straight 

and extends to the inner edge of the lateral cusp base. These features indicate 

affinities to the Ctenacanthiforms. The oro-lingual button on many Cladodus 

terrelli Newberry, 1889 teeth is similar in shape and positioned centrally on the 

lingual torus, extending between the inner margins of the lateral cusps. The thin 

nature of the baso-lingual margin and vertical ridges are similar to those on the teeth 

of Cladodus terrelli. 

 

Cohort EUSELACHII Hay, 1902 

Superfamily PROTACRODONTOIDEA Zangerl, 1981 
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Family PROTACRODONTIDAE Cappetta, Duffin and Zidek, 1993 

Genus PROTACRODUS Jaekel, 1925 

Type Species. Protacrodus vestustus Jaekel, 1921 

Protacrodus aequalis Ivanov, 1996 

Figure 5.6.1 

v. 1982 Protacrodus sp. ‘C’; Turner, pp. 125-126, fig. 7. 

v. 1994 Protacrodus sp. C; Ivanov and Lukševičs, pp. 25-26, fig. i, j. 

v. 1996 Protacrodus aequalis sp. nov.; Ivanov, p. 423, fig. 6A-G. 

v. 1999 Protacrodus aequalis Ivanov; Ginter and Turner, p. 113, fig. 7A-C. 

v. 2000 Protacrodus aequalis Ivanov; Ginter and Ivanov, p. 339, pl. 2I. 

v. 2005 Protacrodus sp. 3; Derycke-Khatir, pp. 64-65, pl. VIII, fig. 8. 

v. 2010 Protacrodus aequalis Ivanov; Ginter, Hampe and Duffin, p. 87, fig. 80D, E. 

v. 2011 Protacrodus aequalis Ivanov; Ivanov and Lucas, p. 58, fig. 6A-L. 

Material. One tooth from sample TS-1, Laurel Formation, Laurel Downs, 

Tournaisian. 

Description. Tooth with a tricuspid crown, comprising a central cusp and two lateral 

cusps diverging at 45 degrees from the base (Figure 5.6.1). The cusps are 

compressed labio-lingually, and short and wide in lingual view. The central cusp is 

slightly larger than the lateral cusps, which are fused at the base to the central cusp. 

The cusps are all ornamented with strong cristae, which converge at the cusp apices 

(Figure 5.6.1). The base is bulbous with a rounded lingual extension covered by 

small pores. A row of small foramina occur above a slightly arched crown-base 

interface on the labial side. 
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Remarks. The symmetrical nature of the tooth is unusual in comparison to the 

majority of teeth attributed to this species. Typically, the crown of P. 

aequalis comprises cusps that are inclined to a distal side. A similar symmetrical 

tooth, is figured in Ivanov (1996, figure 6F) but shows a pair of lateral cusps with 

less distal divergence than the tooth from the Canning Basin. The symmetrical nature 

of this tooth suggests placement within symphyseal region of the mandible and 

possibly explains the low numbers recovered. 

Distribution and stratigraphic range. Recorded from the early Famennian in 

Arctic Canada (Ginter and Turner, 1999), middle Famennian of Latvia (Ivanov 

and Lukševičs, 1994) and the late Famennian in New Mexico, USA (Ivanov and 

Lucas, 2011). Within the South Urals, Russia, this species is known from the latest 

Famennian to early Tournaisian (sulcata CZ; Ivanov, 1996). In Australia, 

P.aequalis is known from the Famennian in Queensland (Turner, 1982) and the 

Tournaisian in the Canning Basin, Western Australia. This species has also been 

recorded from the Tournaisian in Belgium (Derycke-Khatir, 2005). 

 

Protacrodus sp. 1 

Figure 5.6.2-4 

v. 2011 Protacrodus sp.; Habibi and Ginter, p. 39, pl. 2b-e.  

Material. One tooth from sample TS-1, Laurel Formation, Laurel Downs, 

Tournaisian. 

Description. Crown is thin labio-lingually with five cusps; a large triangular central 

cusp and two pairs of lateral cusps diminishing in size distally (Figure 5.6.2). The 

central cusp is three times the size of the first lateral cusps and makes up 

approximately half the size of the crown (Figure 5.6.2, 5.6.4). The second pair of 
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lateral cusps is approximately half the size of the first pair and diverge at 

approximately 45 degrees from the centre of the crown. Coarse cristae are present on 

both faces of the crown. On the labial face, the cristae thicken around the crown base 

 
Figure 5.6. Protacrodont teeth from Lower Carboniferous Laurel Formation, Laurel Downs, Lennard 

Shelf, Canning Basin, Western Australia. 1, Protacrodus aequalis, WAM 15.6.43, sample TS-1, in 

lingual view ( 1); 2 - 4, Protacrodus sp. 1, WAM 15.6.45, sample TS-1, in lingual (2), occlusal (3) 

and labial (4) views; 5 - 12, Deihim mansureae, WAM 15.6.17, in lingual view (5), WAM 15.6.18, 

sample 198408, in occlusal view (6), WAM 15.6.46, sample TS-1, in lingual view (7), WAM 15.6.48, 

sample TS-1, in lingual view ( 8), WAM 15.6.19, sample 198404, in labio-basal view (9 10), WAM 

15.6.49, sample TS-1, in labio-basal view (11), and WAM 15.6.18, sample 198404, in lateral view 

(12); 13-16, Dalmehodus cf. turnerae, WAM 15.6.30, sample LG-1, in lingual (13 ) and labial (14) 

views, WAM 15.6.44, sample TS-1, in occlusal ( 15) and lateral (16) views. Scale bar length: 1 - 45-

 12, 1 mm; 13 16, 0.25 mm. 

 

interface to the extent they resemble small cusplets (Figure 5.6.3-4). In outline, the 

base is straight along the labial face with a gently curved lingual margin (Figure 

5.6.3). The lingual face of the base is perforated by a row of large canals that 

decrease in size toward the distal margins. The labial face of the base is thin and 

gently arched with a single row of small pores (Figure 5.6.4). 
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Remarks. The tooth superficially resembles Deihim mansureae Ginter, Hairapetian 

and Klug, 2002 but differs in that the central cusp in Protacrodus sp. is more 

pronounced with the lateral cusps not as highly fused as they are in D. mansureae. In 

addition, the tooth described here bears a shorter lingual extension of the base and 

lacks the characteristic cusplets. The crown and basal morphologies bear a very 

strong resemblance to Protacrodus sp. teeth figured in Habibi and Ginter (2011, plate 

2, figure b-e). The basal canals in the specimen from the Canning Basin are focused 

into a single row. The cristae around the crown-base interface on the labial side are 

also far coarser. These differences, however, do not appear significant enough to 

separate these species and so we determine this tooth belongs to the same species as 

Protacrodus sp. from the Central Alborz Mountains, Iran (Habibi and Ginter, 2011). 

 

Genus DEIHIM Ginter, Hairapetian and Klug, 2002 

Deihim mansureae Ginter, Hairapetian and Klug, 2002 

Figure 5.6.5-12 

v. 2000 ?Protacrodus sp. ; Long and Hairapetian, pp. 217-218, fig. 4O. 

v. 2000 Protacrodus sp. cf. “P. aequalis“ sensu Ginter and Turner; Yazdi and 

Turner, p. 226, figs. 3.4-7, 4.4. 

v. 2002 Deihim mansureae gen. et sp. nov.; Ginter, Hairapetian and Klug, pp. 191-

193, Figure 10; pl. 1, fig. r; pl. 2, fig. k; pl. 4, figs. f-g, j-m; pl. 5, figs a-m. 

v. 2005 Polyacrodontidae incertae sedis; Derycke-Khatir, p. 76, pl. VII, figs. 7-10. 

v. 2005 Bobbodus sp.; Derycke-Khatir, pp. 95-96, pl. XII, figs. 1-2. 

v. 2009 Deihim mansureae Ginter, Hairapetian and Klug; Hairapetian and Ginter, 

pp. 176- 179, figs. 2D, 4H. 
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v. 2010 Deihim mansureae Ginter, Hairapetian and Klug; Hairapetian and Ginter, p. 

362, fig. 3A. 

v. 2010 Deihim mansureae Ginter, Hairapetian and Klug; Ginter, Hampe and Duffin, 

p. 88, fig. 81A-J. 

v. 2011 Deihim mansureae Ginter, Hairapetian and Klug; Ginter, Hairapetian and 

Grigoryan, pp. 166-169, figs. 8A-E, 11C. 

v. 2011 Deihim mansureae Ginter, Hairapetian and Klug; Ivanov and Lucas, p. 60, 

fig. 8. 

v. 2013 Deihim mansureae Ginter , Hairapetian and Klug; Habibi, Yazdi, Zarepoor 

and Shirazi, p. 30, fig. 4. 

v. 2015 Deihim mansureae Ginter, Hairapetian and Klug; Roelofs, Playton, Barham 

and Trinajstic, p. 88, text-fig. 6. 

Material. One tooth from sample OH-4, Gumhole Formation, Oscar Hill, 

Famennian; 12 teeth from sample 198404, two teeth from samples 198480, six teeth 

from sample TS-1, Laurel Formation, Laurel Downs, Tournaisian. 

Description. Two different tooth morphotypes can be distinguished. The first tooth 

type is pentacuspid, comprising a large medial cusp approximately twice as high as 

the two pairs of highly fused lateral cusps (Figure 5.6.5-6). The crown is ornamented 

on both faces with coarse cristae. Four to nine cusplets are present on the labial side 

(Figure 5.6.10-12). A shallow groove marks the crown-base interface on the lingual 

face of the tooth. The base extends lingually, furthest at the centre of the lingual 

margin (Figure 5.6.6). A few large canals perforate the occlusal-lingual face of the 

base from the lingual margin to the crown base. A row of small pores are present 

along the labial face of the base, immediately below the crown (Figure 5.6.10-11). 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f6
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f6
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f6
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f6


   

236 
 

The second tooth type is smaller, possessing a large triangular central cusp 

with one to two pairs of smaller, laterally diverging cusps (Figure 5.6.7-9). Cristae 

are most prominent on the lingual face of the crown. The labial face of the crown 

typically bears four cusplets with one tooth (WAM 15.6.19, Figure 5.6.9) possessing 

a single pair of prominent ovoid labial cusplets. A row of small pores within a 

shallow trough, mark the crown-base interface on the labial face. The crown-base 

interface forms a low arch. The base is semi-circular in outline extending distally and 

lingually beyond the crown base (Figure 5.6.7-8). 

Remarks. The teeth bear the diagnostic characters of D. mansureae, including the 

large central cusp, diverging lateral cusps and a row of cusplets along the labial face 

of the crown. However, these teeth differ from the original morphotypes outlined by 

Ginter et al. (2002) in regards to cusp number and the variation in size between the 

central and lateral cusps. The first tooth type recovered from the Canning Basin 

consists of crowns resembling those of Morphotype 1 (sensu Ginter et al., 2002); 

however, the mesio-distally extended base and low profile of the central cusp is more 

similar to Morphotoype 2. Examples of Morphotype 3 are lacking from the teeth 

collected here. The few Morphotype 4 teeth that were recovered (Figure 5.6.7-8) 

comprise a central cusp that is significantly lower in profile than other examples of 

this morphotype figured in Ginter et al. (2002, plate 5D-F). The teeth from the 

Canning Basin do not fully conform to any of the morphotypes originally described 

(Ginter et al., 2002) and suggests these teeth may belong to a different species than 

the older Famennian forms found in Iran. 

 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f6
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f6
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f6
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f6


   

237 
 

Genus DALMEHODUS Long and Hairapetian, 2000 

Dalmehodus cf. turnerae 

Figure 5.6.13-16 

Material. Seven teeth from sample LG-1, 11 teeth from sample 198404 and two 

teeth from TS-1, Laurel Formation, Laurel Downs, Tournaisian. 

Description. Mesio-distally elongated teeth with slightly arched crowns comprising 

a low central cusp and between two and four almost completely fused lateral cusps 

that decrease in size distally (Figure 5.6.13-14). The central cusp varies from equal 

in size to slightly larger than the first pair of lateral cusps. Cusps are ornamented 

with faint to strong cristae (Figures 5.6.14, 5.6.16). The base is roughly rectangular, 

extending lingually, and barely developed beyond the crown distally (Figure 5.6.15-

16). A row of large furrows are present along the lingual face of the base and extend 

from the lingual margin of the base to the crown base interface. The labial face of the 

base is small with a few small pores. The underside of the base is concave below the 

crown and flattened on the underside of the baso-lingual extension. 

Remarks. The teeth resemble those previously attributed to Dalmehodus 

turnerae Long and Hairapetian, 2000, in they possess a low, mesio-distally elongate 

crown covered in coarse cristae and a lingually short base with a row of rather large 

foramina. A key feature distinguishing teeth of D. turnerae from other protacrodonts 

is the lack of a discernible size difference between the central and lateral cusps. 

Typically, the teeth from the Canning Basin bear a central cusp slightly larger than 

the lateral cusps. Teeth with highly fused cusps figured in Ginter et al. (2011, text-

figure 10H) and those in Hairapetian and Ginter (2009, text-figure 4B) most closely 

resemble the teeth from the Canning Basin and these were attributed to D.turnerae. 

Despite the large number of teeth from the Tournaisian deposits, the variation in 
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morphology is limited. Teeth resembling the holotype (Long and Hairapetian, 2000, 

figure 6f) and other specimens (Hairapetian and Ginter, 2009, text-figure 9A-B) with 

less fusing of the cusps have not been found in samples from the Canning Basin. It 

may be that the teeth found here, as well as similar forms in Iran (Hairapetian and 

Ginter, 2009) and Armenia (Ginter et al., 2011), represent different protacrodont 

species. 

 

Protacrodontidae gen. et sp. indet. 

Figure 5.7.1-2 

Material. A partial tooth from sample OH-4, Gumhole Formation, Oscar Hill, 

Famennian. 

Description. The preserved part of the crown comprises a large triangular cusp and 

four smaller lateral cusps (Figure 5.7.1-2) all ornamented with strong linear cristae. 

The first and second lateral cusps are almost equal in size with the third and fourth 

cusps diminishing in size distally. On the lingual side of the crown a row of four 

small rounded cusplets occur between the central and second lateral cusp (Figure 

5.7.1). There is a row of larger, more irregularly shaped cusplets on the entire 

preserved labial side of the crown (Figure 5.7.2). A distinct crown-base interface is 

lacking on the labial side of the tooth. The base is mesio-distally shorter than the 

crown but extends lingually and is perforated by small pores. 

 

Order HYBODONTIFORMES Cappetta, Duffin and Zidek, 1993 

Superfamily HYBODONTOIDEA Owen, 1846 

Family LONCHIDIIDAE Herman, 1977 

Genus LISSODUS Brough, 1935 
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Type Species. Lissodus africanus Broom, 1909 

Lissodus sp. 

Figure 5.7.3-5 

Material. One tooth from sample TS-1, Laurel Formation, Laurel Downs, 

Tournaisian. 

Description. Asymmetrical tooth with an arched crown consisting of a high central 

cusp and a single, almost completely fused lateral cusp (Figure 5.7.3). A broad, 

rounded labial peg extends labially from the centre of the crown base (Figure 5.7.4). 

The crown is completely smooth, lacking any form of ornament. The base is labio- 

lingually narrow and extends lingually and distally beyond the crown base on one 

side. The crown overhangs a concave trough along the labial side of the base. The 

base has a row of large canal openings present on the lingual face with 

corresponding openings on the labial side (Figure 5.7.5). 

Remarks. This tooth possesses characters typical of the genus Lissodus, including a 

single central cusp, labial peg and lingually extended base, perforated by large 

vascular canals. In comparison to other Early Carboniferous Lissodus teeth figured in 

Duncan (2004), the crown is much higher, forming a more pointed apex. The basal 

features are also distinct, with a row of very large canals on the lingual face of the 

base and large canal openings along the baso-labial side. The aforementioned 

features also distinguish the tooth from other Early Carboniferous Lissodus teeth 

listed in Fischer (2008). A reconstruction of the dentition of Lissodus 

nodosus Seilacher, 1943 (Duffin, 1985) and an interpretative reconstruction 

of Lissodus sp. by Duncan (2004) indicate a degree of variation among the tooth 

morphotypes. It is possible that the unusual features of the tooth described here may 

be a product of its position in the jaw. 
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The labial overhang of the main cusp and large canal openings on the base, 

present in the tooth here, are similar to the teeth of another Hybodont shark, 

Cassissodus margaritae Ginter and Sun, 2007 from Muhua, South China. The tooth 

however lacks a main diagnostic character of the genus Cassisodus, which is the 

presence of lingual and labial cusplets present on both faces of the crown. The  

 

Figure 5.7. Shark teeth from the Upper Devonian Gumhole Formation, Oscar Hill and Lower 

Carboniferous Laurel Formation, Laurel Downs, Lennard Shelf, Canning Basin, Western 

Australia. 1 - 2, Protacrodontidae gen. et sp. indet., WAM 15.6.29, sample OH-4, in lingual (1 ) and 

labial (2) views; 3-5, Lissodus sp., WAM 15.6.42, sample TS-1, in lingual (3), occlusal (4) and labial 

(5) views; 6 - 7, Hybodontoidea gen. et sp. indet., WAM 15.6.41, sample TS-1, in lingual (6 ) and 

labial (7) views; 8 - 11, Euselachii gen. et sp. indet.1, WAM 15.6.21, sample 198404, in lingual view 

(8 ), WAM 15.6.20, sample 198404, in occlusal view (9), WAM 15.6.27, sample 198404, in occluso-

lingual view (10), and WAM 15.6.39, sample TS-1 in labial view (11); 12 - 13, Euselachii gen. et sp. 

indet. 2, WAM 15.6.40, sample TS-1, in occluso-lingual view (12) and WAM 15.6.22, sample TS-1, 

in labial view (13); 14 -17, Holocephali gen. et sp. indet. 1, WAM 15.6.4, sample 198404, in occlusal 

view (14), and WAM 15.6.3, sample 198404, in lingual (15), labial (16) and occlusal (17) views. 

Scale bar length: 1-2, 0.5 mm; 3 - 5, 0.4 mm; 6 - 7, 0.75 mm; 8 - 10, 0.3 mm; 11, 1 mm; 12 - 13, 0.6 

mm; 14 - 17 , 5 mm. 
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possibility of wear or abrasion contributing to the lack of cusplets is unlikely as the 

crown retains a shiny enameloid surface. 

 

Hybodontoidea gen. et sp. indet. 

Figure 5.7.6-7 

Material. One tooth from sample TS-1, Laurel Formation, Laurel Downs, 

Tournaisian. 

Description. A well-preserved tooth with a large vertical bulbous crown that 

overhangs the lingual and distal faces of the base. The lower half of the crown, on 

the lingual face, is raised and bears a row of low profiled ovoid cusplets running 

mesio-distally (Figure 5.7.6). A pair of large pits is present on the distal sides of the 

distinct labial peg (Figure 5.7.7). The crown base interface on the labial side is 

highly arched with a thickened margin. The lingual margin of the base is 

semicircular and approximately one and a half times as deep as the crown height. 

The lingual face is slightly convex and perforated by three horizontally aligned rows 

of pores (Figure 5.7.6). Small pores are present in and around the concave labial side 

of the base. 

Remarks. This tooth is unusual with the elongate base directed under the crown. 

The labial peg and fused crown is similar to some Hybodonts such 

as Lissodus. However, the base lacks the large vascular foramina typical of that 

genus. In overall morphology, the tooth bears a resemblance with a hybodont tooth 

figured in Ginter and Sun (2007, figure 6A1-3) with the large labial peg, pyramidal 

crown and deep base orientated directly under the crown. 

 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f7
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f7
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f7
http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f7


   

242 
 

Euselachii gen. et sp. indet. 1 

Figure 7.8-11 

Material. Six teeth from 198404, two teeth from 198480, nine teeth from TS-1, 

Laurel Formation, Laurel Downs, Tournaisian. 

Description. Tooth crowns with two morphologies but both with a similar 

euselachian basal form. The crown and base are separated by a small but distinct 

lingual groove on the lingual face of the tooth. The base extends lingually and ranges 

from symmetrical (Figure 5.7.8) to asymmetrical in outline (Figure 5.7.9). A row of 

large canals extend from baso-lingual margin to the crown base. On the labial face of 

the tooth, the margin between the crown and base is often marked by a significant 

concavity (Figure 5.7.11). A large pore network covers the concave underside of the 

crown whereas the underside of the baso-lingual extension is smooth. 

Crown Morphotype 1 is symmetrical in form (Figure 5.7.8) with a high, 

prominent medial point and steeply tapering margins. The crown is smooth with only 

faint, rounded cusp type projections along the occlusal surface of some teeth (Figure 

5.7.8). The crown margins are rounded and do not overhang the base. 

Crown Morphotype 2 is asymmetrical with a large bulbous central cusp 

overhanging the lingual margin (Figure 5.7.10), and two to three smaller lateral 

cusps. Tooth crowns with three cusps, possess a slightly flattened and distally 

tapering lateral cusp on one side (Figure 5.7.10-11). The opposite lateral cusp forms 

a small dome, approximately half the size of the central cusp, and in some specimens 

overhangs the labial face of the crown. In one specimen (WAM 15.6.20, Figure 

5.7.9), the tooth comprises four cusps; a central cusp with a single flattened lateral 

cusp on one side and two smaller rounded cusps, decreasing in size distally, on the 
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other. The cusps all possess a slight distally directed orientation with the largest cusp 

overhanging both the lingual and labial margins. 

Remarks. Both morphotypes are here considered to represent a single taxon based 

on the high degree of heterodonty amongst other sharks with clutching-crushing 

dentitions (e.g., Heterodontus). Some of the teeth (Figure 5.7.10-11) superficially 

resemble the teeth attributed to Holocephali gen. et sp. indet. with their low profile 

bulbous cusps and lingually extending base perforated by a series of elongate canals. 

The crowns of the Holocephali gen. et sp. indet. teeth, however, differ from 

Euselachii gen. et sp. indet. 1 due to the small pores covering the crown and a central 

cusp that overhangs the labial face of the crown-base interface rather than 

overhanging the lingual margin. 

 

Euselachii gen. et sp. indet. 2 

Figure 5.7.12-13 

Material. Seven teeth from sample 198404, nine partial teeth from sample TS-1, 

Laurel Formation, Laurel Downs, Tournaisian. 

Description. Asymmetrical teeth that are highly flattened along the occlusal surface. 

The crown is almost rectangular in outline with a low convex occlusal surface 

(Figure 5.7.12-13). The surface of the tooth is covered by small rounded areas of 

discolouration, which are sometimes associated with small pits that do not appear to 

project into the dentine layer. There are two rows of cusplets: large irregularly 

shaped cusplets along the labial face (Figure 5.7.13) and smaller rounded cusplets 

along the lingual face (Figure 5.7.12). The occlusal facing base extends lingually and 

is perforated by a series of elongate canals. The baso-labial side of the crown is thin 

and lacks a clear crown-base interface. 
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Remarks. These teeth possess a range of characters including the wide canal 

openings similar to Euselachii gen. et sp. indet. 1; as well as different cusplet types 

on the labial and lingual faces of the crown that appear similar to Protacrodontidae 

gen. et. sp. The mesio-distal elongation of the teeth in conjunction with lingual and 

labial cusplets is diagnostic of lateral teeth attributed to the genus Cassisodus. In 

addition, the crown positions on the teeth of Cassisodus margaritae and Euselachii 

gen. et sp. indet. 2 are more labial, creating a slightly labio-lingual elongation. 

However, the crown of Cassisodus is far more pronounced with accessory labial and 

lingual cusplets of equal size. Due to the rarity of these teeth and the asymmetrical 

form, it is possible these teeth are part of a more complex dentition of another 

species. 

 

Subclass EUCHONDROCEPHALI Lund and Grogan, 1997 

Superorder HOLOCEPHALI Bonaparte, 1831 

Holocephali gen. et sp. indet. 

Figure 5.7.14-17 

Material. 12 teeth from 198404, two teeth from 198480, seven teeth from TS-1, 

Laurel Formation, Laurel Downs, Tournaisian. 

Description. Large teeth up to 21 mm across the crown, mesio-distally. The crown 

is asymmetrical and covered in a series of minute pores (Figure 5.7.14-15). The 

centre of the crown is elevated, forming a large bulbous projection with a rounded, 

labially directed apex that overhangs the base on the labial margin (Figure 5.7.16-

17). On one side of the main projection is a smaller one, approximately half the size 

and also directed labially. The other distal end of the crown is flattened with no 

discernible elevation. A row of well-developed cusplets is present on the baso-labial 
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side of one incomplete tooth crown (WAM 15.6.14, Figure 5.7.14). The boundary 

between the crown and base on the lingual side of the tooth is marked by a shallow 

groove. The base has a short lingual extension with some teeth preserving thin distal 

margins extending beyond the crown. A row of tightly packed canals, extending 

from the lingual margin to the crown base, occupy the lingual face of the base 

(Figure 5.7.15). The labial face of the base is thin and borders a shallow trough 

perforated by small pores. The underside of the baso-linguinal extension and 

majority of the crown is gently convex and smooth, devoid of foramina. 

Remarks. Teeth conforming to this morphology were first documented in the 

Canning Basin by Thomas (1957, 1959) who published photographs of 

“Bradyodont” teeth from the Laurel Formation. These teeth were later redescribed by 

Turner (1982) who tentatively attributed them to the genus Helodus. The teeth 

described here and the ones previously recovered from the Laurel Formation, both 

share crowns perforated by tiny pores as well as a base with small, elongate canals. 

In addition, the labial side of the base in these teeth are also highly vascularised. The 

teeth described here likely represent the same species previously recovered from the 

Laurel Formation with differences in crown and base shape that can be attributed to 

the high degree of heterodonty found in “bradyodont” sharks. 

There are few features present in these isolated teeth that can be used to 

confidently identify them to a species level. Similar teeth have been recovered in 

Muhua, China, and attributed to Helodus conicus Newberry and Worthen, 1866, 

however no descriptive comparison to the original teeth of this species was given 

(Ginter and Sun, 2007). The mesio-distally elongate teeth from the Canning Basin 

share a general morphology including a high midpoint to the crown with a surface 

covered in small pores. In contrast, the presence of a more developed bulbous 
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projection on one side of the crown centre, tightly packed pore canals on the lingual 

face of the base as well as a wider labio-lingual morphology distinguishes these teeth 

from those of Muhua. Characters such as tubular dentine and a bulbous crown are 

typical of teeth assigned to the genus Helodus, however these are not genera specific. 

As the similarities do not appear significant enough to be included under the same 

genera, we have left the teeth in open nomenclature. 

 

5.6 Discussion 

5.6.1 Faunal provinces and biogeography  

A chondrichthyan biofacies model, based on shark teeth, was proposed by Ginter 

(2000) for upper Famennian assemblages with a pan tropical distribution across 

south-east Laurussia and north-west Gondwana. Here we compare the shark fauna 

from the Carboniferous Laurel Formation with the biofacies model to ascertain if it 

also applies to Carboniferous faunas, especially in light of the end-Famennian 

vertebrate extinctions and environmental perturbations. The Famennian shark 

biofacies model consists of three distinct biofacies based on water depth and the 

percentages of shark teeth recovered (Ginter, 2000, 2001). These include: a Jalodus 

biofacies, containing more than 25% Jalodus, interpreted to indicate an open, deep 

water environment; a Phoebodus biofacies with more than 25% Thrinacodus 

tranquillus and Phoebodus, representing a shallower slope to shelf environment; 

and, a Protacrodus biofacies with more than 25% protacrodont and orodont teeth, 

indicating an even shallower marine environment. Previous work on the Late 

Devonian shark fauna from the Canning Basin has found similarities between the 

Jalodus biofacies type and the Frasnian shark fauna from the upper to distal slope 

facies of the Virgin Hills Formation, which largely comprises Phoebodus species 
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(Trinajstic and George, 2009; Roelofs et al., 2015). A Protacrodus biofacies has also 

been identified in a fossil rich shallow water middle Famennian Bugle Gap 

limestone, which mainly comprises protacrodonts and the phoebodont Th. 

tranquillus (Roelofs et al., 2015). However, it was not possible to apply the biofacies 

model to the latest Famennian Gumhole Formation in this work due to the low 

numbers of teeth recovered from the cross stratified ooidal grainstones, a facies type 

that has been previously recognised as not conducive to preserving vertebrate fossils 

(Boessenecker et al., 2014). 

 In contrast the lithofacies of the Laurel Formation comprise well bedded 

limestones with vertebrate remains recovered mostly from crinoidal grainstones, 

which are more favourable to the preservation and accumulation of vertebrate fossils 

(Druce and Radke, 1979). The shark fauna of the Laurel Formation is diverse, 

consisting of at least 16 species, and is dominated by three main tooth types: 

crushing or grinding (51%); phoebodont (represented by Thrinacodus ferox, 24%); 

and cladodont (22%).Ageleodus teeth comprise a small fraction of all teeth recovered 

(3%) and have been previously found in shallow water facies (Downs and Daeschler, 

2001; Anderson, 2009). The high percentage of crushing or grinding teeth is 

comparable to the shallow water Protacrodus biofacies (sensu Ginter, 2000, 2001) in 

Famennian sections in Utah and Nevada, USA, and the Tafilalt Platform in Morocco 

(Ginter, 2001) and demonstrates that the Prorocrodus biofacies may be applied to 

the shallow water environments within the lower Carboniferous. The presence of this 

biofacies in the Canning Basin indicates comparable taxa, such as Protacrodonts and 

Helodonts, continued to inhabit equivalent, globally distributed, shallow water 

environments in the Early Carboniferous. Habibi and Ginter (2011) also noted the 

occurrence of the Protacrodus biofacies in Tournaisian shallow shelf facies at 
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Shahmirzad, central Iran. However, the proportions of Protacrodontidae teeth (= 

25%), as well as Holocephali (= 12%) and the morphologically similar Euselachii 

gen. et sp. indet. 1 teeth (= 12%), are much higher in the Canning Basin than at 

Shahmirzad. This distinction may be influenced by localised environmental 

differences. The Laurel Formation contains a series of very shallow water carbonate 

facies, similar to those in the Tournaisian at Muhua, China (Ginter and Sun, 2007) 

and a similar high percentage of crushing Holocephalan type teeth. Drawing 

conclusions from these two assemblages is difficult; however, it is possible that high 

numbers of Holocephalan teeth may indicate an even shallow water biofacies. There 

is also the possibility the high numbers of Euselachii gen. et sp. indet. 1 and 

Holocephalan teeth are a response to changes in the shell durability of prey species. 

Kosnik et al. (2011) found a decrease in the shell reinforcement (sensu Kosnik et al., 

2011) of brachiopods from the Carboniferous, which may have allowed the 

exploitation of such prey species by shark taxa with crushing and grinding dentitions

  Several morphologically distinct teeth were collected from both the Upper 

Devonian Gumhole Formation (Protacrodontidae gen. et sp. indet.) and Lower 

Carboniferous Laurel Formation (Stethacanthus? sp., Ctenacanthiform sp., 

Hybontoidea sp.). These unique teeth may represent part of a radiation in shark 

faunas during the Early Carboniferous following the Hangenberg Event (Sallan and 

Coates, 2010). The notion of an endemic shark fauna is not unusual, as some Late 

Devonian shark species are known only from the Canning Basin (Trinajstic and 

George, 2009; Trinajstic et al., 2014; Roelofs et al., 2015). In addition, several 

known species, including some Frasnian phoebodonts, show unusual degrees of 

morphological variation in north-west Australia (Trinajstic and George, 2009; 

Roelofs et al., 2015). It is possible such unusual variations within species may be 
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directly correlated to the depositional environment. For example, the sampling of 

Famennian and Tournaisian facies that are representative of a shallow water 

environment in the Carnarvon and Canning basins (Trinajstic et al., 2014; Roelofs et 

al., 2015; this work) likely explains the absence of the cosmopolitan genus Jalodus, 

which is typically associated with deeper water pelagic facies across Laurussia and 

North Gondwana. Further studies on contemporaneous shallow marine platforms in 

North and East Gondwana are required to determine if some of the species from the 

Canning Basin represent localised endemism or are constrained by ecological and/or 

environmental factors. 

 

5.6.2 Faunal assemblage and biofacies controls 

 Cosmopolitanism in Palaeozoic shark faunas has been recorded as early as 

the Givetian (Lebedev and Zakharenko, 2010; Potvin-Leduc et al., 2015), with the 

distributions of many taxa increasing towards the end of the Devonian (Lebedev and 

Zakharenko, 2010). The Canning Basin contains several elements of these Devonian 

cosmopolitan shark faunas, including representatives from the phoebodont, 

cladodont and protacrodont groups, from both the Frasnian (Trinajstic and George, 

2009; Trinajstic et al., 2014) and Famennian (Roelofs et al., 2015) (Figure 5.8). The 

presence of Thrinacodus ferox and Protacrodus aequalis in this work demonstrates 

this cosmopolitan component continues from the Late Devonian into the 

Carboniferous (Figure 5.8.2). Shark taxa with more geographically restricted 

distributions, such as Deihim mansureae and Protacrodus sp., are found in the 

Canning Basin (Figure 5.6.2-4) and Iran (Habibi and Ginter 2011, plate 2B) and 

indicate close faunal ties between the Canning Basin and other regions to the west in 

the Late Devonian (Figure 5.8.1). Further evidence for a faunal exchange along the 
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northern Gondwana shelf is provided by the presence of Thrinacodus ferox (see 

Trinajstic et al., 2014) and Cladodoides cf. wildungensis (Figure 5.4.9-12), which 

closely resemble a tooth identified as Stethacanthus thomasi from north-western Iran 

(Hampe, 2000). Faunal links with East Gondwana are demonstrated by teeth  
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Figure 5.8. Maps depicting common taxa between the Canning Basin and other areas in Gondwana 

and Laurentia for the Late Devonian (1, Frasnian and Famennian chondrichthyans - * indicating 

Frasnian age, ^ indicating Famennian age) and Early Carboniferous (2, Tournaisian to Visean) (base 

map modified from Scotese and McKerrow, 1990; Golonka et al., 1994; Metcalfe, 2011). 

Abbreviations: A, Khor Virap and Erytch, Armenia; A i, Carnarvon Basin, Australia; A ii, Canning 

Basin, Australia; A iii, Burdekin Star, Australia; A iv, Broken River, Australia; B, Belgium; Ch, 

Hunan, South China; F, Montagne Noire, France; G, Thuringia, Germany; I , Chahriseh, Dalmeh, 

Hojedk, Hutk, and Kale-Sardar, Iran; Ir , Kilbride, Ireland: M, Tafilalt, Morocco; N, Nevada, Utah, 

and New Mexico, North America; P, Holy Cross Mountains, Poland; and R, South Urals, Russia. 

Sources of information: Armenia (Ginter et al., 2011), Australia (Turner and Dring, 1981; Turner, 

1982; Trinajstic, 2001; Trinajstic and George, 2009; Roelofs et al., 2015), Royseux, Belgium 

(Derycke-Khatir et al., 2005), China (Wang and Turner, 1985; Ginter and Sun 2007), France 

(Derycke-Khatir et al., 2005), Germany (Ginter, 1999), Iran (Long and Hairapetian, 2000; Ginter et 

al., 2002; Hairapetian and Ginter, 2010), Ireland (Duncan, 2003), Morocco (Ginter et al., 2002; 

Derycke et al., 2008), North America (Ginter, 2001; Ivanov and Lucas, 2011), Poland (Ginter, 1990, 

1995; Ginter and Ivanov, 2000), Russia (Ginter, 1994; Ginter and Ivanov, 1992, 2000; Ivanov, 1996), 

and South China (Lelièvre and Derycke, 1998). 

 

determined as Cladodus thomasi which, given the revised diagnosis, have only been 

recorded from the Canning Basin and Rockhampton in Queensland (Turner, 1982). 

Shark species such as Deihim mansureae (also recovered from the Moogooree 

Limestone (Trinajstic et al., 2014), Protacrodus sp. 1 and Cladodus thomasi, from 

different parts of Gondwana suggests the Canning Basin lay at a junction between 

biogeographic regions to the east and west. 

 Late Devonian chondrichthyan taxa including Phoebodus bifurcatus Ginter 

and Ivanov, 1992 , Phoebodus fastigatus Ginter and Ivanov, 1992 , Thrinacodus 

tranquillus Ginter, 2000 and Protacrodus serra Ginter et al., 2002 co-occurred 

within South China and the Canning Basin (Figure 5.8.1; Trinajstic and George, 

2009; Trinajstic et al., 2014; Roelofs et al., 2015). By the Early Carboniferous the 

shallow water faunal link appears to have been reduced, however, the pelagic 

component represented by taxa such as Thrinacodusbicuspidatus (see Edwards, 

1997; Trinajstic et al., 2014) and Thrinacodus ferox continues between western 

Australia and South China (Ginter and Sun, 2007). It appears the pelagic sharks 

species were not as affected by the separation of the Gondwanan and South China 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f8
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landmasses, whereas by the Tournaisian, there was little overlap between the shallow 

water chondrichthyan species. This is not unexpected, as previous studies (Metcalfe, 

1988, 1998) noted the lack of plant and faunal similarities between Lower 

Carboniferous Gondwanan sections in South China and Australia. The reduced 

faunal overlap in shallow water chondrichthyan species appears to support a 

geographic separation between Gondwana and South China because of the 

northward migration of the South China terrane (Figure 5.8; Scotese and McKerrow, 

1990; Golonka et al., 1994; Metcalfe, 1994); however, as noted above, it is difficult 

to determine isolated teeth of the crushing morphotype to a species level and 

therefore more species may await recognition. 

 

5.7 Conclusions 

 The reported chondrichthyan fauna from the Tournaisian of the Lennard 

Shelf, Canning Basin, is diverse with 16 species identified from shallow marine 

platform facies. The position of the Canning Basin in the Early Carboniferous, 

adjacent to northern and eastern Gondwana, allows the investigation of faunal 

migration and exchange along this ancient continental margin during the recovery 

phase in the aftermath of significant Late Devonian mass extinctions. The 

similarities in shark fauna from the Late Devonian between the Canning Basin and 

North Gondwana are found here to continue into the Carboniferous. In contrast to the 

Famennian, the north western Australian Tournaisian shark fauna only shows pelagic 

species similarities with the South China faunas. Despite a limited number of species 

in common with South China, there is a high degree of similarity in tooth forms 

within faunas from the shallow water platform at Muhua and the facies analysed in 

this study. This study also supports the application of the microvertebrate biofacies 

http://palaeo-electronica.org/content/2016/324-583/1395-d-c-boundary-sharks-figures#f8
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scheme, established by Ginter (2000) in late Famennian strata, to the Early 

Carboniferous, at least in shallow water depositional environments. 
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6.1 Abstract 

Conodont biogenic apatite has become a preferred analytical target for oxygen 

isotope studies investigating ocean temperature and palaeoclimate changes in the 

Palaeozoic. Despite the growing application in geochemical based 

palaeoenvironmental reconstructions, the paucity or absence of conodont fossils in 

certain facies necessitates greater flexibility in selection of robust oxygen bearing 
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compounds for analysis. Microvertebrates offer a potential substitute for conodonts 

from the middle Palaeozoic. Microvertebrate bioapatite is particularly advantageous 

given a fossil record extending to the present with representatives across freshwater 

to fully marine environments, thus widening the scope of oxygen isotope studies on 

bioapatite. However, significant tissue heterogeneity within vertebrates and 

differential susceptibility of these tissues to diagenetic alteration have been raised as 

potential problems affecting the reliability of the oxygen isotope ratios as 

palaeoclimatic proxies. Well preserved microvertebrate and co-occurring conodont 

fossils from the Late Devonian and Early Carboniferous of the Lennard Shelf, 

Canning Basin, Western Australia, were analysed using bulk (gas isotope ratio mass 

spectrometry) and in-situ (secondary ion mass spectrometry) methodologies, with the 

latter technique allowing investigation of specific tissues within vertebrate elements. 

The δ18Oconodont results may be interpreted in terms of palaeolatitudinally and 

environmentally sensible palaeotemperatures and provide a baseline standard for 

comparison against δ18Omicrovertebrate values. Despite an absence of obvious diagenetic 

influences, GIRMS of microvertebrate denticles yielded δ18O values depleted in 18O 

by 2-4 ‰ relative to co-occurring conodonts. SIMS analysis of hypermineralised 

tissues in both scales and teeth produced δ18O values comparable with those of 

associated conodonts. The susceptibility of porous phosphatic fossil tissues to 

microbial activity, fluid interaction and introduction of mineral precipitates post-

formation is demonstrated in microvertebrate dentine, which showed significant 

heterogeneity and consistent depletion in 18O. The hypermineralised tissues present 

in both teeth and scales appear resistant to many diagenetic processes and indicate 

potential for palaeoclimatic reconstructions and palaeoecological investigations. 
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6.2 Introduction 

6.2.1 O-isotope record 

The Palaeozoic marine oxygen isotope record is punctuated by a series of 

excursions and perturbations reflecting climatic events that are often associated with 

significant biological reorganisations (e.g. Brand, 1989; Gruszcyński et al., 1989; 

Caplan and Bustin, 1999; Veizer et al., 1999; Jeppsson et al., 2002; Joachimski and 

Buggisch, 2002; Kaiser et al., 2006; Trotter, 2008; Schobben et al., 2015). 

Fluctuations in the oxygen isotope record have been elicited from analysis of marine 

organisms with the ability to precipitate mineralised tissues in isotopic equilibrium 

with the ambient water. The shells of Palaeozoic low-Mg calcite brachiopod taxa 

have been commonly used (Popp et al., 1986; Veizer et al., 1986, 1997; Brand, 1989, 

2004; Carpenter et al., 1991; Hays and Grossman, 1991; Wadleigh et al., 1992; 

Azmy et al., 1996; Mii et al. 1997, 1999; Van Geldern et al., 2006; Korte et al., 

2008) due to the relative resistance of low-Mg calcite to post-mortem modification, 

as well as their relative abundance and ease of sampling. However, screening 

methods for the identification of recrystallised calcite, which may cause resetting of 

oxygen isotope values, is imperfect (e.g. Wenzel et al., 2000). In addition, O-isotope 

heterogeneity has been identified in a number of brachiopod shells, indicating 

fractionation is occurring during the formation of these hard tissues (e.g. Auclair et 

al., 2003; Yamamoto et al., 2011; Rollion-Bard et al., 2016). The typically sessile 

ecology of brachiopods also means that each analysis must be independently 

considered in the context of the specific temperature and chemistry of the water 

depth it inhabited. Consequently, this limits the comparison of oxygen isotope 

signatures to brachiopod taxa occupying similar ecological niches (Popp et al., 1986; 

James et al., 1997).  
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Bioapatite offers a more reliable oxygen bearing alternative to brachiopod 

calcite due to the stability of the P-O bond in PO4
3- (e.g., Grimes et al., 2003; 

Joachimski et al., 2004). The mineralised (composition 

Ca5Na0.13(PO4)3.01(CO3)0.16F0.73(H2O)0.85, Pietzner et al., 1986) feeding elements of 

conodonts (Lindström, 1974; Dzik, 1991; Goudemand et al., 2011) have become 

increasingly used in oxygen isotope studies. The elements comprise relatively 

homogenous and densely crystalline outer hyaline tissue with an inner ‘white matter’ 

made of finely crystalline apatite (Lindström, 1964; Pietzner et al., 1968; Barnes et 

al. 1973; Trotter et al., 2007; Jones et al., 2012). Analysis of the hypermineralised 

tissues indicates conodont elements offer greater consistency in δ18O values in 

comparison to those obtained from brachiopod calcite (e.g. Wallace and Elrick, 

2014). Consistent oxygen isotope signatures have been observed between conodont 

genera belonging to different biofacies in the Late Devonian (Joachimski et al., 

2009), supporting a shared near sea-surface habitat and free swimming lifestyle, as 

suggested from their biology (e.g. Gabbott et al., 1995). Correlateable oxygen 

isotope ratios further indicate conodont elements reflect sea surface temperatures and 

can be utilised in wider geographical comparisons (Joachimski and Buggisch, 2002).  

The biostratigraphic utility and widespread distribution and abundance of 

conodont elements in many marine deposits has facilitated the development of a 

temporally resolved isotope record spanning many significant faunal reorganisations 

associated with climatic perturbations from the Ordovician (Trotter et al., 2008) to 

the Triassic (Chen et al., 2016; Joachimski et al., 2009; Rigo et al., 2012; Sun et al., 

2012; Trotter et al., 2015). However, conodont fossils are not ubiquitous in all facies, 

limiting their potential as a sea surface temperature proxy in many regions. Even 

where present, a paucity of conodont elements can preclude preferred single genera 
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sample analysis and fine resolution sampling due to minimum sample mass 

requirements in standard analytical methodologies. As a consequence of these 

limitations, other common, diagenetically stable oxygen-bearing compounds must be 

identified to expand accurate palaeoenvironmental interpretations across different 

temporal intervals and depositional settings. 

 

6.2.2 Microvertebrate histology and application in Palaeozoic O-isotope 

studies 

Marine microvertebrate fossils (typically less than 5 mm in size) most 

commonly comprise teeth, scales and fin spines. Unlike brachiopods and conodonts, 

vertebrate hard tissues are highly heterogeneous, consisting of three broad types; 

bone, dentine and enamel. These tissues are differentiated by the levels of 

mineralisation and organic matter content. Bone comprises a 50 - 70% mineralised 

component with 20 - 40% organic matter and 5 - 10% water (Clarke, 2005). Dentine 

is approximately 70% mineralised with 20 - 24% protein and 6 - 10% water, whereas 

enamel is highly mineralized (96%) with only 1% protein and approximately 3% 

water, which is present on or between the hydroxyapatite crystals (Stack, 1955, 

Pasteris et al., 2008; Goldberg et al., 2012; Hand and Frank, 2014). The low organic 

carbon, and high mineral content (>80 wt.%, Li, 2013) of hypermineralised tissues 

(enamel, enameloid, ganoine and acrodin) found in vertebrate teeth and scales results 

in a compound more resistant to physical and chemical alteration, compared to that 

of dentine and bone.  

Chondrichthyans comprise two classes of the elasmobranchs (sharks skates 

and rays) and the holocephalans. The teeth of sharks consist of an outer layer of 

enamel and an inner core of dentine that surrounds a pulp canal. The basal tissue 
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typically comprises trabecular dentine (osteodentine), which superficially resembles 

bone in its structure (Smith and Tchernov, 1992). Holocephalan teeth are more 

variable in morphology and the holocephalan teeth analysed here possess a highly 

crystalline dentine type material (< 100 μm in thickness) that covers the outer layer 

of the tooth crown as well as bordering the pore canals that penetrate the dentine. 

The term ‘enameloid’ is here adopted to describe this hypermineralised tissue. The 

body of sharks are covered in denticles, which are characterised by a pulp cavity 

surrounded by dentine and a thin outer layer of enamel or a hypermineralised dentine 

(enameloid, Hamlett, 1999; Sire 2010). The basal body of the denticle, which was 

embedded in the skin during life, comprises acellular bone (Reif, 1978).  

Acanthodians are an extinct group of vertebrates whose phylogenetic 

affinities are currently unresolved (Zaccone et al., 2016), variously considered either 

as basal sharks (Davis et al., 2012; Brazeau and de Winter, 2013) or osteichthyans 

(Miles, 1973; Teaford et al., 2007) or a mixture of each (Brazeau, 2008). The scales 

of acanthodians generally comprise an acellular or cellular bone base and dentine 

crown (Janvier, 1996; Karatajãt-Talimaa, 1998; Valiukevičius and Burrow, 2005). It 

should be noted that tissues interpreted as enamel (Richter et al., 1999) and ganoine 

(Richter and Smith, 1995) have also been reported in this group, reflecting 

significant diversity within this taxa. 

From the mid Devonian (Givetian) Actinopterygians (ray finned fish) host 

two hypermineralised tissues, ganoine and acrodin, which are unique to this group. 

Ganoine, with its epidermal origin, is a hard shiny layer has been considered 

homologous with enamel and covers the dentine of scales (Janvier, 1996; Qu et al., 

2015). Acrodin is a hardened dentine present as a cap on the teeth of most post 

Eifelian palaeoniscoid actinopterygians (Shultze, 2015). A thin layer of collar 
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enamel is also present covering the tooth shaft dentine of palaeoniscoid fish (Reif, 

1982).  

Oxygen isotopes of vertebrate bioapatite tissues has been successfully used to 

determine palaeoenvironmental conditions from the Palaeozoic (Fischer et al., 2013) 

and Mesozoic using GIRMS (Lécuyer et al., 1993; Pucéat et al., 2003; Billon-Bruyat 

et al., 2005; Fischer et al., 2012). Applying GIRMS to Palaeozoic vertebrate fossils, 

however, has been somewhat problematic, producing inconsistent results. Analysis 

of Late Devonian actinopterygian teeth (Joachimski and Buggisch, 2002) initially 

suggested that original oxygen isotope ratios were preserved in the tooth apatite. 

Other works however, have revealed that Palaeozoic vertebrate teeth and dermal 

denticles are typically depleted in 18O (relative to conodont elements) between 2.4 

and 2.9‰ (Barham et al., 2012a; Žigaite et al., 2010). This has led to the suggestion 

that microvertebrate elements are highly susceptible to diagenetic affects and thus 

not preserving original isotopic signatures. However, given that secondary alteration 

may be screened and subsequently avoided, the potential still exists for these fossils 

to serve as a palaeoclimatic archive. 

 

6.2.3  Objectives 

We studied a range of microvertebrate elements using GIRMS to determine 

the degree to which ecology, as well as diagenesis, influence the oxygen isotope 

ratios in different microvertebrate remains. Secondary ion mass spectrometry (SIMS) 

analysis was applied to test whether all microvertebrate tissues are equally prone or 

resistant to alteration of their O-isotopic ratios. In order to establish the validity of 

microvertebrate δ18O signatures and their potential use as palaeoclimatic indicators, 

the oxygen isotope ratios of microvertebrates are compared with those of co-
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occurring conodonts as well as coeval conodonts from latitudinally equivalent areas. 

Both GIRMS and SIMS analyses were undertaken on Frasnian (Devonian) conodont 

samples as well as multiple Famennian (Late Devonian) and Tournaisian (Eearly 

Carboniferous) microvertebrate remains to i) document any potential discrepancies 

between the two methods and; to ii) identify potential causes of disruption of 

primary oxygen isotope signatures in different vertebrate tissues. 

 

6.3 Materials and methods 

6.3.1 Sample collection, processing and imaging 

Late Devonian microvertebrate fossils are common in the distal slope facies 

of the Virgin Hills Formation (late Frasnian – middle Famennian; Figure 6.1; 

Playford et al., 2009; Trinajstic and George, 2009; Trinajstic et al., 2014; Roelofs et 

al., 2015) and in the conodont-poor facies of the Fairfield Group (Late Devonian - 

Early Carboniferous) (Roelofs et al., 2016; Thomas 1957, 1959). Twenty kilogram 

samples were collected from Horse Spring (18°11′41′′ S, 126°01′69′′ E), Oscar Hill 

(18°04'07" S, 125°26'41" E) and Laurel Downs (18°01'37" S, 125°18'43" E) (Figure 

6.1) and processed using a buffered 10% acetic acid solution (following the 

methodology of Jeppsson et al., 1999). The rock samples were disaggregated as 

whole rocks with rinsing occurring every 24-48 hours, depending on the degree of 

disaggregation. This process was repeated, with fresh 10% buffered acetic acid, until 

the rocks had been sufficiently broken down for picking. Residues were rinsed and 

sieved (0.125 mm sieve) to further separate microfossils before picking the >0.125 

mm fraction under a Nikon stereomicroscope. Detailed examination of microfossils 

was performed using a Hitachi TM-3030 desktop Scanning Electron Microscope 

(SEM) at Curtin University with accelerating voltages ranging from 5-15 kV and 
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variable pressures. Eight larger holocephalan teeth (>10 mm mesio-distally) were 

recovered directly from the disaggregated rock residues. A single tooth (MTM1-H9) 

was exposed from the rock sample along its labial face and extracted prior to 

processing. Additional imaging of analysed specimens was performed using a Leica 

stereomicroscope camera at the Western Australian Museum.  

 

 

Figure 6.1. General regional geology and sampled sites from the Lennard Shelf, Canning Basin, 

Western Australia (modified from Playford et al., 2009). 
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Horse Spring samples yielded 200 conodont elements corresponding to 

Conodont Zone (CZ) 11 (Frasnian; Klapper, 1989). Conodont yields from Oscar Hill 

samples taken for this study yielded mainly undiagnostic elements with a single long 

ranging Famennian conodont Spathognathodus aciedentatus recovered. Previous 

sampling by Nicoll and Druce (1979) indicated a latest Famennian age (praesulcata 

Conodont Zone) for outcrop at Oscar Hill. Carboniferous rock samples (Table 2) 

were collected from a bioclastic limestone bed of the Laurel Formation (sample 

number 1984-04), exposed approximately 35 km north-west of the town of Fitzroy 

Crossing (Figure 1). A Tournaisian age is supported by the presence of the conodont 

taxa Clydagnathus cavusformis and Bispathodus aculeatus, and is consistent with 

previous age determinations (Druce and Radke, 1979; Nicoll and Druce, 1979). A 

refinement of early Tournaisian is indicated by the overlap of shark species 

Thrinacodus ferox, Protacrodus aequalis and Protacrodus sp. 1 (Roelofs et al., 

2016).  

6.3.2 Analytical methodology 

The GIRMS method has conventionally been used to accurately determine 

the δ18O values of pooled apatite fossils through the analysis of chemically purified 

Ag3PO4. To obtain ~1 mg of fossil material required for replicate analyses, samples 

comprising multiple microvertebrate elements, or single elements comprising 

multiple tissue types, are often required. The incorporation of different fossil tissues 

within analyses reduces data confidence as tissue geochemistry is differentially 

affected by biological processes including organism physiology, microbial activity as 

well as physical influences such as diagenesis (e.g. Rigo and Joachimski, 2010). The 

use of secondary ion mass spectrometry (SIMS) has been shown to be a useful 

alternative to GIRMS as it facilitates in-situ analysis of specific tissues within 
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individual microfossils (Vetter et al., 2011), although it is indiscriminate in its 

analysis of oxygen sites in the material (does not only analyse the stable phosphate). 

Application of this technique to modern shark teeth (Žigaite and Whitehouse, 2014) 

has shown preservation of original oxygen isotope signatures in hypermineralised 

tissues as well as heterogeneity and depletion of 18O within the more permiable 

dentine. Although primary isotopic values can be elicited using a SIMS method 

(Wheeley, 2012; Trotter et al., 2015), the effects of tissue heterogeneity on δ18O 

signatures within individual microvertebrate fossil elements is less understood. 

6.3.2.1  GIRMS oxygen isotope analyses 

 Stable oxygen isotope ratios were determined on conodont and 

microvertebrate material at the Stable Isotope Laboratory at the University of 

Erlangen-Nürnberg, Germany, following a modified version of the procedure 

developed by O’Neil et al. (1994) and described in Joachimski et al. (2009). 

Conodont, microvertebrate, extant shark and Durango apatite samples (0.7 - 2.0 mg) 

were chemically converted to trisilverphosphate (Ag3PO4) and the oxygen isotope 

ratios of ~0.2 mg sample aliquots were analysed as CO produced in a high 

Temperature Conversion Elemental Analyser (TC−EA) attached on-line to a 

ThermoFinnigan Delta Five Plus mass spectrometer. Oxygen isotope composition is 

reported in δ notation in ‰ relative to Vienna Standard Mean Ocean Water (V-

SMOW) (Table 6.1). Samples were measured in triplicate, with limited Ag3PO4 

precipitate from samples OH4-C and 1984-C only allowing duplicate and single 

analyses respectively. Replicate analyses of the international standard NBS 120c and 

internal laboratory standards were performed for every seven unknowns as well as at 

the start, middle and end of each day to monitor accuracy and reproducibility. 
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Reproducibility was typically ±0.2‰ (1σ) with analyses calibrated for an average 

NBS120c δ18O value of 21.7‰ V-SMOW (Pucéat et al., 2010).  

6.3.2.2  SIMS oxygen isotope analyses 

Conodont and microvertebrate fossils, with single pieces of 

Carcharhinus plumbeus tooth fragments and fragments of a Durango apatite crystal 

were mounted on double sided tape attached to standard glass plates. Large 

holocephalan teeth were cut labio-lingually using a Dremel rotary tool and ground 

flat with 1200 grit sandpaper prior to mounting on the tape along the smooth surface. 

Struers EpoFix epoxy resin was used to form standard one-inch round mounts and 

then polished to expose the desired tissues using successively finer polishing cloths 

to a 1 μm finish. The mounts were then carefully cleaned with detergent, distilled 

water and isopropanol in an ultrasonic bath and coated with gold (30 nm in 

thickness) prior to SIMS analyses.  

Oxygen isotope ratios were determined using a Cameca IMS 1280 multi-

collector ion microprobe located at the Centre for Microscopy, Characterisation and 

Analysis (CMCA), University of Western Australia (UWA) in March and November 

2014. Analyses were performed with a ca. 2.5 nA Cs+ beam with a total impact 

energy of 20 keV rastered on a ca. 20 x 20 µm area on the sample surface. 

Instrument parameters included a magnification of 130  between the sample and 

field aperture (FA), 400 μm contrast aperture (CA), 4000 μm FA, 110 μm entrance 

slit, 400 μm exit slits, and a 40 eV band pass for the energy slit with a 5 eV gap 

toward the high energy side. Secondary O- ions were accelerated to 10 keV and 

analysed with a mass resolving power of approximately 2200 using dual Faraday 

Cup detectors. A normal-incidence electron gun was used to provide charge 

compensation and NMR regulation was employed for magnetic field control. 
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Ten seconds of pre-sputtering was followed by automatic centering of the 

secondary beam in the FA and CA. Each analysis consisted of 20 four-second cycles, 

which gave an average internal precision of ±0.2 ‰ (1σ). Analytical sessions were 

monitored for drift and precision using at least two bracketing standards (Durango 

apatite; 9.9 ± 0.3 ‰, (1σ, n = 9); attained via GIRMS of three samples analysed in 

triplicate from the same crystal) for every six sample analyses. Instrumental mass 

fractionation (IMF) was corrected using Durango apatite following the procedure 

described in Kita et al. (2009). The spot-to-spot reproducibility (external precision) 

was typically ±0.3-0.4 ‰ (1σ) on Durango apatite during all of the analytical 

sessions, except two sessions at ±0.2 ‰ (sample HT2) and ±0.5 ‰ (sample MVM2). 

Uncertainty on each spot was calculated by propagating the errors on instrumental 

mass fractionation determination and internal error on each sample data point. The 

resulting uncertainty was typically between ±0.3 and ±0.6 ‰ (1σ). Raw 18O/16O 

ratios and corrected δ18O (reported relative to V-SMOW) are presented in Table 6.2. 

 

6.4 Results 

6.4.1 Fossil preservation 

Visual inspection (both macro- and microscopic) confirmed conodont 

elements were well preserved, showing no evidence of coarsening crystallites, 

pitting, overgrowths or other visible signs of diagenetic modification (Figure 6.2; 

Nöth, 1998). Microvertebrate elements are show smooth lustrous surfaces present on 

the cusps of teeth and dermal denticle crowns. In cross section, the dentine of all 

teeth was light grey to white in colour with the exception of sample MTM1-H9, 

which showed a dark grey discolouration around one margin that correlates to the 

previously exposed labial surface of the tooth. Reddish coloured staining is present 
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within the basal tissue in sample MTM1-H1, along with calcite cement in some of 

the pore canals that extend from the cusp surface to the basal tissue.  

 

6.4.2 GIRMS δ18O analysis of microvertebrate elements 

The δ18O values of Famennian microvertebrates ranged from 16.2-17.1 ‰ 

(V-SMOW) with a mean of 16.7 ‰ (Table 6.1). The δ18O values obtained from the 

Tournaisian microvertebrate samples are more variable than Famennian values, 

ranging from15.7 to 19.1 ‰. The largest disparity in δ18O was measured in the outer 

 

 

Figure 6.2. Frasnian Palmatolepis P-elements. (a) Back-scattered electron microscope image 
in aboral view with x4 magnified inset (i) highlighting the well-preserved ornamentation. (b) 

Stereo microscope image of a polished Palmatolepis sp. element showing the well preserved 

internal microstructures and low Colour Alteration Index (CAI). Scale bars = 250 μm. 
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cusp tissue of Tournaisian holocephalan teeth (16.0 to 19.1 ‰, mean of 17.8 ‰; 

Figure 6.3). Similar average δ18O values were obtained from ctenacanthid (16.0 ‰) 

and protacrodont (17.1 ‰) scales from the Famennian. Inter-taxa variation of <1.2 

‰ was found for Tournaisian acanthodian (17.0 ‰), lungfish (16.5 ‰), 

ctenacanthiform (16.9 ‰), protacrodont (16.1 and 17.2 ‰) and palaeoniscoid scales 

(19.0 ‰). Significant intraspecific disparity in δ18O values within Tournaisian 

microvertebrates scales was seen between protacrodont scales recording values of 

16.1 and 17.2 ‰. The lowest δ18O values were recorded in Tournaisian  

 

Table 6.1. Late Famennian and early Tournaisian microvertebrate fossils and standards analysed 

using gas isotope ratio mass spectrometry (GIRMS). Abbreviations: Fr – Frasian; Fm – Famennian ; 

Tn – Tournaisian; mg – milligram (fossil weight); n – replicate analyses. 
 

Sample no. Formation (Fm.) Age Sample Taxa (mg) n. δ
18

O 1σ 

VHS-312 Virgin Hills Fm. Fr Ancyrodella Conodont 0.88 3 19.0 0.2 

OH-4 A Gumhole Fm. Fm Palatal teeth Palaeoniscoid 0.99 3 17.0 0.1 

OH-4 B Gumhole Fm. Fm Scale Protacrodont 2.04 3 17.1 0.2 

OH-4 C Gumhole Fm. Fm Scale Ctenacanthid 0.60 2 16.0 0.6 

OH-4 D Gumhole Fm. Fm Tooth cusp Helodus 0.89 3 17.2 0.3 

SS1 Gumhole Fm. Fm Spine Shark - 3 16.3 0.1 

1984-04 A Laurel Fm. Tn Scale Ctenacanthid 1.25 3 16.9 0.1 

1984-04 B Laurel Fm. Tn Palatal teeth Palaeoniscoid 0.82 3 18.0 0.2 

1984-04 C Laurel Fm. Tn Radial bone Palaeoniscoid 0.70 1 15.9 0.1 

1984-04 D Laurel Fm. Tn Teeth Palaeoniscoid 0.85 3 15.7 0.5 

1984-04 E Laurel Fm. Tn Scale Palaeoniscoid 1.51 3 17.3 0.6 

1984-04 F Laurel Fm. Tn Tooth cusp Holocephalan 1.63 3 17.3 0.2 

1984-04 M Laurel Fm. Tn Tooth cusp Holocephalan 0.87 3 17.7 0.1 

1984-04 G Laurel Fm. Tn Scales Acanthodian 0.77 3 17 0.4 

1984-04 H Laurel Fm. Tn Palatal teeth Palaeoniscoid 1.42 3 18.1 0.4 

1984-04 J Laurel Fm. Tn Scale Lungfish 1.44 3 16.5 0.2 

1984-04 K Laurel Fm. Tn Scale Protacrodont 1.13 3 16.1 0.3 

1984-04 L Laurel Fm. Tn Scale Protacrodont 0.96 3 17.3 0.5 

MT1-H1 Laurel Fm. Tn Tooth cusp Holocephalan - 3 19.1 0.1 

MT2-H4 Laurel Fm. Tn Tooth cusp Holocephalan - 3 16 0.2 

MT2-H5 Laurel Fm. Tn Tooth cusp Holocephalan - 3 18.8 0.2 

MT2-H8 Laurel Fm. Tn Tooth cusp Holocephalan - 3 18.8 0.1 

MT2-H9 Laurel Fm. Tn Tooth cusp Holocephalan - 3 17.4 0.3 

MT4-LPS Laurel Fm. Tn Scale Lungfish - 3 15.1 0.0 
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palaeoniscoids, which recorded δ18O values of 15.7 (radial bone) and 15.9‰ (tooth) 

(Figure 6.3). However, δ18O values of associated palatal teeth were consistently 

higher at 18.0 ‰ (sample 1984-B) and 18.1 ‰ (sample1984-H). 

 

 

Figure 6.3. Gas Isotope Ratio Mass Spectrometry (GIRMS) analysis of microvertebrate elements 

from the late Famennian (i) and early Tournaisian (ii). Data points give average value of replicate 

analyses, vertical bars represent 1 std.dev. Coeval conodont values obtained from SIMS (late 

Famennian = 20.3 ±0.8 ‰ and; early Tournaisian = 19.6 ±0.5 ‰) were generally higher than 

microvertebrate values analysed by GIRMS. 

 

 

6.4.3 SIMS δ18O analyses 

In-situ oxygen isotope analyses were performed on three late Famennian and 

two early Tournaisian conodont elements (Table 6.2). Conodont δ18O values from 

individual spot analyses on three late Famennian S-elements range from 18.7 to 20.8 

‰, with an average value of 19.6 ‰ (Figure 6.4). Two to five individual spots were 

analysed on the blades of the S-elements with a deviation between spots on each 

element ranging from 0 to 1.0 ‰ (Table 6.2). Two P1 elements (sensu Purnell et al., 

2000) of the early Tournaisian conodont Clydagnathus cavusformis produced 

average δ18O values of 19.9 ‰ (0.4 ‰, n = 4) and 20.9 ‰ (0.9 ‰, n = 5).  

 Clusters of three to five spots (within an area of <1 mm2), were focused on 

enameloid, dentine and basal tissues of four holocephalan teeth. Occasionally, one or 



   

285 
 

more analytical spots missed the tissue targeted and average values were determined 

from remaining spot analyses. Average δ18O values of spots (n = 5) targeting  

 

 

Figure 6.4. Secondary Ion Mass Spectrometry (SIMS) δ18O analysis of microvertebrate elements 
from the late Famennian (i) and early Tournaisian (ii). Data points are the averages of spot clusters 

with 1 std.dev. given by the vertical error bars. Average microvertebrate δ18O values are plotted as 

difference relative to δ18O of conodonts from the same sample. Conodont δ18O values were obtained 

from secondary ion mass spectrometry (SIMS) (δ18Oconodont values for: the late Famennian = 20.3 ±0.8 

‰ and; early Tournaisian = 19.6 ±0.5 ‰). 
 

enameloid tissues in tooth MTM1-H1 produced average values for spot clusters of 

9.2 ‰ ±0.9 and 18.0 ‰ ±0.2 (Figure 6.5a). The same enameloid tissue in sample 

MTM1-H9 was analysed, with individual clusters comprising two to three spots 

from four areas of the tooth (Figure 6.5b) producing average δ18O values between 

21.4 ±0.7 and 21.8 ‰ ±0.1. Dentine was analysed in all four holocephalan teeth with 

an average δ18O value of 17.9 ±1.4 ‰ (1σ, n = 35). No consistent differences in δ18O 

are present between upper dentine, close to the occlusal surface of the tooth, and 

lower dentine tissues, located toward the basal body (Figure 6.5). The enamel of 

three protacrodont teeth was tested using clusters of three to four spots and exhibited 

average δ18O values of 17.9 ±0.4, 18.8 ±0.2 and 19.3 ‰ ±0.3 (Figures 6.4, 6.6b). 

The dentine tissues in one tooth (1984-Dh1) showed a progressive depletion in 18O 

from near the cusp apex (16.2 ‰) to less mineralised dentine in the basal tissues  



   

286 
 

Table 6.2. δ18O values of Durango apatite and late Famennian to early Tournaisian microfossils 

analysed using SIMS. i and ii notation indicate different individual fossils. Abbreviations: Fr – 

Frasian; Fm – Famennian ; Tn – Tournaisian; Fm. – Formation; n = number of replicate analysis.  
 

Sample no. Formation Age Sample Taxa Tissue   n δ
18

O 1σ 

VHS-312a Virgin Hills Fm. Fr P-element Palmatolepis  Hyaline 4 18.6 0.3 

VHS-312b Virgin Hills Fm. Fr P-element Ancyrodella Hyaline 4 18.7 0.3 

CS2 Gumhole Fm. Fm S-element  Conodont  Hyaline 5 19.4 0.5 

Si-OH4i Gumhole Fm. Fm S-element  Conodont  Hyaline 2 19.6 1 

Si-OH4ii Gumhole Fm. Fm S-element  Conodont  Hyaline 2 18.3 0 

OH4-SS1 Gumhole Fm. Fm Shark Spine Unknown Dentine 4 16.0 0.4 

OH4-SS1 Gumhole Fm. Fm Shark Spine Unknown Dentine 3 18.0 0.3 

OH4-Pri Gumhole Fm. Fm Scale Protacrodont Unknown 2 17.4 0.1 

OH4-Prii Gumhole Fm. Fm Scale Protacrodont Unknown 2 12.3 1 

CCA1 Laurel Fm. Tn P-element Clydagnathus Hyaline 5 20.4 .9 

CCA2 Laurel Fm. Tn P-element Conodont  4 19.4 0.4 

1984-04 Ac Laurel Fm. Tn Scale Acanthodian Unknown 2 20.1 1.6 

1984-04 Ac Laurel Fm. Tn Scale Acanthodian Dentine 1 16.2 0 

1984-04 Pr Laurel Fm. Tn Scale Protacrodont Unknown 3 19.6 0.3 

1984-04 Ct Laurel Fm. Tn Scale Ctenacanthid Unknown 2 20.1 2.1 

1984-04 Pcd Laurel Fm. Tn Scale Palaeoniscoid Unknown 2 19.0 1.3 

MT4-LPSi Laurel Fm. Tn Scale Lungfish Unknown 3 8.3 1.9 

MT4-LPSi Laurel Fm. Tn Scale Lungfish Unknown 5 14.4 1.3 

MT4 Ptp Laurel Fm. Tn Palatal teeth Palaeoniscoid Cusp 4 15.2 0.5 

MT4 Ptp Laurel Fm. Tn Palatal teeth Palaeoniscoid Dentine 4 14.4 1.1 

Mt-4 PN Laurel Fm. Tn Tooth Palaeoniscoid Acrodin  4 20.2 0.5 

Mt-4 PN Laurel Fm. Tn Tooth Palaeoniscoid Dentine 3 15.4 0.9 

1984-04 AG1 Laurel Fm. Tn Tooth Ageleodus sp. Dentine 3 16.7 0.1 

1984-04 AG1 Laurel Fm. Tn Tooth Ageleodus sp. Dentine 5 12.6 1.1 

1984-04 AG1 Laurel Fm. Tn Tooth Ageleodus sp. Dentine 2 9.6 2.5 

1984-04 Dh1 Laurel Fm. Tn Tooth Protacrodont Enameloid 3 17.4 0.4 

1984-04 Dh1 Laurel Fm. Tn Tooth Protacrodont Dentine 3 15.7 0.2 

1984-04 Dh1 Laurel Fm. Tn Tooth Protacrodont Dentine 3 13.3 0.5 

1984-04 Dh2 Laurel Fm. Tn Tooth Protacrodont Enameloid 4 18.7 0.2 

1984-04 Dh2 Laurel Fm. Tn Tooth Protacrodont Dentine 4 15.9 0.7 

1984-04 Dh3 Laurel Fm. Tn Tooth Protacrodont Enameloid 3 18.4 0.3 

1984-04 Sti Laurel Fm. Tn Tooth Cladodont Dentine 4 7.0 2.1 

1984-04 Sti Laurel Fm. Tn Tooth Cladodont Dentine 4 11.0 0.8 

1984-04 Stii Laurel Fm. Tn Tooth Cladodont Dentine 4 15.6 2.7 

MTM1 H1 Laurel Fm. Tn Tooth Holocephalan Enameloid 5 17.5 0.5 

MTM1 H1 Laurel Fm. Tn Tooth Holocephalan Enameloid 5 8.7 0.9 

MTM1 H1 Laurel Fm. Tn Tooth Holocephalan Dentine 5 19.0 0.2 

MTM1 H1 Laurel Fm. Tn Tooth Holocephalan Dentine 5 15.1 0.8 

MTM1 H1 Laurel Fm. Tn Tooth Holocephalan Dentine 5 17.1 0.1 

MTM1 H4 Laurel Fm. Tn Tooth Holocephalan Dentine 4 18.2 0.1 

MTM1 H4 Laurel Fm. Tn Tooth Holocephalan Dentine 4 18.7 0.4 

MTM1 H5 Laurel Fm. Tn Tooth Holocephalan Dentine 4 16.8 0.2 

MTM1 H5 Laurel Fm. Tn Tooth Holocephalan Dentine 4 16.9 0.3 

MTM1 H9 Laurel Fm. Tn Tooth Holocephalan Enameloid 3 20.9 0.3 

MTM1 H9 Laurel Fm. Tn Tooth Holocephalan Enameloid 2 21.3 0.1 

MTM1 H9 Laurel Fm. Tn Tooth Holocephalan Enameloid 1 20.9 0 

MTM1 H9 Laurel Fm. Tn Tooth Holocephalan Dentine 3 19.0 0.7 

MTM1 H9 Laurel Fm. Tn Tooth Holocephalan Dentine 3 16.7 0.4 
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(13.8 ‰) (Figure 6.4). A similar decrease in δ18O is seen over 10 individual spots in 

an Ageleodus shark tooth (AG1, Figure 6.6c), which presented a general trend in 

δ18O from 17.3 ‰ in the cusp dentine, to 8.3 ‰ in the basal tissue. Three sets of 

analyses were performed on the dentine tissue of three cladodont cusps, which 

showed average δ18O values between 7.5 and 11.5 ‰. 

 

 

 

Figure 6.5. δ18O of tissue types from two early Tournaisian Holocephalan teeth compared to average 

δ18O of coeval conodonts (20.3 ±0.8 ‰). (a) Tooth (MTM1 H1) showing analysis of enameloid, 

dentine and osteodentine tissues; (b) Analysis of a tooth (MTM1 H9) showing variation in δ18O 

values associated with exposure of the labial surface (indicated in blue). Scale bar = 2.5 mm. 

Coloured boxes correspond to spot clusters depicted in the graphs a, b. Grey area represents 1 std.dev. 

of average δ18O of associated conodonts analysed by SIMS. Abbreviations: E – Enameloid; Or – 

Orthodentine; Os – Osteodentine; PE – Pore Enameloid.. 
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Figure 6.6. Systematic δ18O variation in microvertebrate tissues. Location of ion-probe spots 

indicated on stereo-microscope images of polished analytical surface. All values plotted relative to 

coeval conodont δ18O value of 20.3 ±0.8 ‰. Variation of δ18O values in tissue types from early 
Tournaisian microvertebrate elements (a) Palaeoniscoid fish tooth with acrodin cap and dentine tissue 

analysed; (b) Analysis of enameloid and dentine tissues from Protacrodont tooth, referred to as 

Dalmehodus cf. turnerae (Roelofs et al., 2016); (c) Tooth of the shark Ageleodus showing a transect 

of spot analyses from the cusp apex to the base. Scale bar = 250 μm. Grey areas in graphs represent 1 

std. dev. (±0.8 ‰) of δ18O analyses of co-occurring conodonts. Abbreviations: E – Enamel; AC – 

Acrodin Cap; D – Dentine; Or – Orthodentine; Os – Osteodentine.  
 

Two sets of δ18O values were recorded from different areas on a Famennian 

shark spine, a series of three spots near the margin of the spine (average 16.5 ‰ 

±0.3) and three spots located centrally (18.5 ‰ ±0.4). An average δ18O value of 20.3 

‰ was recorded for scale crown surface tissues across different taxa from the 

Tournaisian samples. A difference of up to 2.1 ‰ was observed between spots on 

individual tissues. Dentine tissues from a Famennian protacrodont scale (12.8 ‰ 

±1.0, n = 2) as well as a Tournaisian lungfish (8.8 ‰ ±1.9, n = 3 and 14.9 ‰ ±1.3, n 

= 5) and an acanthodian scale (16.7 ‰ ±1.3) recorded δ18O values consistently lower 

than the dentine close to crown surfaces of the scales.  
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6.5 Discussion 

6.5.1 Comparison of GIRMS and SIMS δ18O analyses 

Traditional GIRMS targets the PO4
3- group and eliminates analysis of any 

less stable oxygen compounds (carbonate, organics, water). However, this method 

masks potential differences in the O-isotopic signal of fossilised phosphatic tissues 

when microvertebrate bioapatite is homogenised to obtain minimum sample masses 

(~0.3 - 1 mg). The porosity present in fossil dentine, which is the bulk component of 

fossil teeth and dermal denticles, is highly susceptible to physical and chemical 

alteration. This susceptibility results, in part, from greater surface area increasing 

potential isotopic exchange between bioapatite and circulating fluids associated with 

diagenesis, as well as the potential for microbe mediated phosphate precipitation and 

alteration.  

The use of SIMS, as an alternative method for obtaining targeted δ18O data 

from microvertebrate and conodont fossils, is advantageous where fossil yields are 

below the mass required by GIRMS methods and when samples comprise different 

tissues. However, SIMS indiscriminately analyses any oxygen bearing compounds in 

the apatite structure. The presence of the CO3
2-

 anion in bioapatite (either primary or 

as a secondary cement) can be particularly problematic as it is more susceptible to 

diagenetic alteration than PO4
2-, with the C-O bond comparably weaker than the P-O 

bond (e.g. Iacumin et al., 1996).  

Recent work by Wheeley et al. (2012) has suggested δ18Oconodont values 

obtained from SIMS are comparable with those of GIRMS for Ordovician to Silurian 

conodonts. However, subsequent work by Trotter et al. (2015) has suggested a ~1 ‰ 

difference between GIRMS and SIMS analyses. Published data are currently 

considered insufficient to fully assess the presence and/or reasons for any 
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discrepancies. Here fragments from a single crystal of Durango apatite were utilised 

to calibrate SIMS analyses. GIRMS analysis gave an average δ18O value of 9.9 ‰ (± 

0.3 ‰, 1σ) from triplicate analysis of three individual fragments of the same crystal, 

within error of the published value of 9.8 ‰ reported by Rigo et al., (2012). GIRMS 

analysis of the conodont genera Ancyrodella (19.0 ‰) indicated a <0.2 ‰ difference 

when compared to the δ18O values obtained from SIMS of both Ancyrodella (19.2 

‰) and Palmatolepis (19.1 ‰) P1 conodont elements from the same sample. The 

δ18Oconodont values resolved from the two methods indicate valid comparisons can be 

made between SIMS and GIRMS analysis. 

 

6.5.2 Canning Basin δ18Oconodont values in a global context 

 The presence of open marine conditions in the Canning Basin, in the late 

Devonian and early Carboniferous, is important if δ18Oconodont values are to be used 

as a globally representative baseline to assess the validity and palaeoenvironmental 

relevance of δ18Omicrovertebrate values. The significant faunal cosmopolitanism found in 

ammonoid (Becker 2000), conodont (Nicoll and Druce, 1979; Klapper, 2006) and 

microvertebrate taxa (Turner, 1982; Trinajstic and George, 2009; Hairapetian et al., 

2015; Roelofs et al., 2015, 2016; Trinajstic et al., 2015) in the Late Devonian and 

early Carboniferous suggests that pathways existed for significant faunal exchange. 

Furthermore, the recovery, from the Lennard Shelf, of globally correlative carbon 

isotope signatures associated with the Kellwasser Event (Stephens and Sumner, 

2003; Playton et al., 2013; George et al., 2014; Hillbun et al., 2015), and presence of 

a significant regression (Talent et al., 1993) and negative δ13C excursion (Andrew et 

al., 1994) related to the Hangenberg Event, are all suggestive of a local marine 

system coupled to global oceanic conditions. Despite these indicators of an open 
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marine system, the δ18Oconodont values from Frasnian conodont Zone 11 (jamieae CZ) 

in the Canning Basin (19.1-19.5 ‰) are almost 2 ‰ higher than the average pan 

tropical values reported in Joachimski et al. (2004). The difference between the 

Canning Basin CZ 11 values and other sites may be due to local variations in 

temperature and salinity and demonstrate the importance of natural global variations 

in water composition, particularly when constructing composite isotope curves. In 

contrast to the Frasnian sample, a paucity of conodont elements from the Famennian 

and Tournaisian makes it difficult for well constrained ages and, therefore, direct 

comparison of Canning Basin δ18Oconodont with coeval global values. The Oscar Hill 

locality, from which the Devonian samples were taken, suggested deposition 

occurred during the latest Famennian based on conodont elements (praesulcata CZ, 

Nicoll and Druce, 1979). An average δ18O value of 19.6 ‰ is comparable to values 

from other latitudinally similar sites from the praesulcata CZ from the Cantabrian 

Mountains, Spain (~19.4 ‰) and Montagne Noire, France (~17.6-19.5 ‰) 

(Buggisch et al., 2008; values published by Buggisch et al. (2008) were corrected by 

-0.7 ‰ to account for a difference in  δ18O of standard NBS120c). A Tournaisian age 

for the Carboniferous sample can be inferred from the presence of the conodont 

Clydagnathus cavusformis (Nicoll and Druce, 1979) with a refinement of early 

Tournaisian likely based off microvertebrate remains (Roelofs et al., 2016). The 

average δ18O value for C. cavusformis P1-elements tested was 20.3 ‰. This is 

similar to the δ18Oconodonts from a sulcata CZ interval (~19.7 - 20.5 ‰, values were 

corrected by -0.7 ‰ to account for a difference in d18O of standard NBS120c) from 

Cantabrian Mountains, Spain (Buggisch et al., 2008). The results indicate that 

conodonts from the Frasnian to the Tournaisian in the Canning Basin are preserving 

isotopic signatures similar to conodonts from other pan tropical sites.  
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6.5.3 δ18O variation in microvertebrate tissues 

The enameloid and dentine of four holocephalan teeth, all attributed to the 

same species, showed significant differences in δ18O values as a result of histology, 

and therefore, mineral composition and susceptibility to diagenesis. The dense 

enameloid tissue present in holocephalan teeth is similar in hardness to that of 

enamel (Ishiyama et al., 2012) and comprises the outer layer of the crown as well as 

pore linings penetrating the crown (Figure 6.5). The δ18O values obtained (via SIMS) 

adjacent to pore canals produced more consistent results (mean value of 21.5 ‰) 

than the outer mineralised layer of the crown, where δ18O averages of spot clusters 

varied between 9.2 and 19.4 ‰. The enameloid tissue found along the outer surface 

of tooth MTM1-H1 (Figure 6.5a) is considerably depleted in 18O along a surface that 

had previously been exposed in the outcrop. Other teeth also showed lower δ18O 

values along the edge of the crown. These values may be an analytical artefact due to 

topography induced through the differential polishing of the tooth and resin, or may 

result from diagenetic alteration, as the more discoloured areas in the tooth 

commonly show lower δ18O values (Figure 6.5b). Recent work has indicated that 

apparently well preserved (i.e. lustrous) hypermineralised fossil tissues (e.g. Žigaitė 

et al., 2015) may not necessarily be indicative of pristine geochemistry. The presence 

of variable ‘staining’ in the teeth may reflect diagenetic mineralisation or alteration 

and may explain the significantly lower δ18O values in peripheral hypermineralised 

tissues.  

In general, the pore enameloid appears to more reliably preserve the original 

oxygen isotope ratios in comparison to the outer enameloid tissues (Figure 6.5), 

which are more readily exposed to post-mortem (or post-shedding) and burial 

processes. Dentine tissue, was analysed in two areas of the holocephalan teeth, the 
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first close to the cusp surface (mean value of 17.3 ‰) and the second lower, towards 

the basal body (17.7 ‰). Differences in dentine δ18O values are not consistent 

between these areas and instead appear dependant on the individual tooth analysed 

(Table 6.2). In general, dentine yielded more variable and lower δ18O values in 

comparison to enameloid (Figure 6.4). However, the dentine in one holocephalan 

tooth (MTM1-H1, Figure 5a) produced an average δ18O value of 19.7 ‰ (five 

individual spots, Table 6.2), which is comparable to average δ18Oconodont from the 

same sample 20.3 ‰. The high δ18O value may indicate that parts of the basal tissue, 

even though primarily consisting of porous dentine, may be capable of preserving 

the original isotopic signatures under appropriate conditions.  

The general structure of acrodin present in the tooth tip of many 

palaeonisciform fish is similar to the woven structure of enamel in elasmobranchs 

(Ripa et al., 1972; Ørvig, 1978a; Reif, 1985; Sasagawa et al., 2012) and thereby 

prospective in terms of resistance to diagenetic modification or disruption of isotopic 

signatures. The δ18O values obtained from four spot analyses of the acrodin tip of a 

tooth (Mt-4 PN) support this histological robustness with a δ18O value (20.7 ‰) and 

a standard deviation (1σ = ±0.5 ‰) comparable with associated conodonts (Figure 

6a, Table 6.2). The average δ18O value for the palaeoniscoid tooth dentine is 

depleted in 18O (15.9 ‰) and similar to values from dentine in associated 

microvertebrate taxa.  

SIMS analyses were conducted on a range of scales belonging to 

acanthodians, chondrichthyan and palaeoniscoids. Scales attributed to each of these 

groups hosted average δ18O values within 1 ‰ of coeval conodont values (Figure 

6.4), which indicate that some scale tissues are preserving primary isotopic 

signatures. However, identifying the tissues that host these signatures is difficult as 
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the spot size from the SIMS beam is larger than some of the targeted tissues. This 

causes a degree of ambiguity in the δ18O results due to the unquantifiable influence 

of surrounding tissues. The presence of ganoine, a tissue homologous with enamel 

(Qu, et al., 2013), may explain the relatively high average δ18O value of 19.5 ±1.3 

‰. Reconciling the average δ18O value of 20.9 ±1.6 ‰ for the acanthodian scale 

(1984-04 Ac, Figure 6.4) analysed is difficult, as scales of this taxa typically lack 

hypermineralised tissues and instead comprise an acellular bone base and a dentine 

layer covering the crown (Sire et al., 2009). Hypermineralised tissues such as 

ganoine have been reported in Palaeozoic acanthodians (e.g. Richter and Smith, 

1995), which highlights the need for individual scales to be analysed rather than 

relying on the generalised histology of particular taxa. Overall, the results obtained 

from scales indicate that multiple taxa have the potential to be used to elicit 

apparently original isotopic data and interpret ancient environmental conditions. 

 

6.5.4  Comparison of GIRMS and SIMS 18O analyses of 

microvertebrates 

As dentine tissues constitute the bulk of the microvertebrate fossils tested 

here, it is expected that results from GIRMS would be comparable to SIMS analyses 

of dentine from the same sample if the greater part of the signal detected by SIMS 

was from phosphate. This hypothesis is supported by δ18O values of the shark spine 

(OH-4 SS1), lungfish scale (MT3-LPS) and some holocephalan teeth (MTM1-H4, 

MTM1-H5, MTM1-H9) analysed (Figure 6.7). Higher δ18O values from the GIRMS 

method found in the lungfish scale (MT4-LPS) and two holocephalan teeth (MTM1-

H1, MTM1-H5) are likely due to the influence of robust signals from 
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hypermineralised tissue analysed in conjunction with the dentine tissues when using 

GIRMS.  

 

Figure 6.7. Comparison of GIRMS and tissue specific targeting via SIMS analysis on individual 

fossil elements from the (i) Famennian (average conodont δ18O value of 19.6 ±0.5‰) and (ii) 

Tournaisian (average conodont δ18O value of 20.3 ±0.8‰). Grey area in the graph represents the 1 

std.dev. of δ18O analyses of co-occurring conodonts.   
 

6.5.5 Diagenetic influences  

Microvertebrate fossils analysed using GIRMS are commonly depleted in 18O 

when compared to coeval conodont elements (Žigaitė et al., 2010; Barham et al., 

2012a, b; Fischer et al., 2013). Since it has been demonstrated that modern fish 

precipitate bioapatite in isotopic equilibrium with ambient water (Kolodny et al., 

1983; Vennemann et al., 2001; Puceat et al., 2010), and the palaeoecology of many 

of the taxa are thought to overlap with those of coeval conodonts, the lower δ18O 

values are interpreted to have occurred as a consequence of diagenetic changes in the 

less mineralised tissues. The 2.4 and 2.5‰ offsets found for Famennian and 

Tournaisian specimens examined herein (Figure 3), respectively, are close to those 

reported between Silurian conodonts and fish scales (2.5 ‰; Žigaitė et al., 2010). 
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The low colour alteration index (CAI) of the Silurian conodonts (<1.5 ‰; Žigaitė et 

al., 2010) indicate thermally immature sediments, similar to what is found in the 

Canning Basin, and may explain the similarity of the discrepancy in δ18O values. 

Moreover, Barham et al. (2012a) reported a more significant depletion in 18O from 

Mississippian, Carboniferous ichthyoliths from Ireland that were associated with 

conodonts with CAI of >5, and indicated that the lower δ18O values were influenced, 

but not necessarily controlled, by increasing diagenesis and thermal alteration. It is 

difficult to extrapolate the results of thermal alteration from conodonts to 

microvertebrates given the significant taxonomic differences between these groups. 

However, significant degrees of homology have been identified between the 

hypermineralised tissues of vertebrates and conodont hyaline tissue (Donoghue, 

1998; Donoghue et al., 2000; Nemliher and Kallaste, 2012). Therefore, it is not 

unreasonable to expect the preserved phosphate in both conodont and vertebrate hard 

tissues would be affected in a similar fashion to thermal maturation processes. Given 

the similar magnitude of conodont-microvertebrate δ18O offset in thermally mature 

and immature regions, it can be concluded that there is no direct correlation between 

thermal maturation and depletion of δ18Omicrovertebrate tissues. This raises the 

possibility that the lower δ18O values may be influenced by the susceptibility of less 

mineralised fossil tissues to chemical processes. These processes may include the 

recrystallization of existing minerals as well as precipitation of O-bearing phases, 

both with theoretically different O-isotope compositions, during early diagenesis or 

at shallow burial and low thermal maturation. Both apatite and calcite have been 

found to infill pore spaces after degradation of organic compounds such as collagen 

(Trueman and Palmer, 2003). 
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SIMS δ18O analysis of modern shark teeth (Žigaitė and Whitehouse, 2014) 

identified variation in mean δ18O values of 1.2 ‰ within the dentine tissue. Mean 

variation between the parallel bundled enameloid (21.2. – 23.1 ‰) and dentine tissue 

(20.6 - 21.8 ‰) was also recorded. Žigaitė and Whitehouse (2014) noted the use of 

H2O2 in the pre-treatment cleaning process may have contributed to variation in the 

18O values. However, it was concluded that organic matter, which is typically 18O 

depleted, was the likely cause of this variation. The fossil shark teeth tested here also 

showed significant discrepancies, as well as depletion in 18O (Figures 4, 5b, 6). 

However, such variation in the fossil specimens analysed here, cannot be attributed 

to original organic material as this would have degraded to the point where it would 

be undetectable, although decay products could have influenced the isotope ratios. 

Interestingly, analysis of teeth taken from freshly caught sharks (Vennemann et al., 

2001) recorded comparable values between the dentine and enamel tissues using 

GIRMS. The isolation of PO4 eliminates the influence of 18O depleted organic matter, 

which may have resulted in δ18O variation, seen by Žigaitė and Whitehouse (2014),  

between the dentine and enamel. Work by Zazzo et al. (2003), however showed 

fractionation of phosphate within bone can occur within a few days post-mortem 

under oxic conditions, with the presence of microbial enzyme activity significantly 

increasing the rate of oxygen isotope exchange. In contrast, enamel was found to be 

significantly resistant to changes in the original oxygen isotope ratios (Zazzo et al., 

2003). The susceptibility for isotopic alteration under microbially-mediated 

conditions, for tissues with originally higher organic matter content, could explain 

the lower oxygen isotope values of the dentine of the shed teeth analysed by Žigaitė 

and Whitehouse (2014). The Devonian and Carboniferous microvertebrate elements 

analysed here were obtained from limestones formed in well oxygenated shallow 
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water marine settings (Druce and Radke, 1979). Given the lack of thermal maturity 

or any evidence for fluid alteration of the sequences studied, microbially-induced 

alteration within incompletely mineralised tissues in the microvertebrate fossils ex-

vivo and/or during early diagenesis (eogenesis) must be considered a plausible 

mechanism for lower δ18O-values.  

Evidence of recent weathering processes is present in one of the 

holocephalan teeth (MTM1-H9, Figure 5b). This tooth had a portion of the occluso-

labial face of the crown protruding from a rock. It is difficult to constrain the length 

of time the tooth was exposed, however it is likely that it was affected by a range of 

weathering processes including frequent scrub fires and interaction with meteoric 

fluids. The effect of exposure was evident with the outer enameloid layer of the tooth 

producing values progressively depleted in 18O toward the exposed surface. The low 

δ18O values (average 5.2 - 5.9 ‰) at the exposed face correspond to significant 

degradation of the enameloid and dentine. However, the affected area was small and 

the dentine within the tooth (19.5 ‰) was found to be comparable to the outer 

enameloid surface on the non-exposed face (21.4 ‰, Figure 6b). This suggests 

relative localisation of alteration and overall robustness of the tissue to short-term 

abiotic processes.  

 

6.5.6 Palaeoecological influences 

Understanding the biology of ancient sharks and fish as well as the 

environment in which they inhabited must be considered as a factor in variation 

present in tissues, particularly hypermineralised tissues, where primary values are 

thought to be original. Glaciation, resulting in the preferential locking of 16O in 

terrestrial ice-sheets, was present during the late Famennian and early Tournaisian 
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(Kaiser et al., 2006). Evidence suggests these glacial conditions were not as 

extensive as the modern climate state (Isaacson et al., 2008), hence a δ18Oseawater 

offset of -0.5 ‰ (V-SMOW) is inferred to account for greater 16O concentrations in 

the oceans, rather than being preferentially bound in ice-sheets. Assuming these 

glacial conditions and subsequent offset to δ18Oseawater, average δ18O values (17.8, 

18.9 and 19.2 ‰) from protacrodont tooth enamel (uncorrected for diagenetic 

alteration due to hypermineralised condition) indicate temperatures of between 34 

and 42° C (Lécuyer et al., 2013). Such sea-surface temperatures are considerably 

high in comparison to the coeval conodont temperatures calculated (25 and 29° C) 

and, if truly pristine, may reflect a freshwater influence, which is relatively enriched 

in 16O. Palaeozoic shark taxa are known to have inhabited freshwater environments 

on both a permanent (e.g. Xenacanths, Ginter et al., 2010) and temporary basis (e.g. 

Lissodus, Fischer et al., 2013). It is difficult to assess whether meteoric waters 

influenced the relative depletion of 18O in the Ageleodus sp. tooth (Figure 5c) as spot 

analyses were not able to effectively target the enamel tissue that could preserve 

original values (Figure 6.6c). Teeth from the Ageleodus genus have been recovered 

from freshwater facies (Downs and Daeschler, 2009). The potential for members of 

this genus to exist in differing habitats could suggest the ability for at least some 

members to migrate between marine and meteoric waters, thereby affecting δ18O 

values. Using similar explanations for the slightly lower δ18O values in the 

protacrodont enamel (Figure 6b) is more problematic as members of this group have 

not been recorded in freshwater facies. However, this cannot preclude a fresh or 

brackish water influence in a specific protacrodont species. The extant shark genera 

Carcharhinus comprises almost entirely marine species, however it also includes the 
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species Carcharhinus leucas (bull shark), which is known to inhabit freshwater 

environments for extended periods of time (Copeia, 1971).  

Significant ecological differences within extant shark genera are reflected in 

the O-isotope ratios of the mineralised tissues (Vennemann et al., 2001). The 

potential migration of ancient sharks through different hydrological settings (fresh-

brackish-marine), or movement between extreme latitudes or water depths must also 

be taken into account when analysing the isotopes of these fossils. Analysis of Late 

Permian shark teeth by Fischer et al. (2013) showed a clear imprint of meteoric 

waters on the oxygen isotope signatures in multiple shark taxa. The extent to which 

other extinct shark species occupied fresh to brackish waters is not well understood. 

Significant migratory behaviour is observed in extant taxa such as Odontaspis ferox 

(Fergusson et al., 2008), which has been found at depths of 850 m as well as very 

shallow coastal waters. In addition, members of the species Carcharodon carcharias 

(great white shark) have been frequently observed migrating long distances, in some 

cases over 20,000 km in less than a year (Bonfil et al., 2005). These behaviours need 

to be considered in extinct shark taxa as well. Potential migratory issues of extinct 

species are compounded in groups such as the Ctenicanthiforms where tooth 

development is slower than that observed in modern sharks (Williams, 2001; Botella 

et al., 2009). Analysis of species with fast tooth replacement rates may mitigate some 

migratory factors as teeth are more likely to preserve local conditions. Tooth 

formation can be as quick as 9-12 days within some extant selachians (Moss, 1967), 

however determining similar tooth replacement in Palaeozoic species is difficult.  

 

6.5.7 Chemostratigraphic capabilities of microvertebrates 
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 The O-isotope values recorded in conodont elements have been used 

successfully in chemostratigraphic correlation (e.g Barrick et al., 2007). Correlative 

stratigraphic curves from δ18Oconodont rely on the ability of these fossils to retain 

assumed original δ18O values. Isotopic curves based on δ18O from microvertebrate 

GIRMS analysis (e.g. Barham et al., 2012a; Žigaitė et al., 2010) have shown the 

ability to identify major fluctuations. However, as the difference in δ18Oconodont and 

the δ18O values of whole microvertebrate fossils using GIRMS are not consistent 

between sites, comparison is limited to within localised areas. SIMS however has 

shown the ability to elicit comparable δ18Omicrovertebrate and δ18Oconodont. This raises the 

potential for microvertebrates to be used in a similar fashion to conodonts, allowing 

for wider scale chemostratigraphic correlation. 

 

6.6 Conclusions  

The hypermineralised bioapatite present in microvertebrate teeth and scales 

provides a proxy capable of reconstructing marine oxygen isotope records from the 

middle Palaeozoic to the modern day. The densely crystalline tissues that form 

enamel, enameloid and acrodin suggest these tissues have the greatest potential of 

preserving primary oxygen isotope signatures. Results presented herein from a broad 

range of taxa (scales of acanthodians as well as the scales and teeth of 

chondrichthyans and actinopterygians) indicate eliciting palaeoenvironmental data 

from other vertebrate groups is likely. 

The utilisation of SIMS, which permits tissue specific analysis, suggests 

dentine tissue is more susceptible to alteration due to a higher porosity inherited 

from an originally high organic component. The low CAI of conodont fossils 

analysed here suggests diagenetic influences such as thermal maturation may not be 
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a major factor in the lower δ18O values obtained from microvertebrate remains. 

Instead this work suggests ex vivo microbial activity may be a more likely factor in 

the alteration of the original oxygen isotope ratios.  

Going forward, it is clear that the targeting of hypermineralised tissues in the 

enamel and enameloid of microvertebrate teeth and scales offer an alternative tool 

for reconstructing palaeoenvironments. In addition, the presence of original isotopic 

signatures provides a basis for applications in chemical stratigraphy. Using 

microvertebrates as proxies for chemostratigraphy will be particularly useful where 

conodonts are rare or absent. SIMS analysis of targeted hypermineralised 

microvertebrate tissues may be able to resolve original O-isotope values, and 

therefore can be used in a similar fashion to, and correlated with, δ18Oconodont. 

However, minimising potential δ18O variation as a consequence of species dependant 

factors such as migratory habits remains critical. Ideally analyses should include 

multiple species and comparisons to co-occurring or co-eval conodonts from other 

areas.  
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7.0  Conclusions 

7.1 Microvertebrate biostratigraphy 

This study presents the most comprehensive analysis of the taxonomy and 

temporal range of microvertebrates from middle Devonian (Givetian) to Early 

Carboniferous (Tournaisian) aged sediments of the Canning Basin to date. The first 

vertebrates from the Givetian Aged Cadjebut Formation were described and 

represent the earliest record of placoderms (ptyctodonts and arthrodires) and 

chondrichthyians in the Canning Basin (Trinajstic et al., 2014). The known temporal 

range of Frasnian microvertebrates were refined with age ranges established for an 

additional 30 Famennian and Carboniferous shark species. 

The earlier work of Trinajstic and George (2009) has been developed with 

the upper age of the thelodont Australolepis seddoni extended from CZ10 to CZ11 

(Roelofs et al., 2015). The recovery of thelodont scales in Famennian strata from 

Iran led Turner and Hairapetian (2005) to suggest that the age range of A. seddoni 

extended into the Famennian. The description of this material and further finds from 

South Oscar Range did not support the occurrence of A. seddoni within the 

Famennian (see Hairapetian et al., 2015). However, the discovery of a new genus 

and species of thelodont, ?Arianalepis sp. indet from the Famennian (Upper 

marginifera/trachytera conodont zone) of the South Oscar Range, and Iran confirms 

the presence of Famennian thelodonts in Australia (Hairapetian et al., 2015) and 

suggests that scales recovered from mineral drill core (Turner, 1997) belong to this 

new genus. The small quantity of scales recovered, and poor preservation of the 

material, makes a definite determination impossible but tentative attribution to 

Arianalepis sp. was made (Hairapetian et al., 2015). The genus Arianalepis is also 
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known from Famennian (CZ) Hodjek, Iran and provides additional data for the 

biostratigraphic correlation between north-western Australia and central Iran 

(Hairapetian et al., 2015). In addition, these occurrences mark the youngest record of 

thelodonts globally. Thelodonts are not known past the end Givetian in the northern 

hemisphere and previous to this study the youngest occurrence was restricted to the 

Frasnian of Gondwana (Turner and Dring, 1981; Trinajstic and George, 2009).  

The recovery of additional chondrichthyan teeth from the Horse Spring 

section of the Frasnian aged Virgin Hills Formation (Roelofs et al., 2015) has refined 

ages of phoebodont species determined by Trinajstic and George (2009) and aligned 

their temporal ranges more closely to the standard Frasnian phoebodont zonation of 

Ginter and Ivanov (1996). In addition, previously undocumented variation in 

Phoebodus bifurcatus and Phoebodus latus was described from the recovered teeth.   

 Famennian aged chondrichthyan teeth identified as Thrinacodus tranquillus, 

Deihim mansureae, Lissodus lusavorichi and Protacrodus serra were recovered 

from the Bugle Gap Limestone and Casey Falls sections and represent the first 

record of these taxa from the Canning Basin (Roelofs et al., 2015). The age ranges 

for Thrinacodus tranquillus and Deihim mansureae teeth recovered from the 

Canning Basin conform to the known age ranges of these species outside of 

Australia. The documented age ranges of these shark species in Iran and south China 

indicate a middle Famennian age for the sampled site at Bugle Gap, which is 

consistent with the age determined by conodonts obtained from the same site. 

Lissodus lusavorichi and Protacrodus serra were recovered from limestone beds 

dated as Lower crepida/Upper marginifera Conodont Zone. This represents the 

oldest occurrence of these two species, previously recovered from strata no older 

than expansa CZ (Ginter et al., 2002). The contrast in age ranges between the 
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Canning Basin and Iran and south China could indicate a Gondwanan origin for 

these species or instead that further collecting is required to establish refined 

biostratigraphic resolution. 

A general Tournaisian age has previously been attributed to the Laurel 

Formation based on long ranging conodonts (Ncioll and Druce, 1979). Elements 

attributed to Bispathodus aculeatus plumulus and Clydagnathus cavusformis were 

recovered in this work, however these did not further refine the age range for the 

Formation. An early Tournaisian age for sampled sites is, however, provided by the 

presence of Thrinacodus ferox but absence of the later form Thrinacodus 

bicupsidatus. This age is supported by the overlap of the age ranges from 

Protacrodus aequalis (sulcata CZ, Ivanov, 1996) and Protacrodus sp. 1 (sulcata-

duplicata CZ, Habibi and Ginter, 2011). This refined age range for the Lower Laurel 

Formation clearly demonstrates the utility of microvertebrates in dating facies that 

lack diagnostic conodont faunas.  Although there remains much work to be done on 

Late Devonian and Early Carboniferous microvertebrates in Australia, work 

undertaken in the 1990s (See Bliek and Turner 2000 and reference therein) indicates 

that refined ages can be obtained using microvertebrates. This work (Roelofs et al., 

2015; Roelofs et al., 2015) illustrates that where conodonts are absent or long 

ranging, microvertebrates provide excellent age resolution throughout the 

discontinuous reefs outcrops and Carboniferous ramp deposits in the Canning Basin. 

 

7.2 Chondrichthyan biofacies 

The Famennian chondrichthyan biofacies model proposed by Ginter (2000) 

was applicable to the shallow water shark assemblage from the Famennian Bugle 

Gap limestone. Although a major reorganisation of vertebrate taxa occurred at the 
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end-Devonian, shark taxa with crushing dentitions appear to have continuously 

occupied the same shallow water niche spaces through the Late Devonian and into 

the Early Carboniferous. The similar niche occupation indicates shark teeth can be 

used, at least in part, for determining depositional facies into the Early 

Carboniferous.  

 

7.3 Palaeogeographical implications 

 The microvertebrate fossils recovered in this work indicate the Canning 

Basin lay at an area of faunal overlap with West Gondwana, South China and the 

more easterly parts of East Gondwana.  The Late Devonian saw increased 

cosmopolitanism in many groups including brachiopods (Copper, 1998), ammonoids 

(House, 1973; Playford et al., 2009), trilobites (McNamara et al., 2009), crustaceans 

(Rode and Lieberman 2005), conodonts (Klapper, 2007; Girard et al., 2010) and fish 

(Ginter and Turner 1999). The Frasnian microvertebrate fauna recovered in this work 

from the Canning Basin reflects this cosmopolitanism. It is particularly evident in the 

phoebodont species Phoebodus latus, Phoebodus bifurcatus and Phoebodus 

fastigatus, which are found throughout Laurussia and along the northern margins of 

Gondwana. The presence of the species Diademodus dominicus sp. nov. in the 

Canning Basin is the first known occurrence of this genera outside Laurussia and 

provides evidence for a more widespread distribution of pelagic sharks.  

 The extensive shallow marine shelf that connected the northern margins of 

Gondwana to the Indochina, Tarim and South China blocks is the likely migration 

route that resulted in the regional faunal connections noted (Roelofs et al., 2015). 

The presence of both Frasnian and Famennian thelodonts in Iran and north-western 

Australia provides evidence for the close proximity of these areas (Hairapetian et al., 
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2015). This is supported by the shared presence of five Late Devonian shark species 

including Phoebodus bifurcatus, Thrinacodus tranquillus, Protacrodus serra, 

Deihim mansureae and Lissodus lusavorichi.  

 The close faunal relationships between the Canning Basin and the Indochina 

and South China regions, identified in Late Devonian conodont (Burrett et al., 1990; 

Girard et al., 2010) and fish (Long, 1993) assemblages, are further supported by the 

presence of the chondrichthyan species Phoebodus latus, Thrinacodus tranquillus 

and Protacrodus serra, Deihim sp. 1 and Protacrodontidae gen. et sp. indet. 1. The 

faunal relationships between these regions in the Early Carboniferous are less 

evident with only pelagic species, Thrinacodus ferox and Thrinacodus bicuspidatus, 

found in common between the Canning Basin and the South China region. A 

separation, also seen in the plant and animal faunas (Metcalfe, 1988, 1998) is likely 

due to the northern migration of the South China block at this time (Scotese and 

McKerrow, 1990; Golonka et al., 1994; Metcalfe, 1994). In contrast, shallow water 

chondrichthyan species from the east and west of the Canning Basin are still present 

in the Tournaisian. Here we see a mixture of three geographic types, including: i) 

cosmopolitan species such as Thrinacodus ferox which are found throughout 

Laurussia and across the north Gondwanan margin; ii) species with more western 

Gondwanan affinities such as Protacrodus sp. 1 which has so far only been 

documented in Iran and the Canning Basin, and: iii) shark species such as Cladodus 

thomasi which have only been documented in an area to the east of the Canning 

Basin.  

 Microvertebrate faunas can be used to support palaeogeographical 

reconstructions (Young, 2003). However, establishing conclusions primarily based 

on direct comparisons of microvertebrate assemblages are currently difficult due to 
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the limited number of studies on temporally equivalent sites, particularly from the 

Tournaisian. In addition, work needs to be compiled on microvertebrate faunas from 

range of facies types as the many taxa show strong biofacies controls. This will 

allow for reliable conclusions on faunal relationships to be established, as seen 

currently from global phoebodont faunas.  

 

7.4 Microvertebrates as palaeoclimatic proxies 

 Bioapatite has proven to be a reliable O-isotope storage medium for 

reconstructing the Palaeozoic δ18O record (e.g Joachimski et al., 2009). Conodonts 

analysed from Frasnian, Famennian and Tournaisian strata in the Canning Basin 

preserved δ18O values comparable to temporarily equivalent pan tropical sites 

(Chapter 6). This indicates the Canning Basin existed as an open marine system 

during the Late Devonian. GIRMS analysis of microvertebrates showed a typical 2-

4‰ depletion in δ18O when compared to associated conodonts - an observation seen 

in previous works on Palaeozoic microvertebrates (Žigaitė et al., 2010, Barham et 

al., 2012).  

The employment of SIMS enabled successful isolation of O-isotope ratios in 

different tissue types. Dentine tissues showed highly variable depleted δ18O values 

when compared to values from associated conodont elements. The hypermineralised 

tissues present in acanthodian scales and the teeth and scales of chondrichthyan and 

palaeoniscoids, hosted δ18O values comparable to that of conodonts. The degree of 

mineralisation of these tissues is inferred to have controlled the variability of δ18O 

values recorded. Dentine is less mineralised than enamel and enameloid tissues, thus 

allowing for easier fluid flow and increasing the susceptibility of the incorporated 

phosphate to both microbial and diagenetic alteration.  
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 The δ18O values obtained from microvertebrate hard tissues demonstrate that 

the hypermineralised tissues of multiple microvertebrate taxa can be used as a 

palaeoenvironmental proxy, potentially from the Ordovician to the present day.  

Microvertebrate fossils possess the potential to be used as a substitute for 

brachiopods or bulk rock carbonates, where diagenesis has compromised the 

reliability of these proxies. The presence of microvertebrates in restricted and 

freshwater to brackish systems widens the potential of these fossils in palaeoclimatic 

and chemostratigraphic applications. Microvertebrate fossils can now be utilised in 

facies that lack reliable O-hosting mediums, and elicit a reliable and correlatable 

signatures.  

 

7.5  Concluding statements 

This study has contributed to an overarching study on the merits of 

integrating different chronostratigraphic methods in order to achieve greater 

correlative resolution (Linkage project LP0883812). All techniques showed good 

resolution in fore-reef to toe of slope facies (Playton et al., 2013; Appendix 2). 

However, it was over the extinction boundaries where the integrated approach 

proved most useful. The restricted facies associated with the shallow water reefal 

platform were less well constrained when only single method approaches were used. 

Analysis of the shallow water ramp facies that comprise the Fairfield Group showed 

microvertebrates have the potential to provide age constraints in facies lacking 

traditionally used age diagnostic fossils. In addition, the enamel present in the fossils 

of microvertebrate taxa show potential to be incorporated in chemostratigraphic 

correlation correlation throughout the majority of the Phanerozoic and across a range 

of facies. 
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Conodont biogenic apatite has become a preferred analytical target for oxygen isotope studies investigating
ocean temperature and palaeoclimate changes in the Palaeozoic. Despite the growing application in geochemi-
cally-based palaeoenvironmental reconstructions, the paucity or absence of conodont fossils in certain facies ne-
cessitates greater flexibility in selection of robust oxygen-bearing compounds for analysis. Vertebrate
microfossils (teeth, dermal denticles, spines) offer a potential substitute for conodonts from the middle
Palaeozoic. Vertebrate bioapatite is particularly advantageous given a fossil record extending to the present
with representatives across freshwater to fully marine environments, thus widening the scope of oxygen isotope
studies on bioapatite. However, significant tissue heterogeneity within vertebrates and differential susceptibility
of these tissues to diagenetic alteration have been raised as potential problems affecting the reliability of the ox-
ygen isotope ratios as palaeoclimatic proxies.Well-preserved vertebrate microfossils and co-occurring conodont
fossils from theUpperDevonian and Lower Carboniferous of the Lennard Shelf, Canning Basin,Western Australia,
were analysed using bulk (gas isotope ratio mass spectrometry, GIRMS) and in-situ (secondary ion mass spec-
trometry, SIMS) methodologies, with the latter technique allowing investigation of specific tissues within verte-
brate elements. The δ18Oconodont results may be interpreted in terms of palaeolatitudinally and environmentally
sensible palaeo-salinity and -temperature and provide a baseline standard for comparison against vertebratemi-
crofossil δ18O values. Despite an absence of obvious diagenetic modification, GIRMS of vertebrate denticles
yielded δ18O values depleted in 18O by 2–4‰ relative to co-occurring conodonts. SIMS analysis of dentine tissues
exhibited significant heterogeneity, while hypermineralised tissues in both scales and teeth produced δ18O
values comparable with those of associated conodonts. The susceptibility of permeable phosphatic fossil tissues
tomicrobial activity, fluid interaction and introduction ofmineral precipitates post-formation is demonstrated in
the dentine of vertebrate microfossils, which showed significant heterogeneity and consistent depletion in 18O
relative to conodonts. The hypermineralised tissues present in both teeth and scales appear resistant tomanydia-
genetic processes and indicate potential for palaeoclimatic reconstructions and palaeoecological investigations.

© 2016 Published by Elsevier B.V.
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1. Introduction

The Palaeozoic marine oxygen isotope record is punctuated by a se-
ries of excursions and perturbations reflecting climatic events that are
often associated with significant biological reorganisations (e.g. Brand,
1989; Gruszczyński et al., 1989; Caplan and Bustin, 1999; Veizer et al.,
1999; Jeppsson et al., 1999; Joachimski and Buggisch, 2002; Kaiser et
al., 2006; Trotter et al., 2008; Schobben et al., 2015). Fluctuations in
B. Roelofs).
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the oxygen isotope record have been elicited fromanalysis ofmarine or-
ganisms with the ability to precipitate mineralised tissues in isotopic
equilibrium with the ambient water. The shells of Palaeozoic low-Mg
calcite brachiopod taxa have been commonly used (Popp et al., 1986;
Veizer et al., 1986, 1997; Brand, 1989, 2004; Carpenter et al., 1991;
Hays and Grossman, 1991; Wadleigh and Veizer, 1992; Azmy et al.,
1998; Mii et al., 1997, 1999; Van Geldern et al., 2006; Korte et al.,
2008) due to their relative abundance, ease of sampling and the relative
resistance of low-Mg calcite, compared to aragonite or high-Mg calcite,
to post-mortem modification. Recent work however has shown that
even low-Mg calcite is highly susceptible to diagenesis over time
(Cummins et al., 2014). This issue is compounded by imperfect
vertebrate microfossil δ18O signatures and their potential for palaeo-
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screening methods for the identification of recrystallised calcite, which
may cause resetting of oxygen isotope values (e.g. Wenzel et al.,
2000). In addition, O-isotope heterogeneity has been identified in a
number of brachiopod shells, indicating fractionation is occurring dur-
ing the formation of these hard tissues (e.g. Auclair et al., 2003;
Yamamoto et al., 2011; Rollion-Bard et al., 2016). The typically sessile
ecology of brachiopods also means that each analysis must be indepen-
dently considered in the context of the specific temperature and chem-
istry of the water depth it inhabited. Consequently, this limits the
comparison of oxygen isotope signatures to brachiopod taxa occupying
similar ecological niches (Popp et al., 1986; James et al., 1997).

Bioapatite offers a more physically and chemically resistant oxygen-
bearing alternative to brachiopod calcite due to a greater mineral
hardness and stability of the P–O bond in PO4

3− (e.g., Grimes et al.,
2003; Joachimski et al., 2004). The mineralised feeding elements of
conodonts (Lindström et al., 1974; Dzik, 1991; Goudemand et al.,
2011) comprise a relatively homogenous chemical composition
(Ca5Na0.13(PO4)3.01(CO3)0.16F0.73(H2O)0.85, Pietzner et al., 1968) and
have become increasingly used in oxygen isotope studies. Despite a
non-ubiquitous internal structure among all taxa (Donoghue, 1998;
Trotter et al., 2007), themineralised element crowns typically comprise
a translucent finely crystallised hyaline tissue and an inner albid tissue
(Lindström, 1964; Pietzner et al., 1968; Barnes et al., 1973; Donoghue,
1998; Trotter et al., 2007; Jones et al., 2012). Analysis of their
hypermineralised tissues indicates conodont elements offer greater
uniformity in δ18O values in comparison to those obtained from bra-
chiopod calcite (e.g. Wallace and Elrick, 2014). Consistent oxygen iso-
tope signatures have been observed between conodont genera
belonging to different biofacies in the Late Devonian (Joachimski et al.,
2009) and Carboniferous (Joachimski and Lambert, 2015), supporting
a shared near sea-surface marine habitat and free swimming lifestyle,
as suggested from their biology (e.g. Gabbott et al., 1995). This observa-
tionmay be dependent on location, time period and genera analysed, as
recent work on Ordovician (Quinton and MacLeod, 2014), Permian
(Joachimski et al., 2012) and Triassic (Trotter et al., 2015) conodonts
has shown discernible differences in δ18O values between some genera.
Despite some taxon-specific discrepancies in δ18O, correlatable oxygen
isotope ratios have proven useful in wider geographical comparisons
(e.g. Joachimski et al., 2009).

The biostratigraphic utility and widespread distribution and abun-
dance of conodont elements in many marine deposits has facilitated
the development of a temporally resolved isotope record spanning
many significant faunal reorganisations associatedwith climatic pertur-
bations from the Ordovician (Trotter et al., 2008) to the Triassic
(Joachimski et al., 2009; Rigo et al., 2012; Sun et al., 2012; Trotter et
al., 2015). However, conodont fossils are not ubiquitous in all facies, lim-
iting their potential as a sea surface temperature proxy inmany regions.
Even where present, a paucity of conodont elements can preclude pre-
ferred single genera sample analysis and fine resolution sampling due
to minimum sample mass requirements in standard analytical method-
ologies. As a consequence of these limitations, other common, diagenet-
ically resistant oxygen-bearing compounds must be identified to
expand accurate palaeoenvironmental interpretations across different
temporal intervals and depositional settings.

We studied a range of vertebrate microfossil elements using GIRMS
to determine the stability of biogenic phosphate over geological time-
scales, as well as the degree to which ecology and diagenesis influence
oxygen isotope ratios in different vertebrate microfossil remains. Sec-
ondary ion mass spectrometry (SIMS) analysis was applied to test
whether all vertebrate microfossil tissues are equally prone or resistant
to alteration of their O-isotopic ratios. In order to establish the validity of
vertebrate microfossil δ18O signatures and their potential use as
palaeoclimatic indicators, the oxygen isotope ratios of vertebratemicro-
fossils were compared with those of co-occurring conodonts. Both
GIRMS and SIMS analyseswere undertaken on Frasnian (Upper Devoni-
an) conodont samples aswell asmultiple Famennian (Upper Devonian)
Please cite this article as: Roelofs, B., et al., Assessing the fidelity of marine
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and Tournaisian (Lower Carboniferous) conodont and vertebrate re-
mains to i) document any potential discrepancies between the two
methods and; to ii) identify potential causes of disruption of primary
oxygen isotope signatures in different vertebrate tissues.

2. Background

2.1. Vertebrate microfossil histology

Marine vertebrate microfossils (typically b5 mm in size) most com-
monly comprise teeth, scales and fin spines. The hard tissues of verte-
brates are highly heterogeneous, consisting of three broad types;
bone, dentine and enamel. These tissues are differentiated by the levels
of mineralisation and organic matter content. Bone comprises a 50–70%
mineralised component with 20–40% organic matter and 5–10% water
(Clarke, 2008). Dentine is approximately 70% mineralised with 20–
24% protein and 6–10% water, whereas enamel is highly mineralized
(96%) with only 1% protein and approximately 3% water, which is pres-
ent on or between the hydroxyapatite crystals (Stack, 1955; Pasteris et
al., 2008; Goldberg et al., 2011; Hand and Frank, 2014). The O-hosting
sites within biogenic apatite also differ significantly between vertebrate
hard tissues (Pasteris et al., 2008). Bone and dentine comprise 6 and
5 wt% CO3

2– respectively, with only ~3.5 wt% present in enamel
(LeGeros and LeGeros, 1984; Cerling and Sharp, 1996). This low CO3

2–

concentration compared to dentine and bone, in addition to a high de-
gree of mineralisation (N80 wt%, Li et al., 2013), makes the
hypermineralised tissues (enamel, enameloid, ganoine and acrodin)
present in vertebrate teeth and scales more resistant to physical and
chemical alteration. Detailed information on tooth and scale histology
of analysed taxa is provided in the Supplementary material (A1-VH).

2.2. Application of vertebrate tissues in Palaeozoic oxygen isotope studies

Oxygen isotopes of vertebrate bioapatite tissues have beenprevious-
ly used to determine palaeoenvironmental conditions in the Palaeozoic
(Kolodny and Luz, 1991; Barham et al., 2012a; Fischer et al., 2013) and
Mesozoic (Kolodny and Raab, 1988; Kolodny and Luz, 1991; Lécuyer
et al., 1993; Pucéat et al., 2003; Billon-Bruyat et al., 2005; Fischer et al.,
2012). Applying gas isotope ratio mass spectrometry (GIRMS) to
Palaeozoic vertebrate fossils, however, has produced inconsistent re-
sults when whole fossils are used. Analysis of Upper Devonian
actinopterygian teeth (Joachimski and Buggisch, 2002) initially sug-
gested that original oxygen isotope ratios were preserved in the tooth
apatite. Other works however, have revealed that Palaeozoic vertebrate
teeth and dermal denticles are typically depleted in 18O (relative to co-
nodont elements) between 2.4 and 2.9‰ (Barham et al., 2012a; Žigaite
et al., 2010). This has led to the suggestion that vertebratemicrofossil el-
ements are susceptible to diagenetic affects and thus may not preserve
original isotopic signatures (Barham et al., 2012a). However, given that
secondary alteration may be tissue-specific or screened and subse-
quently avoided, the potential still exists for the geochemistry of these
fossils to serve as a palaeoclimatic archive.

3. Materials and methods

3.1. Sample collection, processing and imaging

Upper Devonian vertebrate microfossils are common in the distal
slope facies of the Virgin Hills Formation (late Frasnian - middle
Famennian; Fig. 1; Playford et al., 2009; Trinajstic and George, 2009;
Trinajstic et al., 2014; Roelofs et al., 2015) and in the conodont-poor fa-
cies of the Fairfield Group (Upper Devonian-Lower Carboniferous)
(Roelofs et al., 2016; Thomas, 1957, 1959). Twenty kilogram samples
were collected from single beds at Horse Spring (18°11′41″ S, 126°01′
69″ E) (sample prefix VHS), Oscar Hill (18°04′07″ S, 125°26′41″ E)
(sample prefixes OH, Si) and Laurel Downs (18°01′37″ S, 125°18′43″
vertebrate microfossil δ18O signatures and their potential for palaeo-
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Fig. 1. Regional geology map and sampled sites from the Lennard Shelf, Canning Basin,
Western Australia.
(Modified from Playford et al., 2009.)
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E) (sample prefixes 1984, CCA, MT and MTM) (Fig. 1) and processed
using a buffered 10% acetic acid solution (following the methodology
of Jeppsson et al., 1999). The rock samples were disaggregated as
whole rockswith rinsing occurring every 24–48h, dependingon thede-
gree of disaggregation. This process was repeated, with fresh 10% buff-
ered acetic acid, until the rocks had been sufficiently broken down to
allow for the removal of isolated fossils. Residues were rinsed and
sieved (0.125 mm sieve) to further separate microfossils before picking
the N0.125 mm fraction under a Nikon stereomicroscope. Detailed ex-
amination ofmicrofossilswas performed using aHitachi TM-3030 desk-
top Scanning Electron Microscope (SEM) at Curtin University with
accelerating voltages ranging from 5 to 15 kV and variable pressures.
Eight larger holocephalan teeth (N10 mm mesio-distally) were
Please cite this article as: Roelofs, B., et al., Assessing the fidelity of marine
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recovered directly from the disaggregated rock residues. A single
tooth (MTM1-H9) was exposed from the rock sample along its labial
face and extracted prior to processing. Additional imaging of analysed
specimens was performed using a Leica stereomicroscope camera at
the Western Australian Museum.

Horse Spring samples yielded 200 conodont elements correspond-
ing to Conodont Zone (CZ) 11 (Frasnian; Klapper, 1988). Conodont
yields from Oscar Hill samples taken for this study yielded mainly
undiagnostic elements with a single long ranging Famennian conodont
Spathognathodus aciedentatus recovered. Previous sampling by Nicoll
and Druce (1979) indicated a latest Famennian age (praesulcata Cono-
dont Zone) for outcrop at Oscar Hill. Tournaisian rock samples (Table
2) were collected from a bioclastic limestone bed of the Laurel Forma-
tion (sample number 1984-04), exposed approximately 35 km north-
west of the town of Fitzroy Crossing (Fig. 1). A Tournaisian age is
supported by the presence of the conodont taxa Clydagnathus
cavusformis and Bispathodus aculeatus, and is consistent with previous
age determinations (Druce and Radke, 1979; Nicoll and Druce, 1979).
A refinement of early Tournaisian for the sampled area is indicated by
the overlap of shark species Thrinacodus ferox, Protacrodus aequalis and
Protacrodus sp. 1 (Roelofs et al., 2016).
3.2. Analytical methodology

The GIRMS method has conventionally been used to accurately de-
termine the δ18O values of pooled apatite fossils through the analysis
of chemically purified Ag3PO4. To obtain ~1 mg of fossil material re-
quired for replicate analyses, samples comprising multiple vertebrate
microfossil elements, or single elements comprising multiple tissue
types, are often required. The incorporation of different fossil tissues
within analyses reduces data confidence as tissue geochemistry is dif-
ferently affected by biological processes including organism physiology
(e.g. Thorrold et al., 1997), post-mortem microbial activity (Blake et al.,
1997, 1998; Zazzo et al., 2004) as well as physico-chemical influences
such as diagenesis (e.g. Iacumin et al., 1996).

The use of laser ablation techniques on biogenic phosphate has dem-
onstrated the potential to quantify variation in δ18O from in-situ tissues
(Cerling and Sharp, 1996). Such in-situ techniques minimise potential
contamination and alteration of samples during preparation and reduce
the required sample size (Brady, 2004). Trotter et al. (2008) later
established the use of secondary ion mass spectrometry (SIMS) on bio-
genic phosphate to elicit reliable δ18O values from both fossil and mod-
ern tissue. The success of this work has been replicatedwith a particular
focus on conodonts, in reconstructing Palaeozoic palaeoclimates and
palaeoceanographies (Rigo et al., 2012; Wheeley et al., 2012; Trotter
et al., 2015; Chen et al., 2016). Whether this technique can be applied
to Palaeozoic vertebrates, and the preservation of δ18O in highly hetero-
geneous fossil tissues, have not been thoroughly explored. Application
of this technique to modern shark teeth (Trotter et al., 2008; Žigaitė
andWhitehouse, 2014) has shown preservation of original oxygen iso-
tope signatures in hypermineralised tissues as well as heterogeneity
and depletion of 18O within the more permeable dentine (Žigaitė and
Whitehouse, 2014).

Following the approach of Trotter et al. (2008), aliquots of a single
large fragment of Durango apatite crystal were used as an oxygen iso-
tope standard for comparison between GIRMS and SIMS methods and
published data. It should be noted that recent work by Sun et al.
(2016) has highlighted a 4.4‰ inter-crystal δ18O variation between
Durango apatite crystals as well as intra-crystal variation that ranged
from 0.7–1.8‰. To minimise the potential effects of crystal heterogene-
ity, ion probe spots were concentrated on small areas within small frag-
ments of a single crystal. Additionally, as this work focuses on intra-
fossil variation as well as comparing fossils on the same mount, poten-
tial variation between crystal fragments does not significantly alter
the conclusions of this work.
vertebrate microfossil δ18O signatures and their potential for palaeo-
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3.2.1. GIRMS oxygen isotope analyses
Stable oxygen isotope ratios were determined on conodont and ver-

tebrate microfossil material at the Stable Isotope Laboratory of the Uni-
versity of Erlangen-Nürnberg, Germany, following amodified version of
the procedure developed by O'Neil et al. (1994) and described in
Joachimski et al. (2009). Conodont, vertebrate microfossil and Durango
apatite samples (0.7–2.0 mg) were chemically converted to
trisilverphosphate (Ag3PO4) and the oxygen isotope ratios of ~0.2 mg
sample aliquots were analysed as CO produced in a high temperature
conversion elemental analyser (TC–EA) attached on-line to a
ThermoFisher Delta V Plus mass spectrometer. Oxygen isotope compo-
sitions are reported in δ notation in‰ relative to Vienna StandardMean
Ocean Water (VSMOW) (Table 1). The analyses were calibrated by
performing a two-point calibration (Paul et al., 2007) using NBS 120c
(+21.7‰) and a commercial Ag3PO4 (+9.9‰). All standardswere cal-
ibrated to TU1 (+21.11‰) and TU2 (+5.45‰; Vennemann et al.,
2002). A laboratory standard, as well as NBS 120c were used as control
standards and processed together with the samples. Replicate analyses
of the international standard NBS 120c and internal laboratory stan-
dards were performed between every four unknowns, as well as at
the start and end of eachmeasuring day tomonitor accuracy and repro-
ducibility. Reproducibility was typically ±0.2‰ (1σ). NBS 120c was
measured as +21.7 ± 0.1‰ (1σ, n = 12) VSMOW (within uncertainty
reported by LaPorte et al., 2009). Most samples were measured in trip-
licate, with limited Ag3PO4 from samples OH4-C and 1984-C only
allowing duplicate and single analyses, respectively.

3.2.2. SIMS oxygen isotope analyses
Conodont and vertebrate microfossils, with fragments of a Durango

apatite crystal weremounted on double sided tape attached to standard
glass plates. Large holocephalan teeth were cut labio-lingually using a
Dremel rotary tool and ground flat with 1200 grit sandpaper prior to
mounting on the tape along the smooth surface. Struers EpoFix epoxy
resin was used to form standard one-inch round mounts and then
polished to expose the desired tissues using successively finer polishing
cloths to a 1 μm finish. Themountswere then carefully cleanedwith de-
tergent, distilledwater and isopropanol in an ultrasonic bath and coated
with gold (30 nm in thickness) prior to SIMS analyses.
Table 1
Late Famennian and early Tournaisian vertebrate microfossils and standards analysed using ga

Location Sample no. Formation (Fm.) Age Sample

Horse Spring VHS-312 Virgin Hills Fm. Frb Ancyrodella
Oscar Hill OH-4 A Gumhole Fm. Fnc Palatal teeth
Oscar Hill OH-4 B Gumhole Fm. Fnc Scale
Oscar Hill OH-4C Gumhole Fm. Fnc Scale
Oscar Hill OH-4 D Gumhole Fm. Fnc Tooth cusp
Oscar Hill OH4-SS1 Gumhole Fm. Fnc Spine
Laurel Downs 1984-04 A Laurel Fm. Tnd Scale
Laurel Downs 1984-04 B Laurel Fm. Tnd Palatal teeth
Laurel Downs 1984-04 C Laurel Fm. Tnd Radial bone
Laurel Downs 1984-04 D Laurel Fm. Tnd Teeth
Laurel Downs 1984-04 E Laurel Fm. Tnd Scale
Laurel Downs 1984-04 F Laurel Fm. Tnd Tooth cusp
Laurel Downs 1984-04 M Laurel Fm. Tnd Tooth cusp
Laurel Downs 1984-04 G Laurel Fm. Tnd Scales
Laurel Downs 1984-04 H Laurel Fm. Tnd Palatal teeth
Laurel Downs 1984-04 J Laurel Fm. Tnd Scale
Laurel Downs 1984-04 K Laurel Fm. Tnd Scale
Laurel Downs 1984-04 L Laurel Fm. Tnd Scale
Laurel Downs MTM1-H1 Laurel Fm. Tnd Tooth cusp
Laurel Downs MTM1-H4 Laurel Fm. Tnd Tooth cusp
Laurel Downs MTM1-H5 Laurel Fm. Tnd Tooth cusp
Laurel Downs MTM1-H8 Laurel Fm. Tnd Tooth cusp
Laurel Downs MTM1-H9 Laurel Fm. Tnd Tooth cusp
Laurel Downs MT4-LPS Laurel Fm. Tnd Scale

a Number of replicate analysis.
b Frasnian.
c Famennian.
d Tournaisian.
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Oxygen isotope ratios were determined using a Cameca IMS 1280
multi-collector ion microprobe located at the Centre for Microscopy,
Characterisation and Analysis (CMCA), University of Western Australia
(UWA) in March and November 2014. Analyses were performed with
a ca. 2.5 nA Cs+ beam with a total impact energy of 20 keV rastered
on a ca. 20 × 20 μm area on the sample surface. Instrument parameters
included a magnification of 130× between the sample and field aper-
ture (FA), 400 μm contrast aperture (CA), 4000 μm FA, 110 μm entrance
slit, 400 μm exit slits, and a 40 eV band pass for the energy slit with a
5 eV gap toward the high energy side. Secondary O− ions were acceler-
ated to 10 keV and analysed with a mass resolving power of approxi-
mately 2200 using dual Faraday Cup detectors. A normal-incidence
electron gun was used to provide charge compensation and NMR regu-
lation was employed for magnetic field control.

Ten seconds of pre-sputteringwas followed by automatic centering of
the secondary beam in the FA and CA. Each analysis consisted of 20 four-
second cycles, which gave an average internal precision of ±0.2‰ (1σ).
Analytical sessions were monitored for drift and precision using a
bracketing standard (Durango apatite; +9.9 ± 0.3‰, (1σ, n = 9);
characterised via GIRMS of three samples analysed in triplicate from the
same crystal) for every six sample analyses. Instrumental mass fraction-
ation (IMF)was corrected using Durango apatite following the procedure
described in Kita et al. (2009). The spot-to-spot reproducibility (external
precision)was typically±0.3–0.4‰ (1σ) onDurango apatite during all of
the analytical sessions, except two sessions at ±0.2‰ (sample HT2) and
±0.5‰ (sample MVM2). Uncertainty on each spot was calculated by
propagating the errors on instrumentalmass fractionation determination
and internal error on each sample data point. The resulting uncertainty
was typically between ±0.3 and ±0.6‰ (1σ). Raw 18O/16O ratios and
corrected δ18O (reported relative to VSMOW) are presented in Table 2.

4. Results

4.1. Fossil preservation

Visual inspection (bothmacro- andmicroscopic) confirmed conodont
elements were well-preserved, showing no evidence of coarsening crys-
tallites, pitting, overgrowths or other visible signs of diagenetic
s isotope ratio mass spectrometry (GIRMS).

Taxa Sample size (mg) na δ18O (‰) 1σ

Conodont 0.88 3 19.0 0.2
Palaeoniscoid 0.99 3 17.0 0.1
Protacrodont 2.04 3 17.1 0.2
Ctenacanthid 0.60 2 16.0 0.6
Helodus 0.89 3 17.2 0.3
Shark – 3 16.3 0.1
Ctenacanthid 1.25 3 16.9 0.1
Palaeoniscoid 0.82 3 18.0 0.2
Palaeoniscoid 0.70 1 15.9 0.1
Palaeoniscoid 0.85 3 15.7 0.5
Palaeoniscoid 1.51 3 17.3 0.6
Holocephalan 1.63 3 17.3 0.2
Holocephalan 0.87 3 17.7 0.1
Acanthodian 0.77 3 17 0.4
Palaeoniscoid 1.42 3 18.1 0.4
Lungfish 1.44 3 16.5 0.2
Protacrodont 1.13 3 16.1 0.3
Protacrodont 0.96 3 17.3 0.5
Holocephalan – 3 19.1 0.1
Holocephalan – 3 16 0.2
Holocephalan – 3 18.8 0.2
Holocephalan – 3 18.8 0.1
Holocephalan – 3 17.4 0.3
Lungfish – 3 15.1 0.0
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Table 2
δ18O values of late Famennian to early Tournaisian microfossils analysed using SIMS.

Location Sample no. Formation (Fm.) Age Sample Taxa Tissue na δ18O (‰) 1σ

Horse Spring VHS-312a Virgin Hills Fm. Frb P-element Palmatolepis Hyaline 4 19.1 0.3
Horse Spring VHS-312b Virgin Hills Fm. Frb P-element Ancyrodella Hyaline 4 19.2 0.3
Oscar Hill OH4-CS2 Gumhole Fm. Fnc S-element Conodont Hyaline 5 19.9 0.5
Oscar Hill Si-OH4id Gumhole Fm. Fnc S-element Conodont Hyaline 2 20.1 1
Oscar Hill Si-OH4iid Gumhole Fm. Fnc S-element Conodont Hyaline 2 18.8 0
Oscar Hill OH4-SS1 Gumhole Fm. Fnc Shark spine Unknown Dentine 4 16.5 0.4
Oscar Hill OH4-SS1 Gumhole Fm. Fnc Shark Spine Unknown Dentine 3 18.5 0.3
Oscar Hill OH4-Pri Gumhole Fm. Fnc Scale Protacrodont Unknown 2 17.9 0.1
Oscar Hill OH4-Prii Gumhole Fm. Fnc Scale Protacrodont Unknown 2 12.8 1
Laurel Downs CCA1 Laurel Fm. Tne P-element Clydagnathus Hyaline 5 20.9 0.9
Laurel Downs CCA2 Laurel Fm. Tne P-element Clydagnathus Hyaline 4 19.9 0.4
Laurel Downs 1984-04 Ac Laurel Fm. Tne Scale Acanthodian Unknown 2 20.6 1.6
Laurel Downs 1984-04 Ac Laurel Fm. Tne Scale Acanthodian Dentine 1 16.7 n/a
Laurel Downs 1984-04 Pr Laurel Fm. Tne Scale Protacrodont Unknown 3 20.1 0.3
Laurel Downs 1984-04 Ct Laurel Fm. Tne Scale Ctenacanthid Unknown 2 20.6 2.1
Laurel Downs 1984-04 Pcd Laurel Fm. Tne Scale Palaeoniscoid Unknown 2 19.5 1.3
Laurel Downs MT4-LPSid Laurel Fm. Tne Scale Lungfish Unknown 3 8.8 1.9
Laurel Downs MT4-LPSid Laurel Fm. Tne Scale Lungfish Unknown 5 14.9 1.3
Laurel Downs MT4 Ptp Laurel Fm. Tne Palatal teeth Palaeoniscoid Cusp 4 15.7 0.5
Laurel Downs MT4 Ptp Laurel Fm. Tne Palatal teeth Palaeoniscoid Dentine 4 14.9 1.1
Laurel Downs Mt-4 PN Laurel Fm. Tne Tooth Palaeoniscoid Acrodin 4 20.7 0.5
Laurel Downs Mt-4 PN Laurel Fm. Tne Tooth Palaeoniscoid Dentine 3 15.9 0.9
Laurel Downs 1984-04 AG1 Laurel Fm. Tne Tooth Ageleodus sp. Dentine 3 17.2 0.1
Laurel Downs 1984-04 AG1 Laurel Fm. Tne Tooth Ageleodus sp. Dentine 5 13.1 1.1
Laurel Downs 1984-04 AG1 Laurel Fm. Tne Tooth Ageleodus sp. Dentine 2 10.1 2.5
Laurel Downs 1984-04 Dh1 Laurel Fm. Tne Tooth Protacrodont Enameloid 3 17.9 0.4
Laurel Downs 1984-04 Dh1 Laurel Fm. Tne Tooth Protacrodont Dentine 3 16.2 0.2
Laurel Downs 1984-04 Dh1 Laurel Fm. Tne Tooth Protacrodont Dentine 3 13.8 0.5
Laurel Downs 1984-04 Dh2 Laurel Fm. Tne Tooth Protacrodont Enameloid 4 19.2 0.2
Laurel Downs 1984-04 Dh2 Laurel Fm. Tne Tooth Protacrodont Dentine 4 16.4 0.7
Laurel Downs 1984-04 Dh3 Laurel Fm. Tne Tooth Protacrodont Enameloid 3 18.9 0.3
Laurel Downs 1984-04 Stid Laurel Fm. Tne Tooth Cladodont Dentine 4 7.5 2.1
Laurel Downs 1984-04 Stid Laurel Fm. Tne Tooth Cladodont Dentine 4 11.5 0.8
Laurel Downs 1984-04 Stiid Laurel Fm. Tne Tooth Cladodont Dentine 4 16.1 2.7
Laurel Downs MTM1-H1 Laurel Fm. Tne Tooth Holocephalan Surface ene 5 18.1 0.5
Laurel Downs MTM1-H1 Laurel Fm. Tne Tooth Holocephalan Surface ene 5 9.2 0.9
Laurel Downs MTM1-H1 Laurel Fm. Tne Tooth Holocephalan Dentine 5 19.5 0.2
Laurel Downs MTM1-H1 Laurel Fm. Tne Tooth Holocephalan Dentine 5 15.6 0.8
Laurel Downs MTM1-H1 Laurel Fm. Tne Tooth Holocephalan Dentine 5 17.6 0.1
Laurel Downs MTM1-H4 Laurel Fm. Tne Tooth Holocephalan Dentine 4 18.7 0.1
Laurel Downs MTM1-H4 Laurel Fm. Tne Tooth Holocephalan Dentine 4 19.2 0.4
Laurel Downs MTM1-H5 Laurel Fm. Tne Tooth Holocephalan Dentine 4 17.3 0.2
Laurel Downs MTM1-H5 Laurel Fm. Tne Tooth Holocephalan Dentine 4 17.3 0.3
Laurel Downs MTM1-H9 Laurel Fm. Tne Tooth Holocephalan Surface enf 3 5.9 2.2
Laurel Downs MTM1-H9 Laurel Fm. Tne Tooth Holocephalan Pore enf 3 21.4 0.3
Laurel Downs MTM1-H9 Laurel Fm. Tne Tooth Holocephalan Surface enf 3 17.8 0.4
Laurel Downs MTM1-H9 Laurel Fm. Tne Tooth Holocephalan Pore enf 2 21.8 0.1
Laurel Downs MTM1-H9 Laurel Fm. Tne Tooth Holocephalan Pore enf 1 21.4 n/a
Laurel Downs MTM1-H9 Laurel Fm. Tne Tooth Holocephalan Surface enf 3 19.5 0.7
Laurel Downs MTM1-H9 Laurel Fm. Tne Tooth Holocephalan Dentine 3 17.2 0.4

a Number of replicate analysis.
b Frasnian.
c Famennian.
d i and ii notation indicate different individual fossils.
e Tournaisian.
f Enameloid.
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modification (Fig. 2; Nöth, 1998). Vertebrate microfossil elements are
similarly apparently well-preserved with smooth lustrous surfaces pres-
ent on the cusps of teeth and dermal denticle crowns. In cross section,
the dentine of all teeth was light grey to white in colour with the excep-
tion of sample MTM1-H9, which showed a dark grey discolouration
aroundonemargin that correlates to thepreviously exposed labial surface
of the tooth. Reddish coloured staining is presentwithin thebasal tissue in
sample MTM1-H1, along with calcite cement in some of the pore canals
that extend from the cusp surface to the basal tissue.

4.2. GIRMS δ18O analysis of vertebrate microfossil elements

The δ18O values of Famennian vertebrate microfossils ranged from
+16.2–17.1‰ (VSMOW) (Table 1) with a mean of +16.7‰. The δ18O
values obtained from the Tournaisian vertebrate microfossil samples
Please cite this article as: Roelofs, B., et al., Assessing the fidelity of marine
ecological and -climat..., Palaeogeogr. Palaeoclimatol. Palaeoecol. (2016), h
are more variable than Famennian values, ranging from +15.7 to
19.1‰. The largest disparity in δ18Owasmeasured in the outer cusp tis-
sue of Tournaisian holocephalan teeth (+16.0 to 19.1‰, mean of +
17.8‰; Fig. 3). Similar δ18O values were obtained from ctenacanthid
(+16.0‰) and protacrodont (+17.1‰) scales from the Famennian.
Inter-taxa variation of b1.2‰ was found for Tournaisian acanthodian
(+17.0‰), lungfish (+16.5‰), ctenacanthiform (+16.9‰),
protacrodont (+16.1 and +17.2‰) and palaeoniscoid scales (+
19.0‰) (Table 1). Significant intra-specific disparity in δ18O values
within Tournaisian vertebrate scales was seen between protacrodont
scales recording values of +16.1 and +17.2‰. The lowest δ18O values
were recorded in Tournaisian palaeoniscoids, with values of +15.7 (ra-
dial bone) and +15.9‰ (tooth) (Fig. 3). However, δ18O values of asso-
ciated palatal teeth were consistently higher at +18.0‰ (sample
1984-B) and +18.1‰ (sample 1984-H).
vertebrate microfossil δ18O signatures and their potential for palaeo-
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Fig. 2. Frasnian Palmatolepis P-elements. (A) Back-scattered electronmicroscope image in
aboral view with ×4 magnified inset (i) highlighting the well-preserved ornamentation.
(B) Stereo microscope image of a polished Palmatolepis sp. element showing the well-
preserved internal microstructures and low Colour Alteration Index (CAI).
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4.3. SIMS δ18O analyses

In-situ oxygen isotope analyses were performed on three late
Famennian and two early Tournaisian conodont elements (Table 2). Co-
nodont δ18O values from averaged spot analyses on three late
Famennian S-elements range from +18.7 to 20.8‰ (Table 2), with an
average value of +19.6 ± 0.5‰. Two to five individual spots were
analysed on the blades of the S-elements with a deviation between
spots on each element ranging from 0 to +1.0‰ (Table 2). Two P1
Fig. 3. Gas isotope ratio mass spectrometry (GIRMS) analyses of vertebrate microfossil element
replicate analyses, vertical bars represent 1 std.dev. Coeval conodont values obtained from S
generally higher than vertebrate microfossil values analysed by GIRMS.

Please cite this article as: Roelofs, B., et al., Assessing the fidelity of marine
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elements (sensu Purnell et al., 2000) of the early Tournaisian conodont
Clydagnathus cavusformis produced average δ18O values of +19.9‰
(±0.4‰, n = 4) and +20.9‰ (±0.9‰, n = 5).

Clusters of three to five spots (within an area of b1 mm2), were fo-
cused on enameloid, dentine and basal tissues of four holocephalan
teeth (Fig. 4). Occasionally, one or more analytical spots missed the tis-
sue targeted and average values were determined from remaining spot
analyses. Average δ18O values of spots (n = 5) targeting enameloid tis-
sues in toothMTM1-H1 produced values for spot clusters of +9.2± 0.9
and +18.0 ± 0.2‰ (Fig. 5A). The same enameloid tissue in sample
MTM1-H9 was analysed, with individual clusters comprising two to
three spots from four areas of the tooth (Fig. 5B) producing average
δ18O values between +21.4 ± 0.7 and +21.8 ± 0.1‰. Dentine was
analysed in all four holocephalan teeth with an average δ18O value of
+17.9± 1.4‰ (1σ, n= 35). No consistent differences in δ18O are pres-
ent between upper dentine, close to the occlusal surface of the tooth,
and lower dentine tissues, located toward the basal body (Fig. 5). The
enamel of three protacrodont teeth was tested using clusters of three
to four spots and exhibited average δ18O values of +17.9 ± 0.4‰
(n = 3), +18.9 ± 0.2‰ (n = 3) and +19.2 ± 0.3‰ (n = 3) (Figs. 4,
6b). The dentine tissues in one tooth (1984-Dh1) showed a progressive
depletion in 18O from near the cusp apex (+16.2 ± 0.2‰) to less
mineralised dentine in the basal tissues (+13.8± 0.5‰) (Fig. 4). A sim-
ilar decrease in δ18O is seen over 10 individual spots in an Ageleodus
shark tooth (AG1, Fig. 6C), which presented a general trend in δ18O
from +17.3‰ in the cusp dentine, to +8.3‰ in the basal tissue. Three
sets of analyses were performed on the dentine tissue of three
cladodont cusps, which showed average δ18O values between +7.5 ±
2.1 (n = 4) and +11.5 ± 2.7 (n = 4) ‰ (Table 2).

Two sets of δ18O values were recorded from different areas on a
Famennian shark spine, a series of three spots near the margin of
the spine (average + 16.5 ± 0.3‰, n = 4) and three spots located
centrally (+18.5 ± 0.4‰, n = 3). An average δ18O value of
+20.3‰ was recorded for scale crown surface tissues across differ-
ent taxa from the Tournaisian samples. A difference of up to 2.1‰
was observed between spots on individual tissues. Dentine tissues
from a Famennian protacrodont scale (+12.8 ± 1.0‰, n = 2),
Tournaisian lungfish (+8.8 ± 1.9‰, n = 3 and +14.9 ± 1.3‰,
n = 5) and an acanthodian scale (+16.7 ± 1.3‰) recorded δ18O
values consistently lower than the tissues close to the crown surfaces
of the scales.
s from the late Famennian (i) and early Tournaisian (ii). Data points give average value of
IMS (late Famennian = +19.6 ± 0.5‰ and; early Tournaisian = +20.3 ± 0.8‰) were
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Fig. 4. Secondary ionmass spectrometry (SIMS) δ18O analyses of vertebratemicrofossil elements from the late Famennian (i) and early Tournaisian (ii). Data points are the averages of spot
clusters with 1 std.dev. given by the vertical error bars. Average vertebrate microfossil δ18O values are plotted as difference relative to the δ18O of co-occurring conodonts to focus on the
tissue-specific differences regardless of geological age. Conodont δ18O values were obtained from secondary ion mass spectrometry (SIMS) (δ18Oconodont values for the late Famennian =
+19.6 ± 0.5‰ and; early Tournaisian = +20.3 ± 0.8‰). Grey area represents 1 std.dev. of average co-occurring δ18Oconodont obtained by SIMS.

Fig. 5. δ18O of tissue types from two early Tournaisian holocephalan teeth compared to average δ18O of coeval conodonts (+20.3 ± 0.8‰). (A) Tooth (MTM1-H1) showing analysis of
enameloid and dentine tissues; (A) analysis of a tooth (MTM1-H9) showing variation in δ18O values associated with exposure of the labial surface (indicated by dashed line). Coloured
boxes correspond to spot clusters depicted in the graphs A, B. Grey area represents 1 std.dev. (±0.8‰) of the average δ18O of associated conodonts analysed by SIMS. For (B) spot
numbers 1–3, 5–7 and 14–16 represent surface enameloid with pore enamel represented by spot numbers 4, 11–13 and 17–18. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Systematic δ18O variation in early Tournaisian vertebrate microfossil tissues analysed via SIMS. Location of ion-probe spots indicated on stereo-microscope images of polished
analytical surface. (A) Palaeoniscoid fish tooth (MT-4 PN) with acrodin cap and dentine tissue analysed; (B) analysis of enameloid and dentine tissues from Protacrodont tooth (1984-
04 Dh2), referred to as Dalmehodus cf. turnerae (Roelofs et al., 2016); (c) tooth of the chondrichthyan Ageleodus (1984-04 AG1) showing a transect of spot analyses from the cusp apex
to the base. All values plotted relative to a co-occurring conodont δ18O value of +20.3 ± 0.8‰. Grey areas in graphs represent 1 std.dev. (±0.8‰) of δ18O analyses of co-occurring
conodonts.
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5. Discussion

5.1. Comparison of GIRMS and SIMS δ18O analyses

Traditional GIRMS targets the PO4
3− group and eliminates analysis of

any less stable oxygen compounds (carbonate, organics, water)
(Firsching, 1961; Wright and Hoering, 1989; Crowson et al., 1991;
O'Neil et al., 1994). The use of whole vertebrate microfossils, in order
to obtainminimum samplemasses (~0.3–1mg) required for this meth-
od, can be problematic. Potential differences in the O-isotopic signal of
fossilised phosphate tissues may bemaskedwhen vertebrate bioapatite
is homogenised. The highly permeable and porous nature of fossil den-
tine, which is the bulk component of fossil teeth and dermal denticles, is
highly susceptible to physical and chemical alteration (Kohn and
Cerling, 2002; Koch, 2007). This susceptibility results, in part, from sig-
nificant porosity and permeability increasing potential isotopic ex-
change between bioapatite and circulating fluids associated with
diagenesis, as well as the potential for microbe mediated phosphate
precipitation and alteration (Kolodny et al., 1983; Kastner et al., 1990;
Blake et al., 1997, 1998; Zazzo et al., 2003).

The use of SIMS, as an alternativemethod for obtaining targeted δ18O
data from fossil bioapatite, is advantageous where fossil yields are
below the mass required by GIRMS methods and when samples com-
prise different tissues (Wenzel et al., 2000; Trotter et al., 2008, 2015).
However, SIMS indiscriminately analyses any oxygen-bearing com-
pounds, including PO4

3−, CO3
2− and OH− present within bioapatite

(Passey and Cerling, 2006; Aubert et al., 2012). The presence of the
CO3

2– anion in bioapatite (either primary or as a secondary cement)
can be particularly problematic as it is more susceptible to diagenetic
Please cite this article as: Roelofs, B., et al., Assessing the fidelity of marine
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alteration than PO4
3−, with the C–O bond comparably weaker than the

P–O bond (e.g. Iacumin et al., 1996).
Recent work by Wheeley et al. (2012) suggested δ18Oconodont values

obtained from SIMS were comparable with those of GIRMS for Silurian
conodonts. However, it must be noted, offsets of ~1‰ between SIMS
and GIRMS methods were observed in some Silurian conodont genera
(Wheeley et al., 2012). Subsequentwork by Trotter et al. (2015) showed
an average offset of 0.6±0.2‰ between the twomethodologies, similar
to earlier work of 0.7‰ (Trotter et al., 2008). Published data are current-
ly considered insufficient to fully assess the presence and/or reasons for
any discrepancies; however, it appears small but measurable offsets
exist. Here fragments from a single crystal of Durango apatite were
utilised to calibrate SIMS analyses. GIRMS analysis gave an average
δ18O value of+9.9‰ (±0.3‰, 1σ) from triplicate analysis of three indi-
vidual fragments of the same crystal, within error of the published value
of +9.8‰ reported by Rigo et al. (2012). GIRMS analysis of the cono-
dont genera Ancyrodella (+19.0 ± 0.2‰) indicated a b 0.2‰ difference
when compared to the δ18O values obtained from SIMS of both
Ancyrodella (+19.2‰ ± 0.3‰) and Palmatolepis (+19.1‰) P1 cono-
dont elements from the same sample. The δ18Oconodont values resolved
from the twomethods indicate valid comparisons can bemade between
SIMS and GIRMS analyses within error.

5.2. Canning Basin δ18Oconodont values in a global context

The presence of openmarine conditions in the Canning Basin, in the
Late Devonian and Early Carboniferous, is important if δ18Oconodont

values are to be used as a globally representative baseline to assess
the validity and palaeoenvironmental relevance of δ18O values from
vertebrate microfossil δ18O signatures and their potential for palaeo-
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vertebratemicrofossils. The significant faunal cosmopolitanism found in
ammonoid (Becker and House, 2009), conodont (Nicoll and Druce,
1979; Klapper, 2007) and vertebrate microfossil taxa (Turner, 1982;
Trinajstic and George, 2009; Hairapetian et al., 2015; Roelofs et al.,
2015, 2016; Trinajstic et al., 2014) in the Late Devonian and Early Car-
boniferous suggests that pathways existed for significant faunal ex-
change. Furthermore, the recovery, from the Lennard Shelf, of globally
correlative carbon isotope signatures associated with the Kellwasser
Event (Stephens and Sumner, 2003; Playton et al., 2013; George et al.,
2014; Hillbun et al., 2015), and presence of a significant regression
(Talent et al., 1993) and negative δ13C excursion (Andrew et al., 1994)
related to theHangenberg Event, are all suggestive of a localmarine sys-
tem coupled to global oceanic conditions. Despite these indicators of an
open marine system, the δ18Oconodont values from Frasnian Conodont
Zone 11 (jamieae CZ) in the Canning Basin (+19.1–19.5‰) are approx-
imately 1–1.5‰ higher than the δ18Oconodont values (normalised to NBS
120c = +21.7‰) from latitudinally equivalent sites reported in
Joachimski et al. (2004, 2009). The difference between the Canning
Basin CZ 11 values and other sitesmay be due to local variations in tem-
perature and salinity and demonstrate the importance of natural global
variations in water composition, particularly when constructing com-
posite isotope curves. In contrast to the Frasnian sample, a paucity of co-
nodont elements from the Famennian and Tournaisianmakes it difficult
for well constrained ages and, therefore, direct comparison of Canning
Basin δ18Oconodont with coeval global values. The Oscar Hill locality,
from which the Famennian samples were taken, suggested deposition
occurred during the latest Famennian based on conodont elements
(praesulcata CZ, Nicoll and Druce, 1979). An average δ18Oconodont value
of +19.6‰ is comparable to values from other latitudinally similar
sites from the praesulcata CZ from the Cantabrian Mountains, Spain
(~ + 19.4‰) and Montagne Noire, France (~ + 17.6–19.5‰)
(Buggisch et al., 2008; values were corrected by −0.7‰ to account for
a difference in the reported δ18O of standard NBS 120c). An early
Tournaisian age for the Carboniferous sample was inferred from cono-
dont and vertebrate microfossil remains. The average δ18O value for C.
cavusformis P1-elements tested was +20.4 ± 0.9‰. This is similar to
the δ18Oconodonts from the sulcata CZ interval (~ + 19.7–20.5‰, values
were corrected by−0.7‰ to account for a difference in δ18O of standard
NBS 120c) in the Cantabrian Mountains, Spain (Buggisch et al., 2008).
The results indicate that conodonts from the Frasnian to the Tournaisian
in the Canning Basin are preserving isotopic signatures similar to
conodonts from other pan tropical sites.

5.3. δ18O variation in vertebrate microfossil tissues

The enameloid and dentine of four holocephalan teeth, all attributed
to the same species, showed significant differences in δ18O values as a
result of histology, and therefore, mineral composition and susceptibil-
ity to diagenesis. The dense enameloid tissue present in holocephalan
teeth is similar in hardness to that of enamel (Ishiyama et al., 1984)
and comprises the outer layer of the crown as well as pore linings pen-
etrating the crown (Fig. 5). The δ18O values obtained (via SIMS) adja-
cent to pore canals produced more consistent results (mean value of
+21.5 ± 0.2‰ for pore enameloid) than the outer mineralised layer
of the crown, where δ18O averages of spot clusters varied between
+5.9 ± 2.2 and +19.5 ± 0.2‰. The enameloid tissue found along the
outer surface of tooth MTM1-H1 (Fig. 5A) shows slight (spot no. 21–25)
to considerably depletion (spot no. 1–5) of 18O compared to co-occurring
conodont δ18O values. As this is not seen on the non-exposed side of the
tooth MTM1-H9 from the same sample, it may represent alteration of
the outer tissues prior to burial. There is also the potential for these values
to be analytical artefacts due to topography induced through the differen-
tial polishing of the tooth and resin, or may result from diagenetic alter-
ation, as the more discoloured areas in the tooth commonly show lower
δ18O values (Fig. 5B). Recentwork has indicated that apparentlywell-pre-
served (i.e. lustrous) hypermineralised fossil tissues (e.g. Žigaitė et al.,
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2015) may not necessarily be indicative of pristine geochemistry. The
presence of variable ‘staining’ in the teeth may reflect diagenetic
mineralisation or alteration and may explain the significantly lower
δ18O values in peripheral hypermineralised tissues.

In general, the pore enameloid (Fig. 5B spot no. 4, 11–13, 17–18) of
the holocephalan teeth analysed appears to more reliably preserve the
original oxygen isotope ratios in comparison to the outer enameloid tis-
sues (Fig. 5B spot no. 1–3, 5–7, 14–16), which are more readily exposed
to post-mortem (or post-shedding), as well as burial, processes. The
dentine tissue analysed from four holocephalan (Table 2) did not
show any consistency in δ18O values between individual teeth (Table
2). In addition the most significant degree of δ18O variation came from
a single tooth (MTM1-H1). Here three areas within the tooth (MTM1-
H1) were analysed. The first cluster of spots (Fig. 5a spot no. 6–10;
+15.8 ± 0.8‰) located in the cusp dentine; the second spot cluster
(Fig. 5a spot no. 11–15; +19.5 ± 0.2‰) present in an area of
osteodentine; and a third spot cluster in the basal tissue (Fig. 5a spot
no. 16–20; +17.6 ± 0.1‰). Of these, the spot cluster at the basal area
of HTM-H1 produced an average δ18O value (+19.5 ± 0.2‰ n = 5)
comparable to average δ18Oconodont from the same sample +20.3 ±
0.8‰. The high δ18O value may indicate that parts of the basal tissue,
even though primarily consisting of permeable dentine, may be capable
of preserving the original isotopic signatures under appropriate
conditions.

The general structure of acrodin present in the tooth tip of many
palaeonisciform fish is similar to the woven structure of enamel in elas-
mobranchs (Ripa et al., 1972; Ørvig, 1978; Reif, 1985; Sasagawa et al.,
2012) and therebyprospective in terms of resistance to diageneticmod-
ification or disruption of isotopic signatures. The δ18O values obtained
from four spot analyses of the acrodin tip of a tooth (Mt-4 PN) support
this histological robustness with a δ18O value (+20.7 ± 0.2‰ n = 4)
and a standard deviation (1σ = ±0.5‰) comparable with associated
conodonts (Fig. 6A, Table 2). The δ18O value for the palaeoniscoid
tooth dentine is depleted in 18O (+15.9 ± 0.9‰) and similar to values
from dentine in associated vertebrate microfossil taxa.

SIMS analyses were conducted on a range of scales belonging to
acanthodians, chondrichthyan and palaeoniscoids. Scales attributed to
each of these groups hosted δ18O values within 1‰ of coeval conodont
values (Fig. 4),which indicate that some scale tissues are preserving pri-
mary isotopic signatures. However, identifying the tissues that host
these signatures is difficult as the spot size from the SIMS beam is larger
than some of the targeted tissues. This causes a degree of ambiguity in
the δ18O results due to the unquantifiable influence of surrounding tis-
sues. The presence of ganoine, a tissue homologous with enamel (Qu et
al., 2013), in some palaeoniscoid fishmay explain the relatively high av-
erage δ18O value of +19.5 ± 1.3‰. Reconciling the average δ18O value
of +20.9 ± 1.6‰ for the acanthodian scale (1984–04 Ac, Fig. 4)
analysed is difficult, as scales of this taxa typically lack hypermineralised
tissues and instead comprise an acellular bone base and a dentine layer
covering the crown (Sire et al., 2009). Hypermineralised tissues such as
ganoine have been reported in Palaeozoic acanthodians (e.g. Richter
and Smith, 1995), which highlights the need for individual scales to be
analysed rather than relying on the generalised histology of particular
taxa. Overall, the results obtained from scales indicate that multiple
taxa have the potential to be used to elicit apparently original isotopic
data and interpret ancient environmental conditions.

5.4. Comparison of GIRMS and SIMS δ 18O analyses of vertebrate
microfossils

As dentine tissues constitute the bulk of the vertebrate microfossils
tested here, it is expected that results fromGIRMSwould be comparable
to SIMS analyses of dentine from the same sample if the greater part of
the signal detected by SIMS was from phosphate. This hypothesis is not
fully supported by co-analysed fossils here (Fig. 7). Only two of the six
analysed fossils produced average dentine δ18O SIMS values within
vertebrate microfossil δ18O signatures and their potential for palaeo-
ttp://dx.doi.org/10.1016/j.palaeo.2016.10.018
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Fig. 7. Comparison of GIRMS and tissue specific targeting via SIMS analysis on individual
fossil elements from the (i) Famennian (average conodont δ18O value of +19.6 ± 0.5‰
from three elements) and (ii) Tournaisian (average conodont δ18O value of +20.3 ±
0.8‰ from two elements). Grey area in the graph represents 1 std.dev. of δ18O analyses
of co-occurring conodonts.
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b1‰ of the GIRMS values. This is likely due to an insufficient number of
spots, which were unable to encompass the full range of O-isotope
variation within a single fossil. SIMS analysis of the lungfish scale
(MT4-LPSi, Fig. 7) highlights the significant variation even within a
small cluster of spots (±1.9‰ n = 3, ±1.3‰ n = 5). The potential for
the alteration of PO4

3− (since GIRMS analyses are lower than coeval
conodonts inhabiting the same water mass, see Section 5.5) and contri-
butions from other altered O-bearing compounds suggests SIMS and
GIRMSmay not be comparable for heterogeneous tissues. Specific anal-
ysis of hypermineralised tissues using both GIRMS and SIMS is required
to determine if the variation inhypermineralised tissue is low enough to
produce comparable results between the methods.

5.5. Diagenetic influences

Whole vertebrate microfossils analysed using GIRMS are commonly
depleted in 18Owhen compared to coeval conodont elements (Žigaitė et
al., 2010; Barham et al., 2012a, b; Fischer et al., 2013). Since it has been
demonstrated that modern fish precipitate bioapatite in isotopic equi-
librium with ambient water (Kolodny et al., 1983; Vennemann et al.,
2001; Pucéat et al., 2010), and the palaeoecology of many of the taxa
are thought to overlap with those of coeval conodonts, the lower δ18O
values are interpreted to have occurred as a consequence of diagenetic
changes in the lessmineralised tissues. The 2.4 and 2.5‰ average offsets
found for Famennian and Tournaisian specimens examined herein (Fig.
3), respectively, are close to those reported between Silurian conodonts
and fish scales (2.5‰; Žigaitė et al., 2010). The low colour alteration
index (CAI) of the Silurian conodonts (b1.5; Žigaitė et al., 2010) indicate
thermally immature sediments, similar to what is found in the Canning
Basin, and may explain the similarity of the discrepancy in δ18O values.
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Moreover, Barham et al. (2012a) reported a more significant depletion
in 18O fromMississippian, Viséan ichthyoliths from Ireland thatwere as-
sociated with conodonts with CAI of N5, and indicated that the lower
δ18O values were influenced, but not necessarily controlled, by increas-
ing diagenesis and thermal alteration. It is difficult to extrapolate the re-
sults of thermal alteration from conodonts to vertebrate microfossils
given the significant taxonomic differences between these groups.
However, significant degrees of homology have been identified be-
tween the hypermineralised tissues of vertebrates and conodont hya-
line tissue (Donoghue, 1998; Donoghue et al., 2000; Nemliher and
Kallaste, 2012). Therefore, it is not unreasonable to expect thepreserved
phosphate in both conodont and vertebrate hard tissues would be af-
fected in a similar fashion to thermal maturation processes. Given the
similar magnitude of conodont-vertebrate microfossil δ18O offset in
thermally mature (CAI ~5.5 in Barham et al., 2012a reported δ18O offset
of 2.9‰) and immature regions (CAI b1.5; offset of 2.5‰ from Žigaitė et
al., 2010; 2.4 and 2.5‰ offsets found herein), it can be assumed that
there is no linear correlation between thermal maturation and deple-
tion of δ18O in vertebrate microfossil tissues.

The lower δ18O values of vertebrate microfossils may be influenced
by the susceptibility of their fossil tissues to chemical processes
(Ayliffe et al., 1994; Wang and Cerling, 1994; Koch et al., 1997; Kohn
et al., 1999; Sharp et al., 2000; Kohn and Cerling, 2002; France and
Owsley, 2015). Given the composition and porosity/permeability of
their dentine tissues, recrystallisation of existing minerals (Kolodny
and Luz, 1991; Kolodny et al., 1996) aswell as precipitation of secondary
O-bearing minerals (Martill, 1988; Blake et al., 1997; Kohn et al., 1999;
Trueman et al., 2003), both with theoretically different O-isotope com-
positions, aremore significant considerations for vertebratemicrofossils
during early diagenesis (Koch et al., 1997; Sharp et al., 2000; Zazzo et al.,
2004). The extent to which these aforementioned causes of alteration
affect O-isotope ratios will be largely determined by original structure
and composition of the analysed tissues (e.g. Kohn and Cerling, 2002).
Oxygen in apatite is present in the PO4

3−, CO3
2− and OH− groups

(Driessens and Verbeek, 1990). The phosphate component provides
themost stable O-bondwith no isotopic exchange observed in low tem-
perature inorganic systems (Kolodny et al., 1983; Shemesh et al., 1988).
The oxygen in carbonate however is susceptible to diagenetically in-
duced fractionation (Luz et al., 1984; Nelson et al., 1986; Kolodny and
Luz, 1991; Barrick and Showers, 1994, 1995; Wang and Cerling, 1994;
Fricke et al., 1998; Kohn et al., 1999). Occurring at around 2–6 wt% in
bone and dentine (LeGeros and LeGeros, 1984; Driessens and Verbeek,
1990), diagenetic affects on incorporated CO3

2− may influence the
final δ18O values measured by SIMS. The effects of OH− fractionation
and substitution by other compounds such as CO3

2− (Kohn et al.,
1999) however, will not likely cause significant variation in the final
δ18O values as the wt% in dentine and bone is low (b1.6 wt%, Cerling
and Sharp, 1996).

SIMS δ18O analysis of modern shark teeth (Žigaitė and Whitehouse,
2014) identified average δ18O variation of 1.2‰ within the dentine tis-
sue. Mean variation between the parallel bundled enameloid (+21.2–
23.1‰) and dentine tissue (+20.6–21.8‰) was also recorded. Žigaitė
and Whitehouse (2014) noted the use of H2O2 in the pre-treatment
cleaning process may have contributed to variation in the δ18O values.
However, it was concluded that organic matter, which is typically 18O
depleted, was the likely cause of this variation. The fossil shark and
holocephali teeth tested here also showed significant discrepancies be-
tween tissues, as well as depletion in 18O (Figs. 4, 5b, 6). However, such
variation in the fossil specimens analysed here, cannot be attributed to
original organic material as this would have degraded to the point
where itwould beundetectable, although decay products could have in-
fluenced the isotope ratios. Interestingly, analysis of teeth taken from
freshly caught sharks (Vennemann et al., 2001) recorded comparable
values between the dentine and enamel tissues using GIRMS. The isola-
tion of PO4

3− eliminates the influence of 18O depleted organic matter,
which may have resulted in δ18O variation between the dentine and
vertebrate microfossil δ18O signatures and their potential for palaeo-
ttp://dx.doi.org/10.1016/j.palaeo.2016.10.018
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enamel. Work by Zazzo et al. (2003), has demonstrated fractionation of
phosphatewithin bone can occurwithin a few days post-mortem under
oxic conditions, with the presence of microbial enzyme activity signifi-
cantly increasing the rate of oxygen isotope exchange. In contrast,
enamel was found to be significantly resistant to changes in the original
oxygen isotope ratios (Zazzo et al., 2003). The susceptibility for isotopic
alteration under microbially-mediated conditions for tissues with orig-
inally higher organic matter content, could explain the lower oxygen
isotope values of the dentine of the shed teeth analysed by Žigaitė and
Whitehouse (2014). Microbial “catalysts” have been previously used
to explain the alteration of PO4

3− δ18O in bioapatite (Kolodny et al.,
1983; Kastner et al., 1990). The Upper Devonian and Lower Carbonifer-
ous vertebrate microfossil elements analysed here were obtained from
limestones formed in well oxygenated shallow water marine settings
(Druce and Radke, 1979). Given the lack of thermal maturity or any ev-
idence for fluid alteration of the sequences studied,microbially-induced
alteration within incompletely mineralised tissues in vertebrate micro-
fossils ex-vivo and/or during early diagenesis (eogenesis) must be con-
sidered a plausible mechanism for lower δ18O-values.

Evidence for recent weathering processes affecting δ18O-values is
present in one of the holocephalan teeth (MTM1-H9, Fig. 5B), which
had a portion of the occluso-labial face of the crown protruding from a
rock. It is difficult to constrain the length of time the toothwas exposed,
however it is likely that it was affected by a range of weathering pro-
cesses including frequent scrub fires and interaction with meteoric
fluids. The effect of exposure was evident with the outer enameloid
layer of the tooth producing values progressively depleted in 18O to-
ward the exposed surface. The low δ18O values between +5.2–5.9‰
(Fig. 5B spot no. 1–3) at the exposed face correspond to significant deg-
radation of the enameloid and dentine. However, the affected area was
small and the dentinewithin the tooth (+19.5±0.7‰)was found to be
comparable to the outer enameloid surface on the non-exposed face (+
21.4‰, Fig. 6b). This suggests relative localisation of alteration and over-
all robustness of the tissue to short-term abiotic processes.

5.6. Palaeoecological influences

Understanding the biology of ancient sharks and fish as well as the
environments they inhabited is important to contextualise variation
present in tissues, particularly hypermineralised tissues, where primary
isotope values are thought to be original. Glaciation, resulting in the
preferential locking of 16O in terrestrial ice-sheets, was present during
the late Famennian and early Tournaisian (Kaiser et al., 2008). Evidence
suggests these glacial conditions were not as extensive as the modern
climate state (Isaacson et al., 2008), hence a δ18Oseawater offset of
−0.5‰ (VSMOW) is inferred to account for greater 16O concentrations
in the oceans than in the present-day. Assuming these glacial conditions
and subsequent offset to δ18Oseawater, average δ18O values (+17.8,
+18.9 and +19.2‰) from protacrodont tooth enamel (uncorrected
for diagenetic alteration due to their hypermineralised condition) indi-
cate palaeotemperatures of between 34 and 42 °C (calculated using the
equation of Lécuyer et al., 2013). Such sea-surface temperatures are
considerably higher than those calculated from coeval conodont (25
and 29 °C using the equation of Lécuyer et al., 2013).

Enrichment of 16O as a result of bioapatite precipitation from awater
mass influenced by meteoric fluids in both the Protacrodont (Fig. 5b)
teeth cannot be easily dismissed. However, this would imply migratory
habits for the taxa, as the fauna and facies of the Laurel Formation indi-
cate an exclusively marine setting (Druce and Radke, 1979). Similar to
the habits of extant shark species such as Carcharhinus leucas (bull
shark) (Thorson, 1971) and Glyphis gangeticus (Ganges shark)
(Compagno, 1997), Palaeozoic shark taxa are known to have inhabited
freshwater environments on both a permanent (e.g. Xenacanths, Ginter
et al., 2010; members of the Ageleodus genus, Downs and Daeschler,
2001) and temporary basis (e.g. Lissodus, Fischer et al., 2013). Strontium
isotope analysis has been previously employed on chondrichthyan taxa
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(Scharer et al., 2012; Fischer et al., 2013, 2014; Raoult et al., 2016) in
order to quantify the salinity variable. It may be necessary to include
this form of analysis in order to isolate the palaeotemperature signal
of vertebrate microfossil O-isotope data when incorporating fossil taxa
known to inhabit different environments.

Significant ecological differences within fully marine extant shark
genera are reflected in the O-isotope ratios of the mineralised tissues
(Vennemann et al., 2001). The potential migration of ancient sharks
across latitudes or water depths must also be taken into account when
interpreting O-isotope data from nektonic fossil taxa. Significantmigra-
tory behaviour is observed in extant taxa such as Odontaspis ferox
(Fergusson et al., 2008), which has been found at depths of 850 m as
well as very shallow coastal waters. In addition, members of the species
Carcharodon carcharias (great white shark) have been frequently ob-
served migrating long distances, in some cases over 20,000 km in less
than a year (Bonfil et al., 2005). Migratory issues of extinct species
may be compounded in groups such as the Ctenicanthiforms where
tooth development is slower than that observed in modern sharks
(Williams, 2001; Botella et al., 2009). Analysis of species with fast
tooth replacement rates may mitigate some migratory factors as teeth
are more likely to preserve local conditions. Tooth formation can be as
quick as 9–12 days within some extant selachians (Moss, 1967); how-
ever, determining similar tooth replacement in Palaeozoic species is
currently difficult to ascertain.

6. Conclusions

The hypermineralised bioapatite present in vertebrate teeth and
scales provides a proxy capable of reconstructing marine oxygen iso-
tope records from themiddle Palaeozoic to themodern day. Thedensely
crystalline tissues that form enamel, enameloid and acrodin show the
greatest potential of preserving original oxygen isotope signatures. Re-
sults presented herein from a broad range of taxa (scales of
acanthodians as well as the scales and teeth of chondrichthyans and
actinopterygians) indicate eliciting palaeoenvironmental data from
other vertebrate groups is likely.

The utilisation of SIMS, which permits tissue specific analysis, sug-
gests dentine tissue is more susceptible to alteration due to a higher po-
rosity and permeability inherited from an originally high organic
component. The low CAI of conodont fossils analysed here suggests
thermal maturation is not the dominant factor in the lower δ18O values
obtained from vertebrate microfossils. Instead, this work suggests ex-
vivo microbial activity may be a more likely factor in the alteration of
the original oxygen isotope ratios.

Going forward, it is clear that a range of Palaeozoic vertebrate groups
offer an alternative tool for reconstructing palaeoenvironmental condi-
tions (water mass palaeotemperature and palaeohydrological condi-
tion). In addition, the presence of potentially original isotopic
signatures provides a basis for applications in chemostratigraphy
where conodonts are rare or absent. SIMS analysis of targeted
hypermineralised vertebrate microfossil tissues can resolve original O-
isotope values, and therefore can be used in a similar fashion to, and cor-
relatedwith, δ18Oconodont. However, minimising potential δ18O variation
as a consequence of species dependant factors such as migratory habits
remains critical. Ideally analyses should include multiple species and
comparisons to co-occurring or coeval conodonts from other areas.
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The Late Devonian was a time of major evolutionary change encompassing the fifth largest mass 
extinction, the Frasnian–Famennian event. In order to establish a chronological framework for global 
correlation before, during, and following the Frasnian–Famennian mass extinction, we carried out a 
coupled magnetostratigraphic and biostratigraphic study of two stratigraphic sections in the Upper 
Devonian carbonate reef complexes of the Lennard Shelf, in the Canning Basin, Western Australia. 
Magnetostratigraphy from these rocks provides the first high-resolution definition of the Late Devonian 
magnetic polarity timescale. A 581-m-reference section and an 82-m overlapping section through the 
marginal slope facies (Napier Formation) of the Oscar Range as well as a 117-m section at Horse Spring 
(Virgin Hills Formation) were sampled at decimeter to meter scale for magnetostratigraphy. Conodont 
biostratigraphy was used to correlate both sections, and link magnetostratigraphic polarity zones to a 
globally established biostratigraphy. A stable, Characteristic Remanent Magnetization (ChRM) with dual 
polarities (NE, shallowly upward and SW, shallowly downward) is recovered from ∼60% of all samples, 
with magnetite inferred to be the chief magnetic carrier from thermal demagnetization characteristics. 
These directions define a geomagnetic pole at 49.5◦S/285.8◦E and α95 = 2.4 (n = 501), placing the 
Canning Basin at 9.9◦S during the Late Devonian, consistent with carbonate reef development at this 
time. A conservative interpretation of the magnetostratigraphy shows the recovery of multiple reversals 
from both sections, not including possible cryptochrons and short duration magnetozones. Field tests 
for primary remanence include positive reversal tests and matching magnetozones from an overlapping 
section in the Oscar Range. A strong correlation was found between magnetic polarity stratigraphies 
of the Oscar Range and Horse Spring sections, and we correlate 12 magnetostratigraphic packages. The 
relative stratigraphic thicknesses of the isochronous sediments from these two sections indicate that 
carbonate accumulation was ∼4.5× faster in the middle slope deposits at Oscar Range than in the more 
distal, lower slope Horse Spring deposits for the middle Frasnian through Famennian. The magnetic field 
during the Late Devonian underwent a relatively high reversal frequency with good potential for regional 
and global correlation, and should prove useful in deciphering a high-resolution chronostratigraphy across 
the Lennard Shelf to enable higher confidence examination of reef development across a major biotic 
crisis.
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1. Introduction

In the most recent major compilation of the Geological Time 
Scale by Gradstein et al. (2012) the magnetic stratigraphy of Late 
Devonian time is largely unknown, and is regarded as a ‘mixed’ 
polarity interval. This is based on dual polarity magnetizations 
reported for the carbonate reef complexes of the Canning Basin, 
Western Australia (Hurley and Van der Voo, 1987, 1990; Chen 
et al., 1995). The sampling scheme for these studies was site based, 
intended to establish primary paleomagnetic poles for Late Devo-
nian paleogeography, so the history of geomagnetic reversals from 
these rocks remains unexplored. It is the purpose of this work 
to examine in greater detail the pattern of geomagnetic reversals 
during the Frasnian and Famennian, and test correlation between 
different sections within the Lennard Shelf using biostratigraphy 
coupled with magnetostratigraphy. In contrast to Late Devonian 
magnetostratigraphy, the biostratigraphy is well constrained within 
the basin and fore reef complexes, with refined conodont and am-
monoid zonations that relate well to the global Late Devonian 
zonations (Klapper, 1989, 1997, 2007). Microvertebrate (Trinajstic 
and George, 2009), palynomorph (Playford, 1976, 2009) and coral 
(Brownlaw, 2000) biostratigraphic frameworks are also developed 
for this time. The well-constrained stratigraphic ranges for De-
vonian conodont taxa within the Canning Basin make them ex-
tremely useful for correlation and provide a suitable control for 
testing the utility of the magnetozones in this study.

Chronostratigraphy during the Late Devonian is of particular 
significance as this time period includes the Frasnian–Famennian 
boundary. The mass extinction that occurred at this time is among 
the ‘big 5’ mass extinctions in the geological record (Raup and 
Sepkoski, 1982). Isotope geochronology is one way to assess rock 
ages during this time but this is dependent on the occurrence of 
suitable minerals (e.g., zircon from volcanic ashbeds) and active 
volcanism. Biostratigraphic techniques are also limited by the pres-
ence of suitable index fossils and are inadequate when fossils are 
provincial, facies-dependent, or the sample size is limited (such as 
from core). Magnetostratigraphy provides another approach to es-
tablishing a robust and accurate chronostratigraphic framework for 
the Late Devonian, and when coupled with biostratigraphy can be 
used to correlate time during the Late Devonian.

1.1. Geology

In the Late Devonian, Australia formed the northeastern por-
tion of Gondwana and occupied low, southerly latitudes (Hurley 
and Van der Voo, 1987). A carbonate reef complex developed on 
the Lennard Shelf of the Canning Basin, located on the (present-
day) SW margin of the Paleoproterozoic Kimberley basement block 
(Fig. 1). The rugose coastline of the Kimberley block led to dif-
ferential development of reefal carbonate platforms with variable 
depositional and oceanographic settings. For example, the Oscar 
Range locality represents an isolated platform that formed on an 
island of Precambrian metasedimentary basement, detached from 
the main shoreline. Here, Frasnian carbonate facies abut the meta-
morphic basement and Frasnian–Famennian marginal-slope facies 
extend around the edges of the platform. Conversely, the Horse 
Spring locality represents a relatively sheltered mini-basin within 
a large embayment along a broad land-attached shelf (Hurley and 
Lohmann, 1989; Playford et al., 2009).

The Devonian record of reef growth throughout the Canning 
Basin demonstrates a pattern of backstepping throughout most 
of the Frasnian, as a result of rising relative sea level. During 
this time, dominant reef builders were stromatoporoids, corals, 
and microbes (Playford et al., 2009). Starting in the Late Frasnian 
through Famennian, a period of stable sea level is recorded by reef 
progradation (Hurley and Lohmann, 1989; Playford et al., 2009). 
Fig. 1. Simplified geological map of the Lennard Shelf, showing sample sites. 
(Playford and Hocking, 2009; Playford et al., 2009.)

The extinction of stromatoporoids and corals precedes a period of 
microbe-dominated reef growth until the cessation of growth by 
the late Famennian (Playford et al., 2009), when the carbonate sys-
tem transformed into an open marine, mud-rich shelf reflected in 
the Carboniferous Fairfield Group. Some localized deposits of Mis-
sissippi Valley Type Pb–Zn deposits formed during the Carbonif-
erous (Brannon et al., 1996; Christensen et al., 1996; Symons and 
Arne, 2003, 2005), reflecting the passage of chemically active fluids 
at this time (Playford and Wallace, 2001). Later, during the Permo-
Carboniferous glaciation, Devonian–Carboniferous carbonates were 
regionally planed by ice sheets, resulting in significant removal 
of the Fairfield Group and a regional unconformity with underly-
ing Devonian reefal limestones and overlying Permian Grant Group 
glacial sandstones and diamictites (Playford et al., 2009).

The study was conducted in two areas with continuous expo-
sures of stratigraphy. Both Horse Spring and Oscar Range have very 
well-exposed Frasnian to Famennian slope successions. These ar-
eas are ideal for magnetostratigraphic sampling because they do 
not contain significant unconformities. The deep-water environ-
ment of the Horse Spring section was also submerged continuously 
throughout the transgressive–regressive oscillations of the late De-
vonian, and deposition there was likely to be continuous.

The 20–30◦ dipping, middle slope facies of the Oscar Range 
transect (Napier Formation) are dominated by platform-top-derived 
grainstones and reefal margin-derived bioclastic float-rudstones to 
megabreccia blocks. Grainstones exhibit a range of compositions 
reflecting material shedding from shallow environments, from non-
skeletal-dominated (commonly peloids, coated grains, and ooids) 
to skeletal-rich (commonly brachiopods, crinoids and Renalcis frag-
ments), and are often normally graded. Bioclastic floatstones–
rudstones are common in the Frasnian succession and are enriched 
in fragmented stromatoporoid and coral debris, reflecting mechan-
ical reworking of skeletal communities at the margin and subse-
quent downslope transport. Megabreccia deposits with meter-scale 
boulders and multi-meter isolated blocks of microbial boundstone 
occur along discrete horizons or as thick complexes on the slope, 
and are generated through brittle gravitational failure of an early-
lithified, encrusted margin and uppermost slope (Playton, 2008). 
Local microbially encrusted patches and in situ mat-like to domal 
stromatolitic boundstones are volumetrically minor but represent 
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periods of lesser slope accumulation rates, as described by George
(1999) for this and other localities.

Deposits of the Horse Spring section (Virgin Hills Formation) 
dip at 10–20◦ and are indicative of a more-distal, lower slope 
setting when compared to those of the Oscar Range section. Sim-
ilar grainstones and debris deposits (megabreccias and blocks) 
are present in lesser proportions, and bioclastic float-rudstones 
are rare. Mixed siliciclastic-carbonate silt and silty peloid-skeletal 
wackestone to packstone beds comprise a substantial percentage of 
the deposits, likely reflecting greater transport distance, a greater 
contribution of suspended material background deposition, and 
slower depositional rates than at Oscar Range. More abundant in-
traclastic breccias are also observed, where previously deposited 
silty to grainy beds higher on the slope were reworked as clasts 
and deposited in this setting.

Horizontal sediment in geopetal structures, for instance stro-
motactis in cavities of sponge fossils, indicates that formation dips 
reflect primary depositional dips. These have been previously doc-
umented at other localities (Playford et al., 2009), and were ob-
served within the studied sections.

2. Methodology

Middle Frasnian through Famennian marginal slope strati-
graphic successions of the Oscar Range are very well exposed, 
and the Horse Spring transect is the type section for conodont 
biostratigraphy across the Lennard Shelf (Klapper, 2007). For these 
reasons we chose these sections for outcrop sampling. Palaeomag-
netic samples were collected using a handheld, gasoline Pomeroy 
drill. One-inch diameter, ten-centimeter long core samples were 
collected at 0.5–1 m intervals through 581 m of marginal slope 
stratigraphy at Oscar Range until the contact with the overlying 
Fairfield Group was encountered (754 samples). The base of the 
Oscar Range section is located at 17◦54′52.98′′S, 125◦17′58.98′′E 
and top of section is 17◦55′26.18′′S, 125◦17′21.98′′E. Sampling at 
Horse Spring was done at decimetre to sub-meter intervals over a 
117 m thick section (295 samples). The Horse Spring section is lo-
cated between 18◦11′43.91′′S, 126◦1′54.88′′E and 18◦11′40.06′′S, 
126◦1′59.66′′E. An overlapping 82 m section in the Oscar Range 
was sampled to demonstrate internal consistency of magnetization 
(82 samples). The parallel section at the Oscar Range site overlaps 
with the highest (and youngest) part of the primary stratigraphic 
section, and two beds were walked out as stratigraphic tie points 
between the sections. Lateral migration of the sample section by 
compass projection, and targeting of matrix sediment within brec-
cias avoided sampling of rotated reef blocks. Large hand samples 
were taken at regular spacing and around critical stratigraphic in-
tervals in conjunction with core sampling to provide conodont-
and fish-based biostratigraphic control to constrain the magne-
tostratigraphy. Biostratigraphic samples were sent to Macquarie 
University, Sydney, for acid digestion, and the resulting residues 
separated into light and heavy fractions using heavy liquid separa-
tion (polytungstenate). The heavy and light fractions were picked 
for conodont elements and microvertebrates. The 15-fold con-
odont zonation (Girard et al., 2006), modified from the original 
13-fold zonation of the Montagne Noire succession (Klapper, 1989)
and subsequently replicated in the Canning Basin (Klapper, 1997, 
2007), is used as it presents higher resolution than the stan-
dard 9-fold zonation of Ziegler and Sandberg (1990) for the areas 
studied. For the Famennian the standard zonations (Ziegler and 
Sandberg, 1990) are utilized.

Paleomagnetic cores were cut into 10 cm3 specimens and Os-
car Range samples were thermally demagnetized using a Mag-
netic Measurements thermal oven and measured on a 2G cryo-
genic magnetometer at the University of Western Australia. Sam-
ples from Horse Spring were measured on a 2G cryogenic magne-
tometer at California Institute of Technology, and were treated by 
low temperature cycling, followed by mixed alternating field and 
thermal demagnetization using the Rock and Paleomagnetic In-
strument Development (RAPID) system protocol (Kirschvink et al., 
2008). Magnetic directions were determined by principal compo-
nent analysis (Kirschvink, 1980) or by using the arc method of 
McFadden and McElhinny (1988) with the aid of PalaeoMag soft-
ware (Jones, 2002).

Magnetic stratigraphies were defined by plotting directions as 
an angle from the mean virtual geomagnetic pole (VGP) of the 
entire dataset, with the mean VGP normalized to 0◦ for normal 
polarity samples and 180◦ for reversed polarity samples. Where 
the characteristic remanent direction from a single sample crosses 
the magnetic equator, defined as 90◦ along a great circle from the 
mean direction, we infer that a reversal of magnetic polarity is 
recorded. Two or more stratigraphically adjacent samples of the 
same polarity define a magnetozone, whereas zones indicated by 
only one sample are interpreted as ambiguous.

3. Results

3.1. Directional analysis

Natural remanent magnetic intensity for samples with stable 
magnetic directions varied from 10−4 to 10−6 A/m. A number of 
samples had NRM intensities of 10−7 A/m or lower but hosted no 
stable magnetization. 291 samples from Oscar Range and 148 from 
Horse Spring show a low temperature component below 200 ◦C 
blocking temperature (Fig. 2A and 2B). This is interpreted to be 
due to goethite present within samples and the direction of mag-
netization is close to the time-averaged, present-day field. We infer 
that this direction represents a viscous magnetic overprint of the 
samples acquired during the Brunhes normal field.

Above 200 ◦C, thermal demagnetization reveals a characteris-
tic component trending towards the origin. The path toward the 
origin is of variable stability, with highly linear (low maximum an-
gular deviation, MAD), and more erratic (high MAD) traces. Many 
samples became unstable after heating above 475 ◦C, with only 
a small number remaining stable above this temperature. This is 
likely due to a dominance of magnetite as a remanence-hosting 
phase, combined with the weak intensity of magnetism in both 
Devonian times and carbonate rocks.

From the Oscar Range collection, 654 samples yield a high tem-
perature magnetization, with 361 primary directions passing sta-
tistical treatment described below (Fig. 2C and 2E). A total of 235 
high temperature directions were recovered from Horse Spring, 
140 of which are considered primary (Fig. 2D and 2F). This dual 
polarity component is similar to the expected Devonian directions 
for the Canning Basin and Gondwana APWP (Chen et al., 1995;
Hurley and Van der Voo, 1987; McElhinny et al., 2003; Torsvik 
et al., 2008) and is considered to be primary. Fig. 3 shows eight 
examples of samples with characteristic reversed and normal field 
directions preserved. The remainder of the high temperature mag-
netic components (roughly two-thirds of the samples) are typically 
better defined by line fits with MAD values <15◦ , and can be di-
vided into two populations, high inclination results with an N–S 
direction (mostly negative, northerly) that correspond to probable 
Permo-Carboniferous overprinting, and randomly oriented direc-
tions of uncertain origin and significance.

For both sections characteristic remanent directions were trans-
formed into single specimen lower hemisphere VGP space (black 
and grey points in Fig. 2E and 2F). Although scatter is present, 
VGPs are concentrated in the southwestern quadrant, and are 
most concentrated around the expected direction for Canning 
Basin based upon Gondwana’s APWP for Late Devonian times
(Torsvik et al., 2008). While it is expected that over periods of 
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Fig. 2. Equal area stereonets of (A) low temperature overprinting components corresponding to present day field directions from Oscar Range. The red dot shows the 95% 
Fisher mean (Declination = 359.8, Inclination = −41.2, k = 14.0, α95 = 2.29, n = 291), (B) low temperature overprinting components from Horse Spring. The red dot 
shows the 95% Fisher mean (Declination = 0.9, Inclination = −43.2, k = 35.0, α95 = 1.99, n = 148). Devonian directions from (C) Oscar Range and (D) Horse Spring. Grey 
Diamonds in (C) and (D) show Fisher mean directions encircled by their 95% confidence cones. (E) Oscar Range and (F) Horse Spring characterizing directions plotted as lower 
hemisphere VGPs along with CB1 (Hurley and Van der Voo, 1987), CB2 (Chen et al., 1995) poles and Gondwana’s APWP (blue) rotated to Australian co-ordinates (Torsvik 
et al., 2008). Small red ellipses indicate the α95 for each pole, and large red ellipses show the limit of the 45◦ VGP cut off. Black points indicate accepted directions and grey 
points indicate excluded directions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
paleomagnetic secular variation (PSV) VGP scatter is Fisherian 
(Deenen et al., 2012) both datasets show a clearly elongate VGP 
distribution. The non-Fisherian elongation of VGPs is interpreted 
as the expression of APW of Australia during ∼20 Ma accumula-
tion of the reef section in the Late Devonian, superposed by PSV 
and directional scatter due to other effects (lightning etc.). Both 
earlier Canning Basin poles (CB1 and CB2) plot amongst the most 
concentrated region of VGPs, and we applied a 45◦ VGP cut off 
excluding directions that lie outside small circles centred upon ei-
ther Canning Basin poles (black points in Fig. 2E and 2F) in order 
to avoid interpretation based upon suspect directions.

The Devonian directions from the Oscar Range and Horse Spring 
(Fig. 2C and 2D) encapsulate the mean of the other population
within their 95% confidence ellipses. Magnetism from both sections 
pass C quality reversals tests, supporting an interpretation of a pos-
sibly primary depositional remanence (McFadden and McElhinny, 
1990). Directions from the Oscar Range have a 1.48◦ difference 
between means for normal and reversed populations, and 19.22◦
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Fig. 3. Orthographic, and equal area plots of demagnetization data for (a)–(d) Late Devonian reversed directions, (e)–(h) Late Devonian normal directions, and anomalous 
directions (i)–(j). Filled points (lower hemisphere/declination) hollow points (upper hemisphere/inclination).
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Table 1
Distribution of conodont species at Oscar Range, Napier Formation.
critical angle (95% confidence level). Horse Spring populations have 
a 1.8◦ difference between means and a 19.74◦ critical angle (95% 
confidence level). Using all Devonian directions defines a geomag-
netic pole at 49.5◦S/285.8◦E with α95 = 2.4 (n = 501). This result 
places the Canning Basin at 9.9◦S during the Late Devonian, con-
sistent with carbonate reef development at this time.

3.2. Biostratigraphy

3.2.1. Oscar Range (Table 1)
The lower part of the section is characterized by long ranging 

conodont taxa (zones 5–10). Finer resolution is achieved in the up-
per part of the section with conodont zone (CZ) 10 constrained 
at 112.8 m. In addition the jawless fish Australolepis seddoni with 
a known age range of CZ 6–10 (Trinajstic and George, 2009;
Turner, 1997) occurs in this sample, further confirming this range. 
Both CZ 13 and 13b are identified at 177.8 m and 192.8 m re-
spectively and appear to be particularly robust (up to 228.7 m). 
However, CZ 13c cannot be determined and it is the upper limit 
of this zonation that defines the Frasnian extinction event in the 
Canning Basin (Klapper, 2009). The first Famennian zone identified 
is at 233.2 m and is determined by the co-occurrence of Pa. tri-
angularis, Pa. superlobata and Pa. minuta minuta. This indicates that 
Frasnian–Famennian boundary lies above the 228.7 m interval and 
below the 233.2 m interval of the section. The boundary is arbi-
trarily placed at the centrepoint between the youngest Frasnian 
sampling locality and oldest Famennian samples. It is of note that 
the stage boundary region also contains a reversal in the conserva-
tive interpretative magnetostratigraphies. A conodont assemblage 
(sample number 600) was collected from above the reefal section 
and is dated as CZ Lower Pa. marginifera and is determined to be 
part of the Fairfield Group. This sample indicates that the reefs be-
came extinct before the end of the Famennian.

3.2.2. Horse Spring (Table 2)
The biostratigraphy of the Horse Spring section is well docu-

mented and the position of the Frasnian–Famennian boundary is 
consistently placed at above 35.75 m and below 35.95 m (Klapper, 
2007; Playford et al., 2009; Trinajstic and George, 2009). From our 
sampling the boundary lies between 34.6 m and 36.65 m. The 
lower 2 m of the section comprises CZ 4–10, however, the con-
densed nature of the section meant that the first paleomagnetic 
hole was drilled at 1.6 m within CZ 10. Samples obtained from 
2.2–6.8 m fall with CZ 11. There is then a sharp decline in con-
odont taxa, both in numbers and diversity through CZ 12 and then 
a rapid recovery and speciation through CZ 13a, which is then fol-
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Table 2
Distribution of conodont species at Horse Spring, Virgin Hills Formation.
lowed by another decrease in both diversity and numbers through 
CZ 13b–c. The first Famennian sample is identified at 36.65 m and 
dated as early to middle Pa. triangularis based on the presence of 
Pa. triangularis and Polygnathus brevilamina. The Famennian section 
extends into the Pa. crepida zone, with the uppermost samples con-
taining long ranging taxa indicating a possible minimum age of 
lower Pa. marginifera. However, Klapper (2009) obtained finer res-
olution with his data indicating the section is no younger then 
Pa. crepida. Table 2 describes the conodont biostratigraphy from the 
Upper Frasnian to Mid-Famennian of the Horse Spring section.

3.3. Late Devonian magnetostratigraphy

There are multiple magnetic reversals recorded in the Late 
Devonian rocks within both sections. Fig. 4 depicts the magne-
tostratigraphy from the Oscar Range and Fig. 5 from Horse Spring. 
The magnetic declination and inclination data from stratigraphi-
cally ordered samples are plotted as angles from the virtual geo-
magnetic pole (VGP) calculated from the mean direction. Numer-
ous geomagnetic reversals are observed in the remainder of the 
section, although some magnetozones are recorded by single sam-
ples. Many of these single-sample “chrons” are adjacent to one 
another, indicating a period of rapid polarity changes that extend 
over tens of metres. Because these zones are excessively short, 
it is possible that they do not record the time-averaged geomag-
netic fields, or represent magnetic excursions (Coe and Glen, 2004), 
or even the delayed acquisition of magnetization (van Hoof and 
Langereis, 1991). As such, we regard the polarity assignments of 
these intervals as uncertain. These single sample cryptozones are 
shown as ambiguous intervals of mixed polarity (grey in the col-
umn of Fig. 4 and Fig. 5), and reversed or normal magnetozones 
are defined only where two or more samples with the same po-
larity exist. Some uncertainty in the interpreted polarity reflects 
poor recovery of a robust paleomagnetic remanence, such as the 
base of the Oscar Range section or the middle Famennian portion 
(50–70 m) at Horse Spring, which are regarded as “undefined” or 
mixed polarity, respectively. Once zones defined by single samples 
are combined as “mixed polarity zones” a total of 44 unambiguous 
polarity zones remain in the Oscar Range section and 21 at Horse 
Spring.

At the Oscar Ranges site, a test of the strata-bound magnetic 
reversal pattern was carried out by sampling of a parallel section 
∼200 m from the main section. The matching pattern of geomag-
netic reversals is shown in Fig. 4, with thin red lines indicating the 
interpreted correlation in magnetozones. Both sections preserve a 
matching pattern of magnetic polarities marked by a reversal at 
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Fig. 4. Magnetostratigraphy of the Oscar Range section. Age constraints from conodont stratigraphy are plotted against magnetostratigraphic polarity columns for the main and 
parallel sections. The left hand polarity columns show all normal and reversed chrons, while the right hand columns have chrons defined by a single sample as ambiguous 
grey regions. Correlations between the two sections are displayed with red lines. Graphs of VGP angle are also shown. Dashed lines show the possible age range for a given 
stratigraphic interval. The green line marks the Frasnian–Famennian boundary. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
507.5 m in the main section and the base of the short, parallel sec-
tion. The following normal polarity has been correlated to a single 
normal polarity determination in the main section. Following this 
there are two well-defined reversed and normal polarity magneto-
zones that correlate between both sections. Matching normal and 
reversed polarity sequences for both the overlapping and parallel 
sections provide strong evidence for a primary depositional rema-
nence, as well as demonstrate internal consistency within the main 
section.
Fig. 6 shows the correlation of the pattern of magnetozones 
between Horse Spring and Oscar Range, based on 11 prominent 
chronostratigraphic tie-points defined by the tops and bottoms of 
the longest duration magnetozones. The strength of these correla-
tions can be evaluated by comparing thicknesses between corre-
lated surfaces (Fig. 7). While sedimentation rate will be increas-
ingly variable as the interval of observation decreases, over longer 
durations it approaches a bulk sedimentation rate. Our assump-
tion is that the 10s of meters thick packages defined by these 
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Fig. 5. Magnetostratigraphy of the Horse Spring section: age constraints from conodont stratigraphy are plotted against the magnetostratigraphic polarity column, and graph of 
VGP angle. The left hand polarity column shows all normal and reversed chrons, while right hand column has chrons defined by a single sample as ambiguous grey regions. 
Dashed lines show the possible age range for a given stratigraphic interval. The green line marks the Frasnian–Famennian boundary. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
surfaces average out short duration changes in sedimentation rate. 
The correlations contain enough stratigraphy between picks to av-
erage out higher frequency changes that may be occurring within. 
A strong linear correlation of magnetozone packages is apparent 
between the Oscar Range and Horse Spring sections. Taking the 
total thickness of the accumulated sediments during the relevant, 
correlated interval allows us to calculate that bulk rates of de-
position in packstone-dominated slopes at Oscar Range was ∼4.5
times faster than the dominantly wackestone–siltstone deposition 
at Horse Spring.
4. Discussion and conclusions

The results of this study indicate that geomagnetic rever-
sals during the Late Devonian are common, as suggested by 
previous workers using much shorter sampling intervals (Hurley 
and Van der Voo, 1990). The geological timescale of Gradstein 
et al. (2012) indicates that the Late Devonian spans ∼23.75 Myr
(million years). As such the reversal rate for 44 polarity inter-
vals from the Oscar Range is similar to the Paleogene reversal 
frequency of 2–5 reversals/Myr (Pal and Roberts, 1988). If single 
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Fig. 6. Correlation of magnetozones between Horse Spring and Oscar Range. Labeled 
is the broad structure N = dominantly normal zone, R = dominantly reversed zone, 
M = mixed zone (lowercase suffix indicates normal/reversed bias within the inter-
val). Numbering scheme starts at the base and increases upwards.

sample chrons are included this rate increases. It is possible that 
the single sample chrons could also be the result of delayed onset 
of magnetization (van Hoof and Langereis, 1991). Although these 
cryptochrons present problems for correlation, the broad structure 
of magnetic reversals during the Late Devonian was reproducible, 
and shows strong correlation.

A magnetic reversal was observed near the Frasnian–Famennian 
stage boundary at both localities. It may prove to be a useful rever-
sal on which the Frasnian–Famennian boundary can be determined 
in rocks lacking index fossils. Furthermore, magnetostratigraphy 
coupled with biostratigraphy appears to have the potential to in-
crease intra-stage level correlation during the Late Devonian. For 
instance, the Upper Triangularis–Mid Crepida conodont constraint 
for 250–300 m in the Oscar Range section contains a number of 
reversals, which may prove useful for sub-stage correlation.

This correlation has allowed the comparison of depositional rate 
in a more proximal slope environment (Oscar Range) to a distal 
slope (Horse Spring) and shown that the proximal slope is ac-
cumulating at a rate ∼4.5× faster, as reflected by debris- and 
grain-dominated deposits. Slope accumulation rate is related to 
proximity to the reefal margin and platform-top, from where the 
majority of sediment is derived, as well as oceanographic setting, 
which affects the productivity of these carbonate source facto-
ries. The Oscar Range locality is interpreted to be in a relatively 
Fig. 7. Correlation diagram between Oscar Range and Horse Spring. Black points 
correspond to boundaries of magnetostratigraphic packages in Fig. 6. The grey line 
shows the linear model fit. Axes show stratigraphic level in meters.

proximal slope setting, as evidenced by steep depositional dips 
(up to 30◦), and as such, is dominated by mud-poor deposits with 
higher depositional rates (debris and grainstone) that were capable 
of freezing along steep gradients with minimal downslope trans-
port distances. In contrast, Horse Spring slope strata have lower 
depositional dips (typically less than 20◦), indicating a more dis-
tal setting, with accordingly greater proportions of silty deposits 
that accumulated at lower rates via dilute turbidite or suspen-
sion processes. Furthermore, the transect at the Oscar Range is 
located along the open ocean-facing side of an isolated carbon-
ate platform, where fine-grained terrigenous input is at a mini-
mum, normal marine circulation is prevalent, and wave or current 
energy is unhampered – an ideal scenario for maximum carbon-
ate productivity. The Horse Spring locality, on the other hand, 
is located on the inward margin of a large-scale (50 km across) 
embayment along the hinterland-attached Lennard Shelf, where 
fine-grained terrigenous material is available, minibasin restriction 
is more likely, and open-ocean swells and bottom currents are 
more inhibited – factors that can easily dampen carbonate pro-
ductivity. Thus, the variations in position along the slope profile 
and paleogeographic setting from the Oscar Range to Horse Spring 
localities are interpreted as key controls on overall changes in 
sediment accumulation rates, as demonstrated by the integrated 
magnetostratigraphic- and biostratigraphic-based correlations pre-
sented here.

4.1. Conclusions

This study presents the first comprehensive magnetic stratigra-
phy for the Late Devonian covering the Middle Frasnian through 
to Late Famennian. Sampling of Middle Frasnian to Famennian 
slope environments of the Lennard Shelf reefal platform complexes 
has shown frequent geomagnetic field reversals. Multiple polar-
ity zones were recovered from both the Oscar and Horse Spring 
Ranges. Correlations between the two sections were constrained 
with conodont biostratigraphy. The Frasnian–Famennian boundary 
was found to fall between 228.7–233.2 m along the Oscar Range 
section and between 34.6–36.65 m at Horse Spring. Integration 
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of biostratigraphy and magnetostratigraphy allowed for a more 
confident correlation framework. Magnetic directions correspond 
to those expected for the Canning Basin during the Late Devo-
nian, with a paleopole of 49.5◦S/285.8◦E and α95 = 2.4 (n = 501). 
This yields a paleolatitude of 9.9◦S consistent with carbonate reef 
development during the Late Devonian. C-class reversal tests for 
both sections, and matching magnetozones from the overlapping 
stratigraphic section provide strong evidence for primary magne-
tization and internal consistency of magnetozones in the Oscar 
Range, while correlation of Horse Spring to Oscar Range results 
demonstrates robustness. Enhanced chronostratigraphic correlation 
capability of Late Devonian strata can be achieved using this in-
tegrated approach of magnetostratigraphy, coupled with biostratig-
raphy. A reference framework is presented here. The establishment 
of such frameworks allows for unprecedented examination of de-
positional systems, stratigraphic evolution, and global phenomena 
such as the Frasnian–Famennian biotic crisis.
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Here we report four high-resolution carbon isotope records in addition to trace element data for the Frasnian–
Famennian (F–F) boundary interval in the Lennard Shelf carbonate system of the Canning Basin, Western
Australia. This region lacks the characteristic black shale horizons associated with the global Late Devonian
Kellwasser extinction events, yet still exhibits a trend in carbon isotope character similar to what has been
reported from elsewhere in the world (two positive δ13C excursions with ~3–4‰ amplitudes). Enrichments in
select trace element ratios suggest that both excursions are related to periods of oxygen deprivation and perhaps
increased biological productivity. Given the continuous and stratigraphically expanded nature of Lennard Shelf
sections, together with high-density sampling constrained by both conodont biostratigraphy and
magnetostratigraphy, we observe that the Upper Kellwasser isotope excursion (maximum δ13C values) and as-
sociated trace element enrichments occur distinctly lower than the F–F boundary level. These results have impli-
cations for the paleoenvironmental conditions leading up to the Late DevonianMass Extinction in terms of ocean
chemistry and circulation patterns. This data set allows for a rare, detailed look at the temporal relationship
between the Kellwasser events and the F–F boundary and constrains the pattern of carbon isotope perturbations
at the intra-zonal scale.

© 2015 Published by Elsevier B.V.

1. Introduction

The Late DevonianMass Extinction (LDME) is recognized as one the
five greatest biotic crises of the Phanerozoic (Sepkoski, 1986). Decades
of research on numerous European localities has led to the understand-
ing that there are actually two separate extinction pulses known as
the Upper and Lower Kellwasser events in the linguiformis (or
Montagne Noire Zones 13b and 13c of Klapper, 1989) and rhenana
(Montagne Noire Zones 12 and 13a) conodont zones, respectively, of
the late Frasnian. These horizons are characterized by significant faunal

turnover, positive carbon isotope excursions (average amplitude of
about +3‰), and the deposition of black shales and bituminous lime-
stones (e.g. McGhee, 1996), and are thought to reflect widespread
anoxic conditions (Feist, 1985; Buggisch, 1991; Wendt and Belka,
1991; Hallam and Wignall, 1999) during pulses of sea level transgres-
sion (Johnson et al., 1985; Sandberg et al., 1988, 2002; Buggisch, 1991).

However, the timing of the carbon isotope excursion associatedwith
the Upper Kellwasser deposits and extinctions in Europe (herein
referred to as the Upper Kellwasser excursion) is not well constrained
and the cause(s) poorly understood. The majority of Late Devonian
geochemical studies document Upper Kellwasser excursion maxima at
or slightly higher than the F–F boundary (e.g. Joachimski et al., 2002;
Xu et al., 2003; Buggisch and Joachimski, 2006; George et al., 2014). As
a result, they inadvertently lump the succession of related geo- and
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bio-events together and give the illusion that the Upper Kellwasser ex-
cursion and F–F boundary are time-equivalent. This can be particularly
problematic when attempting tomake chronostratigraphic correlations
or to determine causal mechanisms.

Exacerbating these problems are the conflicting isotope records that
have been reported for this time period, with some workers noting
either the absence of isotopic excursions (Geldsetzer et al., 1987), or
the occurrence of negative excursions (Goodfellow et al., 1988; Wang
et al., 1991), or the absence of organic-rich deposits (e.g. Joachimski
and Buggisch, 1993; Bond et al., 2004). These discrepancies have gener-
ated debate over the role of global anoxia as a potential kill mechanism.
Paleo-redox data for this time interval are also contradictory: whereas
the trace element analyses from most studies have given credence to
oceanic anoxia (e.g. Riquier et al., 2006), others infer oxic conditions
(e.g. George et al., 2014). Furthermore, in many localities around the
world, F–F boundary sections are highly condensed (e.g. Joachimski
et al., 2002), or incomplete due to unconformities and depositional
hiatuses related to the sharp marine regression in the uppermost
Frasnian (Johnson et al., 1985; Sandberg et al., 1988; Geldsetzer et al.,
1993; Muchez et al., 1996; Stephens and Sumner, 2003), and/or limited
in terms of sampling density or biostratigraphic control at the intra-
biozonal scale (e.g. Bratton et al., 1999; Stephens and Sumner, 2003;
van Geldern et al., 2006).

This contribution reports new data from the northern margin of
Gondwana in order to constrain the timing of the Upper Kellwasser
excursion and to better understand the causal mechanism(s) relating
to the Kellwasser events. Here we present four detailed carbon isotope
profiles, constrained at the intra-zonal level by high-resolution
conodont biostratigraphy and magnetostratigraphy. We obtained our
data from measured outcrop sections through organic-poor facies in
variable slope environments of the Lennard Shelf mixed carbonate-
siliciclastic system, Canning Basin, Western Australia (Fig. 1). In this

region, middle-slope breccia-grainstone and upper-slope boundstone
settings appear to be stratigraphically expanded relative to many
other global localities. In Europe, for example, Conodont Zone 13
(Fig. 2) is generally b2m thick (Buggisch and Joachimski, 2006), where-
as in this study, the same interval of time is represented by N20 m of
stratigraphy. As such, our sections provide a continuous, more expand-
ed view of upper Frasnian to lower Famennian strata and allow for a
more detailed examination of the Upper Kellwasser excursion as it
relates to the timing of the F–F boundary. The stable isotope data, with
some accompanying trace element analyses, also provide insight into
changes in the global carbon pool and redox conditions of the ocean
during this time.

2. Area descriptions, methods & materials studied

During the Middle Devonian, subsidence and rifting of the Canning
Basin (e.g. Veevers and Wells, 1961; Kennard et al., 1994) led to the
prolific growth of carbonate reefs along the shallow terraces of the
Lennard Shelf. Today, over 350 km of Middle to Late Devonian carbon-
ates are exposed in the northern part of the basin and have been
subjected to decades of stratigraphic, paleontological, and geochemical
research (Guppy et al., 1958b; Playford and Lowry, 1966; Druce, 1976;
Playford, 1980; Becker and House, 1997; George et al., 1997; Stephens
and Sumner, 2003; Nothdurft et al., 2004; Playford et al., 2009; and
others). During the interval of timemost relevant to this study, namely,
the Late Frasnian and Early Famennian, the reefal platform and slope
system exhibited progradational growth morphology and experienced
episodic collapse events that transported large amounts of material
down-slope (Playford, 1980; Sandberg et al., 2002; Playton, 2008;
Playford et al., 2009). An abrupt fall in sea level coincident with the
F–F boundary resulted in the sub-aerial exposure and erosion of
platform-top facies while sedimentation continued uninterrupted on

Fig. 1.Mapoffield area (modified after Playford et. al., 2009). Samples for this studywere collected from four outcrops along the Lennard Shelf inWestern Australia; Casey Falls (CL), Virgin
Hills Formation atHorse Spring Range (VHS), South Oscar Range (SO), and theWindjanaGorge area (WV). Insets show the location of the Lennard Shelf carbonate system in relation to the
Canning Basin and Australia.
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the slope and in the basin. As such, deeper water settings were prefer-
entially targeted in this study because of their potential for stratigraphic
completeness.

Four stratigraphic sections from sites spanning 200 km across the
Lennard Shelf outcrop belt were investigated in detail for facies and
stratigraphy, and sampled for carbon isotope and trace element
geochemistry, biostratigraphy, and magnetostratigraphy (Fig. 1). Sam-
ples include plugs (2.5 cmdiameter, 10 cm length) and hand specimens,
and were collected at a spacing of 16–95 cm (1 sample/59 cm on aver-
age) from three relatively thick (ca. 50–250 m) middle- and upper-
slope sections (Table 1) in the southeastern part of the Oscar Range
(SO; 17°54.983′S, 125°17.9′E), from the Virgin Hills formation in the
Horse Spring Range (VHS; 18°12.133′S, 126°01.483′E), and north of
Windjana Gorge (WV; 17°23.767′S, 124°56.767′E) in the Napier Range.

For comparison purposes, samples from one relatively condensed
transect through silt-dominated lower-slope deposits at Casey Falls in
the Lawford Range (CL; 18°43.983′S, 126°5.119′E) were also obtained.
Specimens for geochemical and isotopic analysis were typically taken
from N5 cm below the modern surface (i.e., deepest portion of plug
sample). Sampling of breccias excluded blocks and allochems, instead
targeting the matrix and marine cements, to ensure that geochemical
analyses were representative of the time of deposition and that paleo-
magnetic analyses were conducted on presumably unrotated material.

Integrated magnetostratigraphy and conodont biostratigraphy
provided the primary temporal constraints for the geochemical analy-
ses. The paleomagnetic reversal records were derived from previously
published data sets analyzed at the University of Western Australia;
data for VHS and SO were reported by Hansma et al. (2015), and WV

Fig. 2.Measured sections showing bio- andmagnetostratigraphic control used for correlation and to constrain the position of the F–F boundary. Paleomagnetic reversal records (partials)
are fromHansma et al. (2015) and E. Tohver (personal communication). Grey shading shows correlation of normal (andmixed-normal) polarity chrons.M=mudstone,W=wackestone,
P = packstone, G = grainstone, R = rudstone, Br = breccia, B = bound/bafflestone.

Table 1
Depositional characteristics and isotopic data associated with Kellwasser equivalent excursions 1 and 2. Amplitude and maximum δ13C values are reported relative to VPDB. Data for ex-
cursion 1 at WV and CL are not available because neither section extended into the age-appropriate strata. See Fig. 1 for non-abbreviated locality names.

Section Paleogeographic
setting

Depositional
environment

Excursion 1 (L.KW equivalent) Excursion 2 (U.KW equivalent)

Associated facies Amp. Max. Associated facies Amp. Max.

SO Isolated, open marine Middle–upper
slope

Skeletal-rich megabreccia +3.4‰ +4.4‰ Platform-derived
packstone/grainstone, breccia

+2.5‰ +3.9‰

VHS Land attached, broad
embayment

Middle slope Skeletal-peloidal packstone/grainstone,
microbial-dominated boundstone

+3.5‰ +4.7‰ Platform-derived grainstone,
megabreccia, wackestone

+3.2‰ +4.6‰

WV Land attached Upper slope Not available Massively bedded microbial
boundstone, megabreccia

+2.5‰ +3.4‰

CL Land attached, reef
spine

Lower slope Not available Silt-dominated
wackestone/packstone

+2.8‰ +3.5‰
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was evaluated by E. Tohver (personal communication). Paleomagnetic
data for CL were not incorporated into this study—due to the relatively
condensed nature of this section, magnetostratigraphic correlations
were ambiguous. Samples obtained for conodont analysis were collect-
ed from all sections butwere only age diagnostic for the SO, VHS, and CL
sections (Hansma et al., 2015; Roelofs et al., 2015). For additional con-
straint, an independent conodont study (Klapper, 2007) conducted at
the VHS site was incorporated into our work.

For carbon isotopes, 350 sampleswere analyzed at the Stable Isotope
Research Facility at the University of Washington; 82 are presented
from the SO section, 169 from VHS, 66 from WV, and 33 from CL.
Hillbun et al. (in revision) evaluated all samples for diagenetic alteration
and showed that bulk-rock analyses record primary marine δ13C values
useful for regional and global correlations. Samples thatwere previously
identified as potentially dolomitized, recrystallized, or otherwise
altered were not included in this study. Following the bulk-rock meth-
odology of Stephens and Sumner (2003), and the quality control
workflow of Hillbun et al. (in revision), sample cores were polished
and then drilled using a hand-heldWoodtek drill with a diamond coat-
ed bit. All sample powderswere reactedwith phosphoric acid at 70 °C in
an automated Kiel device with the resulting CO2 gas analyzed by a
ThermoFinnigan MAT253 mass spectrometer. The analytical precision
of δ13Ccarb and δ18O analyses based on sample replicates and laboratory
standards is ≤±0.1 ‰. Data were corrected using laboratory standards
and are reported here in standard delta notation relative to VPDB.

Trace element analyses for the SO section were carried out by
Chemostrat, Inc. Each sample was ground to a powder in a ball mill,
and following Li-metaborate fusion, was analyzed using inductively
coupled plasma optical emission spectrometry and mass spectrometry
(ICP-OES MS). The methods of fusion and analysis are those described
in Jarvis and Jarvis (1995). These analytical methods result in data for
both major- and trace elements, reported as oxide percent by weight
and parts per million by weight (ppm), respectively. Precision for the
major element data was generally better than 2% and ca. 3% for the
high-abundance trace element data derived by ICP-OES. The remaining
trace elements determined from the ICP-MSwere generally less precise,
with analytical error of ca. 5%. Analytical error is ±1% for major and
±3–7 ppm for trace elements depending on abundance. Expanded
uncertainty values (95% confidence) that incorporate all likely errors
within a statistical framework derived from11 batches of 5 certified ref-
erencematerials (CRMs), each prepared in duplicate, are typically 5–7%
(relative) for major elements, and 7–12 % (relative) for trace elements.

3. Results

3.1. Bio- and magnetostratigraphic constraints on the F–F boundary

To determine the location of the F–F boundary, the widely used
standard conodont zonations of the Frasnian (Montagne Noire succes-
sion, Klapper, 1989; Girard et al., 2005) and Famennian (Ziegler and
Sandberg, 1990) are applicable to our sections in the Lennard Shelf
(Fig. 2). As defined at the boundary-stratotype section in Montagne
Noire, France (House et al., 2000), the lower boundary of the triangularis
Zone, and base of the Famennian Stage, is marked by the lowest occur-
rence of Palmatolepis subperlobata. In our VHS section, the interval
between the lower triangularis Zone and the uppermost part of Frasnian
Zone 13 (i.e. themargin of error around the stratigraphic position of the
F–F) is only 20 cm; in the SO section it is less than 4.3m, and in CL it is no
more than 5.7 m. At VHS and SO, the F–F boundary is arbitrarily placed
at the stratigraphic midpoint between the latest known Frasnian
(35.75 m and 228.7 m, respectively) and earliest known Famennian
(35.95 m and 233 m, respectively) strata (Fig. 2). At CL, the boundary
is less biostratigraphically constrained but is currently placed just
below the lowest observed occurrence of P. subperlobata, at the base
of the first microbial boundstone (at 7.5 m).

Magnetostratigraphic correlation of WV with previously examined
records from VHS and SO (Hansma et al., 2015) revealed seven major
magnetozones for the interval of time studied (Fig. 2; Frasnian conodont
Zone 11 to Famennian crepida Zone). Four periods ofmixed, dominantly
reversed polarity and three periods of normal polarity have been recog-
nized, and the F–F boundary has been identified within the N7 normal
chron. In the WV section, where biostratigraphic control is lacking, the
boundary is constrained within the N7 chron, an interval that is
~10 m thick; the F–F boundary is arbitrarily placed at the center point
of this chron (Fig. 2).

3.2. Carbon isotope stratigraphy

High-resolution carbon isotope stratigraphy reveals two major
positive excursions stratigraphically lower than the F–F boundary. The
timing and amplitude of these perturbations are comparable between
sections, despite differences in facies, depositional environments, and
paleogeographic settings (Table 1). Furthermore, petrographic analysis
of selected samples reveals excellent preservation of original fabrics,
relatively minor amounts of calcite recrystallization, and the absence
of dolomitization, suggesting that the isotopic composition of the origi-
nal seawater is represented (Hillbun et al., in revision).

Excursion 1 (Fig. 3) is stratigraphically lower than excursion 2 and is
observed in only two sections. In SO, an increase in δ13C values from
+1‰ to +4.4‰ (max value) is measured from megabreccia deposits
and constrained within conodont Zones 10 and 13. In the VHS section,
isotope values recorded in thick grainstone beds increase from+1.2‰
to +4.7‰ (max value) within Zones 12 and 13a. While excursion 1
exhibits similar amplitudes and maximum values in both sections, the
interval of elevated values in SO is noticeably expanded stratigraphically
down-section relative to VHS. Based on conodont biostratigraphy,
excursion 1 can be correlated with the deposition of the Lower
Kellwasser Horizon in Europe (e.g. Buggisch and Joachimski, 2006),
and we interpret it to be time-equivalent to the Lower Kellwasser
excursion reported from localities around the world (Joachimski et al.,
2002; Xu et al., 2003; Stephens and Sumner, 2003; George et al., 2014;
and others).

Excursion 2 is documented in all four localities (Fig. 3). In both SO
and VHS, δ13C values increase from +1.4 ‰ and +1.3 ‰ (baseline
values) to +3.9 ‰ and +4.6 ‰ (max. values), respectively, within
conodont Zone 13b. Isotopic data from WV show a positive shift
(~ + 0.9‰ baseline values to +3.4‰ max values) occurring wholly
within the R8 chron, which is constrained within conodont Zone 13b,
and possibly 13a, based on magnetostratigraphic correlation. Although
resolution of conodont biostratigraphic control is less precise in the con-
densed CL section, the data are similar; δ13C values from silt-dominated,
lower slope facies begin to increase in Zone 13b (and possibly the very
uppermost part of Zone 13a) from +0.7 ‰ (baseline values), and
reach maximum values (+3.5 ‰) just below the first appearance of
Pa. subperlobata.

In all sections, increasing δ13C values associatedwith excursion 2 can
be roughly correlated with the onset of deposition of the Upper
Kellwasser horizon in Europe during Zone 13b (Fig. 3). However,
maximum isotope values associated with the Lennard Shelf excursion
begin to decline towards more baseline values during the upper
Frasnian, before the F–F boundary and the cessation of Upper
Kellwasser shale deposits in Europe. In VHS, SO, and WV in particular,
the F–F is clearly not associated with a positive shift in δ13C values.
The transition from the uppermost Frasnian into the triangularis Zone
of the lower Famennian is marked by slightly elevated δ13C values
relative to Frasnian baseline values of+1 to+1.5‰. This slow recovery
trend, albeit typically observed only in the triangularis Zone, is charac-
teristic of European isotope records (e.g. Buggisch and Joachimski,
2006). Given the temporal constraints provided by the bio- and
magnetostratigraphy data, we interpret excursion 2 as the Upper
Kellwasser excursion, but it pre-dates conventional timing. Rather
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than maximum δ13C values being coincident with or closely adjacent to
the F–F boundary, they occur distinctly lower, in upper Frasnian strata.

3.3. Trace elements as tests for anoxia and productivity

Based on the work of previous studies (e.g. Adams and Weaver,
1958; Jones and Manning, 1994; Algeo and Maynard, 2004; Rimmer,
2004), trace element ratios of U/Th and V/Cr are used to evaluate the
state of marine oxygen levels. Because uranium and vanadium are com-
monly concentrated in sediments deposited under reducing conditions
(Shaw et al., 1990; Emerson and Huested, 1991), comparing themwith
non-redox sensitive elements that are typically found in the detrital
fraction (Th and Cr) can provide insight into changes in paleo-
oxygenation. Typical range estimates for oxic, dysoxic, and anoxic
water conditions have been suggested for U/Th and V/Cr ratios (Jones
and Manning, 1994) and are employed here for reference. Given these
threshold values, both paleo-redox proxies indicate low-oxygen levels
(Fig. 4) which correspond to the δ13C excursions associated with both
Kellwasser events noted in this study (Fig. 3). For the Upper Kellwasser
in particular, it appears that V/Cr values remain elevated for a longer pe-
riod of time relative to U/Th.

Elemental ratios of Cu/Al and Ni/Al are reported for their use as reli-
able indicators of changes in paleo-bioproductivity (e.g. Piper and
Perkins, 2004; Riquier et al., 2006; Perkins et al., 2008), particularly in

the absence of preserved organic-rich material. While a variety of
trace elements behave as micronutrients in oxic marine environments
and are deposited in association with the organic carbon flux from sur-
face primary productivity, both nickel and coppermay be retainedwith-
in their host sediments even if the organics are partially or completely
re-mineralized after deposition (Tribovillard et al., 2006). In our study,
the measured ratios of Cu/Al and Ni/Al exhibit less obvious trends
than the ratios of U/Th and V/Cr; there is considerable scatter associated
with the Lower Kellwasser interval in both proxies, but the elevated
values are correlative with the isotopic excursion. For the Upper
Kellwasser, relative enrichments in Ni/Al and Cu/Al are observed near
and above maximum δ13C values, respectively.

4. Discussion

4.1. Discrepancy in timing

The interval of time surrounding the Frasnian–Famennian (F–F)
boundary is generally marked by two positive carbon isotope excur-
sions (~3‰ average amplitude) in the marine carbonate record that
correspond to the well-studied, organic-rich Kellwasser horizons and
associated extinction events first described from sections in Central
Europe and Morocco (McGhee et al., 1986; Buggisch, 1991; Joachimski
and Buggisch, 1993; Joachimski et al., 1994, 2002). Despite the lack of

Fig. 3. Comparison of isotopic profiles across the F–F boundary in the Lennard Shelf carbonate system. Grey highlighting of maximum δ13C values shows the stratigraphic positions of ex-
cursions (Ex.) 1 and 2 relative to the standard (Ziegler and Sandberg, 1990) andMontagne Noire (Klapper, 1989) conodont zonations. Position of the F–F boundary is constrained by bio-
andmagnetostratigraphic data (see Fig. 2 formagnetostratigraphic correlation). Inset shows isotopic profiles to-scale; dashed lines show biostratigraphic correlations and the solid line=
the Frasnian–Famennian (F–F) boundary.
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similarly aged organic-rich deposits in the Lennard Shelf system, we
report a European-like trend in carbon isotope values from four differ-
ent measured sections. While the absence of black shales and bitumi-
nous limestones from this time interval in Western Australia has
created somedoubt over the global nature of the twoKellwasser events,
our geochemical results are consistent with the hypothesis that the
Kellwasser events are indeed world-wide phenomena, and the trace
element data support a period of at least dysoxia (if not anoxia) associ-
ated with the events. Our evidence for a δ13C excursion associated
with the Lower Kellwasser event within Zones 12 and 13a is consistent
across datasets in this study and corroborates the record from other
sections in Australia (Stephens and Sumner, 2003; George et al., 2014)
and Europe (e.g. Buggisch and Joachimski, 2006). However, our
chronostratigraphically constrained record of the Upper Kellwasser ex-
cursion, particularly the timing of maximum δ13C values, suggests that
the geochemical event is distinct from and pre-dates the F–F boundary,
in contrast with other workers’ findings (Fig. 5).

There are four possible ways to reconcile our data with the global
data set. First, the data may reflect local phenomena or paleoenviron-
mental conditions unique to the Lennard Shelf and thus have no global
implications. Second, a discrepancy in timing could be due either to a
diachronous appearance of upper Frasnian conodont faunas or to differ-
ences in biostratigraphic resolution, possibly related to variable sam-
pling densities. Third, these Lennard Shelf sections may represent a
rarely preserved, expanded interval of the F–F transition that is not
present elsewhere possibly because of highly condensed facies assem-
blages or unrecognized depositional hiatuses. Lastly, differences in
paleogeography and ocean circulation between different study areas
may account for the variation in the timing of isotopic excursions,
reflecting differences in riverine input or restricted circulation in
intracratonic basins, for example.

The first hypothesis, that of highly localized δ13C patterns, is at odds
with the broad and replicable patterns in δ13C values recognized from
the Lennard Shelf, in this study and others (Joachimski et al., 2002;
Stephens and Sumner, 2003; George et al., 2014), which are similar in
shape and amplitude to the well-studied excursions associated with
the Kellwassers and equivalent horizons documented throughout
Europe (e.g. Buggisch and Joachimski, 2006), North Africa (Joachimski
et al., 2002), North America (e.g. Wang et al., 1996), and China (Xu
et al., 2003). The refined timing of the Upper Kellwasser excursion is
consistent between multiple sections of our study, regardless of differ-
ing slope facies and paleogeographic settings. Sections in Kowala,
Poland, and Bou Ounebdou, Morocco (Joachimski et al., 2002) also

reported similar findings of elevated δ13C values below the F–F bound-
ary. However, these authors argued that the expected stratigraphic
continuations of the excursions were muted by recrystallization during
the anaerobic oxidation of organic matter. The lack of correlative
organic-rich sediments in our Lennard Shelf sections precludes this as
a possible explanation for our results.

In addition to studies in the CanningBasin, the occurrence of positive
excursions without accompanying anoxic sediments has been docu-
mented at the Wolayer Glatcher site in Austria (Joachimski and
Buggisch, 1993) and in Nevada, USA (Joachimski et al., 2002). These
authors’ assessment that the anomalies in δ13C reflect global changes
in the total dissolvedmarine carbon reservoir, as opposed to local anox-
ia, is corroborated by our findings from Western Australia. A similar
argument has been made for the isotopic data associated with the
oceanic anoxic events in the Cretaceous Period; that is, the deposition
of black shales and sub-oxic conditions were regional but their effects
on the marine δ13C record were global (e.g. Tsikos et al., 2004;
Wagreich, 2009). We therefore conclude that the Lennard Shelf isotope
record is a viable marine proxy that documents the extensive burial of
organic carbon in other sedimentary basins around the world (North
America, Europe, China, and North Africa).

The second hypothesis invoking the diachronous appearance of
conodonts is considered unlikely. Extensive work in the Canning Basin
has established that the Lennard Shelf conodont succession is compara-
ble and time-equivalent to the standard conodont zonations used
globally for the upper Frasnian and lower Famennian with no discrep-
ancies between first and last appearance data of key species (Glenister
and Klapper, 1966; Druce, 1976; Klapper, 1989, 2007; Ziegler and
Sandberg, 1990; Klapper et al., 1993). Bioturbation was also ruled out
as a possible explanation for the observed discrepancy because the iso-
tope excursion believed to represent the Upper Kellwasser event was
found to occur as much as 20 m or more below the F–F boundary
(SO), a depth too great to reasonably account for any biological displace-
ment of material.

In terms of sampling density and resolution, our study has very good
constraints around the F–F boundary, and where we lack conodont
control, magnetostratigraphy aids our correlations. However, isotopic
studies commonly differ, sometimes significantly, in their biostrati-
graphic resolution. In the Canning Basin, for example, conodont samples
were collected at a density of N1 sample permeter from theVHS section
in the Horse Spring Range (this study; Klapper, 2007), allowing for the
distinction of individual Montagne Noire conodont zones, including
each subdivision of Zone 13 (a, b, and c). In contrast, zonal resolution

Fig. 4.Chemostratigraphic profiles of elemental ratios used as qualitative proxies for paleo-redox conditions and bioproductivity. Shaded areas represent the stratigraphic position ofmax-
imum carbon isotope values associatedwith the Lower and Upper Kellwasser excursions (Ex. 1 and 2, respectively; Ex. = excursion). Trace element ratio thresholds for oxic, dysoxic, and
anoxic water conditions from Jones and Manning (1994).

185K. Hillbun et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 438 (2015) 180–190



for the isotopic record at Dingo Gap (George et al., 1997, cited in
Stephens and Sumner, 2003) was not achieved; the low sample-
density average (1 sample each ca. 5 m) created an apparent compres-
sion of the isotopic excursions (Fig. 6). This problem of low resolution is
exacerbated by the tendency for authors to cite prior work in place of
providing the actual biostratigraphic data (e.g. Wang et al., 1996;
Joachimski et al., 2002; Stephens and Sumner, 2003; Xu et al., 2003),
rendering chronostratigraphic comparisons at the zonal level difficult
to assess.

This problem of uneven sampling density is especially true for the
Lennard Shelf where isotopic profiles for the Late Frasnian and Early
Famennian appear to differ slightly from one another in the timing of
their excursions (Fig. 6). For example, a recent study of a basinal core
near our VHS section reported a large positive excursion, interpreted
to represent the Upper Kellwasser, as occurring entirely above the F–F
boundary in the triangularis Zone (George et al., 2014). The authors
also documented another two δ13C anomalies just below the boundary,
constrained by a limited number of samples, two samples over 20 m
spanning Frasnian conodont Zones 6–13 and three samples from cono-
dont Zone 13. The constraints for these two lower excursions suggest a
correlation with our reported excursions, and thus represent the Lower
and Upper Kellwasser events, respectively. None of our studied sections
record the Famennian excursion reported by George et al. (2014).

The other prominent C-isotope study of the F–F interval in the Can-
ning Basin (Stephens and Sumner, 2003) also showed two positive iso-
tope excursions at Dingo Gap; one occurring below the boundary and
the other straddling it (Fig. 6). George et al. (2014) interpreted the
broad upper excursion, which had two distinct peaks, as representing
both Kellwasser events. However, the conodont resolution for Dingo
Gap is not sufficiently detailed to determine with any certainty the
zones inwhich the excursions actually occur. At this time, it remains un-
clear if differences in biostratigraphic resolution within the Canning
Basin, and potentially elsewhere, can account for the observed discrep-
ancy in timing.

The third and fourth scenarios presented are the most plausible as
they are most consistent with- and easily explained by our results. In
three of our measured sections the isotopic expression of the Upper
Kellwasser was observed in continuous succession in grainstone, brec-
cia, and massive boundstone from middle- and upper-slope settings
where depositional dips were relatively steep (up to 30°) and sedimen-
tation rates presumably greater (Playton, 2008; Hansma et al., 2015). A
combination of expanded stratigraphy and high-density sampling dem-
onstrates that the timing ofmaximumvalues associatedwith the Upper
Kellwasser excursion is different than previously documented (Figs. 2
and 3). Our results from the distal-slope sediments (CL section) differ
from the other three in that the section is highly condensed (conodont

Fig. 5. A. Comparison of δ13C maxima for the Upper and Lower Kellwasser geochemical events from Guilin, China (Xu et al., 2003); Devils Gate, Nevada (Joachimski et al., 2002); Wolayer
Glacier, Austria (Buggisch and Joachimski, 2006); BennerQuarry, Germany (Joachimski and Buggisch, 1993); Kowala, Poland (Joachimski et al., 2002); the LennardShelf,Western Australia
(this study); andBouOunebdou,Morocco (Joachimski et al., 2002). Thedepositional environment for each section has been indicated andbiostratigraphic constraints drawn in accordance
with the original data. B. Paleo reconstruction of the Late Devonian (Blakey, 2008) showing locations of the various δ13C records. C. Generalized lithologic and isotopic trends across the F–F
boundary for sections in Laurussia and Eastern Gondwana (modified from Joachimski and Buggisch, 1993).
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Zone 13b to crepida Zone is b10 m thick) and exhibits maximum δ13C
values at or near the F–F boundary, typifying the problems created by
condensed sections. We attribute these differences primarily to low
sedimentation rates. While the presence of an end-Frasnian deposition-
al hiatus or unconformity may also render isotopic records incomplete,
there is no definitive evidence for this in our section. In the case of the
South Oscar Range section studied by Stephens and Sumner (2003), a
positive δ13C excursion with maximum values below the F–F boundary
was observed in platform-top settings, but its potential extent remains
unknown due to a documented unconformity. In any case, the isotopic
pattern observed at CL is more comparable to those reported from
sections in Europe and Morocco (Fig. 5), possibly because the isotopic
data associated with the Upper Kellwasser event in these regions are
commonly derived from similarly condensed facies or incomplete
sections.

In contrast to results frommost geochemical studies during the Late
Devonian, the low oxygen conditions recorded by the trace element
data at SO do not appear to persist up to the F–F boundary; like the
δ13C data, they occur entirely within Frasnian conodont Zone 13b
(Fig. 4). This finding is comparable to findings from the Great Basin in
North America where anoxic conditions also pre-dated the F–F
(Bratton et al., 1999). Evidence from the fossil record suggests that the
most severe pulse of the Late Devonian mass extinction likewise
occurred before the boundary (McGhee, 1996); many groups became
extinct before the end of the Frasnian (brachiopods, Dutro, 1981) at
the base of the Upper Kellwasser horizon including trilobites (e.g.
Feist, 1991), goniatites (Becker and House, 1994), ostracods (Casier,

1987; Olempska, 2002), and rugose corals (Ma and Bai, 2002). In the
Canning Basin, there also was a dramatic loss of conodont biodiversity
at the end of conodont Zone 13b (Klapper, 2009) and a regional extinc-
tion of all ammonoid genera at the onset of 13c (Becker and House,
2009). Assuming that the global carbon pool indicates a return to less
stressful conditions after the Upper Kellwasser and associated extinc-
tion events, but prior to the F–F boundary, the geological record from
settingswithmore restrictedwater circulationwould have experienced
a lag in the recovery of δ13C values to baseline values. Effectively, this lag
would persist until early Famennian times due to the sequestration of
some localities from the global marine carbon reservoir. On a basin
scale, however, the lag in isotopic values would be contemporaneous
and thus δ13C trends would remain useful, at least as a regional correla-
tion tool.

The paleogeography of the Late Devonian (Fig. 5) indicates varying
potential for isolation of some regions from themarine carbon reservoir.
For example, almost all European, North American, and North African
sections were located in shallow, epicontinental settings at this time.
Ongoing convergence between Laurussia and Gondwana forced the
closing of the Rheic Ocean and constricted the southwestern part of
the Paleotethys seaway (Keppie and Ramos, 1999; Stampfli et al.,
2002; Torsvik et al., 2012). Shallow water settings in the affected
regions became increasingly susceptible to the effects of the end-
Frasnian regression and also experienced an increased influx of
continentally derived material from weathering and erosion associated
with active orogenies (e.g. Dalziel et al., 1994). Logically, carbonate
sedimentation and reef development in these regions would have

Fig. 6. Comparison of carbon isotope profiles and relative timing of δ13C excursions (maximumvalues), from various studies in the Lennard Shelf carbonate system (Stephens and Sumner,
2003; George et al., 2014; this study).
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been heavily influenced by local sources of dissolved inorganic carbon
(DIC) and the development of low oxygen conditions in such relatively
restricted settings. Comparatively, the Canning Basin had fewer external
controls; the Lennard Shelf carbonate system experienced open circula-
tion with sea water during the Late Devonian (Carpenter et al., 1991),
and there were no active mountain building events in Western
Australia during that time span (Plumb, 1979; Forman and Wales,
1981). Consequently, it’s unlikely that our observed discrepancy in
timing of the Upper Kellwasser was a product of regional scale
variations in theDIC pool. Moreover, carbonate deposition, as it pertains
to reef growth, may have been more prolific in the Canning Basin
because periods of more stressful paleoenvironmental conditions were
likely shorter lived.

4.2. Possible excursion mechanisms

The black shales and bituminous limestones characteristic of the
Kellwasser horizons in Europe are commonly interpreted to have been
deposited under reducing oceanic conditions during intervals of sub-
stantial carbon burial (Wilde and Berry, 1984; Joachimski and
Buggisch, 1993; Becker and House, 1994; Wignall, 1994; Algeo et al.,
1995). The geochemical results from this Lennard Shelf study are
consistent with such a scenario. The pattern of trace elements in
the SO section does not support persistent or pervasive anoxia, but the
U/Th and V/Cr patterns do indicate stressed, reducing oceanic condi-
tions concurrent with both excursions. The record of low oxygen condi-
tions is clearer for the Upper Kellwasser interval with the more diffuse
pattern from the Lower Kellwasser suggesting more intermittent
periods of oxygen restriction. While middle-slope settings may reflect
water oxygenation by deep currents, the megabreccia-dominated
slope facies from which the Lower Kellwasser was analyzed likely indi-
cate reefal collapse and re-deposition of platform-derived material,
which may reflect more oxic conditions, within an overall anoxic
environment (lower) on the slope.

Reduced oxygen levels in the SO section may be related to the
prevalence of bottom-water anoxia in the deepest parts of the global
ocean (e.g. Goodfellow et al., 1989). Decades of research have shown
that the Frasnian stage is coincident with a globally warm climate, the
proliferation of land plants, and eustatic sea level rise punctuated by
transgressive-regressive cycles—conditions that are favorable to episod-
ic ocean stratification and the formation of anoxia in deep-water
settings (Brass et al., 1982; Johnson et al., 1985; Wilde and Berry,
1986; Tyson and Pearson, 1991; Algeo et al., 1995; Hallam and
Wignall, 1999; Averbuch et al., 2005). Short-term transgressive pulses
have been shown to correlate with the two Kellwasser excursions in
both Europe (Johnson et al., 1996; Buggisch and Joachimski, 2006)
and the Canning Basin (Stephens and Sumner, 2003). These transgres-
sive episodes would result in a landward migration of oxygen-
depleted waters from bathyal settings into shallower environments
such as the Lennard Shelf System.

These findings that support anoxia contradict the conclusions of
George et al. (2014), who described the positive excursions in the
Lennard Shelf as occurring in “oxic facies.” These authors hypothesized
that the δ13C anomalies could be attributed to an increase in biological
productivity due to enhanced nutrient influxes from continental
weathering during times of lowered relative sea level. While our
geochemical results support a relative increase in marine productivity
during the Upper Kellwasser interval, and perhaps to a lesser extent
for the Lower Kellwasser, it seems unlikely that (regional) enhanced
land-derived nutrient loading was the driving factor. Relatively
distal sections, such as those on the lower slope and in the basin
(i.e., section VHS of this study; George et al., 2014), are not typically
affected by terrestrial influx; productivity blooms are commonly
restricted to near-shore environments where the influence of continen-
tally derivedmaterial is greatest (Riquier et al., 2006). The lack of active
orogenies in Western Australia at this time further decreases the

likelihood of extensive nutrient transport. A more probable explanation
for the observed trace element pattern, at least for the Upper
Kellwasser, is that localized phosphorous renewal under deep-water
anoxic conditions led to eutrophication (Ingall and Jahnke, 1997),
resulting in the expansion of oxygen-deprived water into shallower
depositional settings. This hypothesis was similarly suggested for the
Upper Kellwasser in the Harz Mountains of Germany by Riquier et al.
(2006).

In the event that terrestrially sourced productivity was the primary
driver of paleoenvironmental change and isotopic excursions recorded
in the Lennard Shelf System, we would expect to see some vestige of
the organic byproducts, particularly in sections (SO, WV) that have
high sedimentation rates conducive to the preservation of organic
matter (e.g. Muller and Suess, 1979; Sageman and Lyons, 2003) and
which represent relatively proximal settings compared to the basinal
core studied by George et al. (2014). However, no such organic-rich
material was detected. The wholesale decomposition of organic materi-
al is unlikely, given that all isotopic profiles documented from the
Lennard Shelf display no evidence of a 12C influx from organic carbon
remineralization (this study; Joachimski et al., 2002; Stephens and
Sumner, 2003; George et al., 2014).

5. Conclusion

This work presents an integrated view from the northern margin of
Gondwana, constraining the pattern of carbon isotope perturbations
across the Frasnian–Famennian transition at the intra-zonal scale. The
Lennard Shelf isotope record has been interpreted as a viable marine
proxy that reflects global oceanic conditions and the burial of organic
carbon in sedimentary basins elsewhere. Minor differences in the
chemostratigraphic profiles notwithstanding, studies of the Canning
Basin indicate depleted δ13C values at or below the F–F boundary
(Fig. 6).We propose that the relative depletion reflects a sudden decline
in primary productivity at the end of the Frasnian, much like negative
excursions observed at other mass extinction boundaries (e.g. Zachos
et al., 1989; Holser, 1997; Galli et al., 2005; Stanley, 2010).

Despite the absence of lithological evidence for the well-known
Kellwasser events, two positive δ13C excursions have been identified
from four Lennard shelf outcrops that are comparable in amplitude to
Late Devonian sections around the world. Well-constrained biostratig-
raphy and magnetostratigraphy in the three stratigraphically expanded
sections helped to constrain theUpperKellwasser carbon isotope excur-
sion (maximumvalues) toMNZone 13b and thus differentiate it in time
from the F–F boundary. These results suggest that major environmental
and biotic stressors on the global marine carbon pool leading up to a
mass extinction may have diminished before the F–F boundary itself.
As a result, isotopic records with prolonged excursions into the
Famennian may be experiencing a lag effect due to isolation of the DIC
pool in more restricted, shallow-marine basins. These results demon-
strate that isotopic data alone are insufficient to determine the position
of a major mass extinction boundary in geological time. However, inte-
grated data sets, such as the one presented in this study, demonstrate
that δ13C excursions, at least within a basin, can be used as chrono-
stratigraphic markers and thus have utility for correlation.

Geochemical data for the Upper Kellwasser interval aremost consis-
tent with the interpretation that a globally warm climate and eustatic
highs during the Late Devonian led to the formation of bottom-water
anoxia in deep ocean basins that periodically spread into shallower
settings on the Lennard Shelf via transgressive pulses and/or the devel-
opment of eutrophic conditions due to phosphorous regeneration.
These conditions are arguably widespread, but the Lennard Shelf is
unique in that it records the global signal (geochemically) without
accompanying lithological evidence (i.e. black shales). A similar scenar-
io for the Lower Kellwasser is postulated although the role of eutrophi-
cation remains to be determined; as such, further trace element
analyses are needed.
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Abstract:  High-resolution, time-significant correlations are integral to meaningful 

stratigraphic frameworks in depositional systems, but may be difficult to achieve using 

traditional sequence stratigraphic or biostratigraphic approaches alone, particularly in 

geologically complex settings. In steep, reefal carbonate margin-to-slope systems, such 

correlations are essential to unravel shelf-to-basin transitions, characterize strike 

variability, and develop predictive sequence stratigraphic models – concepts which are 

currently poorly understood in these heterogeneous settings.  The Canning Basin 

Chronostratigraphy Project (CBCP) integrates multiple independent datasets (including 

biostratigraphy, magnetostratigraphy, stable isotope chemostratigraphy, and sequence 



stratigraphy) extracted from Upper Devonian (Frasnian and Famennian) reefal platform 

exposures along the Lennard Shelf, Canning Basin, Western Australia.  These were used 

to generate a well-constrained stratigraphic framework and shelf-to-basin composite 

reconstruction of the carbonate system. 

 The resultant integrated framework allows for unprecedented analysis of carbonate 

margin-to-slope heterogeneity, depositional architecture, and sequence stratigraphy along 

the Lennard Shelf.  Systems tract architecture, facies partitioning, and stacking patterns 

of margin to lower-slope environments were assessed for six composite-scale sequences 

that form part of a transgressive-to-regressive supersequence and span the Frasnian-

Famennian (F-F) biotic crisis.  Variations are apparent in margin styles, foreslope facies 

proportions, dominant resedimentation processes, downslope contributing sediment 

factories, and vertical rock successions, related to hierarchical accommodation signals 

and ecological changes associated with F-F boundary.  We present these results in the 

form of carbonate margin-to-basin sequence stratigraphic models and associations that 

link seismic-scale architecture to fine-scale facies heterogeneity.  These models provide a 

predictive foundation for characterization of steep-sided flanks of reefal carbonate 

platform systems that is useful for both industry and academia.  This study emphasizes 

the utility of an integrated stratigraphic approach and the insights gained from better-

constrained facies and stratal architecture analysis; insights that were not achievable with 

traditional sequence stratigraphic or biostratigraphic techniques alone. 

 

 

 



INTRODUCTION 

Carbonate Slope Sequence Stratigraphy 

 Vertical stacking patterns used for 
sequence stratigraphic interpretation in 
carbonate platform-top settings have been 
well-established and used for decades (e.g., 
Goldhammer et al. 1990, Kerans and Nance 
1991, Goldhammer et al. 1993, Kerans and 
Fitchen 1995, Read 1995, Kerans and Tinker 
1997, Tinker 1998, Lehrmann and 
Goldhammer 1999).  Trends in high-
frequency cycle thickness, facies proportions, 
facies offset, diagnostic indicator facies, and 
exposure indices can be used to interpret 
sequences and systems tracts from one-
dimensional successions of rock (Kerans and 
Tinker 1997).  These patterns have been 
calibrated to two-dimensional sequence and 
systems tract architecture (e.g., Kerans 1995, 
Tinker 1998, Osleger and Tinker 1999, 
Kerans and Kempter 2002).  Furthermore, it 
has been recognized that cycle types vary 
along the platform-top depositional profile 
(e.g., Kerans 1995, Kerans and Fitchen 1995) 
and high-frequency facies proportions can be 
partitioned by systems tract (Kerans 2002). 

 The best-constrained carbonate 
margin and slope sequence stratigraphic 
concepts are derived from the Modern and 
Recent, where depositional patterns and 
architectures can be linked rigorously to well-
accepted proxies for eustatic sea level 
changes (e.g., Grammer and Ginsburg 1992, 
Droxler and Schlager 1985).  Seminal 
concepts such as “highstand shedding” 
(Droxler and Schlager 1995) have been 
developed from these datasets.  However, 
Modern and Recent datasets come with 
temporal and climatic limitations (e.g., 

tracking single high-frequency cycles or 
sequences within peak icehouse conditions, 
respectively) that may not be applicable 
throughout the entire rock record.  Outcrop 
studies, encompassing more of the rock 
record and diverse climatic settings with 
different relative sea level behavior (e.g., 
Brown and Loucks 1993, Eberli et al. 1993, 
Fitchen et al. 1995, Janson et al. 2007), are 
also instructive.  Yet, often these datasets lack 
the high-resolution constraints and physical 
linkages from slope to margin and/or 
platform-top settings required to reduce 
uncertainties in the sequence stratigraphic 
interpretation.  Playton et al. (2010) provides 
a framework to describe carbonate margins 
and slopes in terms of their deposit types, 
margin styles, spatial architecture, and end-
members, but does not discuss sequence 
stratigraphic relationships in detail. 

 In general, the architecture of 
sequences and systems tracts, and their 
internal facies stacking patterns and trends in 
proportions, are poorly understood for 
carbonate margin-to-basin settings and 
transitions.  Playton and Kerans (2015 a, b) 
provide a detailed description of such 
relationships with Devonian examples from 
the Lennard Shelf and discuss the impact of 
long-term accommodation, ecological, and 
climatic controls on margin-to-slope sequence 
development.  However, as is the case with 
other outcrop datasets, many stratigraphic 
relationships and reconstructions are inferred 
due to lack of continuous outcrop and/or low-
resolution biostratigraphic data.  The 
sequence stratigraphic models and concepts 
presented here build on those of Playton and 
Kerans (2015 a, b) and document additional 
constraint in the stratigraphic framework 



developed through the Canning Basin 
Chronostratigraphy Project (CBCP).   

 
Canning Basin Chronostratigraphy Project 

 Subsurface datasets do not typically 
provide the constraints necessary to correlate 
and characterize carbonate margin-slope-
basin reservoir facies with certainty or at an 
adequate scale.  Seismic data and 
biostratigraphic control are seldom at a 
desirable resolution, and rock data available 
through core has predictive limitations 
because sequence stratigraphic rules and 
stacking patterns are not sufficiently 
developed for reef, slope, and basinal settings.  
There is a need for improved characterization 
and predictive capabilities in these settings, 
with significant carbonate reservoirs or plays, 
such as 1) Tengiz and Karachaganak Fields, 
Kazakhstan (e.g., Collins et al. 2006, 2013, 
Katz et al. 2010) involving margin-to-middle-
slope productive facies, 2) Poza Rica Field, 
Mexico and numerous examples in the 
Midland Basin, west Texas (e.g., 
Montgomery 1996, Janson et al. 2011, 
Clayton and Kerans 2013) that are 
conventional basin floor reservoirs, and 3) the 
“Wolfberry” play in the Midland Basin, west 
Texas (e.g., Bellian et al. 2012) which is an 
unconventional lower-slope to basin reservoir 
trend.  The objective of the Canning Basin 
Chronostratigraphy Project (CBCP) is to 
generate a well-constrained 
chronostratigraphic framework through 
integration of multiple independent data 
types, with a focus on carbonate shelf-to-
basin correlation and sequence architecture 
(Playton et al. 2013).  Here, we use 
‘chronostratigraphic’ to mean the 
identification and correlation of time-

significant surfaces and time-equivalent 
intervals as constrained by multiple 
corroborating datasets.  Correlations and 
frameworks are presented herein against 
stratigraphic thickness tied to well-established 
conodont biozones - not absolute time, as 
significant uncertainty remains in radiometric 
age dates at the high-frequency scale (i.e., 
biozone scale; e.g., Kaufmann 2006)       
 The well-preserved Middle to Upper 
Devonian (Givetian, Frasnian, and 
Famennian) carbonate outcrops of the 
Lennard Shelf, northeastern Canning Basin, 
Western Australia (Figure 1), were chosen to 
carry out this study.  This exposure belt is 
optimal due to 1) minimal structural and 
diagenetic overprinting since deposition, 2) 
well-exposed platform-top, reef, slope, and 
basinal depositional settings, and 3) a well-
established pre-existing geological foundation 
to leverage.  This underpinning of previous 
work consists of more than five decades of 
research, comprehensively summarized by 
Playford et al. (this volume) and Playford et 
al. (2009), which provides a framework for 
basin development, structural setting, 
evolution of the reefal carbonate platforms, 
facies models, and numerous other 
characteristics of the depositional system 
along the Lennard Shelf.  Another key 
advantage for the CBCP is a robust 
biostratigraphic framework from conodonts 
(e.g., Klapper 2007) cephalopods (e.g., 
Becker et al. 1993, Becker and House 1997), 
and other various vertebrates (e.g., Trinajstic 
and George 2009).  Examples of other 
important work on the margins and slopes of 
the Lennard Shelf include Playford (1980, 
1984), Kerans (1985), George et al. (1997), 
Ward (1999), Copp (2000), and Playton 



(2008).  However, these are still limited in 
terms of slope sequence stratigraphic 
understanding and margin to slope 
architecture due to the inability to correlate 
between localities or from coeval platform-
top successions.  Playton and Kerans (2015 a, 
b) contributed significantly to characterization 
of margin and slope settings along the 
Lennard Shelf within the supersequence 
framework and ecological context 
surrounding the Frasnian-Famennian (F-F) 
biotic crisis; however, their findings are 
limited to the coarse biostratigraphic 
resolution and lack of continuous outcrop 
common to all previous studies.  This 
discontinuous nature of the Lennard Shelf 
outcrops and inability to walk out 
stratigraphic relationships introduces the need 
for using other independent constraints to link 
physically disconnected localities.  In this 
sense, the correlation workflows established 
in this study are analogous and applicable to 
subsurface settings with interwell uncertainty. 
 Data for this study was collected 1) over 
30+ Myr (Gradstein et al. 2012) of reefal 
platform development from the Givetian to 
Famennian to generate a regional stratigraphic 
framework for the system, 2) in platform-top, 
reef, slope, and basinal environments for 
correlation of depositional profiles, and 3) 
across different paleogeographic settings to 
demonstrate the viability of regional 
correlation.  Hand samples and one-inch plugs 
were collected and tied to detailed 
sedimentological logs from outcrops, and 
shallow Winkie cores (tripod-mounted, small-
scale coring system from the surface) and 
deep subsurface cores were also incorporated.  
The samples and cores were analyzed for 
magnetostratigraphy (polarity reversals and 

magnetic susceptibility), stable isotope 
chemostratigraphy (inorganic carbon and 
oxygen), elemental chemostratigraphy, 
conodont-fish biostratigraphy, biomarker and 
compound-specific geochemistry, and natural 
gamma ray profiles (Playton et al. 2013).  
This paper focuses on the integration of 
magnetostratigraphic, isotopic, 
biostratigraphic, and sequence stratigraphic 
constraints, as they proved most useful for 
regional correlation.   Other integrated 
stratigraphic studies on carbonate systems 
have been carried out successfully (e.g., 
Montgomery et al. 2011, Davies et al. 2013), 
but do not rely as heavily on the specific 
integration of magnetostratigraphy, carbon 
isotope chemostratigraphy, biostratigraphy, 
and sequence stratigraphic concepts.   

 
Geologic Setting and Scope 

 In the Middle Devonian, rifting generated 
deep troughs and structural highs in the 
eastern Canning Basin, now preserved in 
present-day northern Western Australia (Begg 
1987; Drummond et al. 1991).  The 
northwest-southeast trending Fitzroy Trough 
developed along the northeastern margin of 
the Canning Basin and was fringed to the 
north by shallow marine settings of the 
Lennard Shelf, which were preferred sites for 
land-attached and isolated carbonate platform 
development.  The uplifted Precambrian 
hinterland of the Kimberley Block confined 
the Lennard Shelf to the northeast and 
supplied fine to coarse siliciclastics to the 
system throughout carbonate development 
(e.g., Playford 1980).   
 The reefal carbonate system along the 
Lennard Shelf represents a supersequence 
(Figure 2) spanning more than 25 Myr of time 



(2nd-order of Sarg et al. 1999; after Playford et 
al. 2009, Playton and Kerans 2015 a, b; 
absolute age after Gradstein et al. 2012).  
Margins backstepped with intervening pulses 
of aggradation from the Givetian to Middle 
Frasnian, representing long-term high 
accommodation conditions of the 
supersequence TST.  Just prior to the Middle-
Upper Frasnian boundary, margins shifted 
from long-term aggradation and backstepping 
to progradation, representing the 
supersequence MFS.  Finally, margins overall 
prograded from Late Frasnian to Middle 
Famennian time, representing long-term 
lower accommodation conditions of the 
supersequence HST. 
 Within the supersequence framework, a 
subordinate sequence architecture exists and 
is subdivided into five Givetian-Middle 
Frasnian backstepping and aggrading 
sequences (supersequence TST) and two 
prograding Upper Frasnian sequences 
(supersequence early HST; Figure 2) (after 
Playford et al. 2009, Playton and Kerans 2015 
a, b).  Famennian sequences that constitute 
the remainder of the supersequence HST are 
undefined; however, high-frequency 
sequences have been interpreted in middle-
slope settings (Playton and Kerans 2015 b).  
The seven defined Givetian and Frasnian 
sequences are likely 3rd-order in duration 
(sensu Goldhammer et al. 1991), but due to 
inexact absolute age control, we will refer to 
them here as composite sequences with the 
recognition that they are components of 
supersequence systems tracts.  We aim to use 
this existing supersequence and composite 
sequence framework for the Givetian and 
Frasnian and define the Famennian sequences 
that constitute the remainder of the 

supersequence HST, with the ultimate goal of 
establishing a hierarchical template to analyze 
carbonate shelf-to-basin facies arrangements 
and architecture. 
 Reefal assemblages in the Givetian and 
Frasnian consisted of stromatoporoids and 
corals with variable microbial components, 
and platform-top settings included skeletal-
peloidal pack-grainstones, bioclastic 
rudstones, stromatoporoid boundstone 
biostromes, and muddier, peloidal subtidal 
and intertidal facies (Playford et al. 2009).  In 
the Famennian, reefal margins had shifted 
entirely into microbial assemblages (Playford 
1980), and platform tops became more oolitic 
(Frost 2007).  Encrusted upper slope 
environments developed in the Late Frasnian 
and persisted throughout the Famennian, and 
detrital foreslope facies can be classified into 
debris-dominated, grain-dominated, and mud-
dominated deposits (Playton 2010, Playton 
and Kerans 2015b).  
 Given the above-mentioned dramatic 
change in carbonate factories, another 
important factor in assessing margin-to-slope 
sequence development is the Frasnian-
Famennian (F-F) interval.  The F-F event is 
touted as the fifth largest Phanerozoic biotic 
crises, and had a substantial impact on reef-
building biota in particular (for background, 
see Playford 1980, Raup and Sepkoski 1982, 
Playford et al. 2009, and Playton and Kerans 
2015 b).  Characterizing the composite 
sequences just prior to (Upper Frasnian 
Sequence 7; Figure 2) and immediately 
following (currently undefined) the F-F 
boundary, will help determine the impact of 
leadup and recovery phases surrounding this 
major extinction. 



 The carbonate system exposed along the 
Lennard Shelf provides an excellent 
opportunity to study carbonate margin and 
slope development within a combination of 
hierarchical accommodation and ecological 
controls, and the CBCP is designed to better 
analyze this through the addition of shelf-to-
basin correlation constraints.  Within the 
refined stratigraphic framework, we focus on 
margin-to-basin sequence architecture, 
margin styles, slope stacking patterns, and 
margin-to-slope facies heterogeneity.  These 
margin-to-basin characteristics are described 
in terms of large-scale patterns, such as 
debris-, grain-, and mud-dominated slopes, 
and escarpment versus accretionary margins 
(after Playton et al. 2010).  Given this dataset 
and objectives, we present herein:  
 1) a Lennard Shelf regional correlation 
 framework and stratigraphic reference 
 chart for the Late Devonian based on 
 an integrated approach;  
 2) a well-constrained shelf-to-basin 
 reconstruction of the Lennard Shelf, 
 highlighting  margin and slope 
 development and sequence stratigraphic 
 expression; and  
 3) an examination of carbonate slope 
 sequences, systems tracts, and stacking 
 patterns,  with the aim of generating 
 conceptual models and predictive 
 relationships. 

 
DATASET AND METHODOLOGY 

Stratigraphic Transects and Sampling       

 The CBCP field data collection goal was to 
achieve detailed measuring and high-density 
sample coverage for shelf-to-basin carbonate 
environments (inner and outer platform-top, 

reef, slope, and basin) across the Middle-Late 
Devonian stages (Givetian, Frasnian, 
Famennian) exposed along the Lennard Shelf.  
Key outcrop transects (measured sections) 
with an appropriate degree  of 
stratigraphic overlap were chosen to fulfill 
these coverage requirements, and shallow 
Winkie cores or subsurface cores were 
incorporated to fill in gaps in outcrop 
measured section availability (Figure 3).  
Samples collected were tied to detailed 
stratigraphic logs, including oriented outcrop 
plugs and hand samples (required for 
paleomagnetics), unoriented hand samples, 
and large slabs to document complex 
depositional fabrics.  Shallow Winkie drilling 
provided oriented cores up to 40 meters from 
the surface, while subsurface cores made 
available up to 700 meters of unoriented 
stratigraphy.  In total, nearly 6800 samples 
were collected and 4000 meters of 
stratigraphy were measured and described 
from 17 measured sections and cores along a 
200 kilometer transect with 10-100 kilometer 
spacing (Table 1).  Across the dataset, the 
average vertical sample spacing was 59 cm, 
with a range from 16 cm to 95 cm, and 
depositional environment and sedimentation 
rate was accounted for during collection to 
avoid data resolution biases; settings with 
interpreted low sedimentation rates (i.e., distal 
slope or basinal environments) were sampled 
at higher frequencies than those with high 
sedimentation rates (i.e., middle-slope grain-
dominated or debris-dominated 
environments).  Additionally, the matrix 
within debris deposits was targeted for 
collection while allochthonous blocks of 
resedimented, previously-lithified material 
were avoided, to minimize measurement 



ambiguity in detrital slope facies.  To ensure 
the desired sample coverage, key platform-
top, margin, slope, and basin outcrop 
localities around the Lennard Shelf exposure 
belt were prioritized based on extent, 
exposure, preservation, and accessibility 
(Figure 4).  Detailed facies schemes were 
developed to describe the dominant rock 
types, settings and processes along Givetian, 
Frasnian, and Famennian depositional profiles 
(Table 2; Figure 5).  Appendices 1-14 contain 
the detailed sedimentary log, conodont 
control, stable carbon isotopic profile, 
paleomagnetic reversals, and interpreted 
sequence stratigraphy for each measured 
section and core, and provide summaries of 
location (Figure 1), paleogeography, age, 
facies assemblages, depositional 
environment(s), vertical succession, and 
lithology.  Section names and mnemonics are 
informal terms as used in the field for ready 
reference to data transects. 

 
Correlation Constraints   

 The refined regional stratigraphic 
framework presented here builds on the work 
of Playford et al. (2009) and Playton and 
Kerans (2015 a, b), and uses conodont 
biostratigraphy, paleomagnetic reversals, and 
stable carbon isotopes as the principal 
correlation constraints.  These data all have 
global significance and their primary signals 
were well-preserved in enough instances to 
use with confidence.  Elemental suites, 
magnetic susceptibility, outcrop gamma ray, 
biomarkers, and compound specific isotopes 
were less useful for regional stratigraphy due 
to commonly intermixed siliciclastics and 
uncommon organic-rich rocks, and thus not 
discussed here.  Absolute dating via U-Pb 

geochronology was attempted on samples 
with little visible alteration and were selected 
from both platform-top sections (WNA and 
WNB; Appendices 2-3) and the purest 
carbonate section (SO; Appendix 6); 
however, results were erroneous or lacked the 
necessary precision, again due to the 
intermixing of siliciclastics inherent to the 
Lennard Shelf.  The following sections 
summarize the key correlation constraints, 
including previous studies, CBCP 
contributions (Table 3), general methodology, 
and limitations.  

 

Conodont Biostratigraphy 

 Middle-Late Devonian biozones, largely 
defined from conodonts and cephalopods, are 
well established globally from work in 
Europe, the Lennard Shelf, and other 
localities (Klapper 1989, Ziegler and 
Sandberg 1990, Becker et al. 1993, Klapper 
1997, Girard et al. 2005, Klapper 2007, 
Trianjstic and George 2009).  This enormous 
collection of past work around the world 
provides a high-quality foundation for the 
other datasets collected, such as 
paleomagnetic reversals and stable carbon 
isotopes.  Although leveraging from previous 
work was critical, the CBCP rigorously 
collected additional conodonts (and less so 
fish) at each locality, tying into, infilling, 
and/or extending datasets from published 
accounts, or generating new biostratigraphic 
profiles in undocumented localities (Roelofs 
et al. 2015).  Despite the robustness of 
conodont biostratigraphy, a fundamental 
limitation is the virtual absence of age-
diagnostic species in shallower reefal margin 
or platform-top settings; the short-ranging 



organisms useful for constraint preferred 
deeper slope and basinal settings.  In addition 
to this restriction, certain paleogeographic 
settings appear to favor conodont abundance 
over others, as slope localities with associated 
narrow shelves and abundant siliciclastic 
influx are known for low yields of useable 
conodont remains.  Thus, three measured 
sections served as the “reference conodont 
profiles” for the CBCP dataset (SO, VHS, and 
CL sections; Appendices 6-8), which were 
closely tied to the global references and 
provided biostratigraphic context to other 
constraints that could be cross-correlated to 
transects with lesser biostratigraphic control. 
 The two most significant global extinction 
events in the dataset, the Givetian-Frasnian 
(G-F) and Frasnian-Famennian (F-F) 
extinctions, were key biostratigraphic 
markers.  The G-F faunal turnover is 
substantial in terms of biodiversity like the F-
F, but is less understood and documented.  
The F-F boundary in the CBCP dataset is 
constrained to an interval less than 5.5 meters 
thick in the SO, VHS, and CL measured 
sections (Appendices 6-8), and has previously 
been resolved with centimeter-precision 
solely from conodonts (Klapper 2007).  The 
G-F boundary, of lesser importance to this 
study than the F-F, has virtually no 
biostratigraphic control, but is picked in the 
lower few meters of the MR1 Winkie core 
(Appendix 11) based on a distinctive 
biomarker character (Tulipani et al. 2015), 
and in the PGH measured section (Appendix 
9) based on very poorly-constrained vertical 
successions in coral morphology and 
assemblage. 

 

Paleomagnetic Polarity Reversals 

 A somewhat unique strength of 
paleomagnetic polarity in terms of 
chronostratigraphic utility is that it is a truly 
global phenomenon that is independent of 
environment and setting.  For much of the 
Phanerozoic geologic timescale, 
paleomagnetic polarity reversals are well-
defined and can be used as a global reference; 
however, the Middle to Late Devonian global 
reversal record has to date been poorly 
defined (Gradstein et al. 2012).  Thus, for the 
purposes of the CBCP, there was no available 
reference to reproduce, and consequently the 
Middle-Late Devonian paleomagnetic polarity 
record had to be generated via this dataset in 
order to achieve project success (Hansma et 
al. 2015).  To accomplish this, chrons or 
chron packages (intervals of constant or 
distinctive mixed polarity) were identified 
that could be correlated across the dataset 
within tightly-constrained conodont control, 
with the limitation that biostratigraphic 
constraint was partial, confined to slope and 
basin transects.  However, many of the key 
transects of the CBCP are in slope and basin 
positions, and these were sufficient to 
establish a composite reversal stratigraphy 
across the dataset.  The episodic nature of 
resedimentation in these settings did not 
introduce significant uncertainty or noise in 
the correlations, as indicated by excellent 
repeatability around the dataset within 
conodont control.  Hansma et al. (2015) 
describes in detail the intensive process 
carried out to ensure extraction of primary 
paleomagnetic signals. 
   Twenty-seven Givetian to Middle 
Famennian chrons or chron packages were 
established (modified after Hansma et al. 
2015) that are tied to the conodont zones, 



adding a significant amount of granularity to 
the Devonian global paleomagnetic record, 
and providing numerous additional 
correlation pinning points across the Lennard 
Shelf (Figure 6).   Mixed polarity zones were 
encountered - meaning reversal rate was 
frequent but with a dominant interval polarity 
- and their bounds were correlated with 
confidence.  However, their internal 
complexity was not always well-reproduced 
across the dataset. 

 

Stable Carbon Isotopes 

 Unlike the Middle to Upper Devonian 
paleomagnetic global reference record prior to 
the CBCP, well-accepted and constrained 
secular stable inorganic carbon isotope curves 
have been assembled from datasets across the 
world (e.g., Joachimski et al. 2002; Bing et al. 
2003; Buggisch and Joachimski 2006) and are 
available for correlation purposes.  These 
reference curves exhibit well-expressed 
isotopic excursions that are closely tied to 
conodont biozones, occurrences of anoxic 
facies, and biotic events; this combination 
makes Devonian carbon isotopes excellent 
candidates for chronostratigraphic constraints.  
CBCP sampling relied heavily on slope and 
basin transects with the most conodont 
control to resolve these Middle-Upper 
Devonian carbon excursions.  Carbon isotope 
signatures were well-reproduced across the 
dataset, despite the potential for discontinuous 
foreslope deposition.   
 In order to extract global isotopic 
excursions from the Lennard Shelf rocks, 
primary signals representing the Devonian 
ocean inorganic carbon pool must be 
collected, as overprints like meteoric or burial 

diagenesis and siliciclastic contamination can 
compromise the native marine signal.  Thus, a 
rigorous quality control process was 
developed that handles extremely large 
datasets (thousands of samples) whilst 
effectively filtering out diagenetically-altered 
samples (see Hillbun et al. in review for 
details).   This procedure results in high-
confidence interpretations of isotopic profiles 
believed to represent the primary marine 
inorganic carbon character of the Devonian 
oceans.  A limitation encountered was in 
platform-top settings, where pervasive 
meteoric diagenesis and siliciclastic 
contamination effectively polluted any 
remnant of the Devonian oceanic isotopic 
expression, thereby rendering stable carbon 
isotopes ineffective for chronostratigraphy 
(Hillbun et al. in review).  Stable inorganic 
oxygen isotopes were incorporated into the 
quality control workflow as an indicator of 
certain styles of diagenesis. 
 Eleven stable inorganic carbon isotope 
excursions were identified and nine were 
correlated, within conodont control, across the 
dataset in the slope and basinal transects, 
providing an excellent suite of independent 
correlation constraints (Figure 6) (after 
Hillbun 2015, Hillbun et al. 2015, in review).  
Four of the excursions are documented global 
events from previous studies (falsiovalis, 
Lower and Upper Kellwasser, and Enkeberg 
events, after Buggisch and Joachimski 2006), 
two of which were identified in only one 
transect and therefore not reproducible across 
the dataset.   The remaining seven were 
correlatable around the CBCP dataset but not 
defined consistently in other studies, either 
elsewhere around the world or along the 
Lennard Shelf. 



 

Lennard Shelf Regional Stratigraphy and 

Reconstruction 

 To construct a regional framework, we 
honored multiple independent signals 
embedded in the rock record in conjunction 
with sequence stratigraphic concepts to 
interpret and correlate time-significant 
surfaces across the Lenard Shelf.  The end-
product, a predictive sequence stratigraphic 
framework, abides by all constraints, but is 
ultimately governed by the sedimentology of 
the rocks and the observed stratigraphic 
relationships.  Due to the nature of the 
Lennard Shelf outcrop belt (Figure 1), 
transect localities are physically disconnected 
over great distances (i.e., walkout ties were 
impossible across major localities) and 
correlation solutions are non-unique – a 
challenge also inherent in subsurface datasets.  
However, the agreement of multiple 
independent data types greatly reduces the 
range of possibilities and uncertainty in 
making correlation decisions.   

 

Degree of Confidence and Limitations 

 As in every dataset, the CBCP dataset has 
gaps, limitations, and uncertainties where 
assumptions and less-constrained 
interpretations are required.  In particular, the 
CBCP dataset works with globally-recognized 
events and intervals that impart a high degree 
of confidence, but also utilizes lower-
confidence regional signals and assumed 
global signals that were not previously 
defined (Table 4).  The globally-defined 
conodont biozones and Lower and Upper 

Kellwasser isotope excursions are the highest 
confidence anchors of the regional framework 
(Table 3).  However, regional isotope 
excursions (those that correlate across the 
Lennard Shelf but are not recognized 
globally) and the polarity reversal record also 
serves as an important set of pinning points 
for correlation; although not global, their 
repeatability across the dataset lends 
credibility for use as chronostratigraphic 
constraints.  The CBCP polarity reversal 
record is a special case in that a global 
reference for this time period was previously 
undefined, and this larger study establishes it 
for the first time (Hansma et al. 2015).  
Accordingly, the transects of the CBCP had a 
range of utility (Table 4), some with very 
little control (e.g., PGH, UD2, HD14; 
Appendices 9, 13, and 14) but still proved 
useful in the final reconstruction, and some 
that serve as cornerstones (reference 
transects) for the framework to which the 
other transects are tied (WNA, WNB, SO, 
VHS, CL, MR1; Appendices 2, 3, 6, 7, 8, and 
11). 
 Three key interlinked limitations, some of 
which are unique to the CBCP, presented 
challenges with respect to shelf-to-basin 
correlation, related to: 1) extraction of 
conodont data for biostratigraphy; 2) 
preservation of primary carbon isotope 
signals; and 3) stacking pattern criteria for 
sequence stratigraphic interpretation.  
Platform-top settings were practically devoid 
of any useful conodont or isotopic 
information for correlation.  Despite these 
limitations, the platform-top transects 
exhibited clean reversal records and 
importantly contain stacking pattern 
information that was valuable for sequence 



stratigraphic interpretation.  One dimensional 
stacking pattern analysis, utilizing criteria 
such as facies proportions, facies offset, cycle 
thickness, indicator facies, and exposure 
indicators (sensu Kerans and Tinker 1997), 
was performed in platform-top transects to 
identify systems tracts, sequence boundaries, 
and maximum flooding surfaces.  Presence 
and thickness of stromatoporoid bioherms and 
laminated or fenestral tidal flats proved to be 
a critical indicator facies for stacking pattern 
analysis, and the proportion of open marine 
versus restricted rock types was a key 
parameter to define cycles and systems tracts.  
The proportions of shallow marine 
siliciclastics were less useful, however, due to 
their highly localized nature, inconsistency 
relative to carbonate shallowing or deepening 
trends, and seemingly sporadic influx across 
the narrow carbonate shelf.  Unlike these 
tools available for platform-top sequence 
interpretation, the CBCP slope transects, 
consisting of resedimented material and 
microbially-encrusted deposits, exhibit 
successions that are poorly understood with 
respect to sequence stratigraphy; the 
advantage of the slope transects are the 
pristinely-preserved carbon isotope records 
and abundant biostratigraphic control.  
Integrating the CBCP dataset therefore 
required consolidation of multiple signals, 
each with differing degrees of confidence and 
utility, based upon the section type and/or 
setting being interpreted.  Differences in 
information preservation and quality amongst 
the variable environments are common for 
any dataset, and underscore the power of 
integrating multiple constraints to develop a 
regional framework. 

 

Platform-to-Slope Correlation and Slope 

Sequence Stratigraphy 

 Considering the above, the following 
limitations posed a challenge when 
correlating platform sections to slope 
sections: 1) without biostratigraphic control in 
the platform-top, it was unclear how to 
correlate reversals into the slope, and 2) 
picking sequence stratigraphic surfaces and 
systems tracts in the slope was difficult as 
slope stacking patterns are not well-
established.  To overcome this, beds were 
physically traced from the platform-top 
sections (WNA and WNB sections; 
Appendices 2-3) into a key nearby outcrop 
exposure, the Classic Face in Windjana Gorge 
(Figure 7).  The Classic Face is a world-class 
locality for observing carbonate platform-to-
slope transitions across the long-term shift 
from margin aggradation to progradation (see 
Playford et al. 2009, Playton and Kerans 2015 
a).  There are key geometries in the Classic 
Face that allow confident placement into the 
supersequence architecture (Figure 2), as well 
as some surrounding biostratigraphic pinning 
points.  This linkage to the sequence 
succession defined at the Classic Face 
allowed for extrapolation of coarse age 
information to the otherwise temporally-
unconstrained platform-top transects.  These 
coarse constraints were sufficient to correlate 
reversals from platform-top to slope sections, 
thereby linking more robust age control into 
the shallower settings and extending sequence 
stratigraphic interpretations into the slope.  In 
slope intervals with no platform-top 
equivalents within the dataset, the F-F 
boundary, identified by conodonts, was also a 
key marker to hinge sequence stratigraphic 
interpretations from, as it is a significant 



sequence boundary (Playford et al. 2009).  
Additionally, the Kellwasser events are 
interpreted to be coincident with MFSs in 
multiple studies (e.g., Buggisch and 
Joachimski 2006).     
  The application of platform-constrained 
sequence stratigraphic interpretations, and 
other pinning points, to the slope allowed for 
examination of slope stacking patterns, 
systems tracts, and sequence development.  In 
doing so, an empirical relationship was 
extracted that links carbon isotopic trends to 
slope sequence stratigraphy (Hillbun et al. this 
volume).  A commonly observed pattern was 
carbon isotope values trending positive during 
Frasnian sequence TSTs, and negative during 
HSTs.  MFSs tended to be associated with 
carbon isotope value maxima and SBs with 
carbon isotope value minima.  The model to 
explain this linkage between the oceanic 
carbon pool and sequence stratigraphy along 
the Lennard Shelf is discussed in Hillbun et 
al. (this volume) and entails changes in 
circulation patterns during TST versus HST 
settings (after Katz et al. 2007).  This 
relationship was independently observed 
enough times that a proxy was developed for 
a slope sequence stratigraphic interpretation 
method that utilizes carbon isotope trends 
when stratigraphic overlap to platform-top 
equivalents was not possible.  This provides 
another valuable tool for generating the 
sequence stratigraphic framework and 
extrapolating platform-top defined sequences 
to multiple slope sections across the dataset. 

 

Development of the Lennard Shelf Framework 

and Reconstruction 

 Employing the above methods, an 
integrated stratigraphy was generated that 
links all time-significant markers and 
intervals with a conforming sequence 
stratigraphic framework for the Middle-Late 
Devonian of the Lennard Shelf (Figure 8).  
The workflow used to incorporate 
components and arrive at a final stratigraphic 
framework is as follows: 

   
1) define the underpinning biostratigraphic 
constraints in slope and basin transects; 
2) within biostratigraphic control, identify 
and correlate global isotope excursions in 
slope and basin transects; 
3) within biostratigraphic and global isotopic 
control, correlate through-going polarity 
reversal packages across slope and basin 
transects; 
4) utilize sparse age information extrapolated 
from nearby key outcrops (Classic Face, 
Windjana Gorge; Figure 7) and correlate 
platform-top reversals to slope and basin 
reversals; 
5) within biostratigraphic, isotopic, and 
established polarity reversal control, identify 
and correlate regional isotope excursions in 
slope and basin transects; and 
6) interpret a conforming sequence 
stratigraphic framework based on 
sedimentology that honors all established 
constraints, considers the various degrees of 
confidence around the dataset, and utilizes the 
proxies developed that link isotopic 
expression in the slope with systems tracts. 

  
 This process involved integration and 
iteration at each step to find the best 
correlation solution where all constraints 
agreed within the flexibility of the 



components and dataset.  Conodont picks and 
the two global carbon isotope excursions of 
the dataset (Lower and Upper Kellwasser 
events) were firm markers with virtually no 
flexibility during iteration; however, the exact 
placement of paleomagnetic chron boundaries 
could vary (up to tens of meters in some 
cases) between sample points and depending 
on the interpreted limits of mixed polarity 
packages.  Similarly, regional isotope 
excursions in stratigraphically-expanded 
sections within a single conodont biozone 
occasionally had more than one correlation 
possibility.  In terms of sequence stratigraphy, 
platform-top sections were fixed benchmarks 
for the slope where there was stratigraphic 
overlap, but isotopic expression provided 
constraint for sequence definition away from 
platform control.  These combinations of 
relatively precise and broad controls gave 
flexibility in iteration to a final set of 
constraints and sequence stratigraphy, where 
all pinning points were honored and in 
agreement (with none violated).  There were 
no cases where constraints overrode others of 
equal confidence to establish correlation, and 
the rocks themselves were used for sequence 
interpretation only within the boundaries of 
the surrounding controls (i.e., conceptual 
sequence models did not govern the 
interpretation of the constraints).  This 
agreement across multiple independent data 
types built confidence that the 
chronostratigraphic signals were 
uncompromised and the sequence 
stratigraphic framework is valid.       
 Once completed, the finalized suite of 
correlations and pinning points allowed the 
construction of an improved Middle-Late 
Devonian stratigraphic chart that highlights 

the qualitative age relationships between 
conodont biozones, polarity reversals, carbon 
isotope events, and carbonate sequence 
development (Figure 6).  Twenty-seven 
paleomagnetic chrons were defined, about 
two thirds of which are considered medium-
high confidence and correlatable across the 
dataset, with the remainder likely valid but 
not defendable due to lack of stratigraphic 
overlap.  Eleven carbon isotope events were 
defined, with two linked to the global 
reference and considered as high-confidence, 
seven considered as medium-high confidence 
with repeatability around the dataset but not 
linked to the global reference, and two of 
lower-confidence due to lack of stratigraphic 
overlap but linked to the global reference.  
Twelve composite sequences (likely 3rd-order; 
sensu Goldhammer et al. 1991) and their 
systems tracts were identified; two in the 
Givetian, seven in the Frasnian (after Playton 
2008, Playford et al. 2009, Playton and 
Kerans 2015 a, b), and three in the 
Famennian.  Well-constrained sequence 
stratigraphic interpretations in Middle 
Frasnian to Middle Famennian upper, middle, 
and lower slope, and basinal settings were 
achieved for the first time.  The Givetian 
sequences were largely defined by one-
dimensional, platform-top stacking pattern 
analysis and not tied to any pre-existing 
framework, whereas Frasnian Sequences 1-3 
were poorly sampled in this study and based 
largely on Playford et al. (2009).  Frasnian 
Sequences 4-7 were refined after Playford et 
al. (2009) and Playton and Kerans (2015a), 
and very well constrained in this study.  The 
Middle-Upper Frasnian boundary was here 
placed within the composite HST of Sequence 
5, slightly different than previous studies 



which defined it at the top of Sequence 5 
(Playford et al. 2009, Playton and Kerans 
2015 a).  Famennian Sequences 1-3 are well-
constrained and defined here for the first time.  
Sequences could not be distinguished for a 
portion of the Middle Famennian due to facies 
homogeneity from pervasive calcimicrobial 
encrustation and lack of stratigraphic overlap 
across the dataset (“MFa” in Figure 6, 
“Sequences” column).  In general, the 
stratigraphic framework defined here is 
considered high confidence for Middle 
Frasnian to Middle Famennian time.  
Givetian, Early Frasnian, and Middle 
Famennian (MFa) intervals were well-
sampled and contributed robust data profiles, 
but either lacked sufficient stratigraphic 
overlap with other transects for repeatability 
or had insufficient biostratigraphic control to 
be considered higher confidence. 
 In addition to regional correlations and 
stratigraphic relationships, this linkage of 
physically disconnected localities allows for 
the development of new representations of the 
Lennard Shelf Devonian carbonate system.  
The significantly increased correlation control 
provides an opportunity to reconstruct the 
carbonate system with greater accuracy than 
before, both in terms of scale and the actual 
geometrical relationships of the shelf-to-basin 
stratigraphic system and sequence 
architecture (Figures 9 and 10).  Although the 
dataset, as a whole, trends mostly along the 
strike of the Devonian carbonate system 
(Figure 1), a fairly uniform sampling of the 
different depositional environments allows for 
reconstruction of a collapsed, dip-oriented 
composite regional cross section.  In addition 
to the integrated stratigraphic constraints, 
reconstruction of the stratal architecture 

entailed 1) honoring the actual transect 
surface topography and depositional dip data 
collected along transects (corrected for tilt 
through geopetal measurement), 2) the use of 
previous work to follow the large-scale 
backstepping to prograding evolution 
(Playford et al. 2009), and 3) estimates of 
platform thicknesses, backstepping distances, 
underlying topography, and spatial transect 
placement.  Once the stratal framework was 
constructed true to scale and with no vertical 
exaggeration, rock data along transects were 
control points for interpreting the shelf-to-
basin facies distributions.   
 These results advance our understanding 
and ability to characterize the carbonate 
system along the Lennard Shelf in several 
respects (Table 5), including: 1) high-
resolution correlation of disconnected 
localities over approximately 200 kilometers 
(previously not possible), spanning the 
Windjana Gorge, South Oscar Range, Horse 
Spring, and Casey Falls areas; 2) upper-
middle-lower-slope and basin correlation for 
the Middle Frasnian to Middle Famennian 
and platform to basin correlation across the 
supersequence MFS; 3) scaled shelf to basin 
composite reconstruction of the system tied to 
numerous transects and honoring all 
depositional information; 4) refinement of the 
Frasnian composite sequences and their 
relationship with the conodont zones; 5) 
definition of three Lower to Middle 
Famennian composite sequences and their 
systems tracts; and 6) definition of the 
expression of sequences and systems tracts 
within slope strata.  A detailed comparison 
between the results of this study and the 
interpretations of Playton and Kerans (2015 a, 
b) are presented later (see Discussion), 



focusing on aggradational escarpments during 
supersequence TSTs, periods of sustained 
collapse around supersequence MFSs, pre- 
and post-F-F-extinction impacts on slope 
deposition, and hierarchical trends observed 
in slope deposits. 
 In addition to the above, recognition of a 
conspicuous Middle Famennian interval 
(MFa; Figures 6 and 9, Table 5) warrants 
extra discussion and requires further work.  
This progradational interval appears to 
represent a Famennian carbonate system that 
evolved into one dominated by platform-top 
grain shedding with simultaneous, extensive 
microbial encrustation down to water depths 
not observed in any other outcrop or 
subsurface datasets (>> 500 meters 
downslope; see Playton et al. 2010, Playton 
and Kerans 2015 b for discussion of deep 
boundstone margin analogs).  We are unable 
to further delineate the MFa internally due to 
lack of stratigraphic overlap (CL Section 
contains the only record; Appendix 8) and a 
grain-dominated boundstone-encrusted 
grainstone succession that obscures facies 
stacking analysis.  However, Hillbun et al. 
(this volume) subdivides the MFa interval 
into four composite sequences (Famennian 
sequences 4-7; see their Figures 2 and 6) 
based solely on isotopic expression observed 
in the CL measured section (Appendix 8) and 
the proxy developed for systems tract 
interpretation in slope settings.  Despite the 
many remaining questions on this peculiar 
interval, the MFa marks the final phase of 
reefal platform development along the 
Lennard Shelf prior to transition into a more 
cold-water-assemblage, distally-steepened 
ramp of the Late Famennian-Tournaisian 
(Fairfield Group; Playford et al. 2009).    

 

MARGIN-TO-BASIN SEQUENCE 

STRATIGRAPHIC MODELS     

 The resultant reconstructed shelf-to-basin 
sequence architecture and facies mosaic 
depiction of the Lennard Shelf highlights 
slope types and margin styles across the 
Middle-Late Devonian supersequence and 
Frasnian-Famennian extinction interval.  It 
also allows a spectrum of analysis and 
comparisons not previously possible.  The 
following sections will describe in detail the 
development of six composite sequences, the 
Frasnian 4-7 and Famennian 1-2 sequences, 
as they evolved from supersequence TST, 
MFS, and HST accommodation conditions, 
and as they progressed through the lead-up 
and recovery periods associated with the F-F 
extinction (Figures 9 and 10).     

 
Lower-Middle Frasnian Composite 

Sequence 4 

 Lower-Middle Frasnian Sequence 4 was 
deposited in the supersequence TST when 
margins and sequences backstepped relative 
to one another with intervening pulses of 
aggradation (Figure 10).  The TST of 
Sequence 4 exhibits the development of a 
growth escarpment (after Playton et al. 2010), 
where vertical margin aggradation eventually 
outpaced its coeval foreslope deposits 
resulting in onlapping slope stratal geometries 
(Figure 11A).  The overall setting was stable 
as the margin stacked vertically upon solid 
underlying foundations.  Consequently, 
foreslopes were grain-dominated from 
platform-top shedding, with little debris 
generated from collapse.  However, there was 
a point when the vertical escarpment margin 



constructed enough relief and slope profiles 
became significantly underfilled such that the 
profile became highly susceptible to collapse 
triggers.  During this time in the Late TST, 
the margin tended to fail at various points 
along strike, generating reentrant 
paleogeography and debris deposits that came 
to rest on the slope and periodically in the 
basin (Figure 11B).  At the MFS, the margin 
backstepped and reinitiated landward of the 
previous margin and began to construct relief 
(Figure 11C).  Foreslope systems were poorly 
developed at this time and composed of a 
grain-dominated veneer that draped the 
former slope profile and infilled around debris 
topography.  In the HST, margins were 
accretionary, weakly prograded, and 
maintained stability due to the solid substrate 
of the relict platform-top; thus, foreslopes 
were grain-dominated from platform-top 
shedding and contained little debris from 
margin collapse (Figure 11D).  Variations in 
this sequence model entail greater 
backstepping distances where weakly 
prograding HSTs did not advance to the 
former margin, producing a net backstepped 
sequence (see Playton and Kerans 2015 a).   
 The most distinctive stacking pattern is 
best expressed in the middle slope and is 
symmetrical, with a concentration of debris 
just beneath the MFS that is bracketed below 
and above by grain-dominated deposits 
(Figures 12 and 13A).  This particular pattern 
is dependent on the position, in both a dip and 
strike sense, of the debris accumulation as 
they were strike discontinuous and could 
occur kilometers into the basin or freeze in 
steeper middle-slope settings.  Thus, in some 
cases the entire middle-slope sequence may 
consist only of stacked grain-dominated 

deposits.  The margin also exhibits an obvious 
stacking pattern with slope deposits overlying 
platform-top facies, highlighting backstepping 
at the MFS.  A shallowing upward succession, 
often comprised of sediment gravity flows 
overlain by in situ margin deposits, is 
common above the previously transgressed 
platform-top facies.  The silt-dominated 
basinal setting does not display a clear 
stacking pattern, but slight increases in grain 
content are observed immediately beneath the 
MFS and in the Late HST, possibly reflecting 
very distal equivalents of debris deposition 
and maximum progradational extent, 
respectively. 

 

Middle-Upper Frasnian Composite 

Sequence 5 

 Middle-Upper Frasnian Sequence 5 is 
where the supersequence MFS is defined; the 
point where margins began to shift from long-
term backstepping and aggradation to 
progradation (Figure 10).  In the Early TST of 
Sequence 5, aggradational escarpments were 
again developed through vertical aggradation 
of the margin and the inability of foreslope 
deposits to fill the slope profile to the level of 
the coeval margin; this underfilling was 
amplified due to the inherited relief from 
underlying backstepped topography (Figure 
14A).  This style of vertical margin growth 
was initially stable, and grain-dominated 
slopes developed accordingly.  By Late TST 
time, the margin had constructed considerable 
relief, the slope profile was substantially 
underfilled, and margins were consequently 
more likely to collapse (Figure 14B).  Hence, 
margins underwent sustained mass wasting 
and evolved into an erosional escarpment 



with associated debris-dominated slopes that 
onlapped lower down in the profile.  In the 
HST of Sequence 5, margins, already 
unstable, were unable to prograde over 
dramatically underfilled profiles with 
insufficient substrate.  This resulted in 
sustained instability and mass wasting, debris-
dominated slope development, and the 
continuation of an erosional escarpment 
margin configuration (Figures 13C and 14C).   
 Most of the slope consists of thick, 
amalgamated successions of debris with 
unclear stacking organization (Figure 15).  At 
the margin, scarps of truncated platform strata 
with onlapping debris are observed (Figure 
13C).  The lower slope records the grain-
dominated toesets that are equivalent to updip 
debris.  A more silt-dominated interval (silt-
sized carbonate and quartz grains) brackets 
the MFS, producing a symmetrical stacking 
pattern; the lack of grainy material around the 
MFS may indicate backfilling of the slope in 
an updip position at that time.  The basinal 
setting is again not highly diagnostic, but 
shows a vague upward decrease in silt content 
starting within the TST; this timing may be 
coeval with the onset of escarpment mass 
wasting and is reflected in the basin with a 
slight increase in grain export.   

 

Upper Frasnian Composite Sequence 6 

 Upper Frasnian Sequence 6 is in the Early 
HST of the supersequence, when margins 
were unable to prograde, despite lower-
accommodation conditions, due to inherited 
underfilled profiles with inadequate substrates 
to support progradation (Figure 10).  The TST 
of Sequence 6 inherited the highly unstable 
profile from Sequence 5, prompting continued 

mass wasting during aggradation and an 
erosional escarpment configuration with 
associated debris-dominated foreslopes 
(Figure 16A).  In the Early HST, margins 
were able to prograde to a point, but 
subsequently failed; this occurred in pulses 
and episodically as the system neared the final 
stages of slope regrading and equilibration 
(Figure 16B).  These represent the last phases 
of downslope debris shedding and completion 
of slope profile infilling such that an angle-of-
repose substrate was established for 
progradation.  Once the debris substrate was 
fully developed by the Late HST, the margin 
was able to prograde and evolved into an 
accretionary margin with shelf-to-slope 
interfingering relationships (Figure 16C).  
During this final stage of Sequence 6, slopes 
were grain-dominated reflecting the margin 
had reached stability (Figure 13B, D).   

 
 Sequence 6 stacking patterns for middle- 
and upper-slope settings exhibit an upward 
transition from debris-dominated to grain-
dominated deposits, reflecting the shift from 
mass wasting to stable progradation (Figures 
13B, D and 17).  Boundstone tongues are also 
observed in upper-slope successions during 
the early pulses of progradation in the Early 
HST.  Lower-slope and basinal settings both 
display upward increases in platform-top 
derived material, again reflecting updip debris 
backfilling processes that transition into 
offbank shedding during progradation.  In 
lower-slope settings during the TST, 
microbial boundstone bioherms occur locally, 
creating positive topography within a more 
silt-dominated seascape; thus, lower-slope 
TST stacking patterns can vary laterally from 
purely boundstone to silty strata. 



 

Upper Frasnian Composite Sequence 7 

 Upper Frasnian Sequence 7 is in the Early 
HST of the supersequence, when margins 
were stably prograding; however, this 
sequence was also the prelude to the F-F 
boundary when changing ecological variables 
were beginning to affect sediment factories 
that contribute to slope and basin deposition 
(Figure 10).  The TST of Sequence 7 exhibits 
an aggradational margin with a significantly 
expanded upper-slope microbial boundstone 
setting where encrustation became dominant 
up to 200 meters downslope from the 
platform edge, based on reconstructed water 
depth (Figures 13D and 18A).  A unique 
upper-middle-slope style also developed, 
comprised of a mixed siliciclastic-carbonate 
silt-dominated terrain with numerous gullies 
that served as conduits for bypassing material.  
The middle slope is accordingly grain-
dominated as it was the recipient of the 
bypassed material, although these grain-
dominated deposits are conspicuously micro-
peloidal with intermixed silt (versus more 
typical skeletal-peloidal-coated grain 
assemblages; Figure 13B).  In general, the 
TST slopes were rather poorly developed, 
with representative grain and debris 
contributors evidently subdued in productivity 
and/or downslope shedding.  The HST of 
Sequence 7 exhibits fairly strong margin 
progradation and maintains the deep 
microbial boundstone upper-slope factory 
(Figure 18B).  The slopes were mixed debris- 
and grain-dominated, indicating more typical 
platform-top and margin shedding processes 
had resumed after the TST.   

 The stacking patterns of Sequence 7 
(Figure 19) are symmetrical in the lower and 
middle slope, in that debris deposits are 
concentrated in the Early HST, possibly 
indicating greater margin instability at the 
onset of composite-scale progradation.  The 
TSTs of middle- and lower-slope settings will 
vary in character (thus the stacking pattern 
will vary) depending on the exact profile 
position of the silt-dominated gullied slope 
setting or downdip grain-dominated apron.  
The Late HSTs of middle- and lower-slope 
settings tend to both exhibit upward 
successions from grain- to mud-dominated 
deposits, possibly reflecting the gradual 
decline of platform-top carbonate factory 
production as the F-F event was approached.  
Upper-slope stacking is unclear as it consists 
dominantly of boundstone related to the 
development of a well-established encrusted 
upper-slope setting.  Basinal patterns exhibit 
an upward increase in grain content relative to 
silt, probably again reflecting an increase in 
offbank shedding throughout the sequence. 

 

Lower Famennian Composite Sequence 1 

 The first composite sequence in the 
Famennian was progradational as forced by 
the supersequence HST setting, and 
represented the recovery period after the F-F 
extinction (Figure 10).  The TST of 
Famennian Sequence 1 has a peculiar 
architecture with a middle slope thicker than 
its equivalent upper slope (Figure 20A).  The 
upper slope reconstructs to be a thin, yet still 
deep on the slope, veneer of microbial 
boundstone.  The middle slope was dominated 
by an anomalously thick stack of oolitic-
coated grain grainstone, and the lower slope 



was grain-dominated but with an unusual 
proportion of debris deposits.  We interpret 
these characteristics together to indicate that 
the TST of Sequence 1 was a time of subdued 
margin growth, with slope bypass of material 
from dominantly platform-top ooid factories.  
The HST of Sequence 1 was progradational 
with a deep boundstone margin, foreslopes 
that contained substantially more debris 
deposits than in the TST, and an overall 
basinward-fining pattern from debris-rich to 
grain-dominated to mud-dominated 
assemblages (Figure 20B).   
 The upper slope of Sequence 1 displays 
rather undiagnostic stacking patterns with 
interbedded debris and boundstone (Figure 
21), but the middle slope exhibits a clear 
asymmetrical pattern with a thick grain-
dominated TST and thinner, more debris-rich 
HST.  Lower-slope stacking is also 
asymmetrical but in the opposite sense, with 
greater debris proportions in the TST and an 
upward transition from grain- to mud-
dominated deposits in the HST.  Basinal 
stacking displays increased skeletal content in 
the HST, possibly reflecting recovery of some 
faunal groups subsequent to the extinction. 

 

Lower-Middle Famennian Composite 

Sequence 2 

 Famennian Sequence 2 was strongly 
progradational as it was in the heart of the 
supersequence HST, and deposited long after 
the F-F biotic crisis, when carbonate factories 
presumably were functioning at full capacity 
(Figure 10).  The TST margin of Sequence 2 
is interpreted to have an aggradational 
component, but also reconstructs to have been 
weakly progradational, reflecting the longer-

term forcing of the supersequence HST 
(Figure 22A).  The sustained deep microbial 
boundstone factory also contributed to 
progradation during the TST.  TST 
foreslopes, however, were overall grain-
dominated, suggesting a net stability of the 
margin, some progradation notwithstanding.  
The HST of Sequence 2 exhibited strong 
progradation of the deep microbial margin 
and upper slope, which resulted in episodic 
instability, collapse, and consequent debris 
tongue deposition on the slope.  The 
foreslopes generated, thus, were mixtures of 
grain-dominated and debris deposits and 
gradually decreased basinward in the coarser 
particle fractions (Figure 22B).   
 The stacking patterns for Sequence 2 
(Figure 23) show a uniform succession down 
the slope, consisting of more debris-rich 
HSTs yielding asymmetrical, coarsening 
upward vertical stacks, and reflecting the 
changing progradational trajectories from 
TST to HST.  Basinal stacking is less clear 
than that of the slope, although rare debris is 
present in the HST (Figure 13E). 

 

DISCUSSION 

Carbonate Margin and Slope Sequence 

Stratigraphic Concepts 

 The complex shelf-to-basin depositional 
and architectural evolution recorded along the 
Lennard Shelf, and now described with 
substantially higher resolution and confidence 
than before, can be distilled into a succinct set 
of predictive concepts and associations that 
are broadly applicable to reefal carbonate 
margin and slope systems.  Terms and 
classifications used to describe the trends 



below are after Playton et al. (2010).  These 
predictive associations are particularly useful 
for characterization of steep-sided carbonate 
subsurface reservoirs with seismic-scale, 
supersequence backstepping-to-prograding 
architectures.  Seismic volumes can typically 
resolve supersequence-scale systems tracts 
and long-term TST versus HST geometries, 
but the Lennard Shelf models illustrate the 
sub-seismic margin and slope facies 
associations, proportions, architectures, and 
their temporal arrangements, that are 
generally well beyond the interpretive limits 
of most subsurface datasets. 

    

Margins and Slopes during Supersequence 

TSTs 

 Supersequence TSTs represent long-term 
high accommodation conditions, thus reefal 
margins have the tendency to backstep and 
aggrade.  Margins often construct relief from 
relatively flat underlying substrates and over 
time outpace their own equivalent foreslope 
accumulations through vertical aggradation, 
producing an escarpment configuration with 
onlapping slope strata beneath coeval reefal 
environments; these are termed growth 
escarpments.  A threshold of maximum 
escarpment development is reached when the 
slope profile is underfilled to the point where 
the margin becomes susceptible to failure, 
collapses, and generates debris deposits on the 
slope and in the basin.  This occurs in the Late 
TST of the composite sequence, just prior to 
backstepping at the MFS (Figure 11).  Up to 
and after this point, margins throughout the 
composite sequence are stable, from either 
building upward instead of outward, and/or 
through the presence of a flat underlying 

substrate.  Thus, middle- and lower-slope 
stacking patterns will contain a symmetrical 
record, with debris deposits concentrated just 
beneath the composite sequence MFS, and 
grain-dominated deposits bracketing the 
debris below and above (Figures 12 and 13A).  
This style of organization can be predicted at 
a subordinate sequence scale within a 
supersequence TST.  Age-equivalent reefal 
margins of the Alberta Basin in Western 
Canada (e.g., Workum and Hedinger 1989, 
Whalen et al. 2000) can be classified as 
growth escarpments; yet, it is difficult to 
compare middle-slope stacking patterns 
meaningfully due to different sequence 
stratigraphic criteria for interpretation of 
backstepping surfaces, degrees of basin fill 
from external input, backstepping distances, 
and margin declivities.  However, Whalen et 
al. (2000) mapped tongues of debris in slope 
settings bracketed below and above by grain- 
to mud-dominated deposits for their 
backstepping Sequence 3, similar to the 
overall vertical succession described here.  

 

Margins and Slopes during Supersequence 

MFSs 

 Around the supersequence MFS, at the 
long-term transition from margin aggradation 
and backstepping to progradation, slope 
profiles are significantly underfilled and 
margins are highly unstable.  This results in 
sustained collapse, the formation of erosional 
escarpments, and the generation of debris-
dominated slopes.  Only after prolonged mass 
wasting of the margin produced enough 
debris to infill the slope profile and emplace a 
substrate for progradation, could the margin 
successfully advance basinward and evolve an 



accretionary, interfingering configuration.  
Thus, around the supersequence MFS, debris-
dominated slopes are likely over one or two 
subordinate (i.e., third-order) sequences and 
margins will predictably evolve from 
erosional escarpments to accretionary 
configurations (Figures 14 and 16).  Internal 
stacking patterns on the slope will be 
somewhat indistinct, precluding subdivision 
into subordinate sequences.  This is due to 
anomalously thick, amalgamated successions 
of debris, but thin grain-dominated intervals 
likely mark the onset and terminus of the 
slope readjustment and infilling period (i.e., 
the base of Frasnian Sequence 5 and cap of 
Frasnian Sequence 6; Figures 15 and 17).  
This pattern of collapse and debris-dominated 
slope development around supersequence 
MFSs is observed in multiple other outcrop 
and subsurface datasets, including the highly 
comparable, age-equivalent western Canadian 
system and Late Paleozoic isolated carbonate 
platforms of the Pricaspian Basin in western 
Kazakhstan (see Discussion and References in 
Playton and Kerans 2015 a). 

 

Margins and Slopes during Supersequence 

HSTs 

 During the supersequence HST, the overall 
setting is accommodation limited and margins 
are consequently progradational.  This 
repeated tendency for margins to strongly 
build outward at sub-horizontal trajectories 
results in frequent local and episodic failure.  
These local points of oversteepening quickly 
heal, re-accrete, and eventually fail again.  
This process is repeated continuously at 
numerous points along strike at any given 
time during progradation, resulting in debris 

tongue deposition on the slope.  Within a 
composite-scale sequence, the HSTs are more 
strongly progradational compared to the 
TSTs; hence, HST margins fail more often 
and produce greater proportions of debris on 
the slope than TST margins (Figure 22).  It 
follows that the composite sequence middle-
lower-slope stacking patterns will reflect this 
with greater debris proportions in the HSTs, 
producing a coarsening upward, asymmetrical 
succession (Figure 23).  Moreover, 
supersequence debris accumulations will have 
a similar overall organization, with greater 
debris proportions in the prograding HST 
sequences compared to that of the TST 
backstepping sequences.  These patterns of 
TST versus HST debris proportions, both at 
supersequence and subordinate sequence 
scales, are not widely documented in other 
datasets, but were briefly overviewed in 
Playton et al. (2010) and discussed further 
and Playton and Kerans (2015 b). 

 

Margins and Slopes during Global Biotic 

Crises 

 Global biological and ecological stress 
intervals will have particular characteristics 
and nuances throughout geological history.  
However, concerning carbonates in a broad 
sense, periods of biotic stress are reflected in 
changing of entire carbonate factories and 
adverse effects on certain components.  As a 
consequence, elevated microbial activity is 
common during these times, indicating rapid 
opportunistic filling of niches held by 
organisms in decline.  Moreover, margins 
may abruptly shift from shallow euphotic 
configurations to deeper oligophotic styles.  
In terms of slope development, anomalous 



styles or highly partitioned stratigraphic 
packaging may result from pauses or 
transformations of the typical sources of 
downslope sediment (Figures 18 and 20).   
 In terms of stacking patterns or predictive 
trends (Figures 19 and 21), three likely 
phenomena should be considered based on 
observations from the Lennard Shelf dataset 
(see Playton and Kerans 2015 b for further 
discussion): 1) abrupt starved slope intervals 
indicating a temporary hiatus in production 
and downslope shedding from the usual 
carbonate factories (e.g., the silt-dominated 
gullied slope system in the TST of Frasnian 
Sequence 7); 2) signs of elevated microbial 
activity in any setting (e.g., downslope 
expansion of upper-slope microbial 
boundstone starting in Frasnian Sequence 7; 
Figure 13D); and 3) the dominance of a single 
sediment source contributing to slope 
deposits, often indicating the first carbonate 
factory to recover post-extinction while others 
remain in stress (e.g., ooid-dominated slopes 
in the TST of Famennian Sequence 1).  While 
these factors can certainly impact margin-to-
slope architecture, the influence of 
accommodation drivers will persist, and likely 
dominate geometric development during 
biotic crises.  Thus, the key indicators of 
extinction intervals on carbonate slopes are 
typically rather rapid or uncharacteristic 
compositional variations that depart from 
more commonly observed stacking patterns.  
George and Chow (2002) and Playford et al. 
(2009) looked at multiple measured sections 
around the F-F boundary in middle- to lower-
slope settings along the Lennard Shelf and 
repeatedly observed evidence for reduced 
carbonate factory production and resultant 
starved slope conditions at the extinction 

surface.  These findings indicate that a 
distinctive signature of paused carbonate 
factories is likely to mark the actual boundary 
on the slope, and may be equivalent to an 
unconformity or disconformity on the 
platform top.  Our dataset additionally 
proposes recognizable characteristics that 
define the extinction interval – the onset of 
biotic stress and recovery to a healthy, 
productive carbonate system.   

 
Comparison with Playton and Kerans 

(2015 a, b) 

Growth Escarpments 

 Growth escarpments represent a margin 
and slope evolution that is controlled by high 
accommodation conditions during long-term 
TSTs.  Playton et al. (2010) first proposed the 
concept of growth escarpments, dominantly 
based on Lennard Shelf data, and Playton and 
Kerans (2015 a; their Figures 3 and 5-9) 
describe their architectures, compositions, and 
controls in detail.  This study largely 
corroborates these previous findings in terms 
of the systems tract interpretations, timing of 
reefal margin failure, and nature of the 
weakly prograding HSTs.  The PGH 
measured section and the HD14 core (Figure 
1, Table 1, and Appendices 9 and 14) exhibit 
1) upward-deepening outer platform to reef-
flat facies successions, with 2) overlying 
margin-to-slope deposits that indicate 
progradation through upward-shallowing 
facies successions and/or an outcrop 
expression of basinward margin advance.  
This stacking respectively indicates TST 
conditions with aggrading margins followed 
by MFS backstepping and subsequent weak 
HST progradation, which agrees with the 



sequence stratigraphic interpretation of 
Playton and Kerans (2015 a, b).  The middle-
slope equivalent to this type of succession can 
be observed in the SO measured section 
(Sequence 4, but relevant for older 
backstepping sequences; Figure 12) with 1) 
grain-dominated slopes during the TST 
reflecting stable aggradational margins; 2) 
slope debris deposits just prior to 
backstepping in the Late TST indicating a 
sensitivity to failure triggers during peak 
escarpment growth and collapse; and 3) 
overlying grain-dominated deposits recording 
the weak progradation of a stable margin with 
a solid underlying foundation.  Playton and 
Kerans (2015 a; their Figure 7D) observed a 
margin reentrant, generated from large-scale 
failure, equivalent to the latest stages of 
escarpment growth immediately before an 
interpreted backstepping event.  This supports 
the Late TST collapse that we also propose 
here, and represents a mechanism and timing 
for margin failure not discussed in Playton et 
al. (2010). 

 

Timing of Collapse around the Supersequence 

MFS 

 Both Playton and Kerans (2015 a; their 
Figures 10 and 12-13) and this study soundly 
document the dominant margin failure 
process and consequent debris-dominated 
slope development at the supersequence MFS, 
as slope profiles adjust during the change 
from aggradation to progradation (Figures 14-
17).  Playton and Kerans (2015 a) suggest that 
most debris shedding is concentrated during 
the HSTs of the composite sequences that 
bracket the turnaround, and that TSTs 
represent phases of stability characterized by 

either grain shedding or microbial 
encrustation of collapsed margins.  However, 
this study finds that once slope adjustment has 
commenced, debris shedding continues 
without interruption, regardless of systems 
tract, until the profile has sufficiently infilled 
to support progradation.  Specifically, we 
observe margin failure throughout all of 
Sequences 5 and 6 with the exception of the 
Earliest TST of Sequence 5 and Latest HST 
of Sequence 6 (Figures 15 and 17).  While the 
mapping of Playton and Kerans (2015 a) is 
not affected by these findings, it should be 
recognized that much of the slope debris 
during this period also originates from the 
TST margins of Sequences 5 and 6.  This 
indicates that placement of the supersequence 
MFS, and subordinate sequence MFSs during 
this phase, should be within the thick 
successions of debris on the slope, rather than 
at the bases.  Furthermore, the microbially-
encrusted collapse scarp discussed in Playton 
and Kerans (2015 a) may not be as sequence 
stratigraphically significant as proposed.  
Instead, these encrustations may simply be 
locally preserved accumulations reflecting the 
alternating collapse and re-healing process 
that occurs throughout all systems tracts.  The 
base of the microbially-encrusted veneer 
present at the Classic Face in Windjana Gorge 
(Playton and Kerans 2015 a, after Playford et 
al. 2009) defines the base of Sequence 6 in 
that particular margin location; however, 
further downslope the microbial accumulation 
may not coincide with the sequence boundary.  
More substantially, these observations point 
to a failure mechanism that results in 
repeated, high-frequency collapses along a 
vertical scarp during periods of sustained 



aggradation - a mechanism not discussed in 
Playton et al. (2010). 

 

Recovery Period after the F-F Boundary 

 The characterization in this study of the 
sequence leading up to the F-F boundary 
(Frasnian Sequence 7; Figures 18 and 19) 
conforms to the descriptions of Playton and 
Kerans (2015 b).  These and our current 
observations effectively capture margin and 
slope development just prior to the significant 
event (i.e., silt-dominated TST settings and 
downslope microbial boundstone expansion).  
Herein, Famennian Sequence 1 is the 
sequence immediately after the F-F boundary, 
representing the post-extinction recovery 
period (Figures 20 and 21), and is analogous 
in terms of timing to the “Lowermost 
Famennian” of Playton and Kerans (2015 b).  
However, the two depositional models vary 
somewhat in terms of the importance placed 
on certain processes and resulting facies 
proportions (see Figure 3C in Playton and 
Kerans 2015 b).  In this study, the middle- 
and lower-slope transects for Famennian 
Sequence 1 represent an open-ocean facing 
setting on the seaward side of an outboard 
structure, and within a large (> 50 kilometers 
across) embayment in the Lennard Shelf, 
respectively (Figure 1, SO and VHS sections, 
respectively).  These sections indicate copious 
bypass of oolitic grain-dominated material 
and some debris immediately following the F-
F boundary, suggesting ooid shoals were 
among the first carbonate factories to recover 
and prosper.  The upper-slope control transect 
(WV section, Figure 1) for this study is 
located at the entrance of an elongate margin 
reentrant that, although within a 

paleogeographic embayment, likely had a 
direct connection with the open ocean. This 
section exhibits a debris-rich setting with 
intercalations of microbial boundstone, 
indicating the typical interfingering at the 
upper-middle-slope transition.  This 
constrains the water depth of the encrusted 
upper-slope environment down to 
approximately 200 meters, comparable to that 
of the preceding sequence, Frasnian Sequence 
7 (Figure 18).  The model for the upper- and 
middle-slope settings of the Lowermost 
Famennian of Playton and Kerans (2015 b) 
was largely derived from exposures in 
Windjana Gorge proper, in a highly complex 
reentrant-promontory configuration with a 
depocenter somewhat sheltered from the open 
ocean (see their Figure 5).  They describe the 
microbial boundstone factory expanding 
downslope beyond the relict depth of the 
previous Frasnian Sequence 7 and 
encroaching into apparently middle-slope 
environments.  Moreover, a distinctive 
characteristic of the Lowermost Famennian is 
the paucity of platform-derived material in the 
middle slope, including oolitic grain-
dominated deposits.   
 These disparities in platform-derived 
contribution and the degree of downslope 
microbial encrustation post-dating the F-F 
boundary observed in the two datasets can be 
attributed to variability associated with 
different paleogeographic settings.  The 
extraordinary amount of oolitic accumulation 
recorded in the middle slopes at the SO 
section is likely related to its position on the 
seaward edge of a somewhat isolated 
carbonate island.  A similar pattern holds for 
the VHS section due to its location within a 
well-circulated mega-embayment.  The upper 



slope microbial boundstone factory was 
already fully developed in Frasnian Sequence 
7 and was in equilibrium with the other slope 
contributors, thus does not appear to expand 
further in this study.  Conversely, the complex 
paleogeographic setting of Windjana Gorge is 
here interpreted to have had an impact on the 
recovery of platform-top factories, ooid 
shoals included, explaining the Lowermost 
Famennian observations of Playton and 
Kerans (2015 b).  The delayed establishment 
of shallow water factories coincided with an 
elevation in microbial encrustation and 
resultant downslope expansion, suggestive of 
the opportunistic behavior of microbial 
communities.  Furthermore, the likely poorer-
marine circulation at Windjana Gorge may 
have itself been more favorable for microbial 
activity.  The overall themes of the post-F-F 
recovery period still hold across both datasets 
(i.e., struggling and/or dominant single 
factories, extensive microbial activity), but 
the contrasts discussed here underscore the 
potential variability generated due to 
paleogeography and other controls on 
oceanographic processes, even during global 
phenomena. 

 

Hierarchical Trends in Middle-Slope Debris 

Proportions 

 In this study, we observe a hierarchical 
pattern in middle-slope debris proportions 
with greater abundances in supersequence and 
composite sequence HSTs when compared to 
their counterpart TSTs (Figures 9, 10, 22, and 
23).  This again is attributed to a greater 
propensity for margin instability and local 
collapse from the outward extending 
trajectories inherent to progradational phases, 

and this association appears to hold true at 
different temporal scales.  Playton and Kerans 
(2015 b) interpret the Famennian middle 
slopes in terms of high-frequency sequences, 
with debris-dominated LSTs, silt-dominated 
TSTs, and grain-dominated HSTs (their 
Figures 9, 13, and 22C).  Their model for LST 
collapse entails slight downstepping of the 
microbial margin and upper slope during 
platform-top emergence, resulting in a strong 
offlapping geometry and extreme localized 
instability.  Data from this study suggest this 
configuration and consequential process of 
failure is more common in composite-scale 
HSTs.  It also indicates that a lower-
frequency signal can be extracted from the 
detailed mapping of Playton and Kerans 
(2015 b), through documentation of debris 
deposit proportions within their high-
frequency sequence stacking.  Moreover, 
these observations imply that a hierarchical 
sequence stratigraphic expression exists in 
carbonate slope deposits similar to the 
numerous well-documented datasets in 
carbonate platform-top settings (e.g., 
Goldhammer et al. 1990, Kerans and Fitchen 
1995, Tinker 1998); in these cases the 
expression is best developed in middle-slope 
settings where the suite of diagnostic facies 
are present, debris deposits being a critical 
indicator facies.  As observed here, 
composite-sequence-scale accommodation 
conditions are linked to the development, and 
thus likelihood for collapse, of upper-slope-
centered, microbial boundstone margin 
wedges during high-frequency LSTs.  Perhaps 
these LST accumulations are poorly 
developed during composite-scale TSTs due 
to lesser degrees of exposure and 
downstepping.  



 
Margin Failure Timing and Mechanisms 

 Numerous studies have commented on the 
timing and triggering mechanisms for brittle 
failure of early-lithified, reefal carbonate 
margins (e.g., Cook et al. 1972, Cook and 
Mullins 1983), and a range of intrinsic and 
extrinsic controls have been proposed.  
Playton et al. (2010) provide classifications 
for collapse scale and frequency, and 
generalize that margin failure is more likely 
during long-term progradation versus 
aggradation and backstepping, and highly 
concentrated around long-term transitions 
from aggradation to progradation 
(supersequence-scale MFSs).  Playton and 
Kerans (2015 a, b) corroborate these 
statements with Lennard Shelf data, and 
additionally interpret collapse to occur during 
the high-frequency LSTs within lower-
frequency progradational successions.  Our 
dataset allows further investigation of the 
timing and mechanisms for reefal margin 
collapse using the added constraints of a 
hierarchical, slope sequence stratigraphic 
framework.   

 

Collapse during the TST 

 This study and Playton and Kerans (2015 
a) observed that escarpment margins within 
the overall backstepping supersequence TST 
become unstable and fail just prior to 
backstepping events when escarpment walls 
developed the greatest relief.  On the 
composite-sequence-scale, the timing of these 
failures is in the Late TST, immediately 
before backstepping at the MFS and coeval 
with vertical margin and platform-top 

aggradation (Figure 11).  This study and 
Playton and Kerans (2015 a) also documented 
a period of sustained failure bracketing the 
supersequence MFS as margins and slope 
profiles adjusted across the aggradation-to-
progradation turnaround and over the span of 
two composite sequences (Frasnian 
Sequences 5 and 6).  Playton and Kerans 
(2015 a) interpreted that collapse occurred 
only in the composite-scale HSTs of 
Sequences 5 and 6, owing to margin 
outbuilding over unstable or inadequate 
substrates.  However, this study proposes 
failure also in the TSTs of Sequences 5 and 6, 
during vertical aggradation of the margin and 
platform top (Figures 15 and 17). 
 Thus, this study recognizes multiple 
instances of composite-sequence-scale TST 
failure of vertically-aggrading escarpment 
margins, a timing that is not discussed in 
Playton et al. (2010).  In fact, their study 
(ibid.) considered aggradational trajectories 
unlikely to favor collapse.  A highly-
constrained sequence stratigraphic platform-
to-slope correlation allows examination of the 
mechanism behind the observed TST failure 
(Figure 24).  Platform-top TST stacking 
patterns that are equivalent to debris deposits 
on the slope display higher-frequency cycle 
sets within overall aggradational successions.  
The cycle sets consist of deepening upward 
cycles passing into shallowing upward cycles, 
thus represent small-scale backstepping to 
prograding alternations.  As the escarpment 
margins approached great relief and declivity 
through aggradation, they became highly 
susceptible to collapse.  We interpret high-
frequency progradational pulses at the 
margin, recorded within the cycle set stacking 
on the platform, as the cause of TST collapse.  



Small outbuilding events at the escarpment 
edge are adequate to initiate medium- to 
large-scale failure along an already highly 
unstable margin profile.  This configuration 
appears to develop distinctly in the Late TSTs 
of composite sequences within supersequence 
TSTs, and persists across entire composite-
scale TSTs across the supersequence MFS. 

 

Collapse during the HST 

 Instability and failure are common during 
times of long-term progradation due to overall 
outbuilding margin trajectories over poorly 
developed or non-existent substrates.  This 
was proposed as one of the more likely 
mechanisms by Playton et al. (2010) and 
discussed at length in Playton and Kerans 
(2015 b).  Playton and Kerans (2015 b) 
interpret debris deposits within the 
supersequence HST to represent the LSTs of 
internal high-frequency sequences.  These 
deposits coincided with margin- and upper-
slope-centered wedges of microbial 
boundstone that developed while the platform 
top was largely exposed.  These wedges 
accrete sub-horizontally in a basinward 
direction and become highly prone to local 
collapse along strike.  High-frequency silt-
dominated TST deposits and grain-dominated 
HST deposits follow and bury the LST debris 
to construct a clinothem, the fundamental 
building block of a progradational slope 
system.   
 This study was able to establish a 
composite-sequence-scale stratigraphy within 
the Famennian, providing an internal 
framework for the supersequence HST and 
enabling investigation of the distribution of 
high-frequency debris deposits within the 

sequence hierarchy.  We find that debris 
deposits are more concentrated in composite 
sequence HSTs than in TSTs (Figure 23).  
This suggests that either the development of 
high-frequency LST margin wedges, or their 
collapse potential, varies depending on 
position within the lower-frequency setting.  
It is conceivable that wedge trajectories were 
likely closer to horizontal (or even 
downstepping) during composite HSTs versus 
TSTs, thus more prone to failure.  It is also 
possible that the balance of the rate of margin 
outbuilding relative to the accumulation rate 
of detrital sediment along the slope profile 
changed whether within a composite HST or 
TST, in turn influencing collapse through the 
availability of underlying substrate.  Further 
work is required to fully understand this 
process, but it is important to recognize the 
hierarchical organization we observe in 
margin failure patterns within the longer-term 
progradational succession, and that failure in 
these settings is induced via mechanisms that 
force an already outbuilding margin at the 
angle of repose to periodically accrete beyond 
the angle of yield.         

 

Middle-Slope Stacking Patterns 

 Stacking pattern analysis for carbonate 
platform-top settings has been widely applied 
for decades and allows for two-dimensional 
predictions away from one-dimensional 
successions of facies (e.g., Goldhammer et al. 
1990, Kerans and Nance 1991, Goldhammer 
et al. 1993, Kerans and Fitchen 1995, Read 
1995, Kerans and Tinker 1997, Lehrmann and 
Goldhammer 1999).  Making possible this 
methodology is the sensitive response of 
shallow water carbonate production and 



accumulation to accommodation changes, and 
the assumption that stratigraphic record left 
behind is largely complete.  Kerans and 
Tinker (1997) provide an excellent workflow 
and set of criteria to interpret sequences and 
systems tracts from one-dimensional stacks of 
carbonate shallow water deposits, including 
the usage of facies proportions, cycle 
thickness, indicator facies, facies offset, and 
exposure indices to interpret the 
accommodation history and migration of 
facies belts over time in a particular system.   
 In carbonate slope environments, however: 
1) the assumptions that sediments are 
sensitive to and will likely infill 
accommodation does not apply, 2) exposure 
indicators are non-existent in most positions 
along high-relief slope profiles, 3) thickness 
patterns of sediment packages are generally 
meaningless given the degree of strike 
variability commonly observed, and 4) facies 
offset is often undiagnostic as highly varying 
deposit types are frequently juxtaposed 
vertically (as well as laterally).  These reasons 
have led to the underdevelopment of 
carbonate slope stacking pattern criteria; 
however, our dataset provides sufficient 
control to establish generalized rules at the 
composite and supersequence scales.  We find 
that the proportions of debris-, grain-
dominated-, and mud-dominated deposits are 
useful for interpreting carbonate slope vertical 
successions.  Middle-, and less so, lower-
slope settings provide the best information as 
adequate representations of the key deposit 
types are generally present.  The three 
families of deposit types (debris, grain-
dominated, and mud-dominated; see Playton 
et al. 2010) are all meaningful in terms of 
source carbonate factory and process, though 

we find debris deposits to be the most 
effective as an indicator facies as they tend to 
occur at distinctive positions within the 
hierarchy of sequences and form the basis for 
the vertical patterns we observe in slope 
strata.  We here propose three fundamental 
middle-slope stacking patterns, organized by 
position within the supersequence and 
relevant for steep reefal margin systems 
(Figure 25). 

 

Composite Sequence Succession within the 

Supersequence TST 

 These successions are symmetrical with 
debris deposit cores and bracketed above and 
below with grain-dominated deposits (Figure 
25A).  The proportions of grain-dominated 
deposits are at least twice that of the debris; 
however, this ratio can vary along strike.  
Thicknesses are generally less than one 
hundred meters as these slope accumulations 
are onlapping wedges (versus laterally 
extensive prograding clinothem systems).  
These successions represent growth 
escarpment evolution and composite sequence 
development within the supersequence TST, 
where margins a) aggrade stably in the Early 
TST, producing grain-dominated slopes, b) 
surpass a threshold of instability in the Late 
TST resulting in collapse and slope debris 
deposition, c) backstep at the MFS, and d) 
weakly prograde in the HST while 
maintaining stability, thus feeding grain-
dominated slopes. 

 

Succession across the Supersequence MFS 

 These symmetrical successions consist of 
thick and amalgamated stacks of debris 



deposits with significantly thinner grain-
dominated bases and caps, and are 
conspicuously debris-rich intervals within 
extensive slope successions (Figure 25B).  
The overall proportions heavily favor debris 
deposits, with thicknesses potentially well 
over one hundred meters.  These successions 
indicate the period of prolonged and sustained 
margin mass wasting as the slope profile 
readjusts and is gradually infilled with debris.  
This characteristically occurs at the transition 
from long-term aggradation and backstepping 
to progradation around the supersequence 
MFS.  Placement of the supersequence MFS 
is likely in the lower half of the debris 
succession, as the majority of failure and 
slope infilling occurs in the supersequence 
Early HST, when the system is unable to 
prograde.  The grain-dominated base of the 
succession reflects the final stages before the 
margin shifts to an erosional escarpment, and 
similarly, the grain-dominated cap marks the 
development of accretionary margins after 
regrading of the slope profile to the angle of 
repose.  We observe here that this overall 
succession occurs over the span of two 
composite sequences (Frasnian Sequences 5 
and 6), but definition of the composite-scale 
systems tracts and bounding surfaces is 
difficult due to the amalgamated nature of the 
debris succession. 

 
Composite Sequence Succession within the 

Supersequence HST 

 These slope successions show an upward 
increase in debris deposits, producing a 
coarsening upward, asymmetrical profile 
(Figure 25C).  Debris-poor (< 10%) lower 
portions represent composite-scale TSTs and 
are generally grain-dominated.  Debris-rich 

(25-50%) upper portions represent composite-
scale HSTs and show alternations between 
grain-dominated- and debris deposits with 
variable preservation of mud-dominated 
deposits.  Overall stratigraphic thicknesses 
can be greater than one hundred meters as 
these are transects of prograding clinothems.  
These successions are found within 
supersequence HSTs, during overall 
progradational settings, where high-frequency 
collapse events are more likely to occur in 
composite HSTs versus TSTs.  The Lennard 
Shelf dataset (after Playton and Kerans 2015 
b) suggests that high-frequency margin failure 
occurs at accommodation minima, thus debris 
deposits have sequence stratigraphic 
significance and can be used to further 
delineate the internal architecture of 
composite HSTs.  As the debris deposits are 
less prevalent in composite TSTs, internal 
high-frequency sequence architecture is likely 
obscured and more difficult to define. 

 

Signals of Ecological Stress 

 In addition to accommodation controls, 
carbonate systems also strongly respond to 
changes in environmental conditions, 
resulting in perturbations in productivity and 
the active source factories that contribute to 
middle-slope deposits.  The ability to examine 
sediment successions that pre- and postdate 
the F-F boundary allows for general facies 
trends and relationships to be developed.  
These are not stacking patterns per se, rather 
signals or diagnostic features that may 
indicate temporal proximity to a major biotic 
crisis (Figure 26).  In the Lennard Shelf case, 
the pre-extinction lead-up period entailed an 
increase in biotic stresses that were reflected 



in the slope through changes in sediment type 
(Figure 26A).  Fairly abrupt starved slope 
intervals, dominated by muddy background 
deposits with little margin or platform-top 
contribution, indicate a temporary pause in 
the previously flourishing factories that 
normally dominated slope deposition.  These 
intervals may correspond to anoxic events 
that are manifested through transgressions, 
and thus can have sequence stratigraphic 
significance (i.e., Frasnian Sequence 7 TST, 
Figures 18 and 19; also see Playton and 
Kerans 2015 b).  Increased occurrences of 
microbial boundstone, such as downslope 
expansion of the encrusted upper-slope 
environment, can represent elevated microbial 
activity related to the opportunistic response 
to other struggling biota.  Immediately prior 
to the extinction boundary itself, successions 
showing an upward decrease in the 
proportions of margin- and platform-top-
derived sediment can reflect the decline of 
species and productivity.  The exact vertical 
ordering and combinations of these indicators 
of biotic stress are variable and will depend 
on the dynamics of each system, but still 
provide a set of criteria to predict the 
preceding response in carbonate slope 
deposits to an extinction boundary. 
 Following the F-F extinction boundary, we 
observed two styles of sedimentation in 
middle-slope settings before margin and 
platform-top factories recovered and slope 
deposits returned to the typical, expected 
successions (Figure 26B, C).  In one example, 
an anomalously thick stack of oolitic grain-
dominated deposits overwhelmed the slope 
(Figure 26B), reflecting the early rebound of 
the ooid shoal factory while the remaining 
factories were not yet re-established in the 

extinction aftermath.  Other areas exhibited 
pervasive microbial encrustation of the 
middle slope, with debris- and grain-
dominated deposits interspersed and 
suspended in a labyrinth of boundstone 
(Figure 26C).  The boundstone patterns 
suggest a near-continuous growth and 
accumulation, conceptually similar to 
“background sedimentation”, and seemingly 
not partitioned in time and space with 
episodic debris and grain shedding events.  In 
general, these trends describe a period of 
post-extinction recovery, where the majority 
of the former carbonate factories require time 
to re-equilibrate and re-establish, and opens a 
window of opportunity for niche-filling 
microbial communities and/or more resilient 
factories to produce and deposit prolifically in 
light of the reduced competition.  In our 
dataset, this stage seems to be about the 
duration of a composite-scale systems tract 
and happens to coincide with the Famennian 
Sequence 1 TST, but the sequence 
stratigraphic significance and linkage is not 
well understood. 

 

Caution with Middle-Slope Stacking Patterns 

 Caution should be taken when applying or 
interpreting the aforementioned criteria for 
slope sequence stratigraphy.  The nature of 
carbonate slopes associated with steep, reefal 
margins is inherently highly heterogeneous 
laterally and vertically, and, since debris 
deposits are a key indicator facies, their 
presence is not always sufficient for optimal 
sequence interpretation.  Strike variability 
needs to be appreciated and supporting data, 
such as carbon isotope profiles, can 
significantly aid and corroborate systems tract 



definition (see Hillbun et al. this volume).  
This assumes that debris deposits are 
generated via intrinsic collapse processes 
related to margin trajectory.  However, 
extrinsic triggering mechanisms (e.g., 
seismicity and tsunamis) are well-documented 
and need to be considered to avoid erroneous 
interpretations.  Furthermore, the Lennard 
Shelf system is one that constructed great 
relief over a long period of geologic time, 
developed near-vertical escarpments, and 
contained a substantial microbial component 
concentrated in the margins for most of its 
evolution; other carbonate systems will 
undoubtedly have their own particularities 
that may or may not correspond directly to the 
patterns discussed here. 

 

CONCLUSIONS                               

 Carbonate slopes are exceptional 
repositories of sediment and recorders of 
carbonate system evolution.  The Canning 
Basin Chronostratigraphy Project generated a 
high-resolution, shelf-to-basin sequence 
stratigraphic framework across the Lennard 
Shelf that allows for unique examination of 
carbonate margin and slope development 
within highly-constrained accommodation 
and ecological contexts.  We achieved this 
through integration of multiple independent 
datasets extracted from the rock record to 
generate a high-confidence suite of 
constraints for sequence stratigraphic 
interpretation in variable settings.  We here 
propose carbonate margin-to-basin sequence 
stratigraphic conceptual models and facies 
successions for composite-scale sequences 
throughout supersequence TST, MFS, and 
HST evolution, and across a global biotic 

crisis.  We find that deposit proportions, 
facies associations, vertical stratigraphic 
patterns, margin architecture, and shelf-to-
basin geometry vary with respect to position 
within the supersequence and in lead up or 
recovery periods around an extinction 
interval.  The concepts herein provide 
relationships to link seismic-scale architecture 
with fine-scale heterogeneity, and predictive 
tools to better characterize these highly 
complex systems.  These findings are useful 
for subsurface industry applications and also 
lay a foundation for further academic 
research. 
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Figure Captions 

Figure 1: Simplified outcrop exposure and location maps of part of the Lennard Shelf, Canning 

Basin, Western Australia (modified after Playford et al. 2009, Frost and Kerans 2010). Red 

labels indicate data collection localities of the CBCP. WNA-B = Windjana North A-B 

measured sections. WS = Windjana Slope measured section. WV = Windjana Valley measured 

section. SO = South Oscars measured section. PRQ = Pillara Road Quarry measured section. 

VHS = Horse Spring measured section. HD14 = Horse Spring subsurface core. UD2 = 

Horseshoe Range subsurface core. NHW = Henwood West measured section. PGH = Guppy 

Hills measured section. WK1 = Wade Knoll Winkie core. CL = Casey Falls measured section. 

MR1 = McWhae Ridge Winkie core. 

 

Figure 2: Idealized composite cross section and sequence architecture of the Middle-Upper 

Devonian carbonate system of the Lennard Shelf (modified after Playton and Kerans 2015 a, 

b). Thin black form lines denote internal stratal architecture. Individual Famennian high-

frequency sequences are not shown. HST = highstand systems tract. TST = transgressive 

systems tract. MFS = maximum flooding surface. 

 

Figure 3: Diagram showing CBCP sampling coverage in terms of age (y-axis), depositional 

environment (x-axis), and sample transect type (colors). F-F boundary = Frasnian-Famennian 

extinction boundary. U, M, and L indicate Upper, Middle, and Lower subdivisions of Stages, 

respectively, and are arbitrarily spaced. Single sections or cores can record multiple 

environments over time, as indicated by connecting dashed lines. WNA, WNB, WS, and WV 

sections, and CL-MR1 transects, respectively, were physically linked through walkouts – the 

all other stratigraphic correlations were achieved through agreement of multiple data profiles. 

Refer to Figure 1 for distances between localities along the Lennard Shelf. 

 

Figure 4: Examples of CBCP outcrop localities (after Playton et al. 2013). (a) Frasnian inner 

platform cycles of the Windjana North B Section (WNB). (b) Frasnian reef-flat cycles of the 

Windjana North A Section (WNA). (c) Frasnian middle- to upper-slope strata of the Windjana 

Slope Section (WS). (d) Frasnian middle-slope strata of the South Oscars Section (SO). (e) 



Famennian upper-slope strata of the Casey Falls Section (CL). Yellow circles indicate people 

for scale. See Figure 1 for locations along the Lennard Shelf. 

 

Figure 5: Outcrop photo examples of facies documented for the CBCP. a) Crinkly laminated 

fenestral peloidal wackestone, Givetian inner platform top, Guppy Hills Section (GHB). b) 

Moldic Amphipora stromatoporoid rudstone, Frasnian outer platform top, Windjana North A 

Section (WNA). c) Horizontally-accreting Actinostroma stromatoporoid framestone, Frasnian 

reef core, Henwood West Section (NHW). Basinward is to the left. d) Steeply-dipping 

stromatactoid microbial boundstone, Famennian upper slope, Casey Falls Section (CL). e) 

Megabreccia with meter-scale boulders and quartz-rich matrix, Famennian middle slope, 

Windjana Valley Section (WV). f) Mottled silty peloidal wackestone, Famennian toe of slope, 

Casey Falls Section (CL). See Figure 1 for locations along the Lennard Shelf. 

 

Figure 6: Middle-Upper Devonian (Givetian, Frasnian, and Famennian) chronostratigraphic 

chart developed from the CBCP, showing geologic sub-divisions, conodont biozones, 

paleomagnetic polarity chrons, stable carbon excursions, and sequence stratigraphic 

framework. Absolute ages from Gradstein et al. (2012). In Low Confidence Lower Frasnian, 

conodont zones relative to sequences adapted from Playford et al. (2009). Light grey sub-

columns (left) in “Paleomagnetic Chron” indicate mixed polarity zones with dominant interval 

polarity on right. Global carbon isotope excursions identified in red (after Buggisch and 

Joachimski 2006). FSV = falsiovalis excursion. LKW = Lower Kellwasser excursion. UKW = 

Upper Kellwasser excursion. ENK = Enkeberg excursion. 

 

Figure 7: Walkout correlation between the Classic Face in Windjana Gorge and the WNB 

measured section (interpretation and age context for Classic Face after Playford et al. 2009, 

Playton and Kerans 2015 a). Coarse stratigraphic context extrapolated from Classic Face to 

WNB was sufficient to calibrate Middle vs. Upper Frasnian intervals and correlate reversals 

into conodont-constrained slope sections. See Figure 2 and Appendix 1 for sequence 

architecture and measured section legend, respectively. See Figure 6 for reversal chart. Seq = 

sequence. SB = sequence boundary. MFS = maximum flooding surface. TST = transgressive 



systems tract. HST = highstand systems tract. F-F = Frasnian-Famennian. W = wackestone. P = 

packstone. G = grainstone. B = boundstone. 

 

Figure 8: Regional cross section and integrated chronostratigraphy of key shelf-to-basin (right-

to-left) stratigraphic sections across CBCP dataset with master correlations, and finalized 

sequence stratigraphic interpretation. Sections are not datumed due to non-horizontal timeline 

profiles, and not at the same vertical scale due to large thickness differences. Inset in lower 

right shows measured sections (dark blue) at same scale, corrected for post-depositional tilt, 

and reconstructed in space along Lennard Shelf depositional profiles (dashed), with no vertical 

exaggeration.  See Figure 1 and Appendix 1 for section locations and facies legend, 

respectively. Dark grey and white bands are normal and reversed polarity chrons, respectively, 

and light grey bands are mixed polarity chrons. Green striped bands are positive carbon isotope 

excursion correlation zones, and orange striped bands are negative excursion correlation zones. 

 

Figure 9: Regional shelf-to-basin composite reconstruction of the Middle-Upper Devonian of 

the Lennard Shelf, showing facies distributions and architectures within sequence stratigraphic 

framework (red and blue surfaces and triangles) and conodont zones (see also Figure 6). Bold 

black lines are measured sections true to actual transect surface topography. Cores shown as 

vertical wells. No vertical exaggeration. Stratal reconstruction honors extensive depositional 

dip data collected along transects, and includes correction for post-depositional tilt. Asterisks 

indicate less-constrained transects. Facies honor measured section and core descriptions. 

Backstepping events of Playford et al. (2009) in blue text. 

 

Figure 10: Hierarchical supersequence and composite sequence framework for the Middle-

Upper Devonian of the Lennard Shelf. Bold black lines are measured sections true to actual 

surface topography and corrected for tilt. Asterisks denote less-constrained transects 

chronostratigraphically. G-F = Givetian-Frasnian boundary. F-F = Frasnian-Famennian 

boundary. Middle-Upper Frasnian boundary occurs within HST of Sequence 5 (Fr5). a) 

Supersequence architecture of the Lennard Shelf.  Blue shading defines the supersequence 

TST, red shading defines the supersequence HST, and the supersequence MFS is the boundary 

between blue and red fills in the uppermost Middle Frasnian. b) Composite sequence 



architecture of the Lennard Shelf. Red and blue triangles denote systems tracts, and red and 

blue lines denote sequence boundaries and maximum flooding surfaces, respectively. Grey 

shading indicates undefined Middle Famennian strata (MFa interval).  

 

Figure 11: Lower-Middle Frasnian Composite Sequence 4 margin-to-slope development within 

the supersequence TST when margins were undergoing long-term backstepping. Red lines are 

sequence boundaries and blue line is maximum flooding surface. In upper right inset, 

placement within supersequence architecture shown in orange, and blue and green lines are 

supersequence MFS and F-F boundary, respectively. dom’d = dominated. a) TST setting: 

margins evolved into escarpments through aggradation and had associated grain-dominated 

foreslopes. Margins became increasingly sensitive to collapse triggers. b) Late TST setting: 

margins failed, producing reentrants and debris in slope or basinal settings. c) MFS-Early HST 

setting: margins backstepped at the MFS, reinitiated, and began to construct relief. The former 

slope profile was draped with bypassed sediment. d) HST setting: margins weakly prograded 

and had associated grain-dominated foreslopes. 

 

Figure 12: Lower-Middle Frasnian Composite Sequence 4 stacking patterns for margin, 

middle-slope, and basinal environments. Color legend pertains to measured sections. See 

Figure 11 for supersequence context and model color scheme. See Appendices for measured 

sections. Margin succession is from the PGH measured section and used as a proxy for 

Sequence 4. Middle-slope succession is from the SO measured section. Basin succession is 

from the MR1 Winkie core. dom’d = dominated. bndstn = boundstone. rudstn = rudstone. gnstn 

= grainstone. pkstn = packstone. wkstn = wackestone.   

 

Figure 13: Outcrop photographs of systems tracts and significant sequence stratigraphic 

surfaces recorded in margin, slope, and basinal strata. rudstn = rudstone. gnstn = grainstone. 

pkstn = packstone. wkstn = wackestone. A) Frasnian Composite Sequence 4 (Fr4) TST to HST 

succession recorded in middle slope setting, along SO transect (Appendix 6). Symmetrical 

pattern of megabreccia interval bracketed by grain-dominated deposits is observed, 

representing Early TST grain shedding during aggradation, Late TST margin collapse, 

backstepping at the MFS, and HST grain shedding. B) Upper portion of Frasnian Composite 



Sequence 6 (Fr6) and lower portion of Frasnian Composite Sequence 7 (Fr7) recorded in 

middle slope setting, along SO transect (Appendix 6). Fr6 shows transition from debris-

dominated to grain-dominated slopes reflecting slope readjustment subsequent to the 

supersequence MFS. Abrupt change in grain composition is observed in Fr7, likely related to 

pre-extinction effects. Fr7 MFS coincides with the Upper Kellwasser isotopic event (UKW). C) 

Supersequence MFS in margin position with megabreccia deposits abutting fractured in situ 

reefal facies, along WS transect (Appendix 4). Supersequence MFS coincides with Frasnian 

Composite Sequence 5 (Fr5) MFS. Fr5 HST megabreccia deposits are younger than collapse 

events that formed the erosional scarp during the TST of Fr5. D) Upper portion of Frasnian 

Composite Sequence 6 (Fr6) and lower portion of Frasnian Composite Sequence 7 (Fr7) 

recorded in upper-to-middle slope setting, along WS transect (Appendix 4). Debris-dominated 

to grain-dominated slope deposition can be observed in the Fr6 HST. The TST of Fr7 is marked 

by an abrupt downslope expansion of the microbial boundstone factory, interpreted to be 

related to pre-extinction effects. E) Famennian Composite Sequence 2 (Fa2) TST to HST 

succession recorded in toe-of-slope setting, along CL transect (Appendix 8). Stratigraphic 

thickness shown is approximately 40 meters. Interbedded silt and silty wackestone-packstone 

dominate the overall succession, with conspicuous debris horizons and boundstone lenses 

present in the HST.      

 

Figure 14: Middle-Upper Frasnian Composite Sequence 5 margin-to-slope development 

bracketing the supersequence MFS when margins underwent the long-term transition from 

backstepping and aggradation to progradation. Red lines are sequence boundaries and blue line 

is maximum flooding surface. In upper right inset, placement within supersequence architecture 

shown in red, and blue and green lines are supersequence MFS and F-F boundary, respectively. 

dom’d = dominated. a) Early TST setting: escarpment margins developed from aggradation 

with associated grain-dominated foreslopes. b) Late TST setting: margins continued to aggrade, 

built relief, and developed severe instability resulting in sustained mass wasting and the 

formation of an erosional escarpment with associated debris-dominated foreslopes. c) HST 

setting: margins were unable to prograde over underfilled escarpment profile and consequently 

failed, maintaining debris-dominated foreslopes and an erosional escarpment configuration. 

 



Figure 15: Middle-Upper Frasnian Composite Sequence 5 stacking patterns for upper-slope, 

middle-slope, lower-slope, and basinal environments. Color legend pertains to measured 

sections. See Figure 13 for supersequence context and model color scheme. See Appendices for 

measured sections. Upper-slope succession is from the WS measured section. Middle-slope 

succession is from the SO measured section. Lower-slope succession is from the VHS 

measured section. Basin succession is from the MR1 Winkie core. dom’d = dominated. bndstn 

= boundstone. rudstn = rudstone. gnstn = grainstone. pkstn = packstone. wkstn = wackestone.     

 

Figure 16: Upper Frasnian Composite Sequence 6 margin-to-slope development within the 

supersequence Early HST when margins were unable to prograde over relict escarpment 

profiles. Red lines are sequence boundaries and blue line is maximum flooding surface. In 

upper right inset, placement within supersequence architecture shown in beige, and blue and 

green lines are supersequence MFS and F-F boundary, respectively. dom’d = dominated. a) 

TST setting: margin aggradation on inherited escarpment profile resulted in continued 

instability and mass wasting with associated debris-dominated foreslopes. b) Early HST setting: 

pulses of progradation resulted in margin failure, emplacing the final volumes of debris 

substrate required for progradation. c) Late HST setting: With available debris substrate, 

margins transitioned into accretionary configurations and prograded with associated grain-

dominated foreslopes. 

 

Figure 17: Upper Frasnian Composite Sequence 6 stacking patterns for upper-slope, middle-

slope, lower-slope, and basinal environments. Color legend pertains to measured sections. See 

Figure 15 for supersequence context and model color scheme. See Appendices for measured 

sections. Upper-slope succession is from the WS measured section. Middle-slope succession is 

from the SO measured section. Lower-slope succession is from the VHS measured section. 

Basin succession is from the MR1 Winkie core. bndstn = boundstone. rudstn = rudstone. gnstn 

= grainstone. pkstn = packstone. wkstn = wackestone.     

 

Figure 18: Upper Frasnian Composite Sequence 7 margin-to-slope development within the 

supersequence prograding HST just prior to the F-F boundary. Red lines are sequence 

boundaries and blue line is maximum flooding surface. In upper right inset, placement within 



supersequence architecture shown in purple, and blue and green lines are supersequence MFS 

and F-F boundary, respectively. dom’d = dominated. a) TST setting: margins aggraded and the 

encrusted upper-slope environment expanded significantly downslope. Upper-middle-slope 

environments were silt-dominated with coarser gully fills and equivalent to downdip, bypassed 

grain-dominated settings. Distal slope settings were overall poorly developed. b) HST setting: 

margins were progradational with deep boundstone environments and basinward-fining (debris-

to-grain-dominated) foreslopes. 

 

Figure 19: Upper Frasnian Composite Sequence 7 stacking patterns for upper-slope, middle-

slope, lower-slope, and basinal environments. Color legend pertains to measured sections. See 

Figure 17 for supersequence context and model color scheme. See Appendices for measured 

sections. Upper-slope succession is from the WV measured section. Upper-middle-slope inset 

succession from CF4 measured section in Playton and Kerans (2015 b, their Figure 8). Middle-

slope succession is from the SO measured section. Lower-slope succession is from the VHS 

measured section. Basin succession is from the CL measured section. dom’d = dominated. 

bndstn = boundstone. rudstn = rudstone. gnstn = grainstone. pkstn = packstone. wkstn = 

wackestone.    

  

Figure 20: Lower Famennian Composite Sequence 1 margin-to-slope development within the 

supersequence prograding HST just subsequent to the F-F boundary. Red line is sequence 

boundary, blue line is maximum flooding surface, and green line is F-F boundary (also a 

sequence boundary). In upper right inset, placement within supersequence architecture shown 

in light blue, and blue and green lines are supersequence MFS and F-F boundary, respectively. 

dom’d = dominated. a) TST setting: margins were weakly progradational with a thin upper-

slope boundstone veneer. Middle slopes exhibited anomalously thick stacks of oolitic 

grainstone (red) and debris in lower-slope settings, suggesting bypass. b) HST setting: margins 

were strongly progradational with deep microbial boundstone and basinward-fining (debris-to-

grain-dominated) foreslopes. 

 

Figure 21: Lower Famennian Composite Sequence 1 stacking patterns for upper-slope, middle-

slope, lower-slope, and basinal environments. Lower green line is F-F boundary (also a 



sequence boundary).  Color legend pertains to measured sections. See Figure 19 for 

supersequence context and model color scheme. See Appendices for measured sections. Upper-

slope succession is from the WV measured section. Middle-slope succession is from the SO 

measured section. Lower-slope succession is from the VHS measured section. Basin succession 

is from the CL measured section. dom’d = dominated. bndstn = boundstone. rudstn = rudstone. 

gnstn = grainstone. pkstn = packstone. wkstn = wackestone.     

 

Figure 22: Lower-Middle Famennian Composite Sequence 2 margin-to-slope development 

within the supersequence HST when margins were strongly progradational. Red lines are 

sequence boundaries and blue line is maximum flooding surface. In upper right inset, 

placement within supersequence architecture shown in blue, and blue and green lines are 

supersequence MFS and F-F boundary, respectively. dom’d = dominated. a) TST setting: 

margins were weakly progradational and with deep boundstone upper slopes and grain-

dominated foreslopes. b) HST setting: margins were strongly progradational with deep 

boundstone upper slopes and mixed debris- and grain-dominated foreslopes. 

 

Figure 23: Lower-Middle Famennian Composite Sequence 2 stacking patterns for upper-slope, 

middle-slope, lower-slope, and basinal environments. Color legend pertains to measured 

sections. See Figure 21 for supersequence context and model color scheme. See Appendices for 

measured sections. Upper-slope succession is from the WV measured section. Middle-slope 

succession is from the SO measured section. Lower-slope succession is from the VHS 

measured section. Basin succession is from the CL measured section. bndstn = boundstone. 

rudstn = rudstone. gnstn = grainstone. pkstn = packstone. wkstn = wackestone.   

 

Figure 24: SO and WNB measured sections with platform-top to middle-slope correlations and 

highlighting progradational pulses at cycle-set scale (dark green arrows along WNB) during 

overall aggradational succession.  Progradational pulses in composite sequence TSTs are here 

interpreted as the mechanism for margin failure during platform and margin aggradation, 

resulting in stacked debris deposits on the slope during the TST. Facies and correlation control 

(including conodont picks, paleomagnetic polarity reversals, and carbon isotopes) shown with 

composite sequence and cycle set interpretations (red-blue and yellow-green triangles, 



respectively).  See Appendix 1 for detailed legend. See Figures 8 and 9 for chronostratigraphic 

information. See Appendices 3 and 6 for detailed measured section data. 

 

Figure 25: Idealized vertical facies successions in a middle-slope setting showing composite 

sequence stacking patterns at various points within a supersequence. dom’d = dominated. a) 

Composite sequence stacking within a supersequence TST. Starved slope drape recording 

margin backstepping at the MFS may be poorly preserved. b) Stacking across long-term 

transition from aggradation to progradation at the supersequence MFS. Composite sequences 

are amalgamated during erosional escarpment phase, thus exact placement of systems tracts 

shown are somewhat arbitrary. Supersequence MFS is positioned low within the debris 

succession as the majority of slope infilling occurs in the supersequence Early HST. c) 

Composite sequence stacking within a supersequence HST. Occurrences of debris represent 

high-frequency LSTs (see Playton and Kerans 2015 b). 

 

Figure 26: Idealized vertical facies successions in a middle-slope setting showing precursor and 

aftermath indications of an extinction interval. Successions are schematic to capture the breadth 

of observations, thus exact vertical relationships and combinations can vary. dom’d = 

dominated. bndstn = boundstone. a) Facies and relationships indicating the onset of biotic stress 

and lead up period prior to an extinction boundary. b) Succession indicating the early rebound 

of a single carbonate factory subsequent to an extinction boundary, while other factories 

recover later. c) Succession indicating ubiquitous microbial encrustation subsequent to an 

extinction boundary, suggesting “continuous” microbial growth and episodic deposition of 

other sediment types. 

 

Table 1: Table of CBCP dataset by section or core, including data type, location (see Figure 1), 

age, depositional environment, stratigraphic thickness, and samples collected. Parallel sections 

are closely-spaced, overlap sections to ensure data repeatability. 

 

Table 2: Table of facies scheme used for the CBCP.  EOD = environment of deposition. See 

Appendix 1 for color scheme used in measured sections. 

 



Table 3: Table outlining foundational work and CBCP studies pertaining to the primary 

constraints used for regional correlation. 

 

Table 4: Tables showing confidence levels for CBCP measured sections and cores (a) and 

markers or intervals used for chronostratigraphy (b). Green = highest confidence. Yellow = 

medium-high confidence. Red = low confidence. See Table 1 for measured section 

abbreviations. “Regional constraints” are those correlated across the CBCP dataset but not 

linked to global references. LKW = Lower Kellwasser. UKW = Upper Kellwasser. FSV = 

falsiovalis. ENK = Enkeberg. 

 

Table 5: Table showing CBCP advances in Lennard Shelf understanding and characterization 

by theme, with comparison to previous work. 

   

Appendix 1: Legend for measured sections, core descriptions and correlations, including 

schemes for CBCP universal facies, conodont picks, description textural profiles, 

paleomagnetic polarity reversals, stable carbon isotopes, surfaces-markers, and sequence 

stratigraphy. 

 

Appendix 2: Windjana North A (WNA) measured section with correlation constraints.  See 

Appendix 1 for legend and Figure 1 for location along the Lennard Shelf. WNA is located in 

the Napier Ranges just northwest of Windjana Gorge (17°23'35.49"S, 124°57'14.43"E to 

17°23'50.92"S, 124°56'58.08"E).  Paleogeographically, the Windjana Gorge area reflects a very 

narrow point along the Lennard Shelf (less than 5 kilometers shelf width in places) that is rich 

in siliciclastics, and part of a linear margin tens of kilometers long, but with complex, finer-

scale (kilometer or less) reentrant-promontory configurations superimposed along strike.  WNA 

is Middle-Upper Frasnian in age, based on physical walk-outs to key control outcrops (i.e., the 

Classic Face in Windjana Gorge; Playford et al. 2009, Playton and Kerans 2015 a).  WNA 

facies consist of 1) cyclic skeletal-peloid grainstones-packstones, bioclastic rudstones-

floatstones, peloidal packstones-wackestones-mudstones, and siliciclastics, representing inner 

platform-top settings; and 2) cyclic skeletal-peloid grainstones-packstones, bioclastic 

rudstones-floatstones, and in situ, bedded stromatoporoid framestones, indicative of outer 



platform-top to reef-flat settings.  WNA facies transition upward from inner platform-top 

assemblages to outer platform-top to reef-flat assemblages.  Inner platform-top carbonates are 

commonly dolomitic, whereas outer platform to reef-flat carbonates are dominantly limestone, 

with variable degrees of intermixed siliciclastics in both.  Physical walk-outs between WNA, 

WNB, and WS measured sections were achieved. 

 

Appendix 3: Windjana North B (WNB) measured section with correlation constraints.  See 

Appendix 1 for legend and Figure 1 for location along the Lennard Shelf. WNB is located 

about 900 meters along strike of WNA (17°23'54.31"S, 124°57'22.90"E to 17°24'16.81"S, 

124°57'11.05"E) with a similar paleogeographic setting, age, and age control.  Facies exposed 

at WNB consist of 1) cycles of skeletal-peloid grainstones-packstones, bioclastic rudstones-

floatstones, peloidal packstones-wackestones-mudstones, and siliciclastics, representing inner 

platform-top settings; and 2) fingers of skeletal-peloid grainstones-packstones, bioclastic 

rudstones-floatstones, and in situ, bedded stromatoporoid framestones, indicative of the 

transition into outer platform-top and reef-flat settings.  Stratigraphically upward, WNB facies 

remain dominantly inner platform-top assemblages, with intervals of increased proportions of 

outer platform-top to reef-flat assemblages.  Inner platform-top facies are commonly dolomitic, 

and outer platform to reef-flat intercalations are generally mixed limestone-dolomite, with 

variable degrees of intermixed siliciclastics in both.  A physical walk-out between WNA and 

WNB measured sections was achieved, as well as a walk-out from WNB into Windjana Gorge. 

 

Appendix 4: Windjana Slope (WS) measured section with correlation constraints. See 

Appendix 1 for legend and Figure 1 for location along the Lennard Shelf. WS is located in the 

Napier Ranges just northwest of Windjana Gorge (17°23'15.14"S, 124°57'3.00"E to 

17°23'37.47"S, 124°56'45.88"E), and is paleogeographically similar to WNA in terms of the 

broader margin setting.  WS is Middle to Upper Frasnian in age, based on physical walk-outs to 

key control outcrops (i.e., the Classic Face in Windjana Gorge), some recoverable 

biostratigraphic control, and correlations to key control sections.  Facies exposed at WS consist 

of 1) intervals of stromatoporoid framestones with intercalations of skeletal-peloid grainstones-

packstones and bioclastic rudstones-floatstones, representing reef core to reef-flat settings; 2) 

intervals of margin-derived breccia-blocks, platform-derived grainstone-packstone of variable 



composition, graded siliciclastics, and tongues of in situ microbial boundstone, indicative of 

middle-slope settings and the middle-upper-slope transition; and 3) intervals of bedded 

microbial boundstone representing upper-slope environments.  Depositional dips in slope strata, 

corroborated by geopetals, range from 20-30o after tilt correction.  Stratigraphically upward, 

WS facies abruptly shift from in situ reefal margin settings to allochthonous middle-slope 

settings across an irregular truncation surface, interpreted as a margin reentrant collapse 

feature.  The succession above the truncation surface shows alternations of carbonate grain-

dominated-, siliciclastic-dominated-, and carbonate debris-dominated middle-slope 

assemblages.  The uppermost portion of WS consists of upper-slope in situ boundstones.  

Partial or patchy dolomite, apparently non-facies selective but sometimes fabric selective, is 

common in the lower half of WS, while the upper half of the section is dominantly limestone 

with variable degrees of intermixed siliciclastics throughout.  Physical walk-outs between WS, 

WNA, and WV measured sections were achieved. 

 

Appendix 5: Windjana Valley (WV) measured section with correlation constraints. See 

Appendix 1 for legend and Figure 1 for location along the Lennard Shelf. WV is located in the 

Napier Ranges just northwest of Windjana Gorge (17°23'44.53"S, 124°56'49.61"E to 

17°24'5.44"S, 124°56'21.24"E; slightly further than the WS transect) and shares a similar 

paleogeographic setting as WS.  WV is Upper Frasnian to Middle Famennian in age, based on 

recovered biostratigraphic control as well as correlations to key control sections.  Facies 

exposed at WV consist of intervals of 1) graded, platform-derived grainstone-packstone, 2) 

margin-derived breccia-blocks, and 3) in situ microbial boundstone-encrusted grainstone, 

indicative of alternations between middle-slope allochthonous- and upper-slope autochthonous 

environments.  Depositional dips, corroborated by geopetals, range from 25-40o after tilt 

correction.  Stratigraphically upward, there are multiple alternations of middle- and upper-slope 

deposits.  WV strata are dominantly limestone throughout, with variable degrees of intermixed 

siliciclastics. 

 

Appendix 6: South Oscars (SO) measured section with correlation constraints. See Appendix 1 

for legend and Figure 1 for location along the Lennard Shelf. SO is located in the southern 

Oscar Range (17°54'53.14"S, 125°17'59.13"E to 17°55'25.94"S, 125°17'22.05"E) and has a 



nearby parallel section for validation (SOB section; 17°55'16.58"S, 125°17'20.95"E to 

17°55'22.02"S, 125°17'16.95"E).  Paleogeographically, the Oscar Range was a topographic and 

structural high composed of basement rocks, outboard of the Lennard Shelf proper.  It served as 

a nucleation point for carbonates to form a partially detached, carbonate-fringed island – the 

SO section is on the seaward side of the structure and is sheltered from siliciclastic input, thus 

representing the purest carbonate setting across the CBCP dataset.  The SO section extends 

from Lower Frasnian to Middle Famennian in age, based on robust biostratigraphic control.  

Facies exposed at SO consist of 1) graded, platform-derived grainstone-packstone, 2) margin- 

and platform-derived bioclastic rudstone-floatstone, 3) margin-derived breccia-blocks, 4) a 

curious silty, wispy-laminated micropeloidal packstone-grainstone facies, and 5) interbeds of in 

situ microbial boundstone-encrusted grainstone, all indicative of dominantly middle-slope 

environments with encroachments of the upper-middle-slope transition.  Depositional dips, 

corroborated by geopetals, range from 20-30o after tilt correction.  Stratigraphically upward, 

facies grade from those deposited in dominantly allochthonous middle-slope environments to a 

mixed detrital-in situ assemblage of the upper-middle-slope transition.  Middle-slope 

assemblages and deposit proportions (i.e., grain- vs. debris-dominated) vary throughout the 

stratigraphy.  SO strata are dominantly limestone throughout, with very little dolomite and no 

macroscopically-observed siliciclastics. 

 

Appendix 7: Horse Spring (VHS-Virgin Hills South) measured section with correlation 

constraints.  See Appendix 1 for legend and Figure 1 for location along the Lennard Shelf. VHS 

is located in the Horse Spring Range (18°11'45.97"S, 126° 1'55.99"E to 18°11'38.63"S, 126° 

1'49.59"E).  Paleogeographically, the Horse Spring Range tracks a segment along a large (> 50 

kilometers across) embayment within the Lennard Shelf, thus local dip directions are west-

northwesterly (as opposed to regional southwest dips toward the Fitzroy Trough).  VHS is 

Lower Frasnian to Middle Famennian in age, based on robust biostratigraphic control.  Facies 

exposed at VHS consist of 1) graded, platform-derived grainstone-packstone, 2) mottled to 

wispy silty skeletal-peloidal packstones-wackestones-mudstones, 3) lesser margin-derived 

breccia-blocks and intraclastic-bioclastic rudstones-floatstones, and 4) rare in situ microbial 

boundstone, all indicative of lower-slope environments.  Depositional dips, corroborated by 

geopetals, range from 10-15o after tilt correction.  Vertically, facies are quite interbedded with 



no striking patterns, however intervals are observed with greater proportions of margin-derived 

debris.  VHS strata are dominantly limestone throughout, with very little dolomite and no 

macroscopically-observed siliciclastics except for silt-sized fractions intermixed into muddier 

deposits. 

 

Appendix 8: Casey Falls (CL) measured section with correlation constraints.  See Appendix 1 

for legend and Figure 1 for location along the Lennard Shelf. CL is located in the southern 

Lawford Range (18°44'0.03"S, 126° 5'8.96"E to 18°44'9.39"S, 126° 5'41.23"E) and has a 

parallel section for validation (CLB section; 18°44'3.93"S, 126° 5'34.88"E to 18°44'7.31"S, 

126° 5'40.43"E).  Paleogeographically, the Lawford Range and greater Bugle Gap area display 

exhumed Lower Frasnian paleo-reef topography with extremely complex spine and pinnacle 

configurations generated from backstepping – the CL section records subsequent progradation 

and downlap over this relict topography with local dip directions to the south-southeast 

contrasting with regional southwesterly dips.  CL is Upper Frasnian to Middle Famennian in 

age, based on robust biostratigraphic control.  Facies exposed at CL consist of 1) silty skeletal-

peloid packstone-wackestone-mudstone with minor microbial boundstone interbeds and 

platform-derived grainstones, representing a lower-slope to basinal environment; and 2) 

steeply-dipping, bedded microbial boundstone and encrusted grainstone, indicative of upper-

slope settings. Margin-derived breccias and blocks are rare to absent throughout the succession.  

Depositional dips, corroborated by geopetals and after tilt correction, range from 10-20o in 

siltier deposits (although believed to be enhanced by differential compaction over underlying 

margins) and 25-40o in boundstone deposits.  Stratigraphically upward, facies grade and 

interfinger gradually from silt-dominated lower-slope-basinal deposits to upper-slope 

boundstones, resulting in an odd succession with seemingly no intermediate middle-slope 

setting of debris, grainstone, and rudstone (see Playton and Kerans 2015 b).  CL strata are 

dominantly limestone throughout, with no dolomite or macroscopically-observed siliciclastics 

except for silt-sized fractions intermixed into muddier deposits. A key marker bed (shrub-like 

Frutexites microbialite; Playford et al. 2009) that is unique and distinctive in the area is 

observed in the basal portion of the CL section and marks the top of the MR1 Winkie core, 

providing a tie point between the two transects.  

 



Appendix 9: Guppy Hills (PGH-Pillara Guppy Hills) measured section with correlation 

constraints.  See Appendix 1 for legend and Figure 1 for location along the Lennard Shelf.  

PGH extends across the western end of Guppy Hills, south of the Hull Range (18°17'52.90"S, 

126° 9'0.76"E to 18°17'28.23"S, 126° 9'19.85"E) and has a parallel section for validation (GHB 

section; 18°18'0.30"S, 126° 9'15.56"E to 18°17'55.31"S, 126° 9'18.16"E).  

Paleogeographically, the Hull Range and Guppy Hills areas show complex paleo-topography 

along the Lennard Shelf due to basement-cored structures that produced elongate and irregular 

reentrant-promontory configurations – thus slope portions of the PGH section dip northerly in 

contrast to the regional southwest dips into the Fitzroy Trough.  Siliciclastic sources were 

abundant and close by.  PGH is interpreted to be Givetian to Lower Frasnian in age based on 

coarse coral successions, but is very poorly constrained biostratigraphically (e.g., George et al. 

2009b interprets it to be all Lower Frasnian based on Hull Range extrapolations).  Facies 

exposed at PGH consist of 1) cycles of skeletal-peloid grainstones-packstones, bioclastic 

rudstones-floatstones, peloidal packstones-wackestones-mudstones, and siliciclastics, 

representing inner platform-top settings; 2) cyclic skeletal-peloid grainstones-packstones, 

bioclastic rudstones-floatstones, and in situ, bedded stromatoporoid framestones, indicative of 

outer platform-top to reef-flat settings; and 3) dipping, bedded stromatactoid microbial 

boundstone, diagnostic of encrusted slope environments.  Depositional dips in slope strata, 

corroborated by geopetals, range from 10-15o after tilt correction.  Stratigraphically upward, 

facies grade from inner platform-top to outer platform-top to reef-flat settings, followed by an 

abrupt transition into slope deposits across an interpreted backstep surface.  At the backstep 

surface, a few meters of graded grain-dominated deposits are present, interpreted to be 

sediment gravity flows equivalent to a landward margin.  Inner platform-top carbonate facies 

are commonly dolomitic, and outer platform to reef-flat and slope boundstone carbonate facies 

are dominantly limestone, with variable degrees of intermixed fine siliciclastics. 

 

Appendix 10: Henwood West (NHW-North Henwood West) measured section with correlation 

constraints.  See Appendix 1 for legend and Figure 1 for location along the Lennard Shelf. 

NHW is located south of the Horseshoe Range (18°14'6.29"S, 126°10'15.94"E to 

18°13'57.99"S, 126°10'20.81"E).  Paleogeographically, the Henwood West area is in the same 

setting as that described for Guppy Hills (PGH), but the NHW section is interpreted to be 



Upper Frasnian to Lower Famennian in age based on reef assemblage observations. The F-F 

boundary is well-exposed with clear Famennian reef flat facies overlying Frasnian reef front 

facies, but the NHW section is not a critical transect for the CBCP. Facies exposed at NHW 

consist of 1) boundstones ranging from stromatoporoid framestones to microbial boundstones, 

representing reef-core settings; and 2) cyclic grainstone-packstone ranging in composition from 

non-skeletal to skeletal, oncolitic rudstone-floatstone, in situ Lithiotid (razor clam) floatstone, 

conglomeratic to fine-grained siliciclastics, and a few occurrences of columnar stromatolitic 

microbial boundstone, all indicative of  outer platform-top and platform-crest to reef-flat 

environments.  In reef-core intervals, encrusting stromatoporoids display horizontally-accreting 

fabrics reflecting growth upon sub-vertical surfaces.  Stratigraphically upward, facies grade 

from reef-core (with decreasing stromatoporoids upward) to reef-flat to outer-platform and 

platform-crest settings, signifying progradation.  Reef-core facies are dominantly limestone 

with some patchy intermixed siliciclastics, and the shallower settings are chiefly a mixed 

limestone-siliciclastic lithology. 

 

Appendix 11: McWhae Ridge (MR1) Winkie core with correlation constraints.  See Appendix 

1 for legend and Figure 1 for location along the Lennard Shelf. MR1 was drilled on the flank of 

McWhae Ridge in the Lawford Range (18°43'59.61"S, 126° 4'46.02"E).  Paleogeographically, 

the McWhae Ridge area is in the same overall setting as that described for Casey Falls (CL), 

however McWhae Ridge itself is a Lower Frasnian drowned reef spine and the MR1 core 

samples younger, sidelapping strata along its flank.  MR1 is Upper Givetian to Lower 

Famennian in age based on moderately well-constrained biostratigraphy.  Facies of MR1 

consist of silty skeletal-peloid mudstone-wackestone with minor packstone and rare intraclastic 

rudstone, representative of toe of slope or basinal environments.  Depositional dips are 10-15o 

but are probably steepened by compaction against underlying paleo-topography.  There are no 

readily identifiable vertical patterns or changes in setting throughout the core, and the dominant 

lithology is limestone with exception to scattered occurrences of intermixed siliciclastic silt. A 

key marker bed (shrub-like Frutexites microbialite; Playford et al. 2009) that is unique and 

distinctive in the area marks the top of MR1 and can be observed in the basal portion of the CL 

section, providing a tie point between the two transects.  

 



Appendix 12: Wade Knoll (WK1) Winkie core with correlation constraints.  See Appendix 1 

for legend and Figure 1 for location along the Lennard Shelf. WK1 was drilled in Paddy’s 

Valley between the Emmanuel and Laidlaw Ranges (18°39'25.04"S, 126° 0'5.19"E).  

Paleogeographically, Paddy’s Valley is in the same overall setting as that described for Casey 

Falls (CL), however is in the center of an intra-platform mini-basin between two elongate reefal 

platforms.  WK1 has no biostratigraphic control but spuds on a Lower Frasnian marker bed – it 

is unknown what age the core base is and is not a critical transect in the CBCP dataset.  Facies 

of WK1 consist of silty skeletal-peloid mudstone-wackestone-packstone with rare intraclastic 

rudstone, representative of toe of slope or basinal environments.  Depositional dips are 3o or 

less after tilt correction.  There are no readily identifiable vertical patterns or changes in setting 

throughout the core, and the dominant lithology is limestone. 

 

Appendix 13: Horseshoe Range (UD2) subsurface core with correlation constraints. See 

Appendix 1 for legend and Figure 1 for location along the Lennard Shelf. UD2 was drilled in 

the Horseshoe Range (approximately 18°13'19.80"S, 126°11'53.94"E).  Paleogeographically, 

the Horseshoe Range is in the same overall setting as that described for Guppy Hills (PGH), 

however is on the inboard side of complex basement-cored topography (i.e., is directly attached 

to the hinterland) and reflects a fairly narrow (~5 kilometers) shelf with a prevalent siliciclastic 

source.  UD2 has no biostratigraphic control but can be placed within the stratigraphic 

framework with moderate confidence due to its isotopic profile and extensive facies record – 

this interpretation defines UD2 as Middle Frasnian to Middle Famennian in age.  The facies in 

UD2 include all slope assemblages described previously (silt-dominated, grain-dominated, 

siliciclastic-dominated, debris-dominated, boundstone-dominated), reefal margin microbial 

boundstones, and outer platform-top and platform-crest assemblages similar to those described 

for NHW but with the addition of teepee pisolite and muddier shoreline facies, and absence of 

fine- to conglomeratic siliciclastics.  The vertical succession throughout all of UD2 is a classic 

upward prograding or shallowing sequence of facies, grading from middle slope to upper slope 

to reef core to reef flat to platform top.  The platform-top succession itself displays trends in 

facies proportions and cycle-bed thickness.  The dominant lithology throughout UD2 is mixed 

limestone-siliciclastic; however dolomitic zones with variable degrees of intermixed 

siliciclastics are present, probably related to Mississippi Valley Type mineralization. 



 

Appendix 14: Horse Spring (HD14) subsurface core with correlation constraints. See Appendix 

1 for legend and Figure 1 for location along the Lennard Shelf. HD14 was drilled in the Horse 

Spring Range (approximately 18°13'51.40"S, 126° 3'20.10"E).  The paleogeographic setting is 

as for the VHS section.  HD14 has no biostratigraphic control, but our best estimate is Upper 

Givetian to Lower Frasnian age.  Facies and the vertical succession of HD14 are similar to 

those described for PGH, but with a greater proportion of inner platform-top assemblages.  A 

pronounced backstep with encrusted slope overlying outer platform is also observed at HD14, 

but we interpret this to be a younger backstepping event than that at PGH.  The dominant 

lithology throughout HD14 is dolomite with scattered intermixing of siliciclastics, with 

exception to the uppermost interval above the backstep surface, which is dominantly limestone. 
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Section/Core Name Type Location Age
Depositional 
Environment

Thickness 
(m)

Samples 
Collected

Windjana North A (WNA)
outcrop                  

measured section
north of            

Windjana Gorge
M-U Fras

platform-top-                 
reef flat

143 314

Windjana North B (WNB)
outcrop                  

measured section
north of          

Windjana Gorge
M-U Fras

platform-top-                   
reef flat

171.3 368

Windjana Slope (WS)
outcrop                  

measured section
north of           

Windjana Gorge
M-U Fras

reef to middle-                
upper slope

258.5 369

Windjana Valley (WV)
outcrop                  

measured section
north of          

Windjana Gorge
U Fras-                  
M Fam

middle-upper 
slope

510 535

South Oscars (SO)*
outcrop                  

measured section
southern                        

Oscar Range
L Fras-                       
M Fam

middle-upper 
slope

666.6 905

Horse Spring (VHS)
outcrop                  

measured section
west of              

Horseshoe Range
L Fras-                      
M Fam

lower-middle 
slope

102 312

Casey Falls (CL)*
outcrop                  

measured section
Mimbi area

U Fras-                    
M Fam

lower-upper             
slope

520.2 833

Guppy Hills (PGH)*
outcrop                  

measured section
south of              

Horseshoe Range
Giv-             

L Fras
platform-top-                 
reef flat-slope

496.1 797

Henwood West (NHW)
outcrop                  

measured section
near                  

Horseshoe Range
U Fras-                   
L Fam

reef to                     
platform-top

66.6 120

Pillara Quarry (PRQ)
quarry-cut                    

measured section
Pillara Mine Giv

reef flat-                         
upper slope

14 89

McWhae Ridge (MR1)
shallow                      

Winkie core
Mimbi area

Giv-                   
L Fam

lower slope-                                
basin

42.2 155

Wade Knoll (WK1)
shallow                         

Winkie core
north of                  

Mimbi area
Giv?-                             
L Fras

lower slope-                     
basin

37.95 73

UD2
subsurface                  

core
Horseshoe               

Range
M Fras-                      
M Fam

middle slope to 
platform-top

703 1358

HD14 (Horse Spring)
subsurface                     

core
west of              

Horseshoe Range
Giv-               

L Fras
platform-top-                      
reef flat-slope

250.6 546

*includes parallel sections Totals:  3982.05 6774

Table 1
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Figure 15-combined
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Figure 16-combined
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Figure 17-combined
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Figure 18-combined
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Figure 19-combined
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Figure 20-combined
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Figure 21-combined
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Figure 22-combined
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Figure 23-combined
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Major EOD Rock Description Setting
rugose coral-encrusting stromatoporoid boundstone-floatstone w/ 

organic-rich matrix
in situ  Givetian transgressive shelf

organic-rich argillaceous mudstone-wackestone                                                                                  
+/- open marine skeletals

Givetian transgressive shelf

skeletal-lithiotid boundstone-floatstone +/- in situ  Famennian outer platform top
peloid-skeletal oncolitic floatstone-rudstone outer platform top (common in Famennian)

skeletal-peloid packstone-grainstone outer platform top
bioclastic floatstone-rudstone outer platform top

non-skeletal-dominated packstone-grainstone platform-top crest (common in Famennian)
teepee-pisolite complex Famennian platform-top crest

burrowed peloidal wackestone-packstone; +/- skeletals inner platform top
fenestral peloidal mudstone-wackestone;                                                                                                         

+/- stromatolitic laminations
inner platform top

massive-laminated siliciclastic siltstone siliciclastic-dominated shallow marine shelf
massive-stratified siliciclastic sandstone siliciclastic-dominated shallow marine shelf

siliciclastic conglomerate siliciclastic-dominated shoreline-fluvial plain
stromatolitic-stromatactoid microbial boundstone in situ  slope bioherms-biostromes

stromatactoid skeletal-microbial boundstone in situ  encrusted upper slope-deeper margin
encrusted-microbially stabilized skeletal-peloid-coated grain 

packstone-grainstone
encrusted upper slope-deeper margin

fenestral-massive Renalcis -dominated                                     
microbial boundstone

in situ  Famennian reef

fenestral-stromatactoid microbial-Renalcis -                   
Actinostroma  boundstone

in situ  Frasnian reef

well-bedded stromatolitic-stromatactoid                                                                                         
microbial boundstone

in situ  Famennian reef flat

well-bedded Stachyodes -Actinostroma  boundstone;                                                                       
variable encrustation

in situ  Givetian-Frasnian reef flat

Amphipora -Stachyodes  boundstone-floatstone +/- in situ  Givetian-Frasnian reef flat-outer platform top
reefal margin-slope-derived megabreccia-                                                                                                

allochthonous block(s)
resedimented slope

platform-margin-slope-derived bioclastic rudstone-breccia resedimented slope (rare in basin)
slope-derived intraclastic rudstone-breccia resedimented slope (rare in basin)

platform-derived skeletal-peloid packstone-grainstone resedimented slope (rare in basin)

platform-derived non-skeletal-dominated packstone-grainstone resedimented slope (rare in basin)

fine-medium calcareous sandstone resedimented slope
platform-margin-slope-derived silty skeletal-peloid wackestone-

packstone
resedimented slope-basin

margin-slope-derived silty peloidal wackestone-packstone                                                                  
+/- wisps-laminations

resedimented slope-basin

margin-slope-derived silty (micro)peloidal mudstone-wackestone                                                        
+/- wisps-laminations

resedimented slope-basin

Other crystalline rock basement

Table 2

Shelf- 
Shoreline

In Situ  Margin- 
Slope

Transported 
Slope-Basin
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- approx. 67% grain-dom’d deposits,
33% debris deposits

B) across supersequence MFS
- symmetrical, debris-dom’d w/

grain-dom’d cap & base
- approx. 80% debris deposits,

20% grain-dom’d deposits

C) composite sequence within
supersequence HST

- asymmetrical, upward increase
in debris deposits

- < 10% debris deposits in TST,
25-50% debris deposits in HST

debris deposits grain-dom’d deposits mud-dom’d deposits
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Figure 26-combined

Middle Slope Stacking Patterns - ecological signals

A) pre-extinction biotic stress (idealized) B) post-extinction recovery,
single rebounding factory

C) post-extinction recovery,
microbial bloom

debris deposits grain-dom’d deposits mud-dom’d depositsmicrobial boundstone
ooids



Table 3

Constraint Previous Work This Study
Sequence stratigraphy Playford et al. (2009); Playton and Kerans (2015 a, b) this paper

Conodont, cephalopod, & 
fish biostratigraphy

Klapper (1989); Ziegler and Sandberg (1990); Becker et al. (1993); 
Klapper (1997); Becker and House (1997); Girard et al. (2005);                                                                               
Klapper (2007); Trinajstic and George (2009)

Roelofs et al. (2015)

Magnetostratigraphy none pertaining to regional correlation Hansma et al. (2015)

Stable carbon isotope 
chemostratigraphy

Joachimski et al. (2002); Bing et al. (2003);                                                                                          
Stephens and Sumner (2003); Buggisch and Joachimski (2006)

Hillbun (2015);                                    
Hillbun et al. (2015);               
Hillbun et al. (in review);                                                                 
Hillbun et al. (this volume)



WNA some independent global to regional constraints all magnetic polarity reversals correlatable across dataset; not linked to global reference
WNB some independent global to regional constraints all biostratigraphic picks correlatable across dataset; linked to global reference
WS some independent global to regional constraints LKW & UKW carbon excursions correlatable across dataset; linked to global reference
WV some independent global to regional constraints FSV & ENK carbon excursions isolated occurrences; linked to global reference
SO numerous independent global to regional constraints all other carbon excursions correlatable across dataset; not linked to global reference

VHS numerous independent global to regional constraints elemental trends not correlatable across dataset; no global reference
CL numerous independent global to regional constraints magnetic susceptibility trends not correlatable across dataset; no global reference

PGH few-none independent global to regional constraints outcrop gamma ray trends not correlatable across dataset; no global reference
NHW few-none independent global to regional constraints biomarker trends not correlatable across dataset; no global reference
MR1 numerous independent global to regional constraints
WK1 few-none independent global to regional constraints
UD2 few-none independent global to regional constraints

HD14 few-none independent global to regional constraints

Table 4

b) Markers and Intervalsa) Sections



Table 5
Theme This Study

Correlations across Lennard 
Shelf

numerous correlation tie points and high-confidence sequence stratigraphic 
interpretation that connects  strata across Windjana Gorge, South Oscar Range, 
Horse Spring, and Casey Falls areas, particularly for extended slope and basin 
sections 

Shelf-to-basin correlation
platform-slope-basin correlation across supersequence MFS interval;      upper-
middle-lower-slope to basin correlation for Middle Frasnian to Middle Famennian

Lennard Shelf Composite 
Reconstruction

scaled reconstruction, constrained by 8 overlapping, strongly correlated transects 
that span upper-slope to basin environments (platform top included in some 
intervals), all depositional information honored 

Sequence 1 - Zone 1 (Playford et al. 2009)** not defined Sequence Fr1 & systems tracts - Zone 1 (after Playford et al. 2009)
Sequence 2 - Zones 2-3 (Playford et al. 2009) Phase 2 - Zones 2-3 (George et al. 2009) Sequence Fr2 & systems tracts - Zones 2-3 (after Playford et al. 2009)
Sequence 3 - Zones 4-6 (Playford et al. 2009) Phases 3-4 - Zones 4-6 (George et al. 2009) Sequence Fr3 & systems tracts - Zones 4-6 (after Playford et al. 2009)
Sequence 4 - Zones 6-8 (Playford et al. 2009) Phases 5-6 - Zones 6-8 (George et al. 2009): short-lived regression Sequence Fr4 & systems tracts - Zones 6-8 (after Playford et al. 2009)
Sequence 5 - Zones 9-10 (Playford et al. 2009): supersequence MFS, 
Middle Frasnian

Sequence Fr6 & systems tracts - Zones 12-13b
Sequence Fr7 & systems tracts - Zones 13b-c

Lower-Middle Famennian 
sequences

3 sequences (Fa1-3) with systems tracts

Middle Famennian (MFa) 
interval

sequences not defined; likely multiple sequences but further work required

Slope & basin sequence 
stratigraphy

slope composite sequence and systems tracts interpretations & models for 
Middle Frasnian to Middle Famennian

*Sequence boundaries of Playford et al. (2009) and George et al. (2009) are defined at backstepping events, which are MFSs here (see Playton and Kerans 2015a); thus, disparities on conodont ranges by sequence are expected.  
**Sequence 1 of Playford et al. (2009) includes the Givetian; Givetian sequences of this study are poorly constrained, thus comparison not discussed here

1 sequence, no systems tract subdivision (Playford et al. (2009)

not previously attempted

Previous Work

F-F identified in many localities (Playford et al. 2009); detailed biostratigraphic profiles collected at many localities but not consistently tied to 
sedimentary logs or sequence stratigraphy (e.g., Becker et al. 1993, Klapper 2007, Trinajstic and George 2009)

not previously attempted

schematic reconstruction, no scale, not constrained to data, over-representation of basin fill (Playford et al. 2009);                                   scaled 
reconstruction but constrained only to two data transects (Playton and Kerans 2015 a, b)

1 sequence, no systems tract subdivision (Playford et al. (2009)

Frasnian sequences*

Sequence 6 - Zones 11-13 (Playford et al. 2009)

Phase 7 - Zones 9-11 (George et al. 2009) Sequence Fr5 & systems tracts - Zones 9-12: supersequence MFS, Middle-Upper 
Frasnian boundary in Sequence 5 HST

Phase 8 - Zones 12-13 (George et al. 2009)
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INTRODUCTION
1. The publisher for this copyrighted material is Elsevier.  By clicking "accept" in connection
with completing this licensing transaction, you agree that the following terms and conditions
apply to this transaction (along with the Billing and Payment terms and conditions
established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your
Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS
2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to
the terms and conditions indicated.
3. Acknowledgement: If any part of the material to be used (for example, figures) has
appeared in our publication with credit or acknowledgement to another source, permission
must also be sought from that source.  If such permission is not obtained then that material
may not be included in your publication/copies. Suitable acknowledgement to the source
must be made, either as a footnote or in a reference list at the end of your publication, as
follows:
"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of
chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE
SOCIETY COPYRIGHT OWNER]." Also Lancet special credit ­ "Reprinted from The
Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with
permission from Elsevier."
4. Reproduction of this material is confined to the purpose and/or media for which
permission is hereby given.
5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be
altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions
and/or any other alterations shall be made only with prior written authorization of Elsevier
Ltd. (Please contact Elsevier at permissions@elsevier.com)
6. If the permission fee for the requested use of our material is waived in this instance,
please be advised that your future requests for Elsevier materials may attract a fee.
7. Reservation of Rights: Publisher reserves all rights not specifically granted in the
combination of (i) the license details provided by you and accepted in the course of this
licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment
terms and conditions.
8. License Contingent Upon Payment: While you may exercise the rights licensed
immediately upon issuance of the license at the end of the licensing process for the
transaction, provided that you have disclosed complete and accurate details of your proposed
use, no license is finally effective unless and until full payment is received from you (either
by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions.  If
full payment is not received on a timely basis, then any license preliminarily granted shall be
deemed automatically revoked and shall be void as if never granted.  Further, in the event
that you breach any of these terms and conditions or any of CCC's Billing and Payment
terms and conditions, the license is automatically revoked and shall be void as if never
granted.  Use of materials as described in a revoked license, as well as any use of the
materials beyond the scope of an unrevoked license, may constitute copyright infringement
and publisher reserves the right to take any and all action to protect its copyright in the
materials.
9. Warranties: Publisher makes no representations or warranties with respect to the licensed
material.
10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and
their respective officers, directors, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this license.
11. No Transfer of License: This license is personal to you and may not be sublicensed,
assigned, or transferred by you to any other person without publisher's written permission.
12. No Amendment Except in Writing: This license may not be amended except in a writing
signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any
purchase order, acknowledgment, check endorsement or other writing prepared by you,
which terms are inconsistent with these terms and conditions or CCC's Billing and Payment
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terms and conditions.  These terms and conditions, together with CCC's Billing and Payment
terms and conditions (which are incorporated herein), comprise the entire agreement
between you and publisher (and CCC) concerning this licensing transaction.  In the event of
any conflict between your obligations established by these terms and conditions and those
established by CCC's Billing and Payment terms and conditions, these terms and conditions
shall control.
14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described
in this License at their sole discretion, for any reason or no reason, with a full refund payable
to you.  Notice of such denial will be made using the contact information provided by you. 
Failure to receive such notice will not alter or invalidate the denial.  In no event will Elsevier
or Copyright Clearance Center be responsible or liable for any costs, expenses or damage
incurred by you as a result of a denial of your permission request, other than a refund of the
amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied
permissions.

LIMITED LICENSE
The following terms and conditions apply only to specific license types:
15. Translation: This permission is granted for non­exclusive world English rights only
unless your license was granted for translation rights. If you licensed translation rights you
may only translate this content into the languages you requested. A professional translator
must perform all translations and reproduce the content word for word preserving the
integrity of the article.
16. Posting licensed content on any Website: The following terms and conditions apply as
follows: Licensing material from an Elsevier journal: All content posted to the web site must
maintain the copyright information line on the bottom of each image; A hyper­text must be
included to the Homepage of the journal from which you are licensing at
http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at
http://www.elsevier.com; Central Storage: This license does not include permission for a
scanned version of the material to be stored in a central repository such as that provided by
Heron/XanEdu.
Licensing material from an Elsevier book: A hyper­text link must be included to the Elsevier
homepage at http://www.elsevier.com . All content posted to the web site must maintain the
copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following
clauses are applicable: The web site must be password­protected and made available only to
bona fide students registered on a relevant course. This permission is granted for 1 year only.
You may obtain a new license for future website posting.
17. For journal authors: the following clauses are applicable in addition to the above:
Preprints:
A preprint is an author's own write­up of research results and analysis, it has not been peer­
reviewed, nor has it had any other value added to it by a publisher (such as formatting,
copyright, technical enhancement etc.).
Authors can share their preprints anywhere at any time. Preprints should not be added to or
enhanced in any way in order to appear more like, or to substitute for, the final versions of
articles however authors can update their preprints on arXiv or RePEc with their Accepted
Author Manuscript (see below).
If accepted for publication, we encourage authors to link from the preprint to their formal
publication via its DOI. Millions of researchers have access to the formal publications on
ScienceDirect, and so links will help users to find, access, cite and use the best available
version. Please note that Cell Press, The Lancet and some society­owned have different
preprint policies. Information on these policies is available on the journal homepage.
Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an
article that has been accepted for publication and which typically includes author­
incorporated changes suggested during submission, peer review and editor­author
communications.
Authors can share their accepted author manuscript:

­         immediately

http://www.sciencedirect.com/science/journal/xxxxx
http://www.elsevier.com/
http://www.elsevier.com/
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via their non­commercial person homepage or blog
by updating a preprint in arXiv or RePEc with the accepted manuscript
via their research institute or institutional repository for internal institutional

uses or as part of an invitation­only research collaboration work­group
directly by providing copies to their students or to research collaborators for

their personal use
for private scholarly sharing as part of an invitation­only work group on

commercial sites with which Elsevier has an agreement
­         after the embargo period

via non­commercial hosting platforms such as their institutional repository
via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

­         link to the formal publication via its DOI
­         bear a CC­BY­NC­ND license ­ this is easy to do
­         if aggregated with other manuscripts, for example in a repository or other site, be

shared in alignment with our hosting policy not be added to or enhanced in any way to
appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final
record of published research that appears or will appear in the journal and embodies all
value­adding publishing activities including peer review co­ordination, copy­editing,
formatting, (if relevant) pagination and online enrichment.
Policies for sharing publishing journal articles differ for subscription and gold open access
articles:
Subscription Articles: If you are an author, please share a link to your article rather than the
full­text. Millions of researchers have access to the formal publications on ScienceDirect,
and so links will help your users to find, access, cite, and use the best available version.
Theses and dissertations which contain embedded PJAs as part of the formal submission can
be posted publicly by the awarding institution with DOI links back to the formal
publications on ScienceDirect.
If you are affiliated with a library that subscribes to ScienceDirect you have additional
private sharing rights for others' research accessed under that agreement. This includes use
for classroom teaching and internal training at the institution (including use in course packs
and courseware programs), and inclusion of the article for grant funding purposes.
Gold Open Access Articles: May be shared according to the author­selected end­user
license and should contain a CrossMark logo, the end user license, and a DOI link to the
formal publication on ScienceDirect.
Please refer to Elsevier's posting policy for further information.
18. For book authors the following clauses are applicable in addition to the above:  
Authors are permitted to place a brief summary of their work online only. You are not
allowed to download and post the published electronic version of your chapter, nor may you
scan the printed edition to create an electronic version. Posting to a repository: Authors are
permitted to post a summary of their chapter only in their institution's repository.
19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be
submitted to your institution in either print or electronic form. Should your thesis be
published commercially, please reapply for permission. These requirements include
permission for the Library and Archives of Canada to supply single copies, on demand, of
the complete thesis and include permission for Proquest/UMI to supply single copies, on
demand, of the complete thesis. Should your thesis be published commercially, please
reapply for permission. Theses and dissertations which contain embedded PJAs as part of
the formal submission can be posted publicly by the awarding institution with DOI links
back to the formal publications on ScienceDirect.
 
Elsevier Open Access Terms and Conditions
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You can publish open access with Elsevier in hundreds of open access journals or in nearly
2000 established subscription journals that support open access publishing. Permitted third
party re­use of these open access articles is defined by the author's choice of Creative
Commons user license. See our open access license policy for more information.
Terms & Conditions applicable to all Open Access articles published with Elsevier:
Any reuse of the article must not represent the author as endorsing the adaptation of the
article nor should the article be modified in such a way as to damage the author's honour or
reputation. If any changes have been made, such changes must be clearly indicated.
The author(s) must be appropriately credited and we ask that you include the end user
license and a DOI link to the formal publication on ScienceDirect.
If any part of the material to be used (for example, figures) has appeared in our publication
with credit or acknowledgement to another source it is the responsibility of the user to
ensure their reuse complies with the terms and conditions determined by the rights holder.
Additional Terms & Conditions applicable to each Creative Commons user license:
CC BY: The CC­BY license allows users to copy, to create extracts, abstracts and new
works from the Article, to alter and revise the Article and to make commercial use of the
Article (including reuse and/or resale of the Article by commercial entities), provided the
user gives appropriate credit (with a link to the formal publication through the relevant
DOI), provides a link to the license, indicates if changes were made and the licensor is not
represented as endorsing the use made of the work. The full details of the license are
available at http://creativecommons.org/licenses/by/4.0.
CC BY NC SA: The CC BY­NC­SA license allows users to copy, to create extracts,
abstracts and new works from the Article, to alter and revise the Article, provided this is not
done for commercial purposes, and that the user gives appropriate credit (with a link to the
formal publication through the relevant DOI), provides a link to the license, indicates if
changes were made and the licensor is not represented as endorsing the use made of the
work. Further, any new works must be made available on the same conditions. The full
details of the license are available at http://creativecommons.org/licenses/by­nc­sa/4.0.
CC BY NC ND: The CC BY­NC­ND license allows users to copy and distribute the Article,
provided this is not done for commercial purposes and further does not permit distribution of
the Article if it is changed or edited in any way, and provided the user gives appropriate
credit (with a link to the formal publication through the relevant DOI), provides a link to the
license, and that the licensor is not represented as endorsing the use made of the work. The
full details of the license are available at http://creativecommons.org/licenses/by­nc­nd/4.0.
Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY
NC ND license requires permission from Elsevier and will be subject to a fee.
Commercial reuse includes:

­         Associating advertising with the full text of the Article
­         Charging fees for document delivery or access
­         Article aggregation
­         Systematic distribution via e­mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.
 
20. Other Conditions:
 
v1.8
Questions? customercare@copyright.com or +1­855­239­3415 (toll free in the US) or
+1­978­646­2777.
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Permissions for Using SEPM Publications
Use of PDFs
 
IMPORTANT: Authors may not post the final PDF or any proof version of the paper to any institutional website, or
article sharing free access websites, such as or ResearchGate or Academia.edu,  etc. Authors are encouraged to
share e­print PDFs with those individuals that have requested copies, similar to printed reprint distribution. SEPM
is  continuously  reviewing  the  online  digital  publishing  landscape  to  better  serve  authors  and  users.  SEPM  is
closely  monitoring  efforts  to  resolve  these  issues  such  as  discussed  at  http://www.stm­assoc.org/stm­
consultations/scn­consultation­2015/. 
 
See SEPM Open Access Policy for Gold and Green OA options. 

Obtaining a PDF of an article
Subscribers  to online access of SEPM publications may download PDFs of any article  for  their own personal use and
research. Subscribers may also create printed copies of the PDFs, again, only for their own personal use and research.
Non­subscribers may use the Pay­Per­View facility to purchase access to the PDF. Once you have access, you will be
able to download and save a copy (for your personal use only). You may also request an 
e­print of an article from the author(s).

Corresponding  authors  of  papers  will  have  received  an  e­mail  with  instructions  on  how  to  download  an  e­print  PDF.
Contributing authors requiring access should contact the corresponding author. We do not provide free access to articles
directly to other individuals.

Re­publishing material from SEPM copyright
 
Using material from SEPM publications
Extensive  quotation  (more  than  c.  100 words)  and  reproduction  of  previously  published  illustrations  (even  if  redrawn)
require permission from the copyright holder.
Material that can be used without permission
Authors may  reuse  their  own material without  permission  subject  to  the  exceptions  listed  below. They may  include  the
whole  article  in  a  PhD  or  other  thesis  provided  that  it  will  not  be  published,  and  that  the  original  source  is  fully
acknowledged  in  a  standard  format.  Authors  may  not  republish  their  whole  article,  or  a  substantial  part  of  it,  without
permission. Such permission will be granted depending on circumstances.

For non­commercial purposes, anyone may use up  to  three  items  (text extracts of 100 words or  less,  figures or  tables)
from SEPM published material without permission or charge provided that a proper acknowledgement of source  is used
with the item. If you require written permission, please contact the permissions editors listed in the section below.

The abstracts of articles can be reproduced without permission or fees provided that a full reference and a link to the article
abstract page are included.

Please check that SEPM is the original copyright holder and that the material has not been taken from another source. In
those cases, you must contact the original copyright holder. 

If  your  article  forms  part  of  a multi­author  book,  the  publisher must  ensure  that  the  total  number  of  items  from SEPM
copyright does not exceed three (this does not apply to journal issues).
 
**Note:   Use of content from Concepts in Sedimentology and Paleontology No. 9, however, is prohibited from any
use of separate content.  Only the whole book may be purchased and used.
Reusing material in another SEPM publication

You may use material from SEPM copyright in another SEPM publication without permission from SEPM subject to the
exceptions listed below.
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For  more  than  three  items,  please  contact  the  appropriate  Permissions  Editor  for  that  publication  series  to  obtain
permission.

Exceptions

SEPM has a strong policy against duplicate publication and does not allow republication of whole articles, or substantial
parts of them, unless there are very exceptional circumstances. 

You may not use more than 25% of any SEPM published article in a single publication and no publication should contain
more than 25% in total from SEPM Copyright. This does not prevent the inclusion of whole articles in course packs and
the like (which do not constitute republication).

You may not post a typeset PDF of a SEPM article on any website, repository or server (see author exceptions). 

Photocopying and digital copying

You may make  limited  hard  copies  of  an  article  for  your  own  research  or  educational  purposes  (not  including  course
packs) if you have access rights to the material. You do not need to request permission to do this.

For more extensive copying or digital  reproduction, you need to obtain a  license from the Copyright Clearance Center:
www.copyright.com or from your local reproduction rights agency.

Lecture and presentations

You may  include material  from Society copyright  in a visual presentation  if you have access  rights  to  the material and
provided that you will not circulate digital or hard copies of your presentation for commerical purposes. You do not need
to request permission to do this. If you wish to circulate copies of your presentation to students or others, please obtain
‘course­pack’ permission from the Copyright Clearance Center: www.copyright.com or from your local reproduction rights
agency.

Permission to use SEPM material
Permission,  unless  otherwise  excepted  here,  to  reprint material  from  the Society’s  publications  should  be made  to  the
Permissions Editors for the various publications.
 

·         Permission to use material from the Society’s website should be made to Howard Harper.

·         Permission to use material from The Sedimentary Record should be made to Howard Harper.

·         Permission to use material from The Journal of Sedimentary Research (or Journal of Sedimentary Petrology) should be
made to Melissa Lester.

·         Permission to use material from PALAIOS and Journal of Paleontology (1927­1985) should be made to Kathleen Huber.

·         Permission to use material from SEPM book publications should be made to Michele Tomlinson.
 
Authors Use

Corresponding  and  contributing  authors  have  transferred  copyright  (and  all  rights  under  it),  or  have  granted  full
publishing  rights  in  their  work,  to  SEPM.  In  assigning  copyright  authors  are  not  forfeiting  their  rights  to  use  their
contribution elsewhere, provided it does not directly detract from or undermine the Society's legitimate benefits under
the rights granted to it. Please note that authors continue to enjoy the following rights:

1. Patent and trademark rights.
2. The right to be identified as the Author.
3. The right to share with colleagues ‘preprints’ (i.e. “Authors Original”, prior to peer review), provided that this is not done
for commercial purposes, and to post preprints to publicly accessible websites.
4.  In  the  case  of  journal  articles,  and  prior  to  publication  by  the Society,  the  right  to  post  a  ‘postprint’  (i.e.  “Accepted
Version”, in the final form accepted by SEPM for publication) to authors’ personal web pages or to an institutional web site
or repository maintained by the institution to which they are affiliated. Any such posted work must be accompanied by a
notice: “Accepted for publication in [name of publication] as of [date]”. 

5. The right to use the separate content or data or figures in authors’ research, and in courses that they are teaching or
by others within an institution or company where the author is employed but not allow free public access to content.
6. The right to incorporate the content of the contribution in other works of which they are the author, including personal
compilations and books of which they are the author.

In the case of 3 to 6 above, these rights are intended to help authors in their academic and professional work, and are
subject to three conditions:
a. These rights may not be used for commercial purposes;
b. These rights should not be used in a way that involves duplicate publication that will compete with the Society’s own
publications; and
c. Each use must contain an acknowledgement to the journal/book as the original source of publication in the form: 
“[Journal/Book] [Volume/Publication Year] [URL of the item as published by SEPM Society for Sedimentary Geology] ©
SEPM Society for Sedimentary Geology [Year].”

On publication within the SEPM online publications corresponding authors will receive an email and URL enabling
access to free PDF e­print downloads. Accessed PDFs may be saved to the author’s hard drive or other personal
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electronic media and emailed or copied to colleagues or  third parties (again,  for  legitimate purposes only). Details
will be provided on publication.
Other  than  the use outlined above no Society publication may be captured or downloaded electronically  into any
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