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Abstract

The primary purpose of this thesis is to investigate the measures and models of volatility
for the financial time series. Whilst the field of study itself is not new, measuring and
modelling of the financial volatility are still crucial and challenging tasks, as volatility
is the heart of many financial applications. The thesis applies the historical volatility
measure and the realised volatility measure to study the impact of sampling frequency on
the volatility estimation and address the dependency of volatility on sampling frequency. It
is suggested to employ stochastic delay equations to model the dependency of volatility on
timescales. The thesis also addresses the impact of the underlying price movement on the
volatility measure. By using the option price data, the "purified" implied volatility process
is proposed to overcome this issue. In addition, regression techniques are applied on
the future volatility to investigate the information contained in this new implied volatility
process. It is shown that this new process contains information about future volatility.
Furthermore, the heterogeneous autoregressive model and random forest algorithm are
shown to improve the accuracy in forecasting of future volatility.
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Chapter 1

Introduction

A good understanding of volatility plays a critical role in financial investment. It is the
major measure of risk in modern finance and is at the heart of many financial applica-
tions such as pricing of options, hedging strategies, constructing optimal portfolios, and
derivatives. With the increasing usage of financial volatility, both academia and finan-
cial practitioners have pioneered and ventured into developing methods of estimating and
measuring the volatility of financial time series based on various models. However, some
existing measures and models are limited by their underlying assumptions or have been
proven not being able to withstand their assumptions in practice. In addition, most of the
existing techniques and models have been developed under the low-frequency settings.
With the availability of high-frequency data, it is of interest to study further the financial
volatility under different sampling frequencies and to model their behaviours. It appears
that further contributions can be made to the measures and models of univariate financial
markets’ volatility.

Measuring and modelling the financial volatility are crucial and challenging tasks.
While the financial returns are observable from the price processes, the financial volatil-
ities are not observed directly. It requires the use of some estimation techniques such as
historical measures [6, 47] which are based on the historical returns movements, implied
measures [37, 121] which are based on the imputed value of volatility from given financial
models, or stochastic measures [117] as estimated from some underlying dynamic stochas-
tic processes. Hence, it is essential to have a good understanding about these estimators
and acknowledge their gaps in forecast performance of future volatility, especially when
the economic outcome is often determined by the forecast performance of the volatility
forecasting models. It is also a challenging task. As discussed, there are a number of esti-
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mators that can be used for measuring the financial volatility. One must select a volatility
estimator that he/she think it can best describe the evolution of the underlying asset. In
addition, the selected estimator needs to be able to model and forecast the future volatility
accurately and effectively.

As for measuring the volatility of financial market, Engle[52] and Bollerslev [29] first
proposed the ARCH model and the GARCH model. These models have been extended in
numbers of directions based on the empirical evidences that the volatility process is non-
linear, asymmetry and has long memory. Such extensions can be referred to EGARCH
[97], GJR-GARCH [63], AGARCH [51], and TGARCH [123]. With the availability of
high-frequency data, Andersen et al. [9] provide a framework for integration of high-
frequency intraday data into historical volatility estimation, so-called realised volatility.
This measure is built on the theory of continuous-time and arbitrage-free processes with
the theory of quadratic variation. In comparison with the GARCH-type measures, realised
volatility is more preferred as it is a model-free measure. Hence, it provides convenience
for calculation, similar to the classical historical volatility [47].

However, volatility measured at different frequencies (e.g. hourly, intraday, daily or
monthly) has different information content [91]. It is observed in [126] that the volatil-
ity increases when the sampling frequency increases for some financial time series. It is
also seen that the volatility may decrease when more frequent samples are used for other
financial time series. For the data generated from the classical Black-Scholes’ [28] mar-
ket model or the Heston’s [70] stochastic volatility model, this effect does not take place,
i.e. the volatility is independent of the sampling frequency. Therefore, the observed de-
pendency of the volatility on sampling frequency requires modifications of the classical
model. To address this, it is suggested to develop a continuous time model for stock prices
such that the volatility calculated via different sampling frequency may take certain pres-
elected values. It appears that Ito equations with delay feature this property. The presence
of additional parameters that describe the delay enables us to capture the difference of
volatility estimated at alternative sampling rates, unlike existing processes. In this thesis,
we consider the simplest linear delay equation with only one delay term. This new delay
term is found to be capable of matching the volatility from the simulated price process
with the volatility from the historical data, on three different sampling frequencies.

Another measure of volatility that is studied in this thesis is the implied volatility.
While the historical volatility and the realised volatility describe the volatility observed
from the returns processes, the implied (or imputed) volatility is the theoretical measure
which describe the volatility of an underlying financial instrument. This implied volatility

12



is implicitly derived by inverting the option pricing models while other parameters are
provided and kept unchanged. For example, given option pricing models, by using the
observations of the price processes and the related values given by the market, one can de-
rive the value of the volatility "implied" by the market. The implied volatilities are usually
defined as the inverse of the Black-Scholes [28] pricing formula applied to the observed
market prices. The option prices and the implied volatilities are fluctuating along with the
underlying assets prices; they have a stochastic "random walk" type pattern of movement,
similar to the stock prices. Since the implied volatility depends on the strike price and the
expiration time, often one would find it difficult to decide which implied volatility to use
among all possible versions of the implied volatility when describing the market expec-
tations of the degrees of the future stock price deviations. Alternatively, one can assume
that the entire implied volatility surface has a known initial values and follows a stochastic
process. Such interpretations are as the implied volatility indexes by Whaley [121]ls VXO
or Carr and Wu [37]’s VIX. For this purpose, the volatility indexes were created. How-
ever, the implied volatility has some limitations. Firstly, it is restricted by the assumptions
made in the underlying model (i.e. Black-Scholes’ model). This often has an artificially
induced upward bias [38] on the estimation. Secondly, there is impact of the price move-
ment on the option prices hence generating another type of bias on the implied volatility.
While the prior issue is not easy to be addressed, it is suggested from this thesis that a
"dynamically purified" option price process can be constructed to reduce the bias caused
by the latter issue. Our study suggest that the "purified" implied volatility calculated from
this process could be more informative than the traditional implied volatility such as VXO
and VIX indexes. In theory, the proposed option price process can eliminate the impact of
the stock price movements. However, this would only be possible if the option prices were
available for continuous sets of strike prices and expiration times. In practice, we have to
use finite sets of available prices. To restore this process from incomplete sets of available
option prices, it is suggested to use the first order Taylor series interpolation and quadratic
interpolation. From this approach, the proposed option price process requires less option
data while maintaining the accuracy of the approximation. Furthermore, a number of re-
gression models using the implied volatility index VIX and the implied volatility from the
purified option prices as predictors of the future volatility were studied. It is found that
for some selected dataset and constructed models, the new implied volatility has superior
information about future volatility than that of the traditional implied volatility indexes.

Choosing a model to generate volatility forecasts also play an important role in fi-
nancial applications as the forecast performance of the forecasting models can influence
the economic outcomes. There have been many forecasting models that have been de-
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veloped to predict the realised volatility, ranging from very simple to complex models;
such as ARCH model and GARCH model, HAR (heterogeneous autogressive model
for realised volatility) model (HAR) [43] and HEAVY (High frEquency bAsed Volatil-
itY) model [111]. This thesis focuses on the implementation of the HAR model. This
model is developed in accordance with the heterogeneous market hypothesis proposed by
Muller[96] and the long memory character of realised volatility by Andersen [9]. Empir-
ical studies have shown that the HAR model has high forecasting performance on future
volatility, especially for the out-of-sample data given different time horizons ([43], [82]).
By incorporating this model with the proposed implied volatility process, it is suggested
that the forecasting of volatility can further be improved via the use of machine learning
techniques such as random forests algorithm.

This thesis is structured as follows:

Chapter 2 reviews definitions of volatility and their measures. The chapter also pro-
vides some empirical results with stylize facts of volatility.

Chapter 3 addresses the dependency of volatility on the sampling frequency. The chap-
ter shows that delay equations allow to model the price processes with volatility that in-
creases when the sampling rates increase, as well as the inverse phenomena where the
volatility decreases with the increase in sampling frequencies. An empirical study is
demonstrated whether analytical and simulation results apply to the proposed settings.

Chapter 4 introduces a dynamic estimation of implied volatility for financial time se-
ries. This implied volatility is inferred from an artificial "dynamically purified" price
process which allows to eliminate the impact of the stock price movements. The chapter
also investigates the information of this proposed implied volatility in forecasting of the
future volatility, in comparison with the traditional implied volatility processes such as the
volatility index VIX.

Chapter 5 studies the forecasting of realised volatility for financial time series using
heterogeneous autoregressive model (HAR) and random forest, a machine learning algo-
rithm. The chapter extends the existing HAR model by including the proposed "purified"
implied volatility proposed in Chapter 4, and shows that it is possible to improve the fore-
cast of both direction and magnitude of the realised volatility. The demonstration on the
forecasting power of this new class of model is shown via experiment with historical high
frequency financial data with different forecasting horizons.

Chapter 6 summarises the main contributions of this work and identifies potential di-
rections for future research.
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Chapter 2

Some preliminaries: volatility and its
estimation

2.1 Rationale behind financial volatilities

In general, volatility is a statistical measure of the dispersion of a given time series. In
finance, the time series is associated with the continuous price process. Volatility is an im-
portant measure in many financial applications such as asset pricing, derivatives pricing,
portfolio optimizations and risk management. Estimating the volatility is a challenging
task as volatility is not an observable process like the return process which can be ob-
tained directly from the price process. The estimates of volatility can be categorised into
three main classes: historical volatility, implied volatility and stochastic volatility. These
classes of estimators can be either non-parametric (based on a scale estimator) or paramet-
ric (based on regression estimation of a flexible specification of the return process).

In this chapter, we provide backgrounds on the volatility estimators of the financial
series that were used throughout this thesis. We will review some literature on the under-
lying theories, assumptions and robustness of these measures. Although there have been
extensive reviews conducted such as [8], this chapter highlights some recent techniques
that tackle the issues in measuring and forecasting financial volatility such as jump in price
levels and market micro-structure noise in the financial data. The backgrounds included in
this chapter result in the development of the price model discussed in Chapter 3, the con-
struction of the new implied volatility process in Chapter 4 and the forecasting techniques
proposed in Chapter 5.
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2.2 Definition of volatility for continuous time price
model

Let P(t) denote the price process of an asset at time t, and suppose that the dynamic of the
process p(t) = ln P(t) is described by the stochastic differential equation

dp(t) = µ(t)dt + σ(t)dW(t). (2.2.1)

This is the so-called Ito equation [76]. Here, W(t) is a Wiener process (a standard Brown-
ian motion [49]). In particular, W(t) has Gaussian increments; W(t + s)−W(s) is normally
distributed with mean 0 and variance s, i.e. W(t + s) −W(s) ∼ N(0, s) . The process µ(t)
is called the drift and σ(t) is called the diffusion coefficient. In financial applications, σ(t)
is known as the volatility of the price P(t). Both µ(t) and σ(t) can be random and must be
independent of W(t + s) −W(s).

In Chapter 3, we consider µ(t) = λ(p(t) − p(t − %)) for λ > 0 and % > 0 for the
delay equations. In Chapter 4, we consider µ(t) = a(t) − σ(t)2/2 for the underlying asset
where a(t) is the appreciation rate. We also consider a more general stochastic differential
equation for the price process with jumps in Chapter 5 (see also Section 2.3.2 below).

2.3 Historical volatility

2.3.1 Classical estimator of volatility

In practice, it is not feasible to obtain σ(t) at a given time t. However, it is possible to
estimate the values of σ(t) within a period [t − △t, t] for △t > 0. Often, volatility is
estimated by using the historical returns collected during a given period. We consider
below estimation of v(t) such that

v(t) =
1
△t

∫︁ t

t−△t
σ2(τ)dτ. (2.3.1)

Let us consider constructing an estimate v(t) from observed prices P(tk) with tk ∈

[t−△t, t], k = n0, n0 +1, ..., n where the time tk are observed at equal intervals (equispaced),
δ = tk − tk−1, tn0 = t − △t and tn = t (or △t = (n − n0)δ). The sample variance in discrete
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time series is estimated by

v̂(tn) =
1
△t

n∑︁
k=n0+1

(En − Rk)2, (2.3.2)

where

En =
1

n − n0

n∑︁
k=n0+1

Rk,

Rk = ln P(tk) − ln P(tk−1).

The square-root value of equation (2.3.2) is often known as the classical historical volatil-

ity. It is important to note that the assumption of collecting data at equal interval of unit
of time is crucial, as in practice, trades occur at discrete points in time.

2.3.2 Realised volatility

With the availability of high-frequency data, Andersen et al. [9] introduce an alternative
measure of volatility using all available high-frequency intraday data. This measure is so-
called realised volatility. Similar to the classical historical volatility, the realised volatil-

ity is a nonparametric expost estimate of return realisations over a fixed time interval.
In particular, this measure was built on the theory of continuous-time and arbitrage-free
processes with the theory of quadratic variation. Let us extend the assumptions used for
classical historical volatility estimator to the followings.

Let P(t) represent the asset price which is recorded at equally-spaced discrete points
from the financial market within a given time interval [t −△t, t], where 0 6 t −△t 6 t 6 T ,
p(t) = ln P(t) and r(t,△t) = p(t) − p(t − △t). We assume that P(t) is governed by the
Ito equation (2.2.1) with µ(t) and σ(t) represent the instantaneous conditional mean and
volatility of the return respectively. As such,

r(t,△t) = p(t) − p(t − △t) =

∫︁ t

t−△t
µ(τ)dτ +

∫︁ t

t−△t
σ(τ)W(t), (2.3.3)

and the quadratic variation is

QV(t,△t) =

∫︁ t

t−△t
σ2(τ)dτ. (2.3.4)

Following this result, the developments of µ(t) do not relate directly to the sample path
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variation of return. Andersen and Benzoni [4] explain that the term µ(t)(dt) is of lower or-
der (second order) than the diffusion component σ(t)dW(t). As a result, the cumulated re-
turns from many high-frequency values over a short time interval can be neglected. There-
fore, the variance in equation (2.3.1) coincides with the quadratic variation QV(t,△t).
Now, let us assume that the time interval [t−△t, t] is observed evenly at j

n steps in discrete
time, i.e. t − △t +

j
n , j = 1, ..., n · △t. Under semi-martingale theory [68], the realised vari-

ance measure converges in probability to the quadratic variation as the sampling frequency
n increases, i.e.

RV(t,△t; n) −→ QV(t,△t) as n −→ ∞. (2.3.5)

Protter [103] suggests that the link between realised volatility measures is based on high-
frequency returns and the underlying price process’s quadratic variation, which was ap-
plied in the context of measuring empirical volatility by Andersen and Bollerslev [13].

Andersen et al. [9] suggests to estimate the realised volatility (RV) of P(t) by

RV(t,△t; n) =

n·△t∑︁
j=1

r(t − △t +
j
n
,

1
n

)2. (2.3.6)

For one-day period volatility estimate, the above formula can be rewritten as

RVt−△t,t =

⎯⎸⎷M−1∑︁
j=0

r2
t− jδ, (2.3.7)

where [t − △t, t] is the duration of one day, δ = 1
M , rt− jδ = p(t − jδ) − p(t − ( j + 1)δ), and

returns are assumed to be sampled evenly at δ time step with M observations in that time
interval. Since we assume that the data is collected at equal-space, δ can be collected at
second-, minute- and hour-frequencies. We will revisit this volatility estimator in Chapter
3, Section 3.2 and Chapter 5, Section 5.2.

While this estimation is simple and easy to compute for high-frequency data, the main
challenges are at dealing with (1) jumps in the price level and (2) microstructure noise in
high-frequency data.

Jumps in the price level

By the properties of Ito equation [76], the return process in equation (2.2.1) is path-wise
continuous. This does not allow to model the markets where asset prices exhibit sudden
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discrete movements when unexpected events are introduced to the market. Such events
cause jumps in the price. Let us discuss how the realised volatility can be modified to allow
for the processes with jumps. Let the continuous time return process equation (2.2.1) with
the presence of jumps in returns be

dp(t) = µ(t)dt + σ(t)dW(t) + κ(t)dq(t), (2.3.8)

where κ(t) denotes the magnitude of the jump in the returns process if there is a jump occur
at time t, q is a Poisson process uncorrelated with W which follows the jump intensity λ(t)
such that P(dq(t) = 1) = λ(t)dt for positive and finite λ(t). Here P is a probability measure.
In addition to the volatility σ(t), we are also interested in estimating κ(t).

The quadratic variation process over the time interval [t − △t, t] is now

QV(t,△t) =

∫︁ t

t−△t
σ2(τ)dτ +

∑︁
t−△t6τ6t

J2(τ), (2.3.9)

where J(t) ≡ κ(t)dq(t) is the size of the jump and is non-zero if there is a jump at time t.
The question arises is how to measure

∑︀
t−△t6τ6t J2(τ).

Barndorff-Nielsen and Shephard [18] address this issue by introducing the estimation
of realised bi-power variation (BV) where

BV(t,△t; n) =
π

2

n·△t∑︁
i=2

|r(t − △t +
i△t
n
,

1
n

)||r(t − △t) +
(i − 1)k

n
,

1
n

)|, (2.3.10)

and show that the bi-power variation is robust to the presence of jumps as∑︁
t−△t6τ6t

J2(τ) ≡ max{RV(t, δ; n) − BV(t,△t; n), 0}. (2.3.11)

In fact, under semi-martingale theory [103], it can be showed that

RV(t,△t; n) − BV(t,△t; n) −→
∑︁

t−△t6τ6t

J2(τ) as n→ ∞. (2.3.12)

Microstructure noise in high-frequency data

As discussed, the approximation in equation (2.3.5) and equation (2.3.12) is converged
as the sampling frequency n increases. This means that our realised volatility estimators
equation (2.3.6) requires continuous price records. However, in practice, market prices are
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not continuous as trades occur randomly in discrete time. This results in:

∙ Sample distortions: since the time at which prices arrive is random, the discretisa-
tion of the price at a finite arrival time between [t − △, t] for each j

n step will create
distortions as one will need to decide which statistical price to record (i.e. maxi-
mum, minimum or average) and at which frequency is accepted as a proxy for the
continuous series. In addition, the sample distortion bias increases with the jumps
in price.

∙ Spurious autocorrelations [100]: this happens when we look at ultra-high frequency
return series where the discreteness of price, rounding values, bid-ask spread, time-
delay and data recording errors can significantly introduces biases that are correlated
to each other and consequently inflate the realised volatility measures.

In order to tackle these problems, one can use alternative quadratic variance estimators
that are less biased due to microstructure noise or sample price data at an optimal fre-
quency. For example, Huang and Tauchen [72] and Andersen et al. [7] show that by using
staggered returns, the bias generated by spurious correlations in returns due to the effect
of noise such as the bid-ask spread is reduced. As such, the bi-power variation becomes

BV(t,△t; n) =
π

2
n△t

n△t − 1 − i

n·△t∑︁
i=2+ j

|rti ||rti−1− j |, (2.3.13)

where j is the offset chosen based on the order of the autocorrelation in the return process.

2.3.3 Other methods of estimating volatility

Other estimations of volatility include the estimations with extreme values of returns such
as Brandt and Diebold [31] , Parkinson [99], Alizadah et al. [2], Garman and Klass
[60] and Gallant et al. [58]. For tackling the microstructure noise issue, Zhang, Myk-
land and Aït-Sahalia [126] and Bandi and Russell [16] suggest to use optimal sampling
schemes to remove the biases (TSAVGRV), whereas Barndorff-Nielsen et al. [21] suggest
to use a kernel-based technique (KernelRV). Another estimation is introduced by Zhang
[124] which suggests the use of adjusted realised volatility based on different time scales
(TSRV). For the jumps correction, we have Andersen et al. [12] with the jump-robust
volatility estimator using the nearest neighbour truncation (minRV and medRV), Gobbi
and Mancini [99] with co-jumps coefficient between the diffusion parts given discrete ob-
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servations (ThresholdRV), Boudt and Zhang [30] with the jump robust estimator using
two time scale covariance (RTSRV).

The following table summarises the estimators of these measures with respect to their
robustness in term of jumps correction and market microstructure noise.

Robustness of volatility estimators with respect to jumps and microstructure noise.

Estimator
Jump
robust

Microstructure
noise
robust

RV (Andersen et al. [9])
BVRV (Barndorff-Nielsen & Shephard [18]) X

minRV (Andersen et al. [12]) X

medRV (Andersen et al. [12]) X

ThresholdRV (Gobbi and Mancini [99]) X

TSAVGRV (Zhang et al. [126]) X

TSRV (Zhang [124]) X X

RTSRV (Boundt and Zhang [30]) X X

KernelRV (Barndorff-Nielsen et al. [21]) X

2.4 Implied volatility

While the historical volatility and the realised volatility describe the volatility observed
from the returns processes, the implied (or imputed) volatility is the theoretical measure
which describe the future volatility of an underlying financial instrument. This implied

volatility is implicitly derived by inverting the option pricing models while other parame-
ters are provided and kept unchanged. In other words, for a given option pricing models,
by using the observations of the price processes and the related values given by the mar-
ket, one can derive the value of the volatility “implied” by the market. The most common
option pricing model used for computing the implied volatility is the Black and Scholes’
option price model [28]. We will discuss this model in detail in Chapter 4, Section 2.

From equation (4.2.4), it is seen that the call option and put option use the set of
{x, t, σ, r,K} as the input for their evaluations. The set {x, t, r,K} are observable and can be
obtained directly from the market data. However, σ is not observed directly and is often
estimated by the market makers. For example, one may use the historical volatility as an
input for the Black-Scholes option price, while others may use extreme values estimators
or realised volatility. While there is no closed-form for inverting the parameter σ, the
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derivative of the Black-Scholes’ model has a closed-form and non-negative. Therefore, it
is possible to use Newton-Raphson algorithm to compute σ. Other techniques can also be
used, such as secant method [3] and bisection method [42], to derive the implied volatility
from Black-Scholes’ option pricing model.

By plotting the implied volatility against the strike prices (moneyness) and time-to-
maturity, we obtain the so-called volatility surface. The volatility surface allows us to
study the dynamics of implied volatility and thus provide us with insights about market
movements. One can also assume that the entire implied volatility surface has a known
initial values and follows a stochastic process. Such interpretations are as the implied
volatility indexes by Whaley [121] or Carr and Wu [37]. We will revisit the implied
volatility in Chapter 4.
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Chapter 3

Modelling dependency of volatility on
sampling frequency

3.1 Introduction

Due to the growth of computing power and data storage capacity, the high-frequency mar-
ket data is now available for analysis. This creates new computational challenges to both
academics and practitioners.

As discussed in the Chapter 2, volatility calculated from different frequencies (or on
the different time scales) contains different information. It was often observed that the
volatility increases when the sampling frequency increases; see, e.g., [126]. It also appears
that the volatility may decrease when more frequent samples are used; the summary of
such observations is shown at Table A.4. For the data generated from the classical Black-
Scholes market model, this effect does not take place, i.e. the volatility is independent of
the sampling frequency. Therefore, the observed dependency of the volatility on sampling
frequency requires modifications of the classical model.

It is commonly recognized that the dependence of volatility on different time scales is
caused by the presence market micro-structure noise [6, 10, 17]. Market micro-structure
noise refers to imperfections in the trading process of financial assets which causes the
observed prices to differ from the underlying ‘true’ price. Previous studies suggest that
one needs to use an optimal sampling frequency to ensure the most accurate volatility
estimation for the underlying assets (see, e.g., [11]; [17]). Alternatively, by introducing
bias-correction in measuring the volatility, such as the two time-scales estimator in [126],
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we can remove the dependency of volatility on the sampling frequency. For this method,
the highest frequency sample is used and the market micro-structure noise is subtracted
from a sub-sampled estimator that is calculated by using a ‘sparse’ sampling frequency.

In this chapter, we readdress the problem of modelling the price process to replicate
the effect of volatility depending on the sampling frequency. We suggests to develop a
continuous time model for stock prices such that the volatility calculated via different
sampling may take certain preselected values. It appears that Ito equations with delay
feature this property. The presence of additional parameters that describe the delay enables
us to capture the difference of volatility estimated at alternative sampling rates, unlike
other price processes such as Geometric Brownian Motion, mean-reversion model, Heston
model, and others. So far, we considered the simplest linear delay equation with only
one delay term. This new term provides us the capability to match the volatility from
the simulated price process with the volatility from the historical data, on three different
sampling frequencies.

This chapter is structured as following. Section 3.2 discusses the construction of our
model. We then study the roles of each parameter in the model and summarise the findings
via Monte-Carlo simulation. We also demonstrate how effectively the proposed model
perform in Section 3.3. We later describe the steps for finding the model’s parameters
and reproduce the time-scale dependent volatility of some historical financial data. Some
discussions of future developments are included afterwards.

3.2 The model for dependency of volatility on sampling
frequency

We suggest to model the continuous time stock price process S (t) via the following
stochastic delay differential equation

dR(t) = −λ(R(t) − R(t − %))dt + σdw(t), t > 0,

S (t) = eR(t).
(3.2.1)

Here R(t) is the return, λ ∈ R, % > 0, and σ > 0 are some constants, and w(t) is a standard
Wiener process [119].

dS (t) = S (t)[−λ(log S (t) − log S (t − %)) + σ2/2]dt + σS (t)dw(t). (3.2.2)
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The choice of this particular model was based on the rationale that the presence of the
mean reversion reduces the variance for the mean-reverting process [119]. This feature
was used in financial modelling; see, e.g., [120, 109]. Under the mean-reverting settings,
the return at time t tends to reverse to the long-term average of returns, and the variance
of the process is lower than for a martingale with the same volatility. However, we found
that the mean-reverting model is not particularly useful for the purpose of this paper, since
it was difficult to justify a selection of a particular long-term return value. To overcome
this, we considered model (3.2.1) with a delay term. One may say that, for the case
where λ > 0, the process is pushed back to its past values at selected and fixed delay rate.
Respectively, for the case where λ < 0, the process is pushed away from its past values; it
appears that the case in which λ < 0 is also significant.

Existence, regularity, and non-arbitrage properties

Stochastic delay differential equations were widely studied, including quite general mod-
els with nonlinear dependence on the delayed term were allowed; see, e.g., [14, 77, 92,
93, 114], and the bibliography there. The first market model with a stochastic delay equa-
tion for the prices was introduced and investigated in [114], where no-arbitrage properties
were established. Unfortunately, the results from [14, 77, 92, 93, 114] cannot be used
for our relatively simple model (3.2.1), because the coefficients in equation (3.2.2) with
log functions do not satisfy the conditions on regularity imposed therein. By this reason,
non-arbitrage properties established in [14, 114] cannot be applied directly to our model
(3.2.1). However, it appears that our model (3.2.1) still features the existence, regularity,
and non-arbitrage properties. This can be shown as the following.

Assume that R(t)|[−%,0] is a Gaussian process independent on w(t)|t>0 and such that its
second moment is bounded. Then equation (3.2.1) has a unique strong solution [88] on the
time interval (0,+∞). This solution can be obtained consecutively on the intervals [0, %],
[%, 2%],. . . ,[(k − 1)%, k%], . . .. This procedure produces a Gaussian process such that there
exists a sequence {Ck}

∞
k=1 such that ER(t)2 ≤ Ck if t ∈ [(k − 1)%, %].

We will assume below that R(t) = 0 for t < 0. In this case, the appreciation rate for the
stock price S (t) is a(t) = −λ(R(t) − R(t − %)) + σ2/2, i.e., is a Gaussian process. It follows
immediately that the Novikov’s condition holds for any sufficiently small interval [θ, θ+ε],
i.e., E exp

(︂
1
2

∫︀ θ+ε

θ
|a(s)|2σ−2ds

)︂
< +∞ if ε > 0 is sufficiently small. Therefore, by the

Girsanov’s Theorem, the process S (t) can be transformed by a probability measure change
into a Black-Scholes price process, with the volatility σ, "locally", i.e., on any sufficiently
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small time interval. This means the "true" volatility of S is σ, the same as for the Black-
Scholes model; in the theory, this volatility that can be restored without error from the
continuous time observations of the entire path of S (t)|t∈[θ,θ+ε] or R(t)|t∈[θ,θ+ε]. In particular,
this implies that the standard estimates for volatility converges to σ as sampling frequency
converges to infinity (i.e., the sampling interval converges to zero). Therefore, in the limit
case of infinite sampling frequency, or continuous time measurements, our price process
is indistinguishable from the price process for the classical Black-Scholes market model.
However, it appears that, for any given finite sampling frequency, the volatility estimates
behave differently for our delay equations and for the Black-Scholes price process. We
show below that, for any given finite sampling frequency, the presence of the delay term
makes the volatility systematically underestimated if λ > 0 (respectively, overestimated if
λ < 0); in both cases, the dependence of this systematic bias on the sampling frequency
appears to be monotonic.

Further, it can be noted that it is not possible to use the Girsanov’s Theorem [62] for
an arbitrarily selected time interval [0,T ], because it is unclear if the Novikov’s condition
[98] holds if T is not small enough. A similar but simpler case where S (t) = eG(t), where
G was a Gaussian Ornstein-Uhlenbek process, was studied in [46], where it was proved
that the Novikov condition holds for an arbitrarily large interval, for this case. The method
[46] relied on the Markov properties of the process and cannot be extended on our case
of the equation with delay. Therefore, the existence of an equivalent martingale measure
for an arbitrarily selected time interval [0,T ] is still an open question. However, it appears
that the market with the suggested stock price S (t) is arbitrage free with respect to the
standard class of the self-financing strategies. More precisely, it appears that there is no
a strategy such that P(X(T ) ≥ 0) = 1, P(X(T ) > 0) > 0, X(0) = 0, where X(t) is
the corresponding wealth generated by a self-financing strategy. It can be shown as the
following. Suppose that such a process exists. Let N > 0 be such that, for ε = T/N,
E exp

(︂
1
2

∫︀ (k+1)ε

kε
|a(s)|2σ−2ds

)︂
< +∞ for all k = 0, 1, ..,N − 1. The market is equivalent

to the Black-Scholes market on any time interval [kε, (k + 1)ε]. From the absence of an
arbitrage for the market defined for t ∈ [T −ε,T ] considered on the conditional probability
space given ℱT−ε, it follows that P(X(T − ε) > 0 | ℱT−ε) = 1. Taking backward steps, we
obtain that P(X(T − kε) > 0 | ℱT−kε) = 1 for all k = 2, ...,N. Hence X(0) > 0, and the
process X(t) required to demonstrate the presence of arbitrage does not exists. This makes
our price model applicable for derivatives pricing models.
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Time discretisation and restrictions on the growth

To study the properties of the proposed model, let us discuss the results via Monte-Carlo
simulation.

For the Monte-Carlo simulation, we have to replace stochastic delay differential equa-
tion (3.2.1) by the following stochastic delay difference equation with a given delay τ,
such that

R(tk) = R(tk−1) − λ(R(tk−1) − R(tk−τ))δ + σ
√
δξk,

S (tk) = eR(tk).
(3.2.3)

Here, k = 1, 2, ..., δ = tk − tk−1, and ξk are independent and identically distributed random
variables from the standard normal distribution; τ > 0 is an integer.

It will be sufficient to study the sample paths of solutions of (3.2.3) created by Monte-
Carlo simulation as a substitution of (3.2.1), where % = τδ.

It can be noted that equation (3.2.3) represents a linear autoregression AR(τ) with the
characteristic polynomial

zτ = zτ−1 − λδ(zτ−1 − 1).

This polynomial has a root z = 1. Therefore, the time series {R(tk)} does not converge to
a stationary process as k → +∞. Let{z1, ...., zτ} be the roots of this polynomial, and let as
select z1 = 1. We will be using model (3.2.3) for the pairs (τ, λ) such that all other roots
{z2, ...., zτ} are inside of the open disc D ∆

= {z ∈ C : |z| < 1}, i.e.,

{zk}
τ
k=2 ⊂ D. (3.2.4)

In this case, the series R(tk) features a moderate growth rate similar to the one for the
returns in the Black-Scholes model. It can be noted that if λ > 0, then equation (3.2.4)
holds for all τ ≥ 2. If λ < 0, then it may happen that (3.2.4) does not hold for some
τ. However, it appears that (3.2.4) holds for small enough |λ| and small enough τ. In
particular, we found that, for τ ≤ 11, (3.2.4) holds for all κ = λδ ≥ −0.111. For τ ≤ 15,
(3.2.4) holds for all κ = λδ ≥ −0.075. For τ ≤ 20, (3.2.4) holds for all κ = λδ ≥

−0.055. For τ ≤ 150, (3.2.4) holds for all κ = λδ ≥ −0.006. It appears that this range for
the parameters allows to replicate the volatilities depending on the sampling frequencies
similar to the ones observed for the historical data; in other words, it is sufficient for our
purposes.

We discuss the choice of τ, σ and λ in the next section.
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Volatility estimator

We will be using the classical estimator for volatility based on samples collected within
[t − ∆t, t] interval, where ∆t > 0 and is given.

Recall from Chapter 2, the volatility process is characterised by the integral

v(t) =
1
∆t

∫︁ t

t−∆t
σ(s)2ds.

From this section onward, we assume that the time points θk are equally spaced with
sampling interval δ̂ = θk − θk−1 and that θm0 = t − ∆t, tm = t, and ∆t = (m − m0)δ̂.

Note that the choice of ̂︀δ could be different from δ in (3.2.3). In our experiments, we
consider only the cases where δ̂ = Nδ for some integer N ≥ 1 such that {θk} ⊂ {tk}; if
N = 1, then δ = ̂︀δ and tk = θk.

For a given choice of̂︀δ, the estimate of v(t) is calculated by:

σ̂(t) =
√︀

v(t) =

⎡⎢⎢⎢⎢⎢⎢⎣ 1
△t

m∑︁
k=m0+1

(Rm − R(θk))2

⎤⎥⎥⎥⎥⎥⎥⎦
1/2

, (3.2.5)

where

∆t = (m − m0)δ̂, R(θk) = log S (θk) − log S (θk−1), Rm =
1

m − m0

m∑︁
k=m0+1

R(θk).

The properties of this estimator are discussed in Chapter 2 and more in [113]. For the
choices of the frequency data, it is well discussed in [1].

Note that the particular choice of this estimator is not crucial for our purposes; other es-
timators can be used instead. For instance, the estimator proposed by Andersen [10] gives
very similar estimates on different frequencies. To illustrate this, we compared the annu-
alized daily volatility estimated by the classical historical volatility and and the realised
volatility for the SP500 index for 2008-2013. We estimated the mean absolute difference
(MAD) between the two estimators as:

MAD =
Σ|RVA

30sec − RVC
30sec|

n
,

where n is the number of observations in our sample. Here we have n = 1511 days. We
found that MAD30sec = 0.000164, MAD5min = 0.001647 and MAD15min = 0.004826.
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Figure B.12 plot the time series for those volatility estimators for the selected dataset.

Monte-Carlo simulation of the process (3.2.3) and its volatility

We first simulate the process generated by (3.2.3) at some high frequency (small δ). We
then compute the volatility at lower frequencies from the same simulated path. For in-
stance, assuming that there are 6.5 trading-hours per day and 252 trading-days per year,
we simulate a one-year sample path at 15-second frequency, i.e., δ = 1

252×6.5×60×4 ≈

2.5437 × 10−6. To measure the volatility at lower frequencies, we sub-sample the sim-
ulated path at 5-minute and 1-hour frequencies by using the tick-aggregation technique
[122]. This is done by taking the last price realized before each new grid point.

In our Monte-Carlo simulation, we use the following selection criteria for the model’s
parameters:

1. Selection of δ: we used δ for 15-second data through out this experiment.

2. Selection of (τ, λ): we used τ = 5, 20, and 120. This corresponds to % = 75sec, 5min,
and 30min, respectively. In addition, we selected a variety of λ ∈ [−2000, 20000]
such that equation (3.2.4) holds.

3. Selection of σ: we used σ = 0.3.

We generated 100,000 instances for each combination of σ, τ and λ. To analyze the
results statistically, we summarize the average and the standard deviation of the estimated
volatility from these instances at each selected sampling frequency.

The results of the simulation experiments

For the prices simulated from the above settings, the measured volatility under different
time-scale are summarized in Tables A.1 and A.2. Let us discuss the presented results.

Due the randomness of the data, short samples produces random estimates of the
volatilities featuring significant variance. To decrease this variance for the demonstra-
tion purposes, we selected longer time series using the observations within 1-year window
from the simulated data. In our experiments, we used samples with 393,120 observations,
with 19,656 observations, and 1,638 observations for 15-sec, 5-min, and 1-hour data, re-
spectively. Tables A.1 and A.2 show the impact of the standard deviation on the estimated
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volatility. Shorter time series would produce the same estimates for the volatilities but
with higher variance (i.e. Table A.3).

For the case where λ < 0, we observe that the estimated volatility increases as the
sampling frequency decreases. Given a fixed τ, the larger λ reduces the difference in the
estimated volatility per sampling frequency. On the other hand, given a fixed λ, bigger
τ results larger gaps in the estimated volatility at each sampling frequency. For example,
with τ = 120, we have that

σhour

σ5min

⃒⃒⃒⃒⃒
κ=−0.005

= 1.696 >
σhour

σ5min

⃒⃒⃒⃒⃒
κ=−0.0025

= 1.255,

whereas with κ = −0.005,

σhour

σ5min

⃒⃒⃒⃒⃒
τ=20

= 1.047 <
σhour

σ5min

⃒⃒⃒⃒⃒
τ=120

= 1.696.

For λ > 0, we have opposite results, i.e., the estimated volatility decreases as the
sampling frequency decreases. Given a fixed τ (or a fixed λ), the larger λ (or τ) results in
larger gaps in the estimated volatility as the sampling frequency decreases. For instance,
τ = 120,

σhour

σ5min

⃒⃒⃒⃒⃒
κ=0.0005

= 0.962 >
σhour

σ5min

⃒⃒⃒⃒⃒
κ=0.005

= 0.729,

while with κ = 0.005,

σhour

σ5min

⃒⃒⃒⃒⃒
τ=20

= 0.959 >
σhour

σ5min

⃒⃒⃒⃒⃒
τ=120

= 0.729.

These experiments demonstrate that, with the proposed model, we can replicate the
volatility and time-scale dependence characteristic of financial time-series. The param-
eters within the model can be used to control the changes of the estimated volatility at
different sampling frequency.

It is noted that we observed the estimated volatility σ̂15sec is fairly close to the “true"
volatility σ = 0.3 for all choices of (λ, τ).

As was mentioned above, the results of experiments are robust with respect to the
choice of the volatility estimator. It appears that the results for numerical simulation
are also robust with respect to variations of all other parameters. The average values
for estimated volatilities are not changing significantly when we increased the number of
Monte-Carlo trials, and they are changing very smoothly and systematically for different
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choices of (κ, τ, λ, σ, δ) given that equation (3.2.4) on (τ, λ, δ) is satisfied. Condition equa-
tion (3.2.4) on (τ, λ, δ) is essential to ensure that the simulated process has a moderate
growth.

3.3 Matching the time scale dependency of volatilities
with real data

In this section, we discuss how to to obtain the parameters λ and τ in the proposed model
for matching the volatility behavior in a given set of historical data.

3.3.1 Analysis of real data

In practice, the highest frequency financial time series available for analysis is the tick-
data. Tick-data is recorded in discrete time that is not necessary equally spaced. Some data
services however provide financial data which are sampled on given equispaced frequency
(i.e. every 15-second or 5-minute). These samples are sub-samples of the tick-data and
are aggregated using different weighting schemes.

For our empirical study, we estimate the volatility of financial time-series from differ-
ent markets. As was discussed in Section 3.2, our statistical volatility estimator requires
the data to be collected at equispace. Hence, we use the tick-data as the baseline data
for each underlying assets. We then perform the data cleaning process to obtain samples
at equal intervals. We used the datasets obtained from SIRCA - the Securities Industry
Research Centre of Asia-Pacific [112] for the period 2008–2010.

We extended the scope of our inference analysis by selecting the top most traded in-
dices and US stocks listed on Reuters Finance, including:

Category 1: Stock indexes: DAX (Deutsche Boerse AG German Stock Index, trading
between 09:00 am and 17:45 pm CET), FTSE 100 (a share index of the 100 com-
panies listed on the London Stock Exchange, trading between 08:00 am - 04:30
pm GMT); IBEX 35 (an index of the Spanish Continuous Market, opening between
09:00am - 05:30pm); SMI (Switzerland’s blue-chip stock market index, from 09:00
to 5:30pm CET); S&P 500 (a stock market index based on the market capitalizations
of the 500 largest companies having common stock listed on the NYSE, 09:30am
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till 04:00pm); and S&P 200 (a stock market index based on the market capitaliza-
tions of 200 large companies having common stock listed on the Australian Stock
Exchange, operating from 10:00am to 04:00pm); and TSX 60 ( stock market index
of 60 large companies listed on the Toronto Stock Exchange).

Category 2: Individual company stock symbols include: AAPL, IBM, JPM, GE, GOOG,
MSFT and XOM. These stocks are traded between 9:30am and 04:00pm on NYSE.

Methodology

We take the following steps to analyse our datasets.

Step 1. Obtain the tick-data for each stock/index from SIRCA,

Step 2. Perform data cleaning. By using the tick-data, we force these asynchronously
and irregularly recorded series to a synchronized and equispaced time grid using the
previous tick aggregation to obtain samples at different frequency

Step 3. Estimate the volatility using the formula discussed in Section 4.5.1 for the entire
year to obtain the annualized volatility.

Step 4. Repeat Step 2-3 for each sampling frequency and each stock/index.

Table A.4 and A.5 show how the volatility varies when it is measured at different
sampling frequency for the selected stocks and indexes. In this table, the volatility was
calculated by applying the estimation from equation (3.2.5) for the observations collected
during a whole year.

3.3.2 Matching the model’s parameters with real prices

In this section, we demonstrate that it is possible to calibrate the proposed model with the
historical data such that the volatilities match for three different sampling frequencies.

In our experiments, we considered data available at three sampling frequencies: 15-
second, 5-minute and 1-hour.

The volatility of historical 15-sec data was accepted as σ in equation (3.2.3); this is
the data sampled at the highest available frequency.
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In the proposed model has parameters λ, τ, and σ. Our purpose is to select (σ, λ, τ)

to ensure matching of the volatilities for the simulated process and for a set of historical
data for 15-sec, 5-minute and 1-hour sampling. For this, we used the following simple and
straightforward heuristic algorithm.

Step 1. Estimate the volatility at the selected sampling frequencies σ15sec, σ5min and σ1hour

using the historical data.

Step 2. Select a finite set of
(︁
λi, τ j, σk

)︁
for the search space.

Step 3. For each triplet
(︁
λi, τ j, σk

)︁
, generate a path using equation (3.2.3) and estimate

the volatilities σ̂15sec(λi, τ j), σ̂5min(λi, τ j) and σ̂1hour(λi, τ j), calculated for the corre-
sponding sampling frequencies.

Step 4. Among these outputs, find the values of
(︁
λi, τ j, σk

)︁
that generate σ̂15sec, σ̂5min and

σ̂1hour matching with the volatilities estimated from the historical data.

Step 5. If there are no matching values, extend the set
{︁(︁
λi, τ j, σk

)︁}︁
and repeat steps 2-4.

It appears that selection σ = σ15sec allows to find satisfactory (λ, τ) for all our experi-
ments. We suggest to this initial selection to reduce the search.

It can be noted that we do not trying to find the best matching (λ, τ, σ) via minimiza-
tion of the fitting errors (residuals) for the paths of historical series as is usually done by
the Least Square estimators. We match only the volatilities of the historical series and
simulated series on the given set of sampling frequencies. Therefore, our simulation does
not replicate other characteristics of the price evolution such as the rate of growth.

3.3.3 Numerical examples

We present some examples for both cases λ > 0 and λ < 0. The below table is extracted
from Table A.4 where we only selected observations for S&P 500 Index and Google Stock
in 2008. We use λ < 0 to reproduce the dependence on the sampling frequency for S&P
500 Index and we use λ > 0 to replicate that characteristic for Google stock prices.

Underlying assets σ15sec σ5min σ1hour

S&P 500 Index 0.2881 0.3654 0.3747

Google Stock 0.8114 0.6276 0.5937

33



In this samples, we considered the volatility calculated for an entire year time window.
Shorter time periods prices their own volatility values that could also be implemented.

For λ < 0, the volatility of S&P 500 measured at different sampling frequency was
σ15sec = 0.2881, σ5min = 0.3654 and σhour = 0.3747. Using the steps discussed above, we
obtained the following parameters:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ = 0.2881

τ = 9

δ = 1
252×6.5×60×4

κ = λδ = −0.0325, λ = −12776.4

We substituted these parameters into equation 3.2.3, simulated 100,000 instances, and
obtained the following average volatilities at each sampling frequency:

S&P 500 meansim sdsim

σ15sec 0.2881 0.2882 0.0003

σ5min 0.3654 0.3615 0.0018

σhour 0.3747 0.3751 0.0065

Similarly, for λ > 0, the volatility of Google stock on NYSE in 2008 measured on
alternative time-scales was σ15sec = 0.8114, σ5min = 0.6276 and σhour = 0.5937. We
obtained parameters ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ = 0.8114

τ = 10

δ = 1
252×6.5×60×4

κ = λδ = 0.0445, λ = 17493.84

which provides

GOOG meansim sdsim

σ15sec 0.8144 0.8147 0.0010

σ5min 0.6276 0.6302 0.0017

σhour 0.5937 0.5892 0.0101

To illustrate the search process of the matching values, we show in Tables A.6 and A.8
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the errors corresponding to (λi, τ j) used in calibrating S&P500 Index and Google stock
respectively and calculated as

ε(λi,τ j) =
√︀

(σ15sec − σ̂15sec)2 + (σ5min − σ̂5min)2 + (σ1hour − σ̂1hour)2. (3.3.1)

For both tables, we selected σ = σ15sec.

These tables show that selection of σ = σ15sec allows to find the according values of λ
and τ to match the simulated volatility with sufficient accuracy on the given set of given
sampling frequencies.

General properties of the simulated processes

As was mentioned above, we have to select the parameters (λ, τ) only among the pairs such
that equation (3.2.4) holds, i.e., the characteristic polynomial for autoregression equation
(3.2.3) does not have roots outside the unit circle. It appears that, under this restriction,
the behavior of the simulated process with delay does not demonstrate any unusual and
undesirable features such as excessive growth, and is quite similar to the behavior of the
underlying processes, as well as to the behavior of standard Ito processes and autoregres-
sions used to model the financial time series. Sample paths of the simulated price process
and the underlying process are shown in Figure B.1. The distributions the returns of both
processes are displayed in Figure B.2.

Time varying volatility and shorter time windows

To analyze the time varying volatility for historical prices, one could match the volatil-
ity for shorter time windows. In this case, we have to select (λ, τ, σ) separately for the
corresponding time windows. For example, assume that we wish to match the quarterly
data for Google stock prices during one year, and we calculate σ(k)

15se, σ
(k)
5min, and σ(k)

1hour for
each quarter, where k ∈ {1, 2, 3, 4} represents a quarter. In this case, we have to select
for each quarter (λ(k), τ(k), σ(k)) to match the corresponding volatilities. To replicate quar-
terly time depending (σ(k)

15se, σ
(k)
5min, σ

(k)
1hour), it suffices to accept equation (3.2.3) with time

dependent set of parameters (λ, τ, σ) = (λ(k), τ(k), σ(k)) that depends on the particular quar-
ter. The same approach can be used for other time windows, for instance, for weekly or
daily volatilities. Again, we have to select the parameters (λ, τ, σ) for each time window
separately, and accept equation (3.2.3) with piecewise constant parameters.
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3.4 Discussion

The approach suggested in this chapter allows many modifications. We outline below
some possible straightforward modifications as well as more challenging problems and
possible applications that we leave for the future research.

1. Our purpose was to demonstrate a method of constructing a process S (t) with pres-
elected volatility measured at different sampling frequencies, for instance, to match
the volatilities on these frequencies for a set of historical prices. In our experi-
ments, the volatility depended monotonically on each parameter (λ, τ). This makes
heuristic search relatively easy. More precise match can be achieved via smaller
variations of the values of (λ, τ) around the values that we have demonstrated so far.
In addition, these monotonic dependence can be simplified by using other search
algorithms such as simulated annealing and genetic algorithm.

2. The models with λ < 0 requires some additional constraints on |λ| and τ, to ensure
that the characteristic polynomials for the autoregressions do not have roots outside
of the unit circle, to avoid exponential growth of the solutions. These constraints are
absent for the models with λ > 0.

3. It appears that the equations with one delay term can replicate volatilities for three
sampling frequencies. To cover a setting with more different sampling frequencies,
more delay terms may be necessary. We think that the inclusion of delay terms in
the form of

∑︀k
d=k−M udR(td) in equation (3.2.3) can allow to model any volatility ̂︀σ(δ̂)

depending on the size of the sampling interval δ̂ = δ, 2δ, 3δ, ..., with an appropriate
choice of M and u ∈ RM.

4. For the continuous time setting, we have a conjecture that the inclusion of a de-
lay term

∫︀ t

t−K
u(s)R(s)ds in equation (3.2.1) can allow to model any volatility ̂︀σ(δ)

continuously depending on the size of the sampling interval δ, with an appropriate
choice of the function u(s) and K > 0.

5. We did not consider pricing of options on the underlying time series and relations
between the historical volatility and the implied volatility. Respectively, we did not
analyse existence or uniqueness of a martingale measure that is used for pricing.
Furthermore, we did not attempt neither to match the growth of the historical prices
nor to ensure that the process S (t) = eR(t) is a martingale. We leave it for the fu-
ture research. It can be noted that it is possible to match a given growth rate via
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selection of S (t) = eβteR(t), with β as a new parameter to be selected. As we were
trying to construct a model with the minimal number of the parameters, we excluded
modelling of growth via selection of β and leave it for future research.
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Chapter 4

Implied volatility via a dynamic purified
option price process

4.1 Introduction

In the Chapter 2, Section 2.4, we discussed about the implied volatility. In this chapter,
we introduce the construction of an implied volatility process and discuss the use of this
new process in predicting the future volatility.

Often, the implied volatilities are defined as the inverse of the Black-Scholes [28]
pricing formula applied to the observed market prices; given fixed and known asset price,
strike price, future interest rate, and time-to-maturity, the implied volatility is uniquely
defined by the option price. In fact, the option prices and the implied volatilities are fluc-
tuating along with the underlying assets prices; they have a stochastic “random walk" type
pattern of movement, similar to the stock prices. In addition, the implied volatility de-
pends on the strike price and the expiration time. Therefore, one would find it difficult to
decide which implied volatility to use among all possible versions of the implied volatility
when describes the market expectations on the degrees of the future stock price deviations.
To address this issue, volatility surface (i.e. Figure B.6) is used for analysing the implied
volatility against strike price and time-to-maturity. Alternatively, one can consider the
implied volatility surface to follow a stochastic process, i.e the implied volatility indexes.
The volatility index VXO on the Chicago Board of Options Exchange (CBOE) [121] and
the AVX on Australian Securities Exchange (ASX) [57] used the Black-Scholes-Merton’s
framework as the underlying model to construct the implied volatility for S&P 100 and
S&P 200 respectively. The implied volatility of these indexes used options at different
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strike prices and maturity dates to approximate the at-the-money implied volatility. How-
ever, this approach has some limitations. It is restricted by the assumptions made in the
Black-Scholes’ model and has an artificially induced upward bias [38]. With those lim-
itations, Carr and Wu [37] introduced an alternative method for constructing the implied
volatility using a model-free approach, which was then used by CBOE for constructing
the volatility index VIX for S&P 500. The VIX index is constructed from the price of
a portfolio including a number of out-the-money option prices that varies every day, de-
pending on the number of options with non-zero bid price. While this implied volatility
has a better known economic interpretation [37], the construction of the VIX process is
complex and requires large samples of option data.

Motivated by these volatility processes, we suggest a modification in the approaches
used for VXO, AVX, and VIX indexes with an aim to reduce the measurement errors and
improve the computational robustness. We suggest to consider a "dynamically purified"
option price process such that impact of stock price movements is reduced. This helps to
separate the impact of the stock price movements from the changes in the market forecast
of the future volatility. In effect, the implied volatility calculated form this process could be
more informative than traditionally calculated implied volatility, similarly to the popular
volatility indexes such as VXO and VIX indexes.

In theory, the dynamically ’purified’ option price process eliminates the impact of the
stock price movements. However, this would be possible if the option prices were avail-
able for continuous sets of strike prices and expiration times. In practice, we have to use
only finite sets of available prices. In order to restore this process from incomplete sets
of available option prices, we suggest to use a similar approach to the approach imple-
mented in the calculation of the volatility index. Here, the implied volatilities from the
missing option prices was replaced by linear combinations of implied volatilities using
some observable options. However, instead of applying the linear interpolation on the
implied volatility, we interpolate the missing options prices. In this paper, we discuss
the use of both the first order Taylor series interpolation and quadratic interpolation. For
this approach, the ’dynamically purified" option price process can be constructed using 18
observed option prices.

We study the statistical properties of the proposed process by using the S&P/ASX 200
Index Options data for the period from 1st January 2010 to 31st December 2012. For
demonstration purposes, we consider only a special case of this process which represents
the at-the-money implied volatility. It was found before that the classical volatility index
VXO and VIX feature strongly negative correlations with the index return increments
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[57, 121]. Our finding shows that the "dynamically purified" option price process has the
same feature. In addition, the implied volatility of the purified option price process has
a very strong positive correlation with the implied volatility index. This is an interesting
result given that VIX process is calculated using very different data and methods.

As a possible application of the proposed process, we consider a simple model for
forecasting the future volatility. We establish a number of regression models using the
implied volatility index VIX and the implied volatility from the purified option prices as
predictors of the future volatility. We find that for our selected dataset and constructed
models, the forecasting ability of the new implied volatility is superior to that of the im-
plied volatility index. Since calculation of the proposed process requires less option prices
than calculation of the existing implied volatility index VIX, this process can be used as
an alternative for VIX in some cases when there is not sufficient data to calculate VIX.

4.2 The model of "purified" option price process

Let us consider the diffusion model of a securities market consisting of a risk free bond or
bank account with the price B(t), t ≥ 0, and a risky stock with the price S (t), t ≥ 0. The
prices of the stocks evolve as

dS (t) = S (t) (a(t)dt + σ(t)dw(t)) , t > 0, (4.2.1)

where w(t) is a Wiener process, a(t) is an appreciation rate, σ(t) is a random volatility
coefficient. The initial price S (0) > 0 is a given deterministic constant. The price of the
bond evolves as

B(t) = exp
(︂∫︁ t

0
r(s)ds

)︂
B(0), (4.2.2)

where r(t) ≥ 0 is a random process and B(0) is given.

We assume that w(·) is a standard Wiener process on a given standard probability space
(Ω,ℱ ,P), where Ω is a set of elementary events, ℱ is a complete σ-algebra of events, and
P is a probability measure.

Let ℱt be a filtration generated by the currently observable data. We assume that the
process (S (t), σ(t)) is ℱt-adapted and that ℱt is independent of {w(t2) − w(t1)}t2≥t2≥t. In
particular, this means that the process (S (t), σ(t)) is currently observable and σ(t) does not
depend on {w(t2)−w(t1)}t2≥t2≥t. We assume that ℱ0 is the P-augmentation of the set {∅,Ω},
and that a(t) does not depend on {w(t2) − w(t1)}t2≥t2≥t. For simplicity, we assume that a(t)
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is a bounded process.

Option pricing terminology

Below is a list of terms that are commonly used in option pricing

∙ Long position, a portfolio is ‘long asset X’ if it has net positive holdings of contracts
in asset X.

∙ Short position, a portfolio is ‘short asset X’ if it has net negative holdings of con-
tracts in asset X (i.e. has short sales of contracts).

∙ Hedge, or ‘hedging portfolio’ is a portfolio that minimises the losses it might obtain,
i.e. reducing the risk of adverse from price movements.

∙ In-the-money (ITM), a derivative contract that would have positive payout if settle-
ment based on today’s market prices (e.g. a call option with very low strike).

∙ Out-of-the-money (OTM), a derivative contract that would be worthless if settlement
based on today’s market prices (e.g. a call option with very high strike).

∙ At-the-money (ATM), a derivative contract exactly at it’s breaking point between
ITM and OTM.

∙ Underlying, the stock, bond, ETF, exchange rate, etc. on which a derivative contract
is written.

∙ Strike price, the price upon which a call or put option is settled.

∙ Maturity, the latest time at which a derivative contract can be settled.

∙ Exercise, the event that the long party decides to use a derivative’s embedded option
(e.g. using a call option to buy a share of stock at lower than market value).

The Black-Scholes price

Let K be non-negative, i.e. K > 0. We shall consider two types of options: vanilla call and
vanilla put, with payoff function f (S (T )) = F(S (T ),K), where F(S (T ),K) = (S (T )− K)+

or F(S (T ),K) = (K − S (T ))+, respectively, with K be the strike price.
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Let T > 0 be fixed. Let HBS ,c(t, x, σ, r,K) and HBS ,p(t, x, σ, r,K) denote Black-Scholes
prices for the vanilla put and call options with the payoff functions F(S (T ),K) described
above under the assumption that S (t) = x, (σ(s), r(s)) = (σ, r) (∀s > t), where σ ∈ (0,+∞)
is non-random. The Black-Scholes formula for a call option can be rewritten as

HBS ,c(t, x, σ, r,K) = xΦ(d+(t, x, σ, r,K)) − Ke−r(T−t)Φ(d−(t, x, σ, r,K)), (4.2.3)

HBS ,p(t, x, σ, r,K) = HBS ,c(t, x, σ, r,K) − x + Ke−r(T−t),

where
Φ(x) ∆

=
1
√

2π

∫︁ x

−∞

e−
s2
2 ds,

and

d+(x, t, σ, r,K) ∆

=
log (x/K) + (T − t)r

σ
√

(T − t)
+
σ
√

(T − t)
2

,

d−(x, t, σ, r,K) ∆

= d+(x, t, σ, r,K) − σ
√︀

(T − t). (4.2.4)

Set
S̃ (t) ∆

= S (t) exp
(︂
−

∫︁ t

0
r(s)ds

)︂
.

The risk neutral pricing

We assume that there exist a risk-neutral measure Q such that the process S̃ (t) is a martin-
gale under Q, i.e., EQ{S̃ (T ) |ℱt} = S̃ (t), where EQ is the corresponding expectation.

The local risk minimization method, the mean variance hedging, and some other meth-
ods based on the risk-neutral valuation lead to the following pricing rule: given (a, σ, r),
the option price is

PRN(t, σ(·), r(·)) ∆

= EQ{e−
∫︀ T

t r(s)dsF(S (T )) | ℱt}, (4.2.5)

where Q is some risk neutral measure, and where EQ is the corresponding expectation.
Usually, Q is uniquely defined by (a, σ, r), and by the pricing method used.

For numerical simulation purposes, we assume that we have chosen one of these meth-
ods (for instance, local risk minimization method or mean variance hedging). Therefore,
the risk neutral measure Q is uniquely defined by (a, σ, r) given the method of pricing.

For brevity, we shall denote by HBS the corresponding Black-Scholes prices for dif-
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ferent options, i.e., HBS = HBS ,c or HBS = HBS ,p, for vanilla call, vanilla put respectively.
Let

v(t) ∆

=
1

T − t

∫︁ T

t
σ(s)2ds, ρ(t) ∆

=
1

T − t

∫︁ T

t
r(s)ds.

Let us consider dynamically adjusted parameters T = T (t) = t + τ and K = K(t) = κS (t),
where κ ∈ (0,+∞) and τ > 0 are some parameters, t is the current time. In this case,
F(S (T )) = F(S (T ),K) = S (t)F(Y(t + τ), κ), where

Y(T ) = S (t + τ)/S (t).

By rule (4.2.5), the option price given (a, σ, r), is

PRN(t, σ(·), r(·)) ∆

= EQ{e−
∫︀ T

t r(s)dsF(S (T ),K) | ℱt}

= S (t)EQ{e−
∫︀ t+τ

t r(s)dsF(Y(t + τ), κ) | ℱt},

where Q is some risk neutral measure, and EQ is the corresponding expectation.

Let

G(t) ∆

=
PRN(t, σ(·), r(·))

S (t)
.

By the definitions,

G(t) = EQ{e−
∫︀ t+τ

t r(s)dsF(Y(t + τ), κ) | ℱt}. (4.2.6)

Suppose that v(t) and ρ(t) are ℱt-measurable. In this case,

HBS ,c(t, 1,
√

v(t), ρ(t), κc) = Gc(t),

HBS ,p(t, 1,
√

v(t), ρ(t), κp) = Gp(t)
(4.2.7)

for call and put options respectively, where κc and κp are defined similarly to κ. Therefore,
for a general case, we can accept that the implied volatility σimp(t) and the implied average
forward risk-free rate ρimp(t) at time t can be inferred from the system⎧⎪⎪⎪⎨⎪⎪⎪⎩ HBS ,c(t, 1, σimp(t), ρimp(t), κc) = GC(t),

HBS ,p(t, 1, σimp(t), ρimp(t), κp) = GP(t).
(4.2.8)
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The following lemma from [45] is a generalization for random r(·) of the lemma from Hull
and White [75]:

Lemma 4.2.1 Let t ∈ [0,T ) be fixed. Let v(t) and ρ(t) be ℱt-measurable. Then

EQ{e−
∫︀ T

t r(s)dsF(S (T ))|ℱt} = HBS (t, S (t),
√︀

v(t), ρ(t),K).

Clearly, 1
T−t

∫︀ T

t
σ(s)2ds and 1

T−t

∫︀ T

t
r(s)ds are not ℱt-measurable in the general case of

stochastic (r, σ), and the assumptions of Lemma 4.2.1 are not satisfied.

Corollary 4.2.1 Assume that HBS = HBS ,c and HBS = HBS ,p. Consider a market model

with pricing rule (4.2.5). Let (σ, r) does not depend on w under Q. Then PRN(t) =

EQ{HBS (t, S (t),
√

v(t), ρ(t),K) | ℱt}, where (v, ρ) are defined in Lemma 4.2.1.

By rule (4.2.5), the option price given (a, σ, r), is

PRN(t, σ(·), r(·)) ∆

= EQ{e−
∫︀ T

t r(s)dsF(S (T ),K) | ℱt}

= S (t)EQ{e−
∫︀ t+τ

t r(s)dsF(Y(t + τ), κ) | ℱt},

where Q is some risk neutral measure, and where EQ is the corresponding expectation.

Let

G(t) ∆

=
PRN(t, σ(·), r(·))

S (t)
. (4.2.9)

It follows that

G(t) = EQ{e−
∫︀ t+τ

t r(s)dsF(Y(t + τ), κ) | ℱt}. (4.2.10)

Assume that v(t) and ρ(t) are ℱt-measurable in this case,

HBS ,c(t, 1,
√

v(t), ρ(t), κi) = GC(t),

HBS ,p(t, 1,
√

v(t), ρ(t), κi) = GP(t),
(4.2.11)

for call and put options respectively.

The observations of option prices with dynamic adjusted strike price K = κS (t) with
a fixed κ and a fixed period t can be useful for econometrics purposes even without cal-
culation of the implied parameters. In particular, some features of the evolution law for
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implied parameters (σ(t), r(t)) can be restored directly from the observations of the pro-
cesses G(t). For instance, if ρ(t) is a non-random process then the implied volatility

√
v(t)

can be calculated from equation (4.2.11) for call and put options. In addition, as the impact
of the stock price movements is damped, one may expect that G(t) is a relatively smooth
process. Thus, the study of the process G(t) will be of interest.

Up to the end of this chapter, we will assume that ρ(t) is non-random and known. This
is an usual assumption since the risk-free rate is relatively stable.

4.3 Approximation of incomplete option data

In practice, option prices are available only for finite sets of possible option prices different
strikes and time-to-maturity. Therefore, it is not possible to collect the prices Pi(t) of the
options at the exact strike prices Ki = κiS (t) with fixed κi and t. In order to study the
process G(t) described above, we have to use the prices P̃i(t) of the corresponding options
with the closest available strike prices K̃i(t̃).

From this section onward, let P̃C and P̃P be the values of call and put options observed
on the market.

4.3.1 Parametric approximation for absent option prices

Delta of the strike

The price change of the option price P with respect to K, when other factors remaining
constant, is called the delta of the strike

△K =
δP
δK

.

From equation (4.2.3) and equation (4.2.4), the delta of the strike for a call and a put are:

δPC

δK
= e−τ△tΦ(d+),

and
δPP

δK
= e−τ△tΦ(−d−),

receptively.
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Theta of the option (time-decay)

Theta of an option is defined as the rate of change of its price P with respect to time t,
while all other factors remaining constant:

Θ =
δP
δt
.

From equation (4.2.3) and equation (4.2.4), it can be shown that

θC =
δPC

δt
= −

Sσ

2
√
△t

Φ′(d+) − τKe−τ△tΦ(d−) < 0,

and
θP =

δPP

δt
= −

Sσ

2
√
△t

Φ′(d+) + τKe−τ△tΦ(−d−) < 0.

Let’s assume that one wishes to approximate the missing call option price P*C at strike
price K* with time-to-maturity △t*. The nearest available strike price is K̃ with △t̃ has a
value of P̃C. The first order approximation can be used such that:

P*C ≈ P̃C − m1(K̃ − K),

where m1 =
δPC

δK
, the delta of the strike for a call option. Thus, P*C can be approximated

as followed:
P*C(t̃) ≈ P̃C − S e−τ△t̃Φ(d2)(S − K̃). (4.3.1)

We then need to adjust this approximated value P*C(t̃) in order to match △t̃ with △t* .
The equation (4.3.1) can be extended further by using the first-order-approximation on △t

where m2 = θ = −
δV
δ△t

, the time-decay of the option.

However, this approach can only help calculating G(t) for the case of small value
|K − K̃|. In addition, one would have to obtain the implied parameters of the underlying
option pricing model before estimating the missing option data with this method.

4.3.2 Quadratic approximation of absent option prices

For the construction of the implied volatility suggested in [121], the linear approximation
of the implied volatility was used for determining the implied volatility of at-the-money
options. We instead suggest using quadratic approximation (spline interpolation of degree
two) for estimating the missing option price data before computing the implied volatility.
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As fitting the option price surface often leads to numerical difficulties [79], only some
available option prices near the targeted κi will be used. Now let:

1. K* be the strike price of the missing option;

2. K j−1 be the strike price that is the second closest to and below; K*

3. K j be the strike price that is the closest to and below K*;

4. K j+1 be the strike price that is the closest to and just above K*;

5. K j+2 be the strike price that is the second closest to and above K*;

6. T1, T2 and T3 be the first-nearby, second-nearby and third-nearby expiration dates.

The selection criteria are as following:

N For |K* − K j| < |K* − K j+1|:

1st Strike 2nd Strike 3rd Strike

Call Options

1st nearby P̃K j−1

c,1 P̃K j

c,1 P̃K j+1

c,1

2nd nearby P̃K j−1

c,2 P̃K j

c,2 P̃K j+1

c,2

3rd nearby P̃K j−1

c,3 P̃K j

c,3 P̃K j+1

c,3

Put Options

1st nearby P̃K j

p,1 P̃K j+1

p,1 P̃K j+2

p,1

2nd nearby P̃K j

p,2 P̃K j+1

p,2 P̃K j+2

p,2

3rd nearby P̃K j

p,3 P̃K j+1

p,3 P̃K j+2

p,3

N For |K* − K j| > |K* − K j+1|

1st Strike 2nd Strike 3rd Strike

Call Options

1st nearby P̃K j

c,1 P̃K j+1

c,1 P̃K j+2

c,1

2nd nearby P̃K j

c,2 P̃K j+1

c,2 P̃K j+2

c,2

3rd nearby P̃K j

c,3 P̃K j+1

c,3 P̃K j+2

c,3

Put Options

1st nearby P̃K j−1

p,1 P̃K j

p,1 P̃K j+1

p,1

2nd nearby P̃K j−1

p,2 P̃K j

p,2 P̃K j+1

p,2

3rd nearby P̃K j−1

p,3 P̃K j

p,3 P̃K j+1

p,3

N For |K* − K j| = |K* − K j+1|
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1st Strike 2nd Strike 3rd Strike 4th Strike

Call/Put Options

1st nearby P̃K j−1

c,1 P̃K j

c,1 P̃K j+1

c,1 P̃K j+2

c,1

2nd nearby P̃K j−1

c,2 P̃K j

c,2 P̃K j+1

c,2 P̃K j+2

c,2

3rd nearby P̃K j−1

c,3 P̃K j

c,3 P̃K j+1

c,3 P̃K j+2

c,3

Since the approximation uses limited data points, we suggest to apply the centring
and scaling transformation of the data. This will in turn improve the numerical
properties of the quadratic approximation. For example, in order to approximate the
option price with strike price K* by using n nearby available options, we find the
coefficients of the quadratic equation in:

K̂* =
K* − µK

σK
,

where

µK = 1
n

j=n∑︀
j=1

K j, σK =

√︃
1

n−1

j=n∑︀
j=1

(K j − µK)2.

The Algorithm

- Approximate P̃K*
c,i and P̃K*

p,i , where i = T1,T2,T3: for each expiration date, apply
the quadratic approximation on option prices at different strike prices to find the
approximated option value at K*,

- Approximate P̃K*
c,t* and P̃K*

p,t*: for each type of option, apply the quadratic approxima-
tion on option prices at different time-to-maturity to find the approximated option
value with fixed △t* trading-day time horizon, by using the approximated option
prices at K̃T1 , K̃T2 and K̃T3 ,

- The G process for call-put options are constructed by the following equations:

GC(t) =
P̃K*

c,t*

S (t)
, GP(t) =

P̃K*
p,t*

S (t)
.

For the rest of this paper, the G process is defined as the average of the dynamically
purified call option and put option processes, with

G(t) =
GC(t) + GP(t)

2
. (4.3.2)
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It is noted that the approximations from our approach are found to fall within the opti-
mal bounds of option prices when using the convex optimization approach suggested by
Bertsimas & Popescu [24].

Analysis of impact of missing prices via Monte-Carlo simulation

Let us study the effectiveness of the quadratic approximation via Monte-Carlo simulation.
Particularly, in this experiment, we simulated the time series for S (t) that evolved from the
Geometric Brownian Motion and the option price process Pt followed the Black-Scholes’
model with the following settings:

- The instantaneous stock price movements was characterized by

dS = µS dt + σS dz

where S 0 = 3000, µ = 0 and σ = 0.3. Since µ = 0, PC = PP in this framework.

- Strike prices: The range of the strike price is simulated with a gap of 10 points for
each increment.

- Expiration dates: Three different expiration dates for each option type were used
with △t1 = 0.08, △t2 = 0.18, △t3 = 0.26 and △t* = 0.12.

The purpose of this experiment is to compare the actual option prices Pt of at-the-money
options (i.e. K*t = S t) estimated from the Black-Scholes’ model with the approximated
prices P̂t that followed the quadratic approximation. We also computed the root-mean-
square error as

RMS E =

⎯⎸⎷ n∑︀
t=1

(Pt − P̂t)2

n
.

Figure B.3 shows the approximated missing option price using the quadratic approxima-
tion method against the actual option price computed from Black-Scholes’ formula. Fig-
ure B.4 also illustrates the estimated price path and bounds of the missing options using
Bertsimas and Popescu’s convex optimization approach [24].
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4.4 Analysis of the dynamic purified option price process

4.4.1 The data

The S&P/ASX 200 index options are traded on the ASX with the underlying asset being
the S&P/ASX 200 index. These option contracts was first listed on 31st March, 2001 and
are European in exercise style, with quarterly expiry cycles: March, June, September and
December. The exercise prices are set at intervals of 25 index points with new exercise
prices automatically created as the underlying index oscillates. The S&P/ASX 200 index
options are cash settled and the settlement amount is based on the opening prices of the
stocks in the underlying index on the morning of the last trading date. The below table
summarises the features of these index options.

S&P/ASX 200 Index Options Features

Underlying asset ASX approved indexes (currently the ASX 200 Index)
Exercise style European
Settlement Cash settled based on the opening prices of the stocks in the underly-

ing index on the morning of the last trading date.
Expiry day The third Thursday of the month, unless otherwise specified by ASX.
Last trading day Trading will cease at 12 noon on expiry Thursday. This means trading

will continue after the settlement price has been determined.
Premium Expressed in points
Strike price Expressed in points
Index multiplier A specified number of dollars per point e.g. AUD 10
Contract value The exercise price of the option multiplied by the index multiplier

The daily data for S&P/ASX 200 Index options and S&P/ASX 200 Index were ob-
tained from SIRCA - the Securities Industry Research Centre of Asia-Pacific [112]. In
this experiment, we used the last price for each trading day for both option prices and
index level. We reported the statistical summary for the daily return and volatility of the
index from January 2010 to December 2012 with 757 observations in Table below. When
computing the implied volatility from the G-process, we used the overnight interest rate
and bank bill swap (BBSW) rates to interpolate the risk-free rate, with a fixed 22-trading-
day time horizon. These rates are obtained from the Reserve Bank of Australia [105].
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4.4.2 Some statistical properties of the purified option price process

We constructed the G-process for the selected period with a fixed time-horizon of 22 trad-
ing days (△t* = 22

252 ) and K* = S (κ = 1) for the at-the-money options. The available
option data were selected as discussed in Section 4.3.2. Table A.11 provides a summary
of statistics for the purified option price process and their logarithmic series. Figure B.7
plots the S&P/ASX 200 level against this dynamically purified option price process G. It
is noted that the purified option price process has a relatively small standard deviation.

To examine the properties of this new process against the index level, let’s define:

- Increments for the dynamic log index level:

rt = △ ln S t = ln
S t

S t−1
,

- Increments for the purified option price process:

qt = △Gt = Gt −Gt−1.

Figure B.8 plots the cross-correlations between S&P 200 index returns at different leads
and lags against daily changes in the G process, with the two dash-dotted lines denoting the
95% confidence band. We observed a strongly negative instantaneous correlation between
qt and rt. In effect, it was found that corr(qt, rt) = -0.8410 for the whole period, while
the correlation estimates at other leads and lags are smaller. Also, the statistical standard
deviation of rt and qt were 27.76% and 4.35% respectively. A breakdown by years for
these results is provided in table A.12 .

4.5 Forecasting the market volatility with the purify im-
plied volatility

As discussed, option prices reflect the expectations of the future movements of the
underlying assets. Therefore, the volatility implied from the options prices may contain
useful information about the future stock market volatility. In this section, we look at
the forecasting power of the implied volatility derived from the purified option prices
against the traditional volatility index VIX, and their relationship with the future volatility.
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We introduce the following processes:

- FVt: the rolling ex-post (future) volatility measured at 22-trading-day windows,
estimated by using the stock index prices at s = t, t + 1, ..., t + 22.

- VIXt: the non-parametric 22-trading-day volatility index S&P/ASX 200, using mid
prices for S&P/ASX 200 put/call options.

- IVG
t : the 22-trading-day till expiration implied volatility computed from the purified

option prices, constructed by using the at-the-money options, average of IVGC
t and

IVGP
t .

For the future volatility, we estimate:

FVt =

⎛⎜⎜⎜⎜⎜⎝252
∆t

t+∆t∑︁
k=t

(R − R(tk))2

⎞⎟⎟⎟⎟⎟⎠1/2

, (4.5.1)

where

R(tk) = log S (tk) − log S (tk−1), R =
1
∆t

t+∆t∑︁
k=t

R(tk), ∆t = 22.

Next, the volatility index VIX is derived from the near term and next term options on
the S&P/ASX 200 using the out-of-money option. The overnight RBA rate, 1-month, 2-
month and 3-month BBSW rates are used to interpolate the risk free rates at each maturity.
The general formula to calculate this implied volatility is:

σ2 =
2
T

∑︁
i

△Ki

K2
i

eRT O(Ki) −
1
T

(︃
F
K0
− 1

)︃2

, (4.5.2)

where: σ: implied volatility, T : time to expiration, F: forward index level, Ki: strike
price of the ith out-of-the-money option, △Ki: interval between strike prices, K0 = F, R:
risk-free interst rate, O(Ki): strike mid-price of each option with strike Ki. More details
about the construction of the S&P/ASX 200 VIX process can be found at [107]. Here we
simply obtain the raw VIX data from SIRCA.

The Black-Scholes’ model 4.2.4 is then used to derive the implied volatility from
the at-the-money purified call/put option prices with fixed 22-trading-day time horizon.
For the risk-free rate, we interpolate the RBA and BBSW rates similar to that was used
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for the volatility index as discussed above.

In Figure B.9, we present a time series plot of the three volatilities over the next
22 trading days. It is observed that both IVG

t and VIXt could track FVt’s movements,
therefore can be used as predictors of the future volatility. We estimate the correlation
between those volatility measures. We observe that corr(FVt,VIXt) = 0.8511 and
corr(FVt, IVG

t ) = 0.8992 respectively.

To examine the information content in the new implied volatility process IVG
t and

compare its ability in forecasting the future volatility against the implied volatility index,
we consider the following multiple regressions:

Model (1)
FVt = η + αFVt−∆t + β0VIXt + εt;

Model (2)
FVt = η + αFVt−∆t + β0VIXt + β1IVG

t + εt,

where εt ∼ N(0, σ2) are the residual errors of each model. It is noted that Model 1 is
based on the conventional multiple regression model of the volatility with the inclusion of
the implied volatility index [40] and FVt−△t is the non-overlapped estimation of the future
volatility. We extend Model 1 by adding the implied volatility derived from the purified
option prices. If these predictors contain some information about the future volatility, the
coefficients α and βi should be statistically significant.

We compute the residuals (the difference of the observed and the actual values) by:

εt = ̂︂FVt − FVt,

where ̂︂FVt is the predicted future volatility and FVt is the observed future volatility. To
compare the accuracy among the models, we compute the root-mean-square-error:

RMS E =
√

MS E =

(︃
1
n

S S E
)︃1/2

=

⎛⎜⎜⎜⎜⎜⎝1
n

n∑︁
t=1

(̂︂FVt − FVt)2

⎞⎟⎟⎟⎟⎟⎠1/2

. (4.5.3)

for each model. Here, n is the number of observations in the dataset, i.e. 757 observations
for our selected sample. The model with smaller RMSE would suggest that the predicted
values on average are closer to the observed values, hence is a better model.
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We also include the values from Akaike information criterion (AIC) test and Bayesian
information criterion (BIC) test to measure the relative quality of the two models. Both
criteria are capable of dealing with the trade-off between the goodness of fit and the com-
plexity of the model as more variables are introduced . These criteria are based on a
high log-likelihood value, but the penalty term of BIC (k ln n) is potentially much more
stringent than that of AIC (2k). These information criteria are estimated by:

AIC = n ln MS E + 2k, BIC = n ln MS E + k ln n,

where n is the number of observations, k is the number of estimated parameters and MS E

is given by equation (4.5.3). The Durbin–Watson (DW) statistic is also reported as a
diagnostic check for the independence of errors in regression by detecting the presence of
autocorrelation in the residuals, given by:

DW =

n∑︀
t=2

(εt − εt−1)2

n∑︀
t=1
ε2

t

,

where DW < 2 suggests positive autocorrelation, DW = 2 for no autocorrelation and
DW > 2 for negative autocorrelation.

In our experiment, the data is split into two periods. The first subset includes data
points from 01/01/2010 to 31/05/2011. This dataset is used as ‘in-sample’ data for
determining the models’ parameters. The rest of the data from 01/06/2011 to 31/12/2012
is then used as ‘out-of-sample’ data for checking the efficiency of the models (1) and (2).

Usually, the coefficients of the regression models can be found by using the Ordi-
nary Least Square (OLS) estimation method. However, previous study showed that
the residuals computed from OLS can be highly autocorrelated for such models with
Durbin-Watson test values are less than 1 [40]. This will raise the possibility of a spurious
regression phenomenon [102] in our prediction. Therefore, the OLS estimation for the
coefficients is inconsistent. The Feasible Generalized Least Squares (FGLS) estimation
can be used an alternative consistent estimates of those models in the presence of
autocorrelated errors. From our experiments, we observed that with OLS estimation, the
coefficients of the predictive variables are statistically significant (see Table A.13). This
suggests that the selected predictors are useful for predicting the future volatility. More-
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over, from the model (2), we observe that the implied volatility from the purified option
prices plays a more important role in forecasting the future volatility in comparison with
the past volatility and the volatility index. However, when examine the Durbin-Watson
statistical results, it is observed that the residuals from both models are autocorrelated
(0.3619 and 0.3914 for model (1) and (2) respectively). As previously discussed, the
estimated coefficients from OLS will be inconsistent. To overcome this, we apply the
Cochrane-Orcutt feasible generalised least square (CO-FGLS) estimation method [41] for
these models (1) and (2) by modelling the first-order autoregressive on the error terms.
Table A.13 also reports the CO-FGLS estimates of these specifications. Hence, models
(1) and (2) are adjusted as following:

Model (1′)

FVt = 0.2393 − 03950 FVt−∆t − 0.0468 VIXt + εt;

εt = 0.9951 εt−1 + et,

Model (2′)

FVt = 0.2376 − 0.3890 FVt−∆t − 0.0468 VIXt + 0.0569 IVG
t + εt;

εt = 0.9949 εt−1 + et,

with et being the input noise. As a result, the Durbin-Watson’s tests after using Cochrane-
Orcutt’s transformation are close to two, indicating that the CO-FGLS procedure has elim-
inated the autocorrelation of residuals. This confirms the relevance of model (1) and (2).

In terms of accuracy of each model, the RMSE for the in-sample data from Model (1)
is 0.0284 and 0.0263 from Model (2). With the out-sample data, RMSE are 0.0171 and
0.0168 for Models (1) and (2) respectively. The RMSE estimates are further improved
via Cochrane-Orcutt estimation, with RMSE of model (2′) be 0.0072 vs RMSE of model
(1′) be 0.0087. This suggests that the inclusion of the implied volatility from the purified
option prices improves the accuracy of our forecast. This is also in agreement with the
AIC and BIC tests from Table A.13.

In conclusion, for the selected dataset, we found that the implied volatility from
the proposed process contents useful information about the movement of future volatility
and can be used to improve the accuracy in forecasting future volatility.
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4.6 Discussion

In this chapter, we propose the use of a process G which represents the “dynamically pu-
rified" option price process where the impact of the stock price movement is reduced. The
process is constructed by using observation of the market option prices. In our experi-
ments, we constructed the process G for the stock index S&P 200 using the at-the-money
options. We observed that there is a stable and strongly negative contemporaneous corre-
lation between the increments of stock price return and the increments of G. In additions,
we observed a strong correlation between the implied volatility computed from the at-
the-money purified option price process and the non-parametric out-the-money implied
volatility index VIX. This is an interesting feature since the VIX is calculated using very
different data and methods. Similar to VIX , the implied volatility from the purified option
prices can be used directly in volatility forecast. We found that the use of the implied
volatility from the purified option prices can help improve the accuracy in predicting the
future volatility in some experiments with a set of linear regression models. Besides, the
new process G can be constructed using observations of just 18 option prices. This is
significantly fewer prices than what VIX requires. Therefore, this process can be used to
replace VIX in some cases when there is no sufficient data to calculate VIX or one interests
in different ranges of strike prices.
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Chapter 5

A mixed model for forecasting volatility
with high-frequency financial data

5.1 Introduction

Chapter 4 discussed the construction of the purified implied volatility and a simple future
volatility forecasting model. We will further incorporate the volatility forecasting models
based on the observed realised volatility, the implied volatility from the purified option
price process, and non-traditional regression techniques for predicting the future volatility.

As discussed, there has been an enormous body of research on forecasting volatility.
Engle[52] and Bollerslev [29] first proposed the ARCH model and the GARCH model for
forecasting volatility. These models have been extended in numbers of directions based
on the empirical evidences that the volatility process is non-linear, asymmetry and has
long memory. Such extensions can be referred to EGARCH [97], GJR-GARCH [63],
AGARCH [51], and TGARCH [123].

With the appearance of high-frequency data, Andersen[9] introduced the realized
volatility (RV) as discussed in Chapter 2, Section 2.3.2. It was found that the distribution of
the standardized exchange rate series and stock returns were almost Gaussian when using
the realised volatility, and the logarithm of the realised volatility was also nearly Gaussian.
In comparison with the GARCH-type measures, realised volatility is more preferred as it
is a model-free measure. Hence, it provides convenience for calculation. In addition, the
realised volatility takes the high-frequency data into consideration and exhibits the long
memory property. There have been many forecasting models that have been developed to
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predict the realised volatility. Among those models, the heterogeneous autogressive model
for realised volatility (HAR) by Corsi [43] is one to name. The HAR-RV model was de-
veloped in accordance with the heterogeneous market hypothesis proposed by Muller[96]
and the long memory character of realised volatility by Andersen [9]. Empirical studies
have shown that the HAR model has high forecasting performance on future volatility,
especially for the out-of-sample data given different time horizons [43, 82].

Another volatility proxy that is often used for forecasting the volatility is the implied
volatility indexes as discussed in Chapter 4. We have seen that the implied volatility also
contains information about the future volatility.

In this chapter, we will show that the prediction of future volatility can be further im-
proved by using that process via the HAR model and random forest algorithm. We imple-
ment the use of classification and regression trees models - machine learning techniques
- with the aim to improve the accuracy the forecast of realised volatility. This proposed
model is constructed to predict both the direction and the magnitude of realised volatility.

5.2 Volatility measures, HAR model and Random forests
algorithm.

5.2.1 Volatility measures

Our focus is on predicting the future realised volatility using high-frequency data via a
mixed model with heterogeneous autoregressive for realised and the inclusion of the ‘pu-
rified’ implied volatility. The realised volatility measure for high-frequency data is as dis-
cussed in Chapter 2, Section 2.3.2. For the construction of the purified implied volatility,
please refer Chapter 4, Section 4.5.

5.2.2 Heterogeneous autoregressive model for realised volatility

Corsi([43], [44]) proposed the heterogeneous autoregressive model for realised volatility
as an extension of the Heterogenous ARCH (HARCH) class of models analysed by Muller
et al. [96], which recognizes the presence of heterogeneity in the traders. The idea stems
from “Fractal Market Hypothesis" [101], “Interacting Agent View" [90] and “Mixture of
distribution" hypothesis [5] in the realised volatility process.
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It is noted that the definition of the realised volatility involves two time parameters: (1)
the intraday return interval △, (2) the aggregation period one day. For the heterogeneous
autoregressive model of realised volatility [43], it is considered that the latent realised
volatility viewed over time horizons longer than one day. The n days historical realised
volatility at time t (i.e. RVt−n,t) is estimated as an average of daily realised volatility be-
tween (t − n) and t. The daily HAR is expressed by

RVt,t+1 = β0 + βDRVt−1,t + βWRVt−5,t + βMRVt−22,t + εt,t+1, (5.2.1)

where W = 5 days, M = 22 days and RVt−5,t,RVt−22,t present the average realised volatility
of the last 5 days and 22 days respectively. The HAR model can be extended by includ-
ing the jump component proposed by Barndorff-Nielsen and Shephard [22]. Hence, the
general form of the model is

RVt,t+k = β0 + βDRVt−1,t + βWRVt−5,t + βMRVt−22,t + βJ Jt−k,t + εt,t+k (5.2.2)

Most recently, the heterogeneous structure was extended with the inclusion of the leverage
effect observed by [26] - the asymmetry in the relationship between returns and volatility
[44]. For a given period of time, the leverage level at time t is measured as the average
aggregated negative and positive returns during that period where

r+
t−k,t =

1
M

M−1∑︁
j=0

rt− j△,tI{rt−k,t ,...,rt,t>0}; r−t−k,t =
1
M

M−1∑︁
j=0

rt− j△,tI{rt−k,t ,...,rt,t60},

with M is the number of observation between t-k, t and △ is the time step. Therefore, one
would include the leverage effect as a predictor for the realised volatility in the next k days
as following

RVt,t+k = β0 + βDRVt−1,t + βWRVt−5,t + βMRVt−22,t

+ βJ Jt−k,t + αPr+
t−k,t + αNr−t−k,t + εt,t+k. (5.2.3)

Often, the coefficients β0, βD, βW , βM, βJ, αP, αN are obtained by using the Ordinary-Least-
Square estimation for linear regression models.

From this section onwards, let r* represent the leverage effect and let HAR-JL denote
the heterogeneous autoregressive model with the jump component and leverage effect.
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5.2.3 Random forests algorithm

Breiman [32] introduced the random forests algorithm as an ensemble approach that can
also be thought of as a form of nearest neighbour predictor. The random forest starts with a
standard machine learning technique called “decision trees". We provide a brief summary
of this algorithm in this section.

Decision trees

Decision trees algorithm is an approach that uses a set of binary rules to calculate a target
class or value. Different from predictors like linear or polynomial regression where a
single predictive formula is supposed to hold over the entire data space, decision trees
aim to sub-divide the data into multiple partitions using recursive method, then fit simple
models for each cell of the partition. Each decision tree has three levels:

∙ Root node: entry points to a collection of data,

∙ Inner nodes: a set of binary questions where each child node is available per possible
answer,

∙ Leaf nodes: response to the decision to take if reached.

For example, in order to predict a response or class Y from inputs X1, X2, ..., Xn, a binary
tree is constructed based on the information from each input. At the internal nodes in the
tree, a test to one of the inputs is run for a given criterion with logical outcomes: TRUE
or FALSE. Depending on the outcome, a decision is drawn to the next sub-branches cor-
responding to TRUE or FALSE responses. Eventually, a final prediction outcome is ob-
tained at the leaf node. This prediction aggregates or averages all the training data points
which reach that leaf. Figure B.10 illustrates the binary tree concept.

Algorithm 1 describes how a decision trees can be constructed using CART [33]. This
algorithm is computationally simple and quick to fit the data. In addition, as it requires no
parametric, no formal distributional assumptions are required. However, one of the main
disadvantages of tree-based models is that they exhibit instability and high variance, i.e.
a small change in the data can results in very different series of split, or over-fitting. To
overcome such a major issue, we use an alternative ensemble approach known as random
forests algorithm.
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Algorithm 1 CART algorithm for building decision trees.
1: Let N be the root node with all available data.
2: Find the feature F and threshold value T that split the samples assigned to N into

subsets ITRUE and IFALS E, to maximise the label purity within these subsets.
3: Assign the pair (F, T) to N.
4: If I(s) are too small to be split, attach a ‘child’ leaf nodes LTRUE and LFALS E to N and

assign the leaves with the most present label in ITRUE and IFALS E respectively.
If subset I(s) are large enough to be split, attach child nodes NTRUE and NFALS E to N,
then assign I(s) to them respectively.

5: Repeat step 2 - 4 for the new node N = NTRUE and N = NFALS E until the new subsets
can no longer be split.

Random forests

A random forest can be considered as a collection or ensemble of simple decision trees
that are selected randomly. It belongs to the class of so-called bootstrap aggregation or
bagging technique which aims to reduce the variance of an estimated prediction function.
Particularly, a number of decision trees are constructed and random forests will either
“vote" for the best decision (classification problems) or “average" the predicted values
(regression problems). Here, each tree in the collection is formed by firstly selecting at
random, at each node, a small group of input coordinates (also called features or variables
hereafter) to split on and, secondly, by calculating the best split based on these features
in the training set. The tree is grown using CART algorithm to maximum size, without
pruning. Using random forests can lead to significant improvement in prediction accuracy
(i.e. better ability to predict new data cases) in comparisons with a single decision tree as
discussed in the previous section. Algorithm 2 [32] details how the random forests can be
constructed.

Algorithm 2 Random Forests
1: Draw a number of bootstrap samples from the original data (ntree) to be grown.
2: Sample N cases at random with replacement to create a subset of the data. The subset

is then split into in-bag and out-of-bag samples at a selected ratio (i.e. 7:3).
3: At each node, for a preselected number m(1), m predictor variables (mtry) are chosen at

random from all the predictor variables.
4: The predictor variable that provides the best split, according to some objective func-

tion, is used to build a binary split on that node.
5: At the next node, choose another m variables at random from all predictor variables.
6: Repeat 3 - 5 until all nodes are grown.
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Note: (1) - For m = 1, the algorithm uses random splitter selection. m can also be set
to the total number of predictor variables which is known as Breiman’s bagger parameter.
If m is much less than the number of predictor variables, Breiman [32] suggests three
possible values for m: 1

2

√
m,
√

m and 2
√

m. In this paper, we set m equal to the maximum
number of variables of interest used in the proposed model.

Applications of random forests algorithm can be found in machine learning, pattern
recognitions, bio-infomatics and big data modelling. Recently, a number of financial lit-
eratures have applied random forests algorithm in forecasting stock price as well as devel-
oping investment strategies found in [118] and [104]. Here, we introduce an application
of the random forests algorithm in forecasting the realised volatility.

5.3 A mixed model for forecasting realised volatility with
HAR and random forests

5.3.1 Forecasting the direction of realised volatility

We define two states of the world outcome on the volatility direction as “UP" and
“DOWN". Let Dδ be the direction of the realised volatility observed at the time δ, such
that

Dδ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
UP if

RVδ

RVδ−1
> 1,

DOWN if
RVδ

RVδ−1
< 1.

(5.3.1)

In order to forecast the direction of realised volatility, we use a set of predictors (or tech-
nical indicators) which are derived from the historical price movement of the underlying
asset and its realised volatility. Below is the list of technical indicators we use for fore-
casting the realised volatility’s direction.

1. Average True Range (ATR): ATR is an indicator that measures volatility using the
high-low range of the daily prices. ATR is based on n-periods and can be calculated
on an intraday, daily, weekly and monthly basis. It is noted that ATR is often used as
a proxy of volatility. To estimate ATRt, we are required to compute the “true range"
(TR) such that

TRδ = max{Hδ − Lδ, |Hδ −Cδ−1|, |L −Cδ−1|}, (5.3.2)
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where Hδ, Lδ, Cδ−1 are the current highest return, the current lowest return and the
previous last return of a selected period respectively, with absolute values to ensure
TRδ is always positive. Hence, the average true range within n-days is:

ATRδ−n,δ =
(n − 1)ATRδ−n−1,δ + TRδ

n
. (5.3.3)

2. Close Relative To Daily Range(CRTDR): The location of the last return within the
day’s range is a powerful predictor of next-returns. Here, CRTDR is estimated by

CRT DRδ =
Cδ − Lδ
Hδ − Lδ

. (5.3.4)

where, Hδ, Lδ and Cδ are the high-low-close returns at time δ for a selected time
period using high frequency returns.

3. Exponential Moving Average of realised volatility (EMARV): Exponential mov-
ing averages reduce the lag effect in time-series by applying more weight to recent
prices. The weighting applied to the most recent price depends on the number of
periods n in the moving average and the weighting multiplier κ. The formula for
EMARV of n-periods is as following:

EMARVδ−n,δ = RVδ − κ × EMARVδ−n−1,δ + EMARVδ−n−1,δ. (5.3.5)

4. Moving average convergence/divergence oscillator (MACD) measure of realised
volatility: MACD is one of the simplest and most effective momentum indicators.
It turns two moving averages into a momentum oscillator by subtracting the longer
moving average (m-days) from the shorter moving average (n-days). The MACD
fluctuates above and below the zero line as the moving averages converge, cross and
diverge. We estimate the MACD for realised volatility as:

MACDRVδ,m,n = EMARVδ,m − EMARVδ,n. (5.3.6)

5. Relative Strength Index for realised volatility (RSIRV): this is also a momentum
oscillator that measures the speed and change of volatility movements. We define
RSIRV as

RS IRVδ−n,δ = 1 −
1

1 +
RV

+

δ−n,δ

RV
−

δ−n,δ

, (5.3.7)
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where RV
+

δ−n,δ is the average increase in volatility and RV
−

δ−n,δ is the average decrease
in volatility within the n-days.

The steps we take to forecast the volatility direction are listed in Algorithm 3.

Algorithm 3 Forecasting the direction of realised volatility
1: Obtain the direction of the realised volatility.
2: Compute the above technical indicators for each observation.
3: Split the data into a training set and a testing set.
4: Apply the random forests algorithm to the training set to develop the pattern solution

of the realised volatility using the above indicators.
5: Use the solution from Step 4 to predict the direction of the testing set.

Figure B.11 demonstrates a possible decision tree that was built for forecasting the
direction of realised volatility Dδ using the above steps. In this example, node #4 can be
reached when RSI-RV(5)> 0.5 and TR(10) < 0.0084, with 19% of the in-sample data falls
into this category and 91% of these observations are classified as“DOWN". Likewise,
node #27 is reached when RSI-RV(5)6 0.5, r+ > 0.014 and 0.0049 6 TR(10) < 0.0072.
In random forests, we can construct similar trees but with different structures to classify
the direction of the realised volatility based on the information from other predictors.

Let ̂︀Dt,t+k denote the predicted direction of realised volatility at time t + k, using the
information up to time t from the Algorithm 3.

5.3.2 Forecasting the level of realised volatility

To forecast the level of realised volatility, we consider the heterogeneous autoregression
model as discussed in Section 5.2.2. We further include the purified implied volatility and
the predicted direction of the future volatility as new predictive variables. Particularly, the
Model 5.2.3 is extended to

RVt,t+k = β0 + βDRVt−1,t + βWRVt−5,t + βMRVt−22,t + βJ Jt−k,t + αr*t−k,t

+ γPVt−k,t+22 + κ̂︀Dt,t+k + εt,t+k. (5.3.8)
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We also consider the logarithmic form of this model as the logarithmic of the realised
volatility is often believed to be a smoother process. Thus, we model log RV as

log RVt,t+k = β0 + βD log RV t−1,t + βW log RV t−5,t + βM log RV t−22,t + βJ log (1 + Jt−k,t)

+ α log |r*t−1,t| + γlog(PVt−k,t+22) + κ̂︀Dt,t+k + εt,t+k, (5.3.9)

where k = {1, 5, 22} for 1-day, 5-day and 22-day time horizons. We use log (1 + Jt−k,t)
instead of log (Jt−k,t) to allow for the cases where Jt−k,t = 0 and the leverage effect is
measured by log |r*t−1,t| to allow for the average aggregated negative returns.

The parameters in models 5.3.8 and 5.3.9 (HAR-JL-PV-D) are fitted using the random
forests regression algorithm. It is important to note that for the in-sample data, we replacê︀Dt,t+k with the actual direction Dt,t+k to measure the impact of the direction variable in
forecasting the realised volatility.

5.4 Numerical experiments and results

5.4.1 Data summary

We demonstrate the proposed model b analysing the S&P ASX 200 Index high frequency
returns data and its realised volatility. Our dataset is collected from SIRCA for the period
1st January, 2008 to 31st December, 2014. The Australian Stock Exchange is open between
10:00 am to 4:00 pm. We collect the tick-by-tick S&P 200 levels hence the prices are not
recorded at equispaced time points. We use the previous tick aggregation method to force
the observed prices into an equispaced grid, i.e. taking the last price realized before each
grid point and obtain the 15-second frequency data. The daily realised volatility (with
1762 observations) is then estimated using these 15-second prices.

Table A.14 provides a summary of the 15-second realised volatility measured using
different time-windows. It is observed that both non-logarithmic and logarithmic series
are skewed and non-normal. This suggests that the Ordinary Least Square estimation
approach will not be applicable for our dataset. As a result, we compare the maximum
likelihood estimation (MLE) with the random forests algorithm instead. In terms of cor-
relation coefficients between the series, we observed that the computed realised volatility
exhibits the long memory effect. Further, the purified implied volatility is strongly corre-
lated with realised volatility measures, which indicates that PV can be a useful predictor
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of realised volatility.

5.4.2 Measuring errors

Since the paper focuses on forecasting both the realised volatility’s direction and its mag-
nitude, we use the following measures to compare each model.

Classification problem

In forecasting the direction of the realised volatility, the classification problem consists of
only two stages. We measure the accuracy of the forecast as follows.

Let’s define

∙ True positive (TP): the number of days that are observed with "Down" signals were
correctly predicted.

∙ False positive (FP): the number of days that are observed with "Down" signals were
predicted with "Up" signals.

∙ False negative (FN): the number of days that are observed with "Up" signals were
predicted with "Down" signals.

∙ True negative (TN): the number of days that are observed with "Up" signals were
correctly predicted.

∙ Accuracy: the proportion of the total number of correct prediction

Accuracy =
T P + T N

T P + FP + T N + FN
. (5.4.1)

Regression problem

We split our data into two subsets: the training (in-sample) data and the test (out-of-
sample) data. Since random forests algorithm is used, we measure the accuracy of the
model proposed method for training data and test data separately.

Measuring error for training data

For the random forests algorithm, an estimate of the error rate can be obtained based on
the training as following:
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1. For each bootstrap, predict the out-of-bag values using the tree grown within the
bootstrap sample.

2. Aggregate the OOB predictions and calculate the mean square error rate by

MS EOOB =
1
m

n∑︁
t=1

{︂
RVt − RVt

OOB
}︂2

(5.4.2)

where m is the number of observations in the OOB data (i.e. m < N) and RVt
OOB

is
the average of the OOB predictions for the tth observation.

3. Estimate the percentage variance explained as a measure of goodness of fit by

1 −
MS EOOB

σ2
RV

(5.4.3)

where σ2
RV is the variance of the OOB sample.

Measuring error for test data

Let RVt denote the tth observation, ̂︂RVt denote its forecast, and k be the number of data
points observed in the selected period. The error measures include

∙ Mean absolute error

MAE =
1
k

k∑︁
t=1

|RVt −̂︂RVt|. (5.4.4)

∙ Mean absolute percentage error

MAPE =
1
k

k∑︁
t=1

|RVt −̂︂RVt|

RVt
. (5.4.5)

∙ Root mean square error

RMS E =

⎯⎷
1
k

k∑︁
t=1

(RVt −̂︂RVt)2. (5.4.6)

∙ Root mean square percentage error

RMS PE =

⎯⎸⎷
1
k

k∑︁
t=1

⎛⎜⎜⎜⎜⎝RVt −̂︂RVt

RVt

⎞⎟⎟⎟⎟⎠2

. (5.4.7)
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5.4.3 Results of experiments

Table A.15 compares the in-sample forecast results of the proposed model using random
forest algorithm. For the selected time horizons, the inclusion of purified implied volatility
shows improvement in the forecast accuracy against the original HAR-JL model (based
on RMSE measure and % OOB variance explained), where the logarithmic RV series
perform better than the non-logarithmic RV series. It is also observed that the direction
indicator can further improve the forecast results. Such improvement is most significant
for the 1-day forecast (with 75.58 % and 80.65% variance explained for RV and log RV in
comparison with 57.81% and 61.66% from the HAR-JL model respectively). For the 5-
day and 22-day in-sample forecasts, we observe slight improvements in RMSE with better
goodness of fit.

In forecasting the direction of the out-sample realised volatility, we obtain the accu-
racy of the hit-rate at 80.05%, 72.85% and 65.22% for 1-day, 5-day and 22-day forecast
respectively. This suggests our classification model can perform better for the short-term
forecasts than long-term forecasts. This can be explained by the fact that long-term fore-
cast require not only technical indicators but also fundamental indicators and long-term
expectations from the market.

Table A.16 provides summaries of the forecast errors for the out-sample data. For
consistent comparison, we take the exponential transformation of the predicted values
of the log RV to obtain the predicted RV. In general, the out-of-sample performances of
the proposed model are in favours with the in-sample performances. The MAPE and
RMSPE for 1-day forecast of the RV from the HAR-JL-PV-D are reduced by 8% and 11%
respectively, while the MAPE and RMSPE for 5-day and 22-day are reduced by 3% and
5%. When comparing the HAR-JL-PV model against the HAR-JL-D model, it can be seen
that the the forecast errors are smaller for the HAR-JL-PV model for these time horizons.
This is anticipated as we found that the forecast of long-term direction is less accurate for
5-day and 22-day forecasts. However, the HAR-JL-D model still performs better than the
HAR-JL alone and the HAR-JL-PV-D model provides the best fits.

We present in Figure B.13 the actual S&P200’s realised volatility measured under
different time horizons from 1st January, 2014 to 31st December, 2014, with the predicted
realised volatility using maximum likelihood estimation for the HAR-JL model (left panel)
and using random forests estimation for the HAR-JL-PV-D model (right panel).
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5.5 Discussion

This chapter introduces an application of the random forests algorithm in forecasting the
realised volatility. For the classification problem, the algorithm shows that it is possible
to forecast directions of the realised volatility . For the regression problem, with its non-
linear structure, the technique was able to reduce the forecasting errors from volatility
clustering systematically under different time horizons. The empirical results of S&P 200
shows that the existing HAR model framework was improved by including the purified
implied volatility and applying this machine leaning technique. We suggest to further
investigate the roles of the purified implied volatility and random forests algorithm in
other high frequency models of volatility.
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Concluding remarks

The motivation for this thesis stems from the critical role of volatility in financial invest-
ment. With the use of high frequency data, this leads to how different the new settings for
estimating and modelling financial volatility, in comparison with the traditional methods.
Extensive research had been carried out in many aspects of the financial time series and
includes analysis of estimators, errors reduction and predictability enhancement. This the-
sis aims to examine some of the estimators of financial volatility and investigate its results
for different sampling frequency.

The main contributions of this thesis is the comparison of the effectiveness of different
volatility measures and models. Additional contributions include the development of a
process for modelling the dependency of volatility on sampling frequency, the construc-
tion of a new implied volatility process via reducing the impact of price movement on
the volatility estimation, and some improvement in accuracy for the forecasting of future
volatility.

For modelling the dependence of volatility on sampling frequency, it is showed that
the prescribed dependence of the volatility on the sampling frequency can be achieved
using delay equations for the underlying prices. These equations allow to model the price
processes with volatility that increases when the sampling rates increase, as well as the
inverse effect where the volatility decreases with the increase in sampling frequencies.
While higher dimensional multi-timescale dependence with delay equations have yet to
be explored, the proposed framework is the foundation for this research area. However,
we did not consider pricing of options on the underlying time series and relations between
the historical volatility and the implied volatility. We leave this for future research.

For the proposed implied volatility measure, it is showed that the artificial "dynami-
cally purified" price process allows to eliminate the impact of the stock price movements
on the implied volatility. The complete elimination would be possible if the option prices
were available for continuous sets of strike prices and expiration times. However, in prac-
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tice, only finite sets of prices are available. To overcome the incompleteness of the avail-
able option prices, the first order Taylor series extrapolation and quadratic interpolation
were examined. It is also showed that this new implied volatility process can also be used
as a proxy for forecasting of the future volatility, in comparison with the traditional implied
volatility process. While the construction of the "purified" implied volatility using daily
financial data, we have yet to explore the effectiveness of this approach for the intra-day
estimations and forecasts. Further investigation can be followed from this direction.

For the forecasting of the volatility, with the aim to improve the forecast accuracy,
the mixed model of heterogeneous autoregressive model and random forest algorithm was
studied for different forecasting horizons. It is showed that for the classification problem,
the proposed algorithm was able to forecast directions of the realised volatility; and for
the regression problem, with its non-linear structure, the technique was able to reduce the
forecasting errors from volatility clustering systematically under different time horizons.
With the extended heterogeneous autoregressive model via the inclusion of the "purified"
implied volatility, it is found that the forecast of both direction and magnitude of the
realised volatility were improved. It will definitely be of interest to know if the choice
of other machine learning technique will be significant using this innovative approach in
forecasting the future volatility.
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Tables
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Table A.1 Simulation of model 3.2.3 for λ < 0.
κ = λδτ 5 20 120

κ = −0.0005
λ = −196.56

mean sd
σ15sec 0.3000 0.0003
σ5min 0.3004 0.0015
σhour 0.3009 0.0052

mean sd
σ15sec 0.3000 0.0003
σ5min 0.3014 0.0015
σhour 0.3027 0.0052

mean sd
σ15sec 0.3000 0.0003
σ5min 0.3015 0.0010
σhour 0.3140 0.0030

κ = −0.0025
λ = −982.8

mean sd
σ15sec 0.3000 0.0003
σ5min 0.3026 0.0015
σhour 0.3029 0.0053

mean sd
σ15sec 0.3000 0.0003
σ5min 0.3073 0.0015
σhour 0.3141 0.0054

mean sd
σ15sec 0.3002 0.0003
σ5min 0.3101 0.0016
σhour 0.3892 0.0069

κ = −0.005
λ = −1965.6

mean sd
σ15sec 0.3002 0.0003
σ5min 0.3052 0.0016
σhour 0.3059 0.0049

mean sd
σ15sec 0.3006 0.0003
σ5min 0.3153 0.0019
σhour 0.3301 0.0057

mean sd
σ15sec 0.3000 0.0003
σ5min 0.3341 0.0025
σhour 0.5667 0.0050

Table A.2 Simulation of model 3.2.3 λ > 0.
κ = λδτ 5 20 120

κ = 0.0005
λ = 196.56

mean sd
σ15sec 0.3000 0.0003
σ5min 0.3000 0.0015
σhour 0.3000 0.0050

mean sd
σ15sec 0.3000 0.0003
σ5min 0.2985 0.0015
σhour 0.2971 0.0050

mean sd
σ15sec 0.3000 0.0003
σ5min 0.2987 0.0015
σhour 0.2873 0.0052

κ = 0.005
λ = 1965.6

mean sd
σ15sec 0.3003 0.0003
σ5min 0.2948 0.0015
σhour 0.2941 0.0037

mean sd
σ15sec 0.3004 0.0003
σ5min 0.2866 0.0015
σhour 0.2749 0.0047

mean sd
σ15sec 0.3003 0.0003
σ5min 0.2912 0.0015
σhour 0.2123 0.0037

κ = 0.05
λ = 19656

mean sd
σ15sec 0.3003 0.0003
σ5min 0.2559 0.0012
σhour 0.2503 0.0020

mean sd
σ15sec 0.3038 0.0004
σ5min 0.2148 0.0007
σhour 0.1594 0.0019

mean sd
σ15sec 0.3067 0.0004
σ5min 0.2848 0.0021
σhour 0.1045 0.0020
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Table A.3 The average and standard deviation of the annual volatility using different win-
dows for κ = 0.005 (λ = 1965.6) and τ = 120.

Annual volatility Mean Standard Deviation

1-day windows σ15sec= 0.3002
σ5min = 0.2923
σhour = 0.2111

σ15sec= 0.0054
σ5min = 0.0254
σhour = 0.0792

5-day windows σ15sec= 0.3002
σ5min = 0.2926
σhour = 0.2143

σ15sec= 0.0022
σ5min = 0.0098
σhour = 0.02482

22-day windows σ15sec= 0.3002
σ5min = 0.2926
σhour = 0.2134

σ15sec= 0.0010
σ5min = 0.0045
σhour = 0.0113
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Table A.4 Volatility of stock indexes under different sampling frequency.

Stock Index 2008 2009 2010

DAX
σ15sec = 0.3569
σ5min = 0.3928
σhourly = 0.3959

σ15sec = 0.2476
σ5min = 0.2682
σhourly = 0.2777

σ15sec = 0.1755
σ5min = 0.1854
σhourly = 0.1888

FTSE 100
σ15sec = 0.2660
σ5min = 0.3462
σhourly = 0.3606

σ15sec = 0.1822
σ5min = 0.2313
σhourly = 0.2344

σ15sec = 0.1346
σ5min = 0.1686
σhourly = 0.1708

IBEX 35
σ15sec = 0.3289
σ5min = 0.3569
σhourly = 0.3620

σ15sec = 0.2428
σ5min = 0.2446
σhourly = 0.2571

σ15sec = 0.2549
σ5min = 0.2772
σhourly = 0.2847

SMI
σ15sec = 0.3265
σ5min = 0.3421
σhourly = 0.3513

σ15sec = 0.2106
σ5min = 0.2171
σhourly = 0.2278

σ15sec = 0.1603
σ5min = 0.1469
σhourly = 0.1564

S&P 500
σ15sec = 0.2881
σ5min = 0.3654
σhourly = 0.3747

σ15sec = 0.1952
σ5min = 0.2507
σhourly = 0.2601

σ15sec = 0.1300
σ5min = 0.1771
σhourly = 0.1808

S&P 200
σ15sec = 0.2124
σ5min = 0.2796
σhourly = 0.3367

σ15sec = 0.1464
σ5min = 0.1805
σhourly = 0.2100

σ15sec = 0.1055
σ5min = 0.1288
σhourly = 0.1530

TSX 60
σ15sec 0.3345
σ5min 0.3884
σhourly 0.4207

σ15sec = 0.2256
σ5min = 0.2602
σhourly = 0.3884

σ15sec = 0.1246
σ5min = 0.1341
σhourly = 0.1352
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Table A.5 Volatility of company stocks under different sampling frequency.

Stock Symbol 2008 2009 2010

AAPL
σ15sec = 0.7032
σ5min = 0.6347
σhourly = 0.5832

σ15sec = 0.3508
σ5min = 0.3373
σhourly = 0.3267

σ15sec = 0.3180
σ5min = 0.2915
σhourly = 0.2738

IBM
σ15sec = 0.5245
σ5min = 0.4507
σhourly = 0.3932

σ15sec = 0.3085
σ5min = 0.2766
σhourly = 0.2622

σ15sec = 0.2179
σ5min = 0.2005
σhourly = 0.1812

JPM
σ15sec = 0.9068
σ5min = 0.8217
σhourly = 0.7487

σ15sec = 0.7274
σ5min = 0.6741
σhourly = 0.6586

σ15sec = 0.3238
σ5min = 0.3039
σhourly = 0.2873

GE
σ15sec = 0.7163
σ5min = 0.6220
σhourly = 0.5790

σ15sec = 0.7137
σ5min = 0.6040
σhourly = 0.5844

σ15sec = 0.4021
σ5min = 0.3124
σhourly = 0.2919

GOOG
σ15sec = 0.8114
σ5min = 0.6276
σhourly = 0.5937

σ15sec = 0.3543
σ5min = 0.3053
σhourly = 0.2944

σ15sec = 0.3353
σ5min = 0.2820
σhourly = 0.2587

MSFT
σ15sec = 0.7032
σ5min = 0.6347
σhourly = 0.5832

σ15sec = 0.3908
σ5min = 0.3373
σhourly = 0.3267

σ15sec = 0.3180
σ5min = 0.2915
σhourly = 0.2738

XOM
σ15sec = 0.5071
σ5min = 0.4908
σhourly = 0.4876

σ15sec = 0.2911
σ5min = 0.2708
σhourly = 0.2620

σ15sec = 0.2156
σ5min = 0.2083
σhourly = 0.1834
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Table A.6 The values of error in calibrating S&P500 historical data for some (λi, τ j).

λτ 5 6 7 8 9 10 11 12 13
-16707.6 0.0396 0.0120 0.0147 0.0500 0.0716 0.0845 0.1260 0.1637 0.2335
-12776.4 0.0593 0.0557 0.0268 0.0108 0.0098 0.0306 0.0554 0.0674 0.1214
-8845.2 0.0736 0.0645 0.0507 0.0427 0.0378 0.0291 0.0246 0.0217 0.0251
-4914.0 0.0852 0.0878 0.0813 0.0739 0.0716 0.0691 0.0698 0.0612 0.0626
-982.8 0.1108 0.1080 0.1091 0.1063 0.1001 0.1051 0.1040 0.1049 0.1017

Table A.7 Measures of σ̂15sec − σ15sec in calibrating S&P500 historical data.
λτ 5 6 7 8 9 10 11 12 13

-16707.6 0.0012 0.0015 0.0019 0.0026 0.0028 0.0038 0.0042 0.0052 0.0065
-12776.4 0.0007 0.0010 0.0007 0.0012 0.0001 0.0017 0.0018 0.0020 0.0031
-8845.2 0.0003 0.0008 -0.0001 0.0003 0.0007 0.0009 0.0003 0.0013 0.0011
-4914.0 -0.0001 -0.0004 0.0002 0.0002 0.0005 0.0004 0.0004 -0.0004 0.0008
-982.8 -0.0003 0.0002 0.0006 0.0003 0.0001 -0.0001 -0.0001 -0.0002 0.0003

Table A.8 The values of error in calibrating GOOG historical data for some (λi, τ j).

λτ 5 6 7 8 9 10 11 12 13
17886.96 0.0919 0.0661 0.0456 0.0307 0.0154 0.0052 0.0128 0.0137 0.0231
17690.40 0.0797 0.0681 0.0482 0.0317 0.0114 0.0145 0.0081 0.0119 0.0254
17493.84 0.0946 0.0651 0.0504 0.0332 0.0238 0.0030 0.0079 0.0173 0.0246
17297.28 0.0967 0.0633 0.0460 0.0369 0.0199 0.0113 0.0076 0.0102 0.0210
17100.72 0.0840 0.0678 0.0448 0.0349 0.0228 0.0141 0.0089 0.0105 0.0196

Table A.9 Measures of σ̂15sec − σ15sec in calibrating GOOG historical data.
λτ 5 6 7 8 9 10 11 12 13

17886.96 0.0015 0.0034 0.0047 0.0039 0.0044 0.0051 0.0067 0.0053 0.0076
17690.40 0.0015 0.0024 0.0046 0.0055 0.0049 0.0062 0.0065 0.0066 0.0055
17493.84 0.0031 -0.0001 0.0059 0.0054 0.0053 0.0002 0.0049 0.0057 0.0073
17297.28 0.0021 0.0018 0.0044 0.0033 0.0046 0.0053 0.0048 0.0056 0.0070
17100.72 0.0025 0.0036 0.0036 0.0051 0.0051 0.0066 0.0055 0.0051 0.0055
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Table A.10 Statistical summary of returns for Australian stock index S&P 200 (AXJO) at
different sampling frequency for the period 1st January, 2008 to 31st December, 2013.

Asset Frequency Mean SD Skewness Kurtosis Min Max
AXJO Daily -0.0002446 0.0131496 -0.3767034 2.863 -0.0714057 0.0458126
AXJO 60-min -0.0000406 0.0054814 -0.3073395 18.048 -0.0515180 0.0627551
AXJO 30-min -0.0000204 0.0038930 -0.2759757 39.654 -0.0597412 0.0682942
AXJO 15-min -0.0000102 0.0027673 -0.3159879 74.005 -0.0532332 0.0659015
AXJO 5-min -0.0000034 0.0013278 -0.2473133 80.334 -0.0309539 0.0391501
AXJO 1-min -0.0000007 0.0004838 -0.2353127 224.649 -0.0249049 0.0261786
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Table A.11 Summary statistics for at-the-money call/put options price process and their
average.

Series Mean Std. Dev. Skew. Kurt. Min. Max.
AT MGC(t) 0.0158 0.0057 1.2610 2.4451 0.0061 0.0435
AT MGP(t) 0.0160 0.0055 1.3886 2.4133 0.0073 0.0422
AT MGC(t) 0.0159 0.0052 1.5093 2.6646 0.0083 0.0382
ln(AT MGC(t)) -4.2038 0.3406 0.1209 0.0639 -5.0995 -3.135
ln(AT MGP(t)) -4.1860 0.3113 0.4517 0.0713 -4.9199 -3.1653
ln(AT MG(t)) -4.1863 0.2946 0.6461 0.2068 -4.8036 -3.2649

79



Table A.12 Summary statistics for daily log return of S&P 200 and the 22 trading-day G’
process.

△ ln S t △G′t Cross − correlation
Period No. Obs Mean SD(annual) Mean SD(annual) corr(rt, qt), lag = 0
2010 253 -0.0001 15.80% -0.0005 2.12% -0.8167
2011 251 -0.0006 19.56% 0.001 3.42% -0.8575
2012 253 0.0005 11.85% -0.0025 1.50% -0.7984
All 757 -0.0001 27.76% -0.0005 4.35% -0.8410
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Table A.13 Regression results for in-sample data.

Dependent variable: FVt

OLS Estimation Cochrane–Orcutt Estimation

Coefficients Model (1) Model (2) Model (1′) Model (2′)

η −0.0285 −0.0236 0.2393 0.23763

FVt−△t 0.1117 0.0980 −0.3950 −0.3890

VIXt 0.8126 0.2807 −0.0084 −0.0468

IVG
t 0.7060 0.0569

ρ 0.9951 0.9949

Durbin-Watson 0.3619 0.3914 1.9810 1.9834
AIC -2581.402 -2631.773 -3633.377 -3633.845
BIC -2563.841 -2609.821 -3616.362 -3617.576

RMSE 0.0284 0.0263 0.0087 0.0072

Note: all coefficients are significant at p =1%.
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Table A.14 Statistical summary of S&P/ASX 200’s 15-second Realised Volatility at
different time horizons from 1-January, 2008 to 31-December, 2014, and their correlation

matrix.
Series Mean Std. Dev. Skew. Kurt. Min. Max. RVt−1,t RVt−5,t RVt−22,t PV
RVt−1,t 0.1335 0.0848 2.4957 8.9530 0.0328 0.7811 1 0.8441 0.7523 0.7757
RVt−5,t 0.1335 0.0721 2.0481 5.4748 0.0484 0.5453 0.8441 1 0.9042 0.8919
RVt−22,t 0.1331 0.0664 1.8304 3.9311 0.0593 0.4228 0.7523 0.9042 1 0.9180

PV 0.1614 0.0705 1.5181 2.8461 0.0698 0.5004 0.7757 0.8919 0.9180 1
Series Mean Std. Dev Skew. Kurt. Min. Max. log RVt−1,t log RVt−5,t log RVt−22,t log PV

log RVt−1,t -2.1588 0.5139 0.5678 0.2336 -3.4184 -0.2471 1 0.8548 0.7739 0.7936
log RVt−5,t -2.1244 0.4499 0.6619 0.0960 -3.0274 -0.6064 0.8548 1 0.9124 0.8972
log RVt−22,t -2.113 0.4213 0.7156 -0.0407 -2.8248 -0.8608 0.7739 0.9124 1 0.9017

log PV -1.9044 0.3893 0.5190 -0.3229 -2.6618 -0.6923 0.7936 0.8972 0.9017 1
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Appendix B

Figures
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Figure B.1: The Actual Price vs the Simulated Price for SP500 from January to December,
2008; and the terminal price distribution of 100,000 instances.
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Figure B.2: Histograms and Q-Q Plots for the historical S&P500 (2008) vs the simulated
process from the proposed model.
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Figure B.3: True simulated option values for the at-the-money options vs the approximated
option prices with the same strike prices and time-to-maturity. The approximated values
was estimated by using the algorithm discussed in Section 4.3.2.
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Figure B.4: The approximated call option prices were found by using the algorithm dis-
cussed in Section 4.3.2. The shaded area are the optimal bounds of option prices which
were constructed by analysing the convexity of nearby option prices, according to Bertsi-
mas and Popescu [24].
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Figure B.5: Bounds on call/put options by using the convexity and monotonicity of the
available option prices according to Dimitris and Popescu [24]. The underlying asset was
BHP.AX as at 8th Feb, 2012 and the selected options are the BHP March12 options with
strike K = [37.01, 37.51, 38.51, 38.51] as shown.
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Figure B.6: Option price surface with different strike prices and time-to-maturity (days) of
the call options and put options recorded for BHP.AX as at 8th Feburary 2012 (last prices
of the trading days). This figure showed that there is a nonlinear relationship between the
option price and strike price, especially for in-the-money options. This data was obtained
from SIRCA.
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Figure B.8: Cross-correlations between daily returns of the S&P 200 index level and daily changes
in G.
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Figure B.10: A binary tree - starts from the root node, multiple criteria are selected based
on the information from each input. A decision is drawn at a particular leaf, i.e. Decision
D, if all criteria along its path “==" are satisfied .

94



RSI−RV(5) >= 0.5

TR(10) < 0.0084

RSI−RV(22) >= 0.52

Jump >= 0.013

TR(10) < 0.015

ATR−RV(10) >= 0.0097

TR(10) < 0.0072

Leverage (+) >= 0.014

TR(10) < 0.0049

RSI−RV(22) >= 0.48

DOWN

.50  .50

100%

DOWN

.76  .24

42%

DOWN

.91  .09

19%

DOWN

.64  .36

23%

DOWN

.82  .18

10%

DOWN

.51  .49

13%

DOWN

.75  .25

4%

UP

.40  .60

9%

UP

.49  .51

7%

DOWN

.75  .25

3%

UP

.32  .68

4%

UP

.14  .86

2%

UP

.31  .69

58%

DOWN

.51  .49

19%

DOWN

.82  .18

5%

UP

.40  .60

14%

DOWN

.58  .42

6%

DOWN

.74  .26

4%

UP

.29  .71

2%

UP

.28  .72

9%

UP

.22  .78

39%

yes no

1

2

4

5

10

11

22

23

46

92 93 47

3

6

12

13

26

52 53 27 7
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Figure B.12: Annualised daily volatility estimates with classical estimator vs Andersen’s
realised volatility estimates for SP500 from 2008-2013.
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