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Abstract  

Most current Advanced Receiver Autonomous Integrity Monitoring (ARAIM) methods are 

designed to use dual-frequency ionosphere-free observations. These methods assume that 

receiver bias is absorbed in the common receiver clock offset and bound satellite biases by 

nominal values. However, most multi-constellation Global Navigation Satellite Systems (GNSS) 

can offer triple frequency data that can be used for civilian applications in the future, which can 

improve observation redundancy, solution precision and detection of faults. In this contribution, 

we explore the use of this type of observations from GPS, Galileo and BeiDou in ARAIM. 

Nevertheless, the use of triple frequency data introduces receiver differential biases that have to 

be taken into consideration. To demonstrate the significance of these additional biases we first 

present a method to quantify them at stations of known coordinates and using available products 

from the International GNSS service (IGS). To deal with the additional receiver biases, we use a 

between-satellite single difference (BSSD) observation model that eliminates their effect. A pilot 

test was performed to evaluate ARAIM availability for Localizer Performance with Vertical 

guidance down to 200 feet (LPV-200) when using the triple-frequency observations. Real data 

were collected for one month at stations of known coordinates located in regions of different 

satellite coverage characteristics. The BSSD triple-frequency model was evaluated to give early 

indication about its feasibility, where the implementation phase still requires further 

comprehensive studies. The vertical position error was always found to be bounded by the 

protection level proven initial validity of the proposed integrity model.  
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1. Introduction 
   

The presence of multiple GNSS constellations that provide a global coverage with multiple 

frequency observations led to the development of Advanced Receiver Autonomous Integrity 

Monitoring (ARAIM) methods for aircraft localizer performance with vertical guidance. For 

example, integration of GPS with Galileo in ARAIM has been shown in Rippl el al. (2011), and 

in Choi et al. (2012); Walter et al. (2013) using GPS and GLONASS. Integration of GPS with 

BeiDou in ARAIM has been demonstrated in Lijun et al. (2012); Liu and Zhu (2014); and El-

Mowafy (2016).  

 

The current proposed ARAIM methods use dual-frequency observations. Nevertheless, 

Galileo, BeiDou and GPS block III satellites provide triple-frequency observations. The 

additional use of a third frequency can improve positioning accuracy compared to the dual-

frequency case (Elsobeiey, 2015; Duong et al., 2016) and can enhance the fault detection 
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capability (Guo et al., 2011), which is a fundamental task in integrity monitoring. Another 

advantage of the use of a third frequency is that in case of unavailability of observation from one 

frequency, the remaining data of the satellite can still be used without excluding this satellite. 

Nevertheless, aviation requires the use of signals operating in designated safety-of-life 

aeronautical radionavigation service (ARNS) band. At present, the International Civil Aviation 

Organisation (ICAO) has not published the required navigation standards for Galileo and BeiDou, 

and the standards for dual-frequency use. However, these standards are expected to be available 

in the near future. Naturally, the implementation phase of a third frequency still requires a long 

road until the three signals are operationally available and regulations and policies are developed.  

 

Although the use of multi-constellation GNSS signals can enhance positioning accuracy and 

integrity monitoring (IM), such improvement requires proper handling and bounding of biases not 

only for satellite observations from each constellation but also among different constellations. 

The observation biases are dependent on the receiver and the individual satellite signal 

characteristics. They are mainly caused by signal distortion in the analogue and digital parts of 

the signal chain, which produces distortions in the chip shape that cause the receiver’s correlation 

function to deviate from its ideal triangular shape leading to a shift in the tracking point, and thus 

causes a bias in the measured pseudorange (Hauschild and Montenbruck, 2016). Additional 

biases are attributed to satellite orbit and clock navigation message miss-modelling, antenna 

phase centre offsets, inter-frequency biases, code-carrier incoherence, in addition to signal path 

through the antenna, splitter, cabling and amplifier (Phelts, 2007).  It is typically assumed that the 

signal characteristics of the satellites from the same GNSS constellation on the same spectral 

band are identical. Hence, in the current ARAIM dual-frequency methods, the receiver biases are 

assumed absorbed into the common receiver clock offset and the satellite biases are bounded by a 

nominal value. However, differential receiver biases will be introduced when a third civilian 

frequency is used due to the fact that receiver biases are frequency dependent, which then require 

a proper treatment.  

 

In this paper, we explore the feasibility of using a third frequency in ARAIM by creating two 

dual frequencies ionosphere-free (IF) observations, expecting the presence of these signals for 

civilian use in the future. To this end, instead of making assumptions on the differential receiver 

biases between the two IF observations, or trying to estimate them, where both approaches have a 

degree of uncertainty, we use a between-satellite single difference (BSSD) observation model in 

place of the traditional undifferenced observation model. This approach eliminates receiver clock 

offset as well as receiver hardware biases and therefore solves the problem at hand. 

 

In the following sections, integrity monitoring using the triple-frequency data is presented. A 

method for estimation of biases at stations of known coordinates is discussed to show the 

significance of the differential code biases and that they should be considered when using triple 

frequency observations. The implementation of the BSSD model in ARAIM using triple-

frequency data to cancel these biases is next discussed. Then, results of experimental evaluation 

of ARAIM availability is presented and analyzed at representative sites using data from multiple-

constellations, including GPS, Galileo and BeiDou.  
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2. The triple-frequency observation model     
 

In this study we use triple frequency data in the form of two ionosphere-free (IF) 

combinations. The IF observation equation of the pseudorange code measurements for satellite m 

from a GNSS constellation, such as Galileo, to receiver r for signals 𝑐𝑖 and 𝑐𝑗 on frequencies fi 

and  fj in length units can be expressed as (El-Mowafy, 2014): 

 

𝑝(𝐼𝐹𝑐𝑖,𝑗
)𝑟

𝑚 =  𝜌
𝑟
𝑚 + 𝐶(𝑑�̌�𝑟 −  𝑑𝑡𝑚) +  𝑇𝑚  + 𝐶 𝑑𝑚 (𝐼𝐹𝑐𝑖,𝑗

) +  𝜀𝑃(𝐼𝐹𝑐𝑖,𝑗
)𝑟

𝑚    (1) 

where 

𝑑�̌�𝑟 =  𝑑𝑡𝑟 + 𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗
),     𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗

) =  𝑎𝑖,𝑗   𝑑𝑟(𝑐𝑖)  − 𝑏𝑖,𝑗  𝑑𝑟(𝑐𝑗)  (2) 

𝑑𝑚 (𝐼𝐹𝑐𝑖,𝑗
) = 𝑎𝑖,𝑗   𝑑𝑚(𝑐𝑖)  − 𝑏𝑖,𝑗  𝑑𝑚(𝑐𝑗)  (3) 

with  𝑎𝑖,𝑗 =
𝑓𝑖

2

𝑓𝑖
2−𝑓𝑗

2 ,   𝑏𝑖,𝑗 =
𝑓𝑗

2

𝑓𝑖
2−𝑓𝑗

2   (4) 

 

𝑝(𝑐𝑗)𝑟
𝑚 is the ionosphere-free combination code measurements, 𝜌𝑟

𝑚 is the satellite-to-receiver 

range, C is the speed of light in vacuum, 𝑑𝑡𝑟 and 𝑑𝑡𝑚  are the receiver and satellite clock offsets. 

𝑇𝑚 is the troposphere delay, 𝜀𝑃(𝑐𝑗)𝑟
𝑚 comprises measurement noise and multipath of code 

measurements. 𝑑𝑟(𝑐𝑖) and 𝑑𝑚(𝑐𝑖) are the receiver and satellite hardware biases for 𝑐𝑖 in time 

units, and similarly 𝑑𝑟(𝑐𝑗) and 𝑑𝑚(𝑐𝑗) for 𝑐𝑗. It is typically assumed that the signal 

characteristics of the satellites from the same GNSS constellation on the same spectral occupation 

are identical. Hence, it follows that the receiver-dependent biases are assumed the same for all 

observations modulated on the same frequency for all satellites from the same constellation. 

Thus, in the above model, the receiver hardware bias is combined with the common receiver 

clock offset, and the joint term 𝑑�̌�𝑟  is determined as one of the unknowns per constellation.  

 

In the case of using triple-frequency data, for instance using 𝑐𝑘  in addition to 𝑐𝑖 and 𝑐𝑗, a 

second IF observation is added to Eq. (1), such that: 

 

𝑝(𝐼𝐹𝑐𝑖,𝑘
)𝑟

𝑚 =  𝜌
𝑟
𝑚 + 𝐶(𝑑�̌�𝑟 −  𝑑𝑡𝑚) +  𝑇𝑚  + 𝐶 𝑑𝑚(𝐼𝐹𝑐𝑖,𝑘

) + Δ𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗
, 𝐼𝐹𝑐𝑖,𝑘

) +  𝜀𝑃(𝐼𝐹𝑐𝑖,𝑐𝑘
)𝑟

𝑚   (5) 

where  

Δ𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗
, 𝐼𝐹𝑐𝑖,𝑘

) =  𝑑𝑟(𝐼𝐹𝑐𝑖,𝑘
) −  𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗

)  (6) 

 
is a receiver differential code bias (DCB). This term appears because a common receiver clock 

offset is used for all frequency combinations whereas it includes the bias of the ionosphere-free 

combination of the first pair of observations (i, j) as shown in (2). Hence, when the third 

frequency k is used; the additional differential receiver bias Δ𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗
, 𝐼𝐹𝑐𝑖,𝑘

) needs to be 

considered and bounded. Furthermore, when combining measurements from different 

constellations, as usually is the case in ARAIM, and when computing the vertical protection 
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levels (PL), which includes an overbounding term for satellite biases, receiver biases among 

different constellations have to be taken into consideration.  

 
3.  Receiver DCBs due to the use of a third frequency  

 

To demonstrate the significance of the DCBs when using two IF combinations of triple-

frequency data, we estimate in this section the DCBs at IGS stations of known coordinates and 

using available IGS products. Note here that this estimation method of DCBs is not a part of the 

proposed ARAIM approach.  

Let us first re-parameterize the IF combination of phase observations for 𝑐𝑖 and 𝑐𝑗  in the form: 

 

𝜙(𝐼𝐹𝑐𝑖,𝑗
)𝑟

𝑚 =  �̃�𝑟
𝑚 + 𝑀𝑚 (𝐼𝐹𝑐𝑖,𝑗

)  + 𝜀𝑃(𝐼𝐹𝑐𝑖,𝑗
)𝑟

𝑚   (7) 

where 

�̃�𝑟
𝑚 =  𝜌𝑟

𝑚 + 𝐶(𝑑𝑡𝑟 −  𝑑𝑡𝑚) +  𝑇𝑚  (8) 

 

and 𝑀𝑚 denotes the phase ambiguities.  

 

The first step to estimate the code biases is to determine �̃�𝑟
𝑚 .  Since point positions are known 

at the test IGS stations, one can determine the phase ambiguities using for instance the Least-

squares Ambiguity Decorrelation Approach (LAMDA) (Teunissen, 1999). By substituting the 

estimated values of 𝑀𝑚 (𝐼𝐹𝑐𝑖,𝑐𝑗
) in (8) and ignoring phase noise and biases, which are very small 

in magnitude compared with the corresponding code terms - typically at a few mm, �̃�𝑟
𝑚 can be 

determined from: 

 

  �̃�𝑟
𝑚 =  𝜙(𝑐𝑗)𝑟

𝑚 + 𝜇𝑗 𝐼𝑚 − 𝑀𝑚(𝑐𝑗) (9) 

 

After re-arranging terms of (1), we have 

 

𝑝(𝐼𝐹𝑐𝑖,𝑗
)𝑟

𝑚 =  �̃�𝑟
𝑚 + 𝐶 (𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗

) −  𝑑𝑚 (𝐼𝐹𝑐𝑖,𝑗
)) +  𝜀𝑃(𝐼𝐹𝑐𝑖,𝑗

)𝑟
𝑚   (10) 

 

By substituting for the �̃�𝑟
𝑚 determined from (9), the bias term 𝐶 (𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗

) −

 𝑑𝑚 (𝐼𝐹𝑐𝑖,𝑗
)) can be estimated from (10) after filtering out the noise and multipath by averaging 

the results over a relatively long period of time. This period is selected at each station such that to 

reduce the effect of multipath and noise, only observations from the central part of the satellite 

pass with elevation angles higher than 40
o
 are used. From (10), the term  𝑑𝑚 (𝐼𝐹𝑐𝑖,𝑗

) can be 

estimated from the IGS-Multi-GNSS Experiment (MGEX) products 

(http://igs.org/mgex/products), as explained in El-Mowafy et al., 2016, and finally, 𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗
) can 

be determined from: 

 

  𝐶 𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗
) =  𝑝(𝐼𝐹𝑐𝑖,𝑗

)𝑟
𝑚 − �̃�𝑟

𝑚 + 𝐶 𝑑𝑚 (𝐼𝐹𝑐𝑖,𝑗
)  
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Table 1 summarizes the estimated average values of the DCBs between two IF combinations 

(Δ𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗
, 𝐼𝐹𝑐𝑖,𝑗

)) , for GPS, Galileo and BeiDou satellites that have triple frequency 

observations. The IF combinations used were L1/L5 and L1/L2 for GPS, E1/E5a and E1/E5b for 

Galileo, and B1/B2 and B1/B3 for BeiDou. Note that L2 is given here only for demonstration 

purpose where in the GPS Block III other signals such as L1C and L2C will be available. The 

data used were collected over June 2016 at 16 IGS stations of a global distribution using the same 

receiver model (Trimble NetR 9). As the table shows, Δ𝑑𝑟 (𝐼𝐹𝑐𝑖,𝑗
, 𝐼𝐹𝑐𝑖,𝑗

) is more than 1.5 m for 

GPS and BeiDou and 0.14 m for Galileo, which are significant values that cannot be ignored. 

Furthermore, these differential biases are not constant and change between days. Therefore, 

allocating an overabounding value for the DCBs in the integrity model similar to the way that 

satellite biases are treated in the current ARAIM methods would require assigning a high value to 

cover a wide range of receiver models. This would result in an increase of the PL and hence a 

reduction of ARAIM availability. Therefore, eliminating these receiver DCB terms would be a 

better option, which will be discussed in the next section using the BSSD approach. 

 

Table 1.  Average receiver DCB between ionosphere-free combinations (m) 

GPS 

L1/L5 - L1/L2 

Galileo 

E1/E5a - E1/E5b 

BeiDou 

B1/B2 - B1/B3 

1.895 0.138 1.502 

 
4. Between-satellite single difference (BSSD) of triple observations model in ARAIM   

 

In this study, triple-frequency BSSD model is presented restricting our focus to the integrity 

evaluation process. The fault detection and exclusion (FDE) process will be discussed in detail in 

a separate study. 

 

4.1. Integrity evaluation with a triple frequency BSSD model 

 

The use of BSSD model for measurements on the same frequency from the same constellation 

removes the receiver clock offset and eliminates the receiver-dependent differential hardware 

biases. For instance, by differencing the measurements from satellite mG with measurements from 

a pivot (reference) satellite, denoted as lG, which can be chosen as the satellite with the largest 

elevation angle, the BSSD code observation for ci,j is: 

 

𝑝(𝐼𝐹𝑐𝑖,𝑗
)𝑟

𝑚,𝑙 =  𝜌𝑟
𝑚,𝑙 − 𝐶(𝑑𝑡𝑚,𝑙 + 𝑑(𝐼𝐹𝑐𝑖,𝑗

)𝑚,𝑙) +  𝑇𝑚,𝑙 +  𝜀 
𝑝(𝐼𝐹𝑐𝑖,𝑗

)𝑟
𝑚,𝑙   (11) 

 

where  𝜌𝑟
𝑚,𝑙

 is the single-difference satellite-to-receiver range, which equals (𝜌𝑟
𝑙 − 𝜌𝑟

𝑚), 

𝑑(𝐼𝐹𝑐𝑖,𝑗
)𝑚,𝑙  is the between-satellite IF bias, 𝑇𝑚,𝑙 is the single difference troposphere delay 

(𝑇𝑙 − 𝑇𝑚), and 𝜀 
𝑝(𝐼𝐹𝑐𝑖,𝑗

)𝑟
𝑚,𝑙 is the BSSD code measurement noise. Similarly for the second IF 

observation ci,k in the triple-frequency system, we have: 

 

𝑝(𝐼𝐹𝑐𝑖,𝑘
)𝑟

𝑚,𝑙 =  𝜌𝑟
𝑚,𝑙 − 𝐶(𝑑𝑡𝑚,𝑙 + 𝑑(𝐼𝐹𝑐𝑖,𝑘

)𝑚,𝑙) +  𝑇𝑚,𝑙 +  𝜀 
𝑝(𝐼𝐹𝑐𝑖,𝑘

)𝑟
𝑚,𝑙  (12) 
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For one IF pair of observations (e.g. i and j), the BSSD model does not change observation 

redundancy compared with the undifferenced model. For a single constellation with N satellites, a 

redundancy of (N-4) is available using the latter model. The number of observations using BSSD 

is (N-1) and the number of states reduces from 4 (3D position + receiver clock offset) to 3 by 

excluding the receiver clock offset. Thus, the redundancy remains (N-4). While the use of triple-

frequency data provides more observations, it does not add to satellite geometry information, and 

thus at least four satellites still need to be observed. Furthermore, when integrating multi-

constellation GNSS, one may opt not to use a pivot satellite from one system (e.g. Galileo) to 

form BSSD with satellites from other systems. An independent receiver clock offset for each 

constellation will be needed, which will help in preventing errors in the pivot-satellite 

constellation from being transferred to other systems. Therefore, each system will have its own 

reference satellite and thus a minimum of two satellites are needed from each system to be useful.  

 

For ARAIM, the BSSD linearized measurement model in a general form can be written as: 

 

B 𝑦 = 𝐺 𝑥 +  𝐵 𝐴𝑓 𝑥𝑓 + 𝐵 𝑏𝑠𝑎𝑡 + 𝜀   (13) 

 

where y is the measurement vector taken as the difference between the observed code 

measurements and the calculated ones from satellite coordinates and the approximate receiver 

coordinates, determined for instance by single point positioning of code measurements of one 

constellation, e.g. GPS.  x denotes the difference between the final and approximate values of the 

unknown parameters, which only comprises the 3D position components. xf is the fault (or large 

errors) state vector, which includes possible failures defined for instance in (Blanch et al., 2013).  

Af is used to characterize suspected faults, such that the number of its columns equals the number 

of suspected satellites in each fault mode. Each of the columns in Af has a one in the index 

corresponding to the satellite assumed to be affected and zero elsewhere. 𝑏𝑠𝑎𝑡  is a vector of the 

satellite-related biases and  is the BSSD noise vector. For one of the integrated systems, (e.g. 

GPS) with N observed satellites with two IF combinations for the triple frequency observations, 

𝐵2(𝑁−1)×2𝑁 = [𝑢2(𝑁−1)×2 −I2(𝑁−1)×2(𝑁−1)], where I is the identity matrix and the subscripts 

define dimension of the matrix, 𝑢2(𝑁−1)×2 = (I2×2)2(𝑁−1) = [
1 0 ⋯ 1 0
0 1 ⋯ 0 1

]
𝑇

. For the 

combined constellations, e.g. starting from GPS and ending by BeiDou (BDS) with M observed 

satellites, the B matrix is: 

 

𝐵 = [

𝐵𝐺
2(𝑁−1)×2𝑁 ⋯ 02(𝑁−1)×2𝑀

⋮ ⋱ ⋮
02(𝑀−1)×2𝑁 ⋯ 𝐵𝐵𝐷𝑆

2(𝑀−1)×2𝑀

]  (14) 

 

where each system has its reference satellite, 𝐵𝐺  and 𝐵𝐵𝐷𝑆 are the B matrix for GPS and BDS. 

 

The direction cosine matrix G provides the transformation between the observation domain 

and the position domain, such that for the BSSD between satellites m and l, the corresponding 

row of G for one pair of frequencies, i.e. G
m,l 

reads:  

 

𝐺𝑚,𝑙 =  [−c𝜃𝑚 s𝛼𝑚 + c𝜃𝑙  s𝛼𝑙 −c𝜃𝑚 c𝛼𝑚 + c𝜃𝑙  c𝛼𝑙 −s𝜃𝑚 + s𝜃𝑙] (15) 
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where “c” denotes the cosine, “s” is the sin,  and  are the elevation angle and azimuth of the 

satellite, which are determined from the broadcast satellite ephemeris and the approximate 

receiver position. The final G of the combined systems, with N to M observed satellites, is: 

 

𝐺 = [

𝐺2(𝑁−1)×3

⋮
𝐺2(𝑀−1)×3

] (16) 

 

The covariance matrix in ARAIM includes the User Range Accuracy (URA), changes in the 

troposphere delay, multipath and noise effects. The URA represents the standard deviation that 

bounds the stochastic changes in range related to satellite clock and ephemeris errors in the 

absence of faults and used to evaluate availability of integrity monitoring (El-Mowafy and Yang, 

2016). The URA is broadcast in the navigation message and will be sent in the planned Integrity 

Support Message. For Galileo, the Signal-in-Space-Accuracy (SISA) replaces URA. It is assumed 

that observations from each satellite are uncorrelated. A single user standard deviation (𝜎 𝑢𝑠𝑒𝑟) 

combines the multipath and noise effects, where some related models were suggested, for 

instance as a function of the satellite elevation angle as shown in RTCA (1991); Lee and 

McLaughlin (2007) and Blanch et al. (2015). To form the covariance matrix for the two IF 

combinations on the triple-frequencies i, j, k, let 𝑎 = (
fi

2

fi
2-fj

2 )2, 𝑏 = (
fj

2

fi
2-fj

2 )2, 𝑐 = (
fi

2

fi
2-fk

2 )2  and 

 𝑑 = (
fk

2

fi
2-fk

2 )2, which gives for satellite s:  

 

𝑄𝑢𝑠𝑒𝑟𝑠
=  [𝑎 𝑏 0

𝑐 0 𝑑
] 𝑑𝑖𝑎𝑔(𝜎 𝑖,𝑢𝑠𝑒𝑟 

2 , 𝜎 𝑗,𝑢𝑠𝑒𝑟 
2 ,  𝜎 𝑘,𝑢𝑠𝑒𝑟 

2 ) [
𝑎 𝑏 0
𝑐 0 𝑑

]
𝑇

 (17) 

 

Accordingly, assuming that 𝜎  𝑢𝑠𝑒𝑟 
2 = 𝜎 𝑖,𝑢𝑠𝑒𝑟 

2 , = 𝜎 𝑗,𝑢𝑠𝑒𝑟 
2 =  𝜎 𝑘,𝑢𝑠𝑒𝑟 

2 , the covariance matrix for 

integrity monitoring for satellite s (denoted as 𝑄𝑈𝑅𝐴𝑠
) using two dual-frequency IF observations 

before applying the BSSD is expressed as: 

  

 𝑄𝑈𝑅𝐴𝑠
=  𝜎  𝑢𝑠𝑒𝑟 

2 [𝑎2 + 𝑏2 𝑎 𝑐
𝑎 𝑐 𝑐2 + 𝑑2] + (𝑈𝑅𝐴𝑠

2 + 𝜎𝑡𝑟𝑜𝑝𝑜
2

𝑠
) [

1 1
1 1

]    (18) 

 

where 𝜎𝑡𝑟𝑜𝑝𝑜 is the standard deviation for the troposphere delay. The 𝑈𝑅𝐴 and  𝜎𝑡𝑟𝑜𝑝𝑜 are the 

same for the two dual-frequency IF observations, giving a correlation coefficient=1, and thus 

covariance ≈ 𝑈𝑅𝐴2 and 𝜎𝑡𝑟𝑜𝑝𝑜
2 .  For the combined system, the covariance matrix is  𝑄𝑈𝑅𝐴𝑠𝑎𝑡𝑠

=

𝑑𝑖𝑎𝑔(𝑄𝑈𝑅𝐴1
, … , 𝑄𝑈𝑅𝐴𝑁

; … 𝑄𝑈𝑅𝐴𝑀
)  for satellites 1 to N of the first system, 1 to M in the second, 

etc.  When applying the BSSD model, the corresponding covariance matrix (denoted as 𝑄𝑈𝑅𝐴) is: 

  

𝑄𝑈𝑅𝐴 = 𝐵  𝑄𝑈𝑅𝐴𝑠𝑎𝑡𝑠
  𝐵𝑇  (19) 

 

and the weight matrix (𝑊𝑈𝑅𝐴) is computed as 𝑊𝑈𝑅𝐴 =  𝑄𝑈𝑅𝐴
−1 .  

 

The least square solution of the unknown parameters for all satellites in view is: 

 

�̂� = 𝑆𝑇  𝐵 𝑦  (20) 
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where 𝑆𝑇 = (𝐺𝑇𝑊𝑈𝑅𝐴𝐺)−1 𝐺𝑇𝑊𝑈𝑅𝐴  is the projection matrix from the observation domain to the 

position domain. The Multiple Hypothesis Solution Separation method (MHSS) is applied in this 

study. The MHSS evaluates different fault modes given the specified probabilities of faults and 

determines the optimal probability of missed detection (Blanch et al., 2012; Joerger and Pervan, 

2014). In MHSS, a position error bound is created for each fault mode by computing a position 

solution unaffected by the fault, computing an error bound around this solution and accounting 

for the difference between all-in-view position solution and the fault tolerant position. For 

instance, for fault mode i, which can represent one or multiple faulty satellites from one or more 

constellations, Si is formed similar to S by excluding the suspected satellites where                 

𝑆𝑖
𝑇 = (𝐺𝑇𝐴𝑖𝑊𝑈𝑅𝐴𝐺)−1 𝐺𝑇𝐴𝑖𝑊𝑈𝑅𝐴.  𝐴𝑖  is an identity matrix where the diagonal elements 

corresponding to i are zeros.  The position estimate corresponding to this mode is  �̂�𝑖 = 𝑆𝑖
𝑇  𝐵 𝑦 .  

   

The LPV-200 requirements described in the ICAO (2009) GNSS standards and recommended 

practices (SARPs) that can be used for evaluation of ARAIM availability are:  

 4 m, 95% accuracy requirement; 

 10 m, 99.99999% (i.e. 1-10
-7

) fault free vertical position error requirement,  

 Effective Monitor Threshold (EMT) requirement ≤  15 m, and 

 VPL ≤ VAL requirement, where VPL is the vertical PL and VAL is the Vertical Alert Level, 

which equals 35m for LPV-200.  

The last requirement is in the hazardous category and the other requirements are usually met 

when this requirement is encountered and therefore ARAIM can be considered practically 

available when VPL ≤ VAL. In this contribution, VPL is computed following the baseline method 

presented in Blanch et al. (2014), as the max{VPLo, max(VPLi)}, where VPLo is the VPL for the 

fault-free full set of available satellites computed as: 

 

VPLo = Gaussian term + bias overbound =   𝐾𝑚𝑑,0 × 𝜎𝑉,0 +  |𝑆3
𝑇| × 𝑏𝑖𝑎𝑠𝑛𝑜𝑚 (21) 

            

where |𝑆3
𝑇| is the sum of elements of the third row of 𝑆𝑇 corresponding to the vertical position 

component. The maximum nominal bias, biasnom, is used to bound possible non-zero mean error 

distributions at the satellite end, where receiver biases are assumed cancelled using the BSSD 

model. For fault mode i, VPLi is: 

 

𝑉𝑃𝐿𝑖 = 𝑇𝑖 +  𝐾𝑚𝑑,𝑖 × 𝜎𝑉,𝑖 +  |𝑆𝑖3

𝑇 | × 𝑏𝑖𝑎𝑠𝑛𝑜𝑚 (22)  

with 

𝑇𝑖 =  𝐾𝑓𝑓𝑑,𝑖 × 𝜎𝑑𝑉,𝑖 +  |(𝑆 − 𝑆𝑖)3
𝑇| × 𝑏𝑖𝑎𝑠𝑛𝑜𝑚 (23) 

 

where 𝜎𝑣,0 =  √𝑒3
𝑇  𝑆𝑇  𝑊𝑈𝑅𝐴

−1  𝑆 𝑒3  and 𝜎𝑣,𝑖 =  √ 𝑒3
𝑇  𝑆𝑖

𝑇𝑊𝑈𝑅𝐴
−1  𝑆𝑖  𝑒3.  e3 denotes a column vector 

whose 3
rd

 entry is one and zero for the other entries. Kmd,0, Kmd,i and Kffd,i are scalar factors that 

are used to satisfy the miss-detection and false alert probabilities and are computed from the 

inverse of the complement of the one-sided standard normal cumulative distribution function. 

dv,i is the standard deviation computed from: 

 

𝜎𝑑𝑣,𝑖 =  √𝑒3
𝑇  ( 𝑆 − 𝑆𝑖)𝑇  𝑊𝑈𝑅𝐸

−1  ( 𝑆 − 𝑆𝑖) 𝑒3   (24)  
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where UREW  is a weight matrix structured similar to URAW  by replacing the URA by the user range 

error (URE) in (17). The URE is the non-integrity-assured standard deviation of the range 

component of satellite clock and ephemeris errors and is used to evaluate accuracy and continuity 

performance. For Galileo, the Signal-in-Space-Error (SISE) replaces the URE.  

 

4.2. A note on modelling satellite biases using the BSSD model 

In the BSSD model, the satellite nominal biases remained in Eqs. 21-23 after elimination of 

the receiver biases. For example between the satellites l and m, the satellite-related nominal 

bounding bias is 𝑏𝑖𝑎𝑠𝑛𝑜𝑚
𝑚,𝑙 =  𝑏𝑖𝑎𝑠𝑛𝑜𝑚

𝑙 −  𝑏𝑖𝑎𝑠𝑛𝑜𝑚
𝑚 .  This form has two contradictory effects on the 

computation of the PL, eventually almost balancing each other.  On one hand, since in the MHSS 

the sign of the satellite biases are assumed unknown, to bound the biases and to ensure that the 

continuity requirement is met regardless of their actual signs, a conservative approach is to 

assume opposite signs for 𝑏𝑖𝑎𝑠𝑛𝑜𝑚
𝑙  and 𝑏𝑖𝑎𝑠𝑛𝑜𝑚

𝑚  when computing their difference. Accordingly, 

the maximum difference between two nominal satellite biases would be twice as much as that of 

a single satellite nominal bias, taking the same value of the nominal biases for all satellites from 

the same constellation. However, in practice biases have positive and negative signs. This is 

depicted in Figure 3, where the sign and value of the satellite biases on 04/07/2016 are illustrated 

for two IF observations forming possible triple frequency observations for block IIF GPS 

satellites and operational Galileo and BeiDou satellites. Hence, the difference between the 

observations of two satellites in the BSSD, for many satellites, will yield in practice a reduced 

bias effect whereas an overconservative PL is used. 

 

     

     

       

Fig.  3   Satellite biases for block IIF GPS satellites (L1/L5, L1/L2, top panel); Galileo (E1/E5a, 

E1/E5b, middle panel); BeiDou (B1/B2, B1/B3, bottom panel) on 4 July 2016. 
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On the other hand, the nominal biases are projected on the position domain using |𝑆3
𝑇|, 

|𝑆𝑖3

𝑇 |, and |(𝑆 − 𝑆𝑖)3
𝑇|. These projection (scaling) factors vary according to geometry of satellites 

and are significantly smaller in the BSSD model than their corresponding terms when using the 

un-differenced observation model (i.e. without applying BSSD) due to the use of differenced 

observations in the BSSD.  

For numerical demonstration, Table 2 shows as an example the values of |𝑆3
𝑇| and |𝑆𝑖3

𝑇 | in the 

two cases of using the undifferenced and BSSD observation models for one pair of dual-

frequency observations for the first epoch of GPS data collected at station ZIM3 (which will be 

described later in the next section). For simplicity of presentation, the projection factors are only 

shown for testing the hypothesis of a single faulty satellite. The given |𝑆𝑖3

𝑇 | values are computed 

by eliminating the same satellites, defined in the table by their PRNs, when determining VPLi in 

the undifferenced and BSSD observations. In both cases, 7 satellites were considered (PRNs 21, 

8, 27, 16, 31, 18 and 29), where for BSSD PRN 21 was taken as the reference satellite. To 

compute VPLi, one satellite was excluded in each run and the same 6 satellites were used when 

comparing results of the un-differenced and BSSD models. For example, when excluding PRN 8 

satellites PRNs 21, 27, 16, 31, 18 and 29 were used in the undifferenced mode. For BSSD, the 

same satellites were used forming the differenced observation pairs 21-27, 21-16, 21-31, 21-18 

and 21-29, which gives the same satellite geometry. One can notice the significant reduction of 

the projection factors in the BSSD case, which was 50-60% of the undifferenced case.  

 

Eventually, the difference in the impact of the bounding approach of satellite biases between 

using the BSSD model and the un-differenced model will depend on the magnitude of the 

difference between the projection factor and the assumed amplification of the satellite bias. For 

the triple-frequency model, the same effect is experienced, where there are two 𝑆3
𝑇 coefficients 

per satellite, which have the same value for the two IF observations if the same σuser is used. 

 

Table 2.  Comparison of the projection factors in one epoch between using the conventional 

(un-differenced) and the BSSD models for one pair of dual-frequency observations 
 

 |𝑆3
𝑇|                                   |𝑆𝑖3

𝑇 | 

  
Excluded  

PRNs 
8 27 16 31 18 29 

un-differenced 

observations 
4.09  4.09 4.36 4.01 3.89 4.10 7.36 

BSSD 2.92  2.02 2.43 2.08 2.01 2.16 5.69 

 

 
5. Testing    
 

In this section, a pilot experement was carried out to evaluate performance of the triple 

frequency observations using the BSSD model in ARAIM. At the time of the test, there were 31 

GPS satellites, 20 BeiDou satellites and 12 satellites in Galileo. Their full constellations will be 

operational within a few years. The test gives an initial indication about possible future 

performance.  
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5.1. Test description   

The test data in our study covered June 2016 and include combined GPS, Galileo and BeiDou 

measurements collected at 65 IGS stations of known coordinates that have a global distribution 

(Dow et al., 2009). The receivers at these stations are capable of tracking all GNSS constellations 

with 30 seconds sampling rate. Real data were used in the test for the following reasons:  

i) to allow for the determination of the vertical position error (VPE), which is the difference 

between the known station vertical position and the computed one from real observations. 

When ARAIM availability requirement is met (i.e. VPL<VAL), we check that VPE is 

bounded by the VPL as an indicator of the validity of the integrity model. This only offers 

a limited, albeit fundamental, check as the data used covered a limited period of time 

whereas an optimal test would need years of data to check the 10
-7

 LPV-200 requirement.  

ii) To allow for the use of actual URA received via the satellite broadcast navigation data.  

 

The number of observed satellites and their geometry, which are dependent on time of 

observation and station location, have a direct impact on the magnitude of the VPL and hence on 

ARAIM availability. Although at present, Galileo and BeiDou have partial constellations; testing 

using real data helps in resembling locations of constrained satellite visibility. In this section, we 

highlight results at selected representitive sites for demonstration of the expected performance 

rather than showing results on a global scale. The three IGS stations; CUT0 (Australia), ZIM3 

(Switzerland) and CPVG (Cape Verde) that represent three geographic regions were selected for 

this demonstration. Station CUT0 is located in Western Australia in the southern hemisphere, 

representing an area with good coverage by all constellations including all BeiDou satellites. 

Station CPVG in the Atlantic Ocean has an excellent coverage by GPS but poor coverage by 

BeiDou. Station ZIM3 is located in-between the two stations in Switzerland, with a partial 

coverage by BeiDou. The following symbols were used; GAL for Galileo and BDS for BeiDou. 
 

The triple-frequency data used in the test included L1, L5 and L2 for GPS (where L2 was used 

for demonstration only); E1, E5a and E5b for GAL; and B1, B2 and B3 for BDS. They form two 

dual-frequency combinations for each system; which comprise L1/L5 and L1/L2 for GPS; 

E1/E5a and E1/E5b for GAL; and B1/B2 and B1/B3 for BDS. The data was available for Galileo 

and BeiDou, but since only block II-F satellites have L5, we simulated the L5 data for satellites 

from the blocks IIR and IIR-M. In the upcoming GPS Block III satellites, the future L1C and 

L2C signals may be used. 

 

5.2. Used parameters in the error model    

 

Knowledge of the stochastic characteristics of the signals is required in the error models used 

in ARAIM. Stochastic characteristics of GPS and Galileo observations were comprehensively 

discussed in the literature. For BeiDou, such studies are somewhat limited, e.g. Montenbruck et 

al. (2013); El-Mowafy and Hu (2014). Furthermore, while GPS and Galileo have medium Earth 

orbit (MEO) satellites, BeiDou additionally has Geostationary (GEO) and Inclined 

Geosynchronous Orbit (IGSO) satellites, which require a special modelling as shown in El-

Mowafy and Hu (2014). Today, the minimum broadcast URA for GPS is 2.4 m but smaller values 

will become possible in the future when the new GPS CNAV message format is implemented for 

all satellites. BeiDou utilizes the same URA indexing system applied in GPS. CSNO, 2013 

(http://www.beidou.gov.cn./) indicates that BeiDou SIS accuracy is ≤ 2.5 m and most current 

http://dx.doi.org/10.1016/j.asr.2017.01.037
http://link.springer.com/search?facet-author=%22Oliver+Montenbruck%22


Advances in Space Research, 2017,  http://dx.doi.org/10.1016/j.asr.2017.01.037     12 | P a g e  

 

navigation data of BeiDou gievs a URA index of 0, i.e. URA ≈ 2.4 m. A formula is also given for 

its computation, where URA=2
IN/2+1 

≈ 2 m for an index (IN) = 0 (CSNO, 2013, aka).  

A nominal satellite bias (Biasnom) of 0.75 m was assumed for all systems. For the URE, we 

assumed 0.5 m for GPS and 0.67 m for Galileo SISE. The URE reference values of MEO and 

IGSO satellites of BeiDou system were assumed similar to those of GPS. For GEO satellites, the 

URE index reference value was taken equals to an amplification ratio of the value given to the 

MEO satellites (Lijun et al., 2012). A satellite elevation mask angle of 10 degrees was used to 

allow for small banking of aircraft. The a-priori probability for the single satellite fault (Psat) and 

constellation-wide faults (Pconst) for the systems GPS, BeiDou and Galileo are discussed in 

Blanch et al., (2012); Walter et al. (2013); Rippl et al. (2014) and El-Mowafy (2013, 2016). We 

used here Psat of 10
-5

 for GPS and Galileo satellites and a conservative value of 10
-4

 for BeiDou 

(El-Mowafy, 2013). A Pconst equals 10
-4

 was used for all constellations. Although these 

assumptions require further refinement, they are however sufficient for the purpose of this study. 

The used model standard deviations include 𝜎 𝑢𝑠𝑒𝑟 =  √𝜎𝑚𝑝
2 + 𝜎𝑛𝑜𝑖𝑠𝑒

2  where (Blanch et al., 2015): 

for multipath:  𝜎𝑚𝑝 = 0.13 + 0.53  𝑒−𝜃
10𝑜⁄  (𝑚)  (25) 

for the noise:  𝜎𝑛𝑜𝑖𝑠𝑒 = 0.15 + 0.43  𝑒−𝜃
6.9𝑜⁄  (𝑚)  (26) 

and for the troposphere:   𝜎 𝑡𝑟𝑜𝑝𝑜 = 0.12 ×
1.001

√0.002001+(sin(
𝜋𝜃

180
))2

  (m)  (27) 

 

5.3. Discussion of results  
    

To demonstrate the initial validity of the proposed triple-frequency BSSD model, Table 3 

shows the ratio of time ARAIM was available to the whole test period using current and possible 

future values (1m) of URA over June 2016. Figure 4 shows as an example the time series of the 

VPL, the absolute values of VPE and the VAL (35 m for LPV-200) on 19
th

 June 2016 using the 

latter URA. The triple-frequency BSSD model was used at the three stations CUT0, ZIM3 and 

CPVG. Three cases were illustrated. In the first case, the three constellations were combined (top 

panel of Figure 4). In the second case, GPS was integrated with BeiDou (middle panel), and in 

the third case, GPS was combined with Galileo (bottom panel of the figure). The VPL values 

shown in the figure reflect the number of satellites available in each constellation as well as 

quality of  the  observations. Recall that for ARAIM to be available, the condition VPL ≤ VAL 

should be met. From test results one can conclude the following: 

 In all cases (where real data was used) the computed VPE was bounded by the VPL and VAL 

and thus no hazardous situation was encountered proven initial validity of the model. The 

VPE/VPL ratio was in general within ± 0.25. The standard deviations of the VPE using the 

integrated constellations decreased as more constellations were added. The amount of 

improvement varied across the test sites according to number and quality of the collected 

observations. Furthermore, in almost all processed epochs, the outcome of the two ARAIM 

metrics, i.e. 95% and 99.99999% accuracy, follow the results of the requirement VPL≤VAL. 

 Table 3 shows the overall ARAIM availability using the broadcast values of URA as well as 

the availability with a hypothetical future URA that may reach 1 m, which is expected with the 

ongoing improvements in satellite orbit estimation, clock stability and the use of CNAV. The 
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table shows that even with current constellations, resembling sites with constrained satellite 

visibility, the use of this optimistic value of URA will give improved availability. 

 The use of two constellations is almost sufficient to achieve a desired ARAIM availability 

when all constellations are operational with future expected values of URA. This is evident 

from the results at station CUT0 where a large number of satellites was observed from all 

constellations. In contrast, at station CPVG the current number of satellites of Galileo and 

BeiDou (particularly BeiDou) is limited which adds little to GPS. This situation will improve 

with time as more satellites being deployed until completion of the systems. These results 

agree with the predicted resulted published in the literature (EU-U.S. WG-C ARAIM, 2015, 

www.gps.gov/policy/cooperation/europe/2015/working-group-c/ARAIM-milestone-2-report.pdf). 

 For the purpose of comparison with dual-frequency data, Table 4 shows the percentage of 

ARAIM availability when using dual-frequency observations (L1/L5 for GPS; E1/E5a for 

GAL; and B1/B2 for BDS) for the case of using a possible value of 1m URA, which is of more 

interest for future implementation of ARAIM. When comparing the Tables 3 and 4, one can 

see that the ARAIM availability was analogous for the two cases with some improvement 

using the triple-frequency data at station CPVG using GPS and BeiDou observations, which 

has a constrained BeiDou satellite view.  

 Table 5 shows the positioning accuracy over June 2016 when comparing triple frequency-

observations and the dual-frequency observations mentioned above for each combination of 

constellations at the three sites. The average of the absolute values of VPE is given as an 

indicator of the positioning accuracy. Overall, the improvement in the triple-frequency case 

due to the use of more observations albeit with the same satellite geometry when compared 

with using dual-frequency observations was less than 5%, except for two cases at ZIM3 and 

CPVG using GPS+BeiDou observations, which was marginally negative. This indicates that 

an updated modelling of the characteristics of BeiDou observations is required, particularly in 

conjunction with modernisation of the system and availability of BeiDou Block 3 satellites. 

   

Table 3.  Percentage of ARAIM Availability using triple-frequency data over June 2016 

 

Constellations 
CUT0 ZIM3 CPVG 

Broad-

cast URA 
1m URA 

Broad-

cast URA 
1m URA 

Broad-

cast URA 
1m URA 

GPS+GLN+BDS  100.00 100.00 96.66 100.00 95.05  100.00 

GPS+ BDS  100.00 100.00 95.51 100.00 90.60 99.9999 

GPS+ GAL 95.67 100.00 95.42 100.00 93.14 100.00 

 

Table 4.  Percentage of ARAIM Availability using dual-frequency data (1m URA) 

Constellations CUT0 ZIM3 CPVG 

GPS+GLN+BDS 100.00 100.00 100.00 

GPS+ BDS 100.00 100.00 97.980 

GPS+ GAL 100.00 100.00 100.00 

http://dx.doi.org/10.1016/j.asr.2017.01.037
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Table 5.  Average of the absolute values of VPE using triple-frequency and dual-frequency 

observations over June 2016 with 1m URA  (m) 

 

Constellations 
CUT0 ZIM3 CPVG 

Triple-

freq 
Dual-freq 

Triple-

freq 
Dual-freq 

Triple-

freq 
Dual-freq 

GPS+GLN+BDS  2.045 2.161 2.252 2.367 2.624 2.722 

GPS+ BDS  2.160 2.197 2.506 2.421 2.943 2.878 

GPS+ GAL 2.229 2.361 2.390 2.404 2.669 2.671 

 

 

    
  (a)  (b)   (c) 

    
 (a)  (b)   (c) 

    
 (a)  (b)   (c) 
 

Fig. 4 Time series of VPL  (1m URA) and VPE with VAL using triple-frequency observations;          

GPS +Galileo +BeiDou (top panel); GPS and BeiDou (middle panel) and GPS with 

Galileo (bottom panel) on 19
th
 June 2016 at CUT0 (a), ZIM3 (b), and CPVG (C). 
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6. Conclusion  

   

A pilot study on the feasibility of triple-frequency data for ARAIM is presented. In the current 

ARAIM dual-frequency methods, the receiver biases are assumed absorbed with the common 

receiver clock offset. However, with the use of a third frequency, significant receiver DCBs will 

appear since receiver biases are frequency dependent. Such DCBs are cancelled when BSSD 

observations are used. An ARAIM method implementing the BSSD approach is presented. 

A pilot test was carried out to evaluate performance of using the triple-frequency observations 

from multiple constellations, including GPS, Galileo and BeiDou, when applying the proposed 

BSSD model in ARAIM. Results at regions of different satellite visibility characheteristics prove 

the initial validity of the proposed model where in all cases, the VPE values were well bounded 

by the VPL during the test period. In agreement with the literature, with the ongoing 

improvements in satellite orbit estimation, clock stability and the use of CNAV, it is expected 

that a high degree of ARAIM availability will be achieved worldwide upon completion of all 

GNSS. The use of available triple-frequency observations when compared with dual-frequency 

data led to some improvement of ARAIM availability at sites with constrained sattelite visibility 

and a a small improvement of positioning accuracy.  
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