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Abstract: We study a two-stage stochastic linear optimization problem where the recourse func-

tion is risk-averse rather than risk neutral. In particular, we consider the mean-conditional value-at-

risk objective function in the second stage. The model is robust in the sense that the distribution of

the underlying random variable is assumed to belong to a certain family of distributions rather than

to be exactly known. We start from analyzing a simple case where uncertainty arises only in the

objective function, and then explore the general case where uncertainty also arises in the constraints.

We show that the former problem is equivalent to a semidefinite program and the latter problem

is generally NP-hard. Applications to two-stage portfolio optimization and material order problems

are considered. Numerical results show that the proposed robust risk-averse two-stage stochastic

programming model can effectively control the risk with solutions of acceptable good quality.
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1 Introduction

Consider the classical two-stage stochastic linear optimization problem with fixed recourse

(see, e.g., Birge and Louveaux, 1997):

min
x∈X

{
cTx + E[Q(x, ξ(ω))]

}
(1.1)

where
Q(x, ξ(ω)) = min q(ω)Ty

s.t. A(ω)x + Dy = b(ω), y ≥ 0,
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is the second-stage recourse problem. x ∈ X = {x ∈ Rn : Ux = u,x ≥ 0} is the vector of

first-stage decision variables which must be determined before the exact value of the random

parameters ξ(ω) = (q(ω),A(ω),b(ω)) are realized. A(ω) ∈ Rl×n,q(ω) ∈ Rm, and b(ω) ∈ Rl

are random parameters dependent on the event ω in the sample space Ω. Vectors c,u, matrix

U, and the fixed recourse matrix D ∈ Rl×m are assumed to be deterministic and are given in

advance.

As a modeling tool, (1.1) has appeared in a wide range of applications, see for example

[6, 20, 31] and references therein. It should be noted that the expected recourse function in

the objective of problem (1.1) is only suitable for a risk-neutral decision marker and therefore

is called a risk-neutral approach. However, most of decision makers are risk-averse and the

risk-neutral approach is not appropriate to them. We therefore turn to the following revision

to model (1.1). Let F be a σ-algebra on Ω and P be a probability measure on Ω. The two-stage

stochastic programming with mean-risk aversion can be expressed as

min
x∈X

{
cTx + E[Q(x, ξ(ω))] + λρ(Q(x, ξ(ω)))

}
(1.2)

where ρ : Z → R is the risk measure function defined on a linear space Z of F -measurable

functions on the probability space {Ω,F ,P}, λ ≥ 0 is a trade-off coefficient representing the

risk-averse rate of the decision maker. The larger the coefficient λ is, the more risk-averse

the decision maker is. A special case of (1.2), called the Mean-variance recourse has been

considered by Ahmed (2006) [1]. It has been found that the mean-variance criterion can lead

to an NP-Hard problem since the second-stage cost Q(x, ξ(ω)) is nonlinear with respect to x

despite the convexity of the variance operator.

Different from Ahmed (2006) [1], Schultz and Tiedemann (2006) [37] focus on two-stage

mixed-integer stochastic programming involving mean-CVaR (conditional value-at-risk) crite-

rion and use a split-variable formulation. They develop an algorithm based on the Lagrangian

relaxation of non-anticipativity. Similar research can be found in [14, 15, 22]. Recently, Miller

and Ruszczynśki (2011) [27] formulate a risk-averse two-stage stochastic linear programming

problem in which unresolved uncertainty remains after the second stage. The objective func-

tion in [27] is a composition of risk measures. Two decomposition methods for solving the

problem are proposed, one is based on the generic cutting plane approach, while another ex-

ploits the composite structure of the objective function. Noyan (2012) [29] also considers a

risk-averse two-stage stochastic programming model, where CVaR is used as the risk measure

and constructs two decomposition algorithms based on the generic Benders-decomposition

approach for solving such problems.

In summary, two-stage stochastic programming with risk-averse is a fairly recent and

intensive development. It has found significant applications in different areas such as chemical

engineering (Schultz and Tiedemann, 2006, [37]), energy optimization (see, e.g., Schultz and

Neise, 2007, [36] ), transportation network protection (Liu et al., 2009, [24]), and dynamic

sampling algorithms for stochastic programs with risk aversion (Philpott and de Matos, 2012

[30]).

In this paper, we consider a two-stage stochastic linear programming model with the
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mean-CVaR recourse function. A major consideration for the choice of mean-CVaR criterion

is that mean-CVaR is a coherent risk measure while the mean-variance is not, see Rockafellar

(2007) [33]. In addition, our model is different from other mean-CVaR models above be-

cause it is computationally tractable. In fact, the deterministic equivalence of our model is

a semidefinite programming problem if the uncertainty does not show up in the second-stage

constraints. The model can be expressed in the following form:

min
x∈X

{
cTx + sup

P∈P
{E[Q(x, ξ(ω))] + λCVaRα(Q(x, ξ(ω)))}

}
. (1.3)

In this model we assume that the probability distribution P for the random parameters ξ(ω)

is not known precisely. It is then “robust” to hedge against ambiguity in probability dis-

tributions by using the maximum mean-CVaR of second-stage cost over a set P of possible

probability distributions. The set P is typically described by a set of known moments or

bounded moments. Some useful bounds on the expected second-stage cost with first-order

moment information includes the Jensen bound [19] and the Edmundson-Madansky bound

[13, 25], see also [12, 20] for more discussions. Applications on stochastic portfolio optimiza-

tion and material order problems are considered. Numerical results show that the proposed

robust (or ”minimax”) two-stage stochastic programming model can effectively control the

risk while keep solutions in acceptable good quality.

The general minimax stochastic programming problem was first considered by Žácková

(1966) [42] and Dupačová (1987) [11]. The related algorithms include subgradient-based meth-

ods [7], cutting plane algorithms [32], the sample-average approximation methods [38, 39, 40].

Ang, Meng and Sun (2014) [2] considered a two-stage stochastic linear programs with in-

complete information on uncertainty in their recent research and found a second-order conic

expression for their problems. The recent developments for optimization with uncertainty

have been provided by Gabrel, Murat and Thiele (2014) [16]. In an earlier paper, Bertsimas

et. al. (2010) [5] considered a minimax stochastic programming model with the first two order

moments, i.e., their probability family satisfies

DBDNT (Mξ,µ0,Σ0) =

P ∈ U ξ :

P{ξ(ω) ∈Mξ} = 1

E[ξ(ω)] = µ0

E[ξ(ω)ξ(ω)T ] = Σ0 + µ0µ
T
0

 , (1.4)

where U ξ is the set of all probability measures on the measurable space (Rmξ ,B) with B
the σ-algebra on Rmξ and mξ the number of dimensions of ξ(ω), Mξ is any closed convex

set known to contain the support of random vector ξ, and µ0 and Σ0 are respectively the

estimation of E[ξ(ω)] and Cov(ξ(ω), ξ(ω)). The following utility function is used in [5] to

measure risk-averse preference:

U(Q(x, ξ(ω))) = max
k

(αkQ(x, ξ(ω)) + βk) ,

where αk ≥ 0, βk ∈ R are constants. In a single-stage stochastic programming setting, Delage

and Ye (2010) [9] proposed a more general bounded moments uncertainty set with exact
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moment uncertainty (1.4) as a special case, i.e.,

DDY (Mξ,µ0,Σ0, γ1, γ2) =

P ∈ U ξ :

P{ξ(ω) ∈Mξ} = 1

(E[ξ(ω)]− µ0)T Σ−1
0 (E[ξ(ω)]− µ0) ≤ γ1

E
[
(ξ(ω)− µ0) (ξ(ω)− µ0)T

]
≤ γ2Σ0

 , (1.5)

where γ1 ≥ 0, γ2 ≥ 1 are two controlled parameters. In a sense, our model combines the

features of (1.4) and (1.5). The probability family of ours is obtained by the bounded mo-

ments information and has separable mean value uncertainty and ellipsoidal second-order

uncertainty. We explore the semidefinite programming formulation for the proposed robust

two-stage stochastic programming with mean-CVaR by considering first the special case where

uncertainties are only in objective and then the general case where the uncertainties are in

the constraints. For the case of uncertainty in constraints, we use the affine uncertainty of

Nemiroveski and Shapiro [28] in the analysis, which was not considered by Bertsimas et. al.

(2010) [5] and Delage and Ye [9].

This paper is organized as follows. We start by considering the case of uncertainty in

objective and convert it into a semidefinite programming (SDP for short) problem in Section

2. Section 3 discusses the case of uncertainty in constraints with affine uncertainty and gives

an approximate algorithms based on SDP. Two applications of the proposed models, the two-

stage portfolio optimization and material ordering problem, are considered in Section 4.

Notations. We denote a random variable by x(ω) or x̃. Boldface lowercase letters, such

as a, represent vector, and the corresponding uppercase letters, such as A, denote matrices.

The corresponding x(ω) or x̃, and A(ω) or Ã denote random vector and random matrices,

respectively. Conventional symbols such as Rn,Sn+ and Sn++ are used to express respectively the

space of n dimensional real vectors, n dimensional symmetric positive semidefinite matrices,

and n dimensional symmetric positive definite matrices. Two matrices A−B ∈ Sn+(Sn++) are

denoted by A � (�)B or A−B � 0(� 0). The inner product of two matrices A, B is denoted

by A ·B = trace(AB) =
∑n

i,j aijbij.

2 Uncertainty in the objective

CVaR is popularized by the work of Rockafellar and Uryasev (2000, 2002) [34, 35] and is

a coherent risk measure due to its monotonicity, translation invariance, convexity and positive

homogeneity (see [4] for detail), and therefore is getting more popular than the value-at-

risk (VaR for short), which does not satisfy the convexity [35]. Let Fξ(·) be the cumulative

distribution function of a random variable ξ̃. For any given confidence level α ∈ (0, 1), the

α-VaR (denoted by VaRα(ξ̃)) is defined as the following α-quantile

VaRα(ξ̃) = inf{v ∈ R : Fξ̃(v) ≥ α}.

The α-CVaR is defined as mean of the α-tail distribution of ξ̃, that is

CVaRα(ξ̃) = E{ξ̃|ξ̃ ≥ VaRα(ξ̃)}.
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Rockafellar and Uryasev (see, e.g. [34]) have shown that CVaRα(ξ̃) can be expressed as the

following one-variable optimization problem

CVaRα(ξ̃) = min
v∈R
{v +

1

1− α
E[(ξ̃ − v)+]}, (2.1)

where (a)+ = max{a, 0}. Consider the mean-CVaR two-stage stochastic programming prob-

lem (1.3) with random parameter q̃ and deterministic input data in constraints:

min
x∈X

{
cTx + sup

P∈P

{
EP

[
Q(x, ξ̃)

]
+ λCVaRα,P

(
Q(x, ξ̃)

)}}
(2.2)

with ξ̃ = q̃,

Q(x, ξ̃) = Q(x, q̃) = min
{
q̃Ty : Ax + Dy = b, y ≥ 0

}
. (2.3)

It follows from (2.1) that

EP [Q(x, q̃)] + λCVaRα,P (Q(x, q̃)) = EP [Q(x, q̃)] + λmin
v∈R

{
v + 1

1−αEP
[
(Q(x, q̃)− v)+

]}
= min

v∈R

{
λv + EP

[
Q(x, q̃) + λ

1−α (Q(x, q̃)− v)+

]}
.

(2.4)

Then, problem (2.2) can be rewritten as

min
x∈X

{
cTx + sup

P∈P
min
v∈R

{
λv + EP

[
Q(x, q̃) +

λ

1− α
(Q(x, q̃)− v)+

]}}
. (2.5)

Notice that Q(x, q̃) is convex in x and is concave in q̃. Assume that distribution family P is

weakly compact. Then, the minimax theorem holds for sup
P∈P

min
v∈R

since the right-hand side of

(2.5) is convex in variable v, and is concave in P (see Shapiro 2001 [38] for detail). Thus, (2.5)

is equal to

min
x∈X

{
cTx + min

v∈R

{
λv + sup

P∈P
EP
[
Q(x, q̃) + λ

1−α (Q(x, q̃)− v)+

]}}
= min

x∈X ,v∈R

{
cTx + λv + sup

P∈P
EP
[
Q(x, q̃) + λ

1−α (Q(x, q̃)− v)+

]}
.

(2.6)

Suppose we do not know the distribution of q̃ exactly, but we have the first two-order

moments information of q̃, that is, the distribution of q̃ is assumed to belong to the following

distribution family:

P = Dq(M,µq,Σq,γq, γq0) =


P{q̃ ∈M} = 1,

P ∈ U : |EP[q̃i − µqi ]| ≤ σqi γ
q
i , i = 1, · · · ,m,

EP
[
q̃q̃T

]
� γq0Σ

q + µq(µq)T

 ,

where U is the set of all probability measures on the measurable space (Rm,B) with B the

σ-algebra on Rm,M is any closed convex set known to contain the support of random vector

q̃, γq = (γq1 , · · · , γqm)T ≥ 0 and γqσ = (σ1γ
q
1 , · · · , σmγqm)T with σi the standard deviation of q̃i

and γq0 ≥ 1 are parameters controlling the size of the uncertain set; µq = (µq1, · · · , µqm)T and
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Σp are respectively certain estimates of the mean value and covariance matrix of the random

vector q̃. For example, µq and Σq may be the sample mean value and samples covariance

matrix based on the historical data. We assume that Σq � 0 holds throughout the paper.

If γ1 = 0 in set DDY of (1.5), then DDY becomes a subset of Dq. Thus, generally,

Dq 6= DDY , and Dq ∩DDY 6= ∅. If, moreover, γ1 = 0 and γq0 = 1, then the set Dq contains the

exact moment uncertainty set (1.4) in [5] as a special case. Hence, Dq is more general than

DBDNT and is comparable to DDY .

Let µq = (µq1, · · · , µqm)T = µq +γqσ and µq = (µq
1
, · · · , µq

m
)T = µq−γqσ. Then, inequalities

|EP[q̃i − µqi ]| ≤ σqi γ
q
i (i = 1, · · · ,m) are equivalent to

EP[q̃] ≤ µq and EP[q̃] ≥ µq. (2.7)

Assume that M = Rm in this paper. Then, the inner subproblem sup
P∈P

in (2.6) is an infinite-

dimensional optimization problem with probability distribution P and can be expressed as

U q(x) = sup
P∈Dq

∫
Rm

[
Q(x,q) +

λ

1− α
(Q(x,q)− v)+

]
P(dq), (2.8)

subject to the probability, the given first- and second-order moments inequality constraints,∫
Rm

P(dq) = 1,

∫
Rm

q×P(dq) ≤ µq,
∫
Rm

(−q)×P(dq) ≤ −µq,
∫
Rm

qqT×P(dq) � γq0Σ
q+µq(µq)T ,

and nonnegative constraint

P(q̃ ≤ a) ≥ 0, for any a ∈ Rm.

The nonnegative constraint indicates that sup
P∈Dq

in problem (2.8) is taken in the cone of non-

negative Borel measures on Rm. Consider the dual of problem (2.8), we have [38]

min
z,z,z,Z

z + zTµq − zTµq + Z · (γq0Σq + µq(µq)T ),

s.t. z + zTq− zTq + Z ·
(
qqT

)
≥ R(x,q), ∀ q ∈ Rm,

z, z ≥ 0,Z � 0, z ∈ R.
(2.9)

where z is the dual variable of equality constraint, z ∈ Rm
+ and z ∈ Rm

+ are respectively the

dual variables of the second and third inequalities constraints, and Z ∈ Sm+ is the dual variable

of the second-order moment inequality constraint of (2.8), and

R(x,q) = Q(x,q) +
λ

1− α
(Q(x,q)− v)+ .

Introducing two new variables w1 = z − z ∈ Rm,w2 = z + z ∈ Rm
+ , then, combining µq =

µq + γqσ and µq = µq − γqσ, (2.9) can be expressed equivalently as

min
z,w1,w2,Z

z + wT
1 µ

q + wT
2 γ

q
σ + Z · (γq0Σq + µq(µq)T ),

s.t. z + wT
1 q + Z ·

(
qqT

)
≥ R(x,q), ∀ q ∈ Rm,

w2 ≥ 0,Z � 0, z ∈ R,w1 ∈ Rm.

(2.10)
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From our assumptions, matrix Σq is positive definite. This means that strong duality holds

[18]. Hence, for given x, the objective function value U(x) of problem (2.8) is equal to the

objective value of problem (2.10). We define for simplicity a matrix variable

M =

[
Z 1

2
w1

1
2
wT

1 z

]
∈ Sm+1.

Then the dual problem (2.10) can be rewritten as

min
z,w1,w2,Z

z + wT
1 µ

q + wT
2 γ

q + Z · (γq0Σq + µq(µq)T )

s.t. (qT , 1)M(qT , 1)T ≥ R(x,q), ∀ q ∈ Rm,
(2.11)

Observe that, when q̃ is realized, (2.3) is

Q(x,q) = min
y

{
qTy : Ax + Dy = b, y ≥ 0

}
.

Thus, the inequality constraint of problem (2.11) requires that there exists at least a ŷ ∈
X (x) = {y : Ax + Dy = b, y ≥ 0}, such that inequality

(qT , 1)M(qT , 1)T ≥ qT ŷ +
λ

1− α
(
qT ŷ − v

)
+

(2.12)

for all q ∈ Rm holds. Clearly, inequality (2.12) is equivalent to the following two inequalities

under the conditions that these two inequalities hold simultaneously for all q ∈ Rm,

(qT , 1)M(qT , 1)T ≥ qT ŷ + λ
1−α

(
qT ŷ − v

)
,

(qT , 1)M(qT , 1)T ≥ qT ŷ.

}
(2.13)

Notice that λ
1−α > 0, thus, if qT ŷ − v < 0, then the first inequality in (2.13) is redundant;

otherwise, the second inequality in (2.13) is redundant. Obviously, these two inequalities in

(2.13) can be rewritten as the following matrix forms:

(qT , 1)

[
Z 1

2

(
w1 −

(
1 + λ

1−α

)
ŷ
)

1
2

(
w1 −

(
1 + λ

1−α

)
ŷ
)T λv

1−α + z

]
(qT , 1)T ≥ 0, for all q ∈ Rm,

(qT , 1)

[
Z 1

2
(w1 − ŷ)

1
2

(w1 − ŷ)T z

]
(qT , 1)T ≥ 0, for all q ∈ Rm.

This is equivalent to two linear matrix inequality constraints,[
Z 1

2

(
w1 −

(
1 + λ

1−α

)
ŷ
)

1
2

(
w1 −

(
1 + λ

1−α

)
ŷ
)T λv

1−α + z

]
� 0,

[
Z 1

2
(w1 − ŷ)

1
2

(w1 − ŷ)T z

]
� 0.


(2.14)

7



Then, for any given x ∈ X , v ∈ R, the dual problem (2.11) can be expressed as

min
z,w1,w2,Z;y

z + wT
1 µ

q + wT
2 γ

q
σ + Z · (γq0Σq + µq(µq)T )

s.t.

[
Z 1

2

(
w1 −

(
1 + λ

1−α

)
y
)

1
2

(
w1 −

(
1 + λ

1−α

)
y
)T λv

1−α + z

]
� 0,

[
Z 1

2
(w1 − y)

1
2

(w1 − y)T z

]
� 0,

Ax + Dy = b, y ≥ 0,w2 ≥ 0,Z � 0, z ∈ R,w1 ∈ Rm.

(2.15)

In summary, for the two-stage stochastic programming problem (2.6) with bounded moment

uncertainty, we have the following results.

Theorem 2.1 Assume that Σq � 0. The mean-CVaR minimax two-stage stochastic program-

ming problem (2.6) with random objective coefficients and deterministic constraints is equiva-

lent to the following SDP:

min
x,v;z,w1,w2,Z;y

cTx + λv + z + wT
1 µ

q + wT
2 γ

q
σ + Z · (γq0Σq + µq(µq)T )

s.t.

[
Z 1

2

(
w1 −

(
1 + λ

1−α

)
y
)

1
2

(
w1 −

(
1 + λ

1−α

)
y
)T λv

1−α + z

]
� 0,

[
Z 1

2
(w1 − y)

1
2

(w1 − y)T z

]
� 0,

Ax + Dy = b, y ≥ 0,

Ux = u, x ≥ 0,w2 ≥ 0,Z � 0, v, z ∈ R,w1 ∈ Rm.

(2.16)

3 Uncertainty in constraints with affine uncertainty

In this section, we will consider the uncertainty of coefficients A,b in constraint Ax +

Dy = b with deterministic objective coefficients. The general case where uncertainty arise in

both the objective and in constraints can be converted into this case by a simple reformulation.

Notice that the uncertainty of matrix A will lead a random matrix with l×m random elements.

For simplicity, let us assume that the random coefficients Ã, b̃ be affinely dependent on an r

dimensional random vector ζ̃ = (ζ̃1, · · · , ζ̃r)T , namely,

b̃ = b0 +
r∑
i=1

biζ̃i, Ã = A0 +
r∑
i=1

Aiζ̃i, (3.1)

where bi ∈ Rl,Ai ∈ Rl×n(i = 0, 1, · · · , r) are constants vectors and matrices. Then, the

second stage problem of the mean-CVaR two-stage stochastic programming (1.3) with constant

objective q can be expressed as

Q(x, ζ̃) = miny

{
qTy : Ãx + Dy = b̃

}
= miny

{
qTy :

(
A0 +

r∑
i=1

Aiζ̃i

)
x + Dy = b0 +

r∑
i=1

biζ̃i, ζ ∈Mζ

}
,

(3.2)
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where Mζ is the support of random vector ζ and is a known closed convex set. Notice that

R(x, ζ) = Q(x, ζ) +
λ

1− α
(Q(x, ζ)− v)+

is still convex in v and

sup
P∈P

min
v∈R

EP

[
R(x, ζ̃)

]
is concave in P. Thus, the mean-CVaR two-stage stochastic programming (1.3) can be ex-

pressed as

min
x∈X ,v∈R

{
cTx + λv + sup

P∈P
EP

[
Q(x, ζ̃) + λ

1−α

(
Q(x, ζ̃)− v

)
+

]}
. (3.3)

We assume that the probability distribution of ζ̃ belongs to the distribution family:

P = Dζ(Mζ ,µζ ,Σζ ,γζ , γζ0) =


P{ζ̃ ∈Mζ} = 1,

P ∈ U ζ :
∣∣∣EP[ζ̃i − µζi ]

∣∣∣ ≤ σζi γ
ζ
i , i = 1, · · · , r,

EP

[
ζ̃ζ̃T

]
� γζ0Σζ + µζ(µζ)T ,

 ,

where U ζ is the set of all probability measures on the measurable space (Rr,B) with B the

σ-algebra on Rr, σζi is the standard deviation of ζ̃i and γζσ = (σ1γ
ζ
1 , · · · , σmγζm)T . Let µζ =

(µζ1, · · · , µζr)T = µζ +γζσ and µζ = (µζ
1
, · · · , µζ

r
)T = µζ−γζσ. Then, inequalities

∣∣∣EP [̃bi − µζi ]
∣∣∣ ≤

σζi γ
ζ
i (i = 1, · · · , r) are equivalent to

EP[ζ̃] ≤ µζ and EP[ζ̃] ≥ µζ . (3.4)

Assume that Mζ = Rr, then, the inner subproblem sup
P∈P

in (3.3) with probability distribution

P can be expressed as

U ζ(x) = sup
P∈Dζ

∫
Rr

[
Q(x, ζ) +

λ

1− α
(Q(x, ζ)− v)+

]
P(dζ), (3.5)

subject to the probability and given first- and second-order moments inequality constraints:∫
Rr

P(dζ) = 1,

∫
Rr
ζ×P(dζ) ≤ µζ ,

∫
Rr

(−ζ)×P(dζ) ≤ −µζ ,
∫
Rr
ζζT×P(dζ) � γζ0Σζ+µζ(µζ)T

and nonnegative constraint. Similar to (2.9), the dual of problem (3.5) is

U ζ
D(x) = min

zζ ,zζ ,zζ ,Zζ
zζ + (zζ)Tµζ − (zζ)Tµζ + Zζ · (γζ0Σζ + µζ(µζ)T ),

s.t. zζ + (zζ)Tζ − (zζ)Tζ + Zζ ·
(
ζζT

)
≥ R(x, ζ), ∀ ζ ∈ Rr,

zζ , zζ ≥ 0,Zζ � 0, zζ ∈ R,

(3.6)

where zζ is the dual variable of equality constraint, zζ ∈ Rr
+ and zζ ∈ Rr

+ are respectively

the dual variables of the second and third inequalities constraints, and Zζ ∈ Sr+ is the dual

9



variable of the second order moment inequality constraint. The strong dual theorem means

that

U ζ
D(x) = U ζ(x),∀ x ∈ X .

An equivalent expression of problem (3.6) can be written as, by introducing two new variables

wζ
1 = zζ − zζ ∈ Rr,wζ

2 = zζ + zζ ∈ Rr
+,

U ζ
D(x) = min

zζ ,wζ
1 ,w

ζ
2 ,Z

ζ

zζ + (wζ
1)Tµζ + (wζ

2)Tγζσ + Zζ ·
(
γζ0Σζ + µζ(µζ)T

)
,

s.t. zζ + (wζ
1)Tζ + Zζ ·

(
ζζT

)
≥ R(x, ζ), ∀ ζ ∈ Rr,

wζ
2 ≥ 0,Zζ � 0, zζ ∈ R,wζ

1 ∈ Rr.

(3.7)

The construction of problem (3.7) is the same as (2.10). Can the original problem (3.3)

with uncertainty set Dζ be formulated as a semidefinite program and therefore be solved by a

polynomial-time algorithm? This is the main question what we will discuss in the rest of this

subsection. To this end, consider the dual of problem (3.2), we have

Q(x, ζ̃) = max
z

{
(b̃− Ãx)Tz : DTz ≤ q

}
= max

z


[

(b0 −A0x) +
r∑
i=1

(bi −Aix) ζ̃i

]T
z : DTz ≤ q

 (3.8)

For any realized ζ ∈ Rr, of random vector ζ̃, the inequality constraint of problem (3.7) means

that for any z ∈
{
z : DTz ≤ q

}
, the following inequality

zζ + (wζ
1)Tζ + Zζ ·

(
ζζT

)
≥

[
(b0 −A0x) +

r∑
i=1

(bi −Aix) ζi

]T
z

+
λ

1− α

[(b0 −A0x) +
r∑
i=1

(bi −Aix) ζi

]T
z− v


+

,

(3.9)

holds for any ζ ∈ Rr. Notice that the essential differences of inequality (2.12) and (3.9) lies

in that inequality (3.9) must be satisfied for all z ∈
{
z : DTz ≤ q

}
. Let

S(x, v, zζ ,wζ
1,Z

ζ ; ζ, z) =



zζ + (wζ
1)Tζ + Zζ ·

(
ζζT

)
−

[
(b0 −A0x) +

r∑
i=1

(bi −Aix) ζi

]T
z

− λ

1− α

[(b0 −A0x) +
r∑
i=1

(bi −Aix) ζi

]T
z− v


+


.

Then the inequality (3.9) is equivalent to

S(x, v, zζ ,wζ
1,Z

ζ ; ζ, z) ≥ 0, (3.10)

for all ζ ∈ Rr, z ∈ {z : Dz ≤ q}. Consider the following minimization problem

S∗(x, v, zζ ,wζ
1,Z

ζ) = min
ζ∈Rr

z∈{z:Dz≤q}

S(x, v, zζ ,wζ
1,Z

ζ ; ζ, z), (3.11)

and make the following assumption.

10



Assumption 1 For any given feasible x, v, zζ ,wζ
1,Z

ζ, the optimal solutions of problem (3.11)

exist and its optimal value is finite.

Then, under Assumption 1, inequality (3.9) is equivalent to

S∗(x, v, zζ ,wζ
1,Z

ζ) ≥ 0. (3.12)

Assumption 2 The set

Ξ = {(x, v, zζ ,wζ
1,Z

ζ) : S∗(x, v, zζ ,wζ
1,Z

ζ) ≥ 0,Ux = u,Zζ � 0, v, zζ ∈ R,wζ
1 ∈ Rr}

is nonempty.

Assumption 2 ensures that problem (3.3) with uncertainty set P is feasible. We next show

that problem (3.12 ) is generally NP-hard. Consider the following two problems.

Problem 1 Let x ∈ X , v, zζ ∈ R,wζ
1 ∈ Rr,Zζ � 0 be given, then for any ζ ∈ Rr, z ∈{

z : DTz ≤ q
}

, check whether or not the inequality constraint (3.12) is satisfied. If not, find

a ζ̂ ∈ Rr, ẑ ∈
{
z : DTz ≤ q

}
, such that,

S(x, v, zζ ,wζ
1,Z

ζ ; ζ̂, ẑ) < 0.

Problem 2 For any matrix C and vector d with rational entries, and a nonzero rational

number ε, is there vector z, such that

Cz ≤ d,
√

zTz ≥ ε?

Problem 2 is related to the 2-norm maximization problem and is shown to be NP-complete

by Mangasarian and Shiau [26]. The following results show the relationship of Problem 1 and

Problem 2.

Lemma 3.1 Problem 2 is a special case of Problem 1 and therefore Problem 1 is NP-Hard.

Proof. Consider the case of

λ

1− α

[(b0 −A0x) +
r∑
i=1

(bi −Aix) ζi

]T
z− v


+

= 0.

Take
zζ = ε2/4, wζ

1 = 0, Zζ = I, b0 −A0x = 0,

Aix = 0, bi = ei, i = 1, · · · , r,

where I is the identity matrix and ei is a vector that its the ith entry is one and other entries

are zeros. Then, S(x, v, zζ ,wζ
1,Z

ζ ; ζ, z) is degenerated into

S0(ζ, z) = ζTζ − ζTz +
ε2

4
, z ∈

{
z : DTz ≤ d

}
, ζ ∈ Rr.

11



It is not hard to find that, for any z ∈
{
z : DTz ≤ q

}
.

ζz =
z

2
= arg min

ζ∈Rr
S0(ζ, z) = arg min

ζ∈Rr

{
ζTζ − ζTz +

ε2

4

}
,

and

S0(ζz, z) = −zTz

4
+
ε2

4
, z ∈

{
z : DTz ≤ q

}
.

Thus, as a special case of Problem 1, find a z ∈
{
z : DTz ≤ q

}
, such that S0(ζz, z) = −zT z

4
+

ε2

4
< 0 is equivalent to Problem 2 under the case of C = DT ,d = q. This indicates that

Problem 1 is NP-Hard. 2

The analysis above leads to the following conclusion.

Theorem 3.2 The mean-CVaR two-stage stochastic programming problem (3.3) with random

Ã, b̃ is generally NP-Hard.

In spite of the somewhat disappointing theorem, we can still develop an effective solu-

tion method for the problem in view of the special structure of the problem. Assume the

set {z : DTz ≤ q} have a total of L extreme points {z1, · · · , zL}. Note that the function

S(x, v, zζ ,wζ
1,Z

ζ ; ζ, z) is linear in z if other variables are fixed. Thus, inequality (3.10) is

equivalent to

S(x, v, zζ ,wζ
1,Z

ζ ; ζ, z`) ≥ 0, ` = 1, ..., L, ∀ ζ ∈ Rr, (3.13)

which in turn are equivalent to

min
ζ∈Rr
S(x, v, zζ ,wζ

1,Z
ζ ; ζ, z`) ≥ 0, ` = 1, ..., L. (3.14)

Notice that for any ` = 1, ..., L,[
r∑
i=1

(bi −Aix) ζi

]T
z` =

(
(z`)Tb1, · · · , (z`)Tbr

)
ζ − (z`)T (A1x, · · · ,Arx) ζ

=
[(

(z`)Tb1, · · · , (z`)Tbr
)
− xT

(
AT

1 z`, · · · ,AT
r z`
)]
ζ.

(3.15)

Let φ(x, z) =
[(

zTb1, · · · , zTbr
)
− xT

(
AT

1 z, · · · ,AT
r z
)]

. Clearly, φ(x, z) is a linear function

of x. Then, inequality constraint (3.9), from (3.14) and (3.15), can be expressed equivalently

as two inequality constraints:

Zζ ·
(
ζζT

)
+

[
(wζ

1)T −
(

1 +
λ

1− α

)
φ(x, z`)

]
ζ

+ zζ −
(

1 +
λ

1− α

)
(b0 −A0x)Tz` − λv

1− α
≥ 0,∀ ζ ∈ Rr,

(3.16)

Zζ ·
(
ζζT

)
+
[
(wζ

1)T − φ(x, z`)
]
ζ + zζ − (b0 −A0x)Tz` ≥ 0,∀ ζ ∈ Rr. (3.17)

12



Similar to the derivation in Section 2, two inequality constraints (3.16) and (3.17) are equiv-

alent to the following two linear matrix inequalities:

C(z`) :



 Z
1

2

(
wζ

1 −
(

1 +
λ

1− α

)
φT (x, z`)

)
1

2

(
(wζ

1)T −
(

1 +
λ

1− α

)
φ(x, z`)

)
φ1(x, zζ , z`)

 � 0,

 Z
1

2

(
wζ

1 − φT (x, z`)
)

1

2

(
(wζ

1)T − φ(x, z`)
)

zζ − (b0 −A0x)Tz`

 � 0,

where

φ1(x, zζ , z`) = zζ −
(

1 +
λ

1− α

)
(b0 −A0x)Tz` +

λv

1− α
.

The following results are therefore evident.

Theorem 3.3 Assume that the set {z : DTz ≤ q} have a total of L extreme points {z1, · · · , zL}.
Then the mean-CVaR two-stage stochastic programming (3.3) can be expressed equivalently by

the following SDP with 2L linear matrix inequalities constraints:

min
x,v;zζ ,wζ

1 ,w
ζ
2 ,Z

ζ

cTx + λv + zζ + (wζ
1)Tµζ + (wζ

2)Tγζσ + Zζ ·
(
γζ0Σζ + µζ(µζ)T

)
,

s.t. C(z`), ` = 1, · · · , L, Ux = u,

x ≥ 0,wζ
2 ≥ 0,Zζ � 0, v, zζ ∈ R, zζ1 ∈ Rr.

(3.18)

4 Applications

In this section, we will consider four applications of the proposed models. Section 4.1

is devoted to the application in two-stage portfolio optimization problem, which, generally

speaking, requires to maximize a risk-averse expected return and the random variable only

arises in the objective function. We propose to use CVaR in dealing with the randomness of

two-stage portfolio optimization problem. Section 4.2 gives another application in material

ordering in which the random variable arises in the constraints. The demands of products are

uncertain, which requires that the ordering plans must be made in view of uncertain market.

We assume that the decision maker is risk-averse and therefore there is a CVaR term in the

penalty costs of the second stage. Section 4.3 presents a stochastic producyion-transportation

model, In Section 4.4, we report our results on a single facility minimax distance problem.

4.1 Application to two-stage portfolio optimization

4.1.1 Problem formulation

An investor can invest n risky assets in two time stages. Denote the random net returns of

risky assets in the two stages by r̃t = (r̃t1, · · · , r̃tn)T ∈ Rn(t = 1, 2). Let x = (x1, · · · , xn)T ∈ Rn

be the dollar amount of invested in the n risky assets at the first-stage and for simplicity,
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assume that the initial budget wealth for the investment is one. Then the budget constraint

of the first-stage is

eTx = 1,x ≥ 0, (4.1)

where e is an all one vector with the suitable dimensions. At t = 1, the investor will rebal-

ance his/her first-stage portfolio position x. After balancing, assume that the second-stage

position is denoted by y = (y1, · · · , yn)T ∈ Rn. Then, under the self-finance and proportional

transaction cost, we have

yi = xi(1 + r̃1
i ) + (1− θ)∆b

i − (1 + θ)∆s
i , i = 1, · · · , n, (4.2)

where θ is proportional transaction cost of each unit risk asset, ∆b
i and ∆s

i are respectively

the dollar amount of buying and selling the i-th risky asset. The wealth of portfolio, denoted

by W t
P , at the end of t-th-stage (t=1, 2) is

W 1
P = (e + r̃1)Tx, W 2

P = (e + r̃2)Ty.

The objective of investor is to maximize the expected wealth of the first- and second-stage

and minimize the loss measured by CVaR of portfolio. Thus, the portfolio optimization of the

investor can be expressed as the following minimization two-stage stochastic programming:

min
x satisfies (4.1)

{
E[c̃Tx] + E[Q(x, r̃2)] + λCVaRα(Q(x, r̃2))

}
(4.3)

where
Q(x, r̃2) = min −(e + r̃2)Ty = −(e + r̃2,0,0)T (y,∆s,∆b)

s.t. (4.2),y ≥ 0, ∆s ≥ 0, ∆b ≥ 0,

and x is the first-stage decision variable, and y,∆s, ∆b are the second-stage decision variables

and c̃ = −e− r̃1.

Notice that the coefficient in the first-stage of problem (4.3) is random and is different from

the original problem (1.3) whose coefficient of the first-stage is deterministic. The distribution

r̃1 is not actually known and is possibly different from that of r̃2. We do not consider this

complex case and assume that the distribution r̃1 can be obtained by scenario generating

approach.1 Let there be K scenarios for return r̃1 with values r1i(i = 1, · · · , K) at time t = 1.

The probability that each scenario occurs is pi(i = 1, · · · , K) with
∑K

i=1 pi = 1. Assume

that the distribution of r̃2 is uncertainty and belongs to a distribution family Dr with partial

moment information. Then, the scenario + robust version of problem (4.3) can be expressed

as

min
x satisfies (4.1)

{
ĉTx + max

P∈Dr

{
EP[Q(x, r̃2)] + λCVaRα,P(Q(x, r̃2))

}}
(4.4)

1Gülten and Ruszczyński (2012) [17] consider a two-stage portfolio problem based on the scenario generating

approach. Note that there are KK scenarios for r̃2 at t = 2 and the curse of dimension will happen if K is

large. Thus, we use the scenario generating approach for the uncertainty in the first-stage and robust approach

for uncertainty in the second-stage.
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where

Q(x, r̃2) = min −(e + r̃2)Ty

s.t. y = Ax + (1− θ)∆b − (1 + θ)∆s, y ≥ 0, ∆s ≥ 0, ∆b ≥ 0,

and ĉ = −e−
∑K

k=1 pkr
1k, A = Diag(e +

∑K
i=1 pkr

1k), and Diag(a) is a diagonal matrix with

entries of vector a as its diagonal elements. Clearly, problem (4.4) is a standard instance

of general two-stage robust optimization problem (2.2). Let Dr = Dq(M,µq,Σq,γq, γq0) as

defined in Section 2. Then problem (4.4) is completely consistent with problem (2.2) and

therefore can be formulated as the SDP by Theorem 2.1.

In order to obtain a solution of problem (4.4), we need more constraints on problem (4.4).

Notice that the investor will not buy and sell the same risky asset simultaneously. This means

∆b
i∆

s
i = 0, for i = 1, · · · , n which will result in an NP-Hard problem. In order to eliminate

this constraint, we introduce two variables

∆+
i = ∆b

i + ∆s
i ≥ 0, ∆−i = ∆b

i −∆s
i , i = 1, · · · , n.

Then,

∆b
i∆

s
i = 0 ⇔ (∆+

i )2 − (∆−i )2 = 0⇔ (∆−i )2 = (∆+
i )2 ⇔ |∆−i | = |∆+

i | = ∆+
i

which can be relaxed into a two dimensional second order cone constraint, namely,

|∆−i | ≤ ∆+
i , i = 1, · · · , n. (4.5)

The following two linear constraints are clear from the non-negativity of ∆b
i ,∆

s
i

∆b
i =

∆+
i + ∆−i

2
≥ 0, ∆s

i =
∆+
i −∆−i

2
≥ 0. (4.6)

Notice that the short-sale is not allowed, then the dollar amount of buying asset i at the end

of first stage can not greater than that of holding all other assets, i.e.,

(1 + θ)∆b
i ≤

n∑
k 6=i

(1 + E[r̃1
k])xk, i = 1, · · · , n,

and the dollar amounts of selling asset i is not greater than that of assets i itself,

(1 + θ)∆s
i ≤ (1 + E[r̃1

i ])xi, i = 1, · · · , n.

This gets two inequalities for variables ∆+
i ,∆

−
i from (4.6) that

1
2
(1 + θ)(∆+

i + ∆−i ) ≤
∑n

k 6=i(1 + E[r̃1
k])xk, i = 1, · · · , n,

1
2
(1 + θ)(∆+

i −∆−i ) ≤ (1 + E[r̃1
i ])xi, i = 1, · · · , n.

}
(4.7)

Under the case of self-finance, the transaction cost satisfies the budget constraint after the

rebalance of portfolio is done, namely,

n∑
i=1

θ(∆b
i + ∆s

i ) =
n∑
i

[
(1 + E[r̃1

i ])xi − yi
]
⇔

n∑
i=1

θ∆+
i =

n∑
i=1

[
(1 + E[r̃1

i ])xi − yi
]
. (4.8)
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Obviously, all constraints (4.5), (4.6), (4.7), (4.8) with respect to the new variables ∆+
i ,∆

−
i

are convex. Thus, problem (4.4) is still solved by the proposed in Section 2 under the new

constraints. We solve problem (4.4) in next subsection using the software SDPT3[41].2

4.1.2 Numerical results

Consider a portfolio whose risky assets consist of four indices: (1) Dow Jones Industrial

Average Index (DJI), (2) Dow Jones Transportation Average Index (DJT), (3) Dow Jones

Composite Average Index (DJA) and (4) Dow Jones Utility Average (DJU). The daily returns

of all indices are collected from Jan. 2nd, 2005 to Dec. 31th, 2012 and the partition of

parameters estimated period and investment period can be found in Table 1.

The uncertainty set is taken as Dq(R4, µ̂, Σ̂, γqe, γ0), where µ̂, Σ̂ are the empirical esti-

mates of the mean and covariance matrix of q̃. Using the data in the estimated period of

Table 1: The partition of parameters estimated period and investment period for four Dow Jones

indices risky assets. All data are from RESSET database(http://www.resset.cn/cn/).

Investment period

Estimated period The first-stage The second-stage

(Number of trading days) (Number of trading days) (Number of trading days)

01/03/2005∼ 12/31/2010 01/02/2011∼ 12/31/2011 01/02/2012∼ 12/31/2012

(1507) (252) (249)

Table 2: The empirical estimates of expected return and covariance matrix based on the data in

Estimated period.

Σ̂

Asset µ̂ DJI DJT DJA DJU

DJI 0.000130 0.000179 −0.000019 −0.000019 −0.000022

DJT 0.000263 - 0.000277 0.000150 0.000153

DJA 0.000367 - - 0.000340 0.000235

DJU 0.000217 - - - 0.000193

Table 1, we obtain µ̂, Σ̂, see Table 2 for the detail reports.

In order to obtain an estimate r̂1 of r1, the returns of risky assets at the end first-stage,

we use the K-mean scenario tree generation method (see, e.g. Section 4.2 of reference [17])

based on the historical observations in estimated period of Table 1. Take K = 30 and compute

the estimated return r̂1 with 500, 1000 and 1500 observations. We find that the estimation of

r̂1 based on K-mean scenario tree generation method with 1500 observations is closest to the

2We thank Professor Toh, Kim-Chuan of National University of Singapore for his kind helps on implementing

SDPT3.
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real average return r1. This motivates that we use only r̂1 based on 1500 observations for the

following numerical experiments.

For simplicity, we denote Dq(R4, µ̂, Σ̂, γqe, γ0) by D(γq, γ0). In our proposed setting, there

exist four controlled parameters, γq, γ0 and α, λ. How to affect the optimal portfolio for these

risk parameters will be discussed in the numerical results. The optional parameters γq, γ0 can

control the size of uncertainty distribution family D(γq, γ0). Generally speaking, we have

D(γq, γ0) ⊆ D(γ̂q, γ0), if γq ≤ γ̂q, and D(γq, γ0) ⊆ D(γq, γ̂0, ), if γ0 ≤ γ̂0.

The distribution uncertainty set, on one hand, can also reveal the risk aversion of the investor,

that is, a larger uncertainty distribution family, in theory, is often corresponding to a more

conservative portfolio, and on the other hand, a larger uncertainty distribution family can

capture also the more uncertainty from the practice and can be a truer response for the all

uncertainties. As stated in the section of Section 2, when γq = 0 and γ0 = 1, the corresponding

to uncertainty set D(0, 1) containing the exact bounded moment uncertainty set considered

by Bertsimas et.al.(2010)[5]. Additionally, when γq = 0, D(0, γ0) is a subclass of uncertainty

sets considered by Delage, Ye(2010)[9]. Figure 1 gives the variation tendency of CVaRα as

λ increasing under the different values of α and three uncertainty sets: D(0, 1),D(0, 12.5)

and D(2.25, 12.5) 3. Because λ is a risk-averse coefficient, this implies that increasing the

parameter λ will lead to a higher level of risk aversion. But, CVaRα does not increase as λ

increases in our models since there is a trade-off between the total objective value and the

CVaRα term: Larger λ can provide us with a higher total objective value and a lower CVaRα

value when other parameters are fixed.

We find also that a larger distribution family will provide us a higher CVaRα for given λ

and α. This is because the worst-case of a larger distribution family will lead to a worse case

than the relatively small distribution family. Notice that the specified α often represents the

risk preference in percentage terms, i.e., CVaRα quantifies the mean value of the worst (1−α)

of the total loss. Thus, larger α values would lead usually to more conservative portfolio and

a larger CVaRα since a larger α means that a larger loss will happen if an extreme loss of a

small probability event happens. Figure 1(a), (b) and (c) give this fact.

Figure 2 gives the function curves of the first-stage annual expected return with respect

to risk aversion coefficient λ and indicates that the first-stage expected return decreases as the

risk aversion coefficient λ increases. As stated above, a larger λ will leads to a conservative

policy that inversely has a lower expected return. The similar case happens for uncertain

distribution D(γq, γ0), namely, the portfolio with larger uncertainty set will obtain the poorer

expected return. This argument seems to be inconsistent with the implication of Figure 1 in

which CVaRα increases as the uncertain distribution family becomes large. In fact, there is

no inconsistency in Figure 2 and Figure 1. As we know, CVaRα gives the mean value of an

extreme loss when an extreme event happens. A larger uncertainty set means that the extreme

3The values of parameters γq = 2.25, γ0 = 12.5 are set based on a simple statistical analysis of the amount

of noise present in the estimation of mean and covariance matrix during the years 2005-2010, see also Delage,

Ye(2010)[9], pp. 611, for the similar discussion.
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Figure 1: The comparison of CVaR under different uncertainty sets and α.

loss is large even though the probability of the loss is small. This means that, on average, the

extreme loss will increase as the uncertain distribution family becomes large. The expected

return of first-stage as described in Figure 2 is the normal return of portfolio without extreme

event happening, which decreases clearly as the portfolio becomes more conservative. This

fact can also be found by the varying α values in Figure 2. The first-stage annual expected

return drops to 7% at the close to λ = 10 for D(0, 12.5) and D(2.25, 12.5) when α = 0.90. The

annual expected return drops to 7% at the close to λ = 3 for D(0, 12.5) and D(2.25, 12.5) and

λ = 7 for D(0, 1) when α = 0.99.

How does the uncertain distribution family D(γq, γ0) affect the performance of the model?

Figure 3 gives the answer to this problem. It can be found from Figure 3 (a) and (b) that the

first-stage annual expected return decreases slightly, and CVaR increases slightly as parameter

γq increases. The relative sensitive case happens to parameter γ0 from (c) and (d) in this figure.

This phenomenon can be understood easily since, as explained above, the worst-case will

become worse when uncertainty set is larger. This leads to worst-case CVaR increasing. On

the other hand, a larger uncertainty set means a more conservative portfolio obtained and the

usual (non-extreme case) expected return will be lower. However, even though the in-sample

expected return decreases as uncertainty set becomes large, the out-of-sample performance of

portfolio with the larger uncertainty set become more satisfactory, see, e.g., Figure 4, where we

compare the accumulated wealth of the obtained optimal portfolios for three uncertainty sets,

D(0, 1),D(0, 12.5) and D(2.25, 12.5) with the “Equal-weighted” (EW, for short) strategy [10]
4. Two unexpected results are found from Figure 4. One is that the out-of-sample accumulated

4Called also Naive Diversification or ‘1/N ’ portfolio in literature. DeMiguel, Garlappi and Uppal (2009)

find in [10] that the estimation window needed for the sample-based mean-variance strategy and its extensions

to outperform the EW strategy is around 3000 months and think that an optimal portfolio choice is still
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Figure 2: The variation tendency of the first-stage annual expected return with respect to λ and

comparisons under different distribution families and α’s.

wealth of optimal portfolios based on uncertainty set D(0, 12.5) and D(2.25, 12.5) outperforms

that of optimal portfolio of uncertainty set D(0, 1). Another is that the accumulated wealths

of optimal portfolios based on uncertainty set D(0, 12.5) and D(2.25, 12.5) are also greater

than that of EW strategy.

4.2 Application to two-stage material order problem

4.2.1 Problem formulation

A manufacturer plans to produce m products. There exist n raw materials in the market

and each raw material can be used to produce the m products. Suppose each unit raw material

j can produce aij units products i(i = 1, · · · ,m). The unit costs of the raw materials are c =

(c1, · · · , cn)T . Assume that the market demand for each product i is bi. The manufacturer’s

objective is to find the optimal order xj(j = 1, · · · , n), such that the cost is minimum and

all productions satisfy the market demands, namely, the manufacturer needs solve the linear

programming:

min

{
cTx :

n∑
j=1

aijxj ≥ bi, (i = 1, · · · ,m),
n∑
j=1

xj ≤ u, xj ≥ 0, (j = 1, · · · , n)

}
(4.9)

where u is the capacity of processing all the n raw materials. Notice that in the order model, on

one hand, the manufacturer must order the raw materials before market demands bi is realized;

on the other hand, market demand bi varies as the time goes. Hence, the manufacturer must

give an estimation of market demand bi before the problem (4.9) is solved. This leads to that

difficult to be obtained to outperform the EW strategy.
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Figure 3: The variation tendencies of the first-stage annual expected return and the second-stage

CVaR with respect to distribution uncertainty set.

products from the ordered raw materials can not satisfy the real market demands. Thus, the

uncertainty of bi introduced will be more popular than a fixed estimation of bi. Let there be

a “penalty” cost if the real demands cannot be covered by the products since the amount of

shortage in products has to be produced by buying the raw materials from the market. Assume

that these penalties are proportional to the corresponding shortage in products and denoted

by qi(i = 1, · · · ,m), the penalty cost of per unit of undeliverable production i. We call qi the

recourse costs. Additionally, it is not hard to find that the estimate error of coefficient aij is

also not avoided since the fineness of raw material always varies. Then the manufacturer’s

objective will become to minimize the cost of raw materials and recourse costs, namely,

min∑n
j=1 xj≤u,x≥0

cTx + E[Q(x, ξ̃)], with Q(x, ξ̃) = min
y

{
qTy : Ãx + y ≥ b̃, y ≥ 0

}
(4.10)

and yi is the recourse variable that represents the shortage amount of product i, Ã = (ãij)
j=1:n
i=1:m

is an n-by-m matrix, and ξ̃ = (Ã, b̃) is the uncertainty parameter. This is a standard example

of model established in Section 3 with deterministic objective and uncertainty in constraints.

Let the random coefficients Ã, b̃ be driven by an r dimensional random vector ζ̃ =

(ζ̃1, · · · , ζ̃r)T and satisfy equality (3.1). Then the distribution family of ζ̃ is the uncertainty
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Figure 4: The comparisons of the out-of-sample accumulated wealths of the optimal portfolios with

uncertainty sets D(0, 1), D(0, 12.5) and D(2.25, 12.5), and Equal-weighted (EW) strategy.

set Dζ(Mζ ,µζ ,Σζ ,γζ , γζ0) defined in Section 3. The robust version of problem (4.10) with

mean-CVaR as the loss measure in the second-stage can be expressed as

min
Ux≤u,x≥0

cTx + max
P∈Dζ

{
EP[Q(x, ζ̃)] + λCVaRα,P(Q(x, ζ̃))

}
, (4.11)

where U = eT . Applying the results of Theorem 3.3, we can solve the robust two-stage

stochastic ordering problem (4.11) as an SDP.

4.2.2 Numerical results

In order to compare the numerical results, we consider an example from [20] (see, e.g.,

pp. 9-15). Let a refinery supply weekly the gasoline (product 1: P1) and fuel oil (product 2:

P2) for a big company. The material of producing the two products is the crude oil that is

from two different countries, which can be viewed as the two raw materials (raw 1(R1) and

raw 2(R2)). From [20], (see, problem (2.10) of P11 in [20]), in this example, the coefficients

of problem (4.11) are that

c = (2, 3)T ,q = (7, 12)T ,U = (1, 1)T , u = 100, Ã =

(
2 + ζ̃1 3

6 3.4 + ζ̃2

)
, b̃ =

(
180 + ζ̃3

162 + ζ̃4

)
,

where ζ̃ = (ζ̃1, ζ̃2, ζ̃3, ζ̃4)T are a random vector with uncertain distribution. For simplicity, for

uncertainty set Dζ with respect to random vector ζ̃, we take that µζi = 0, i = 1, · · · , 4 and
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Σζ = Diag(9, 12, 0.21, 0.16), a diagonal matrix.5 Then Dζ is reduced as

Dζ(Mζ ,µζ ,Σζ ,γζ , γζ0) =


P{ζ̃ ∈Mζ} = 1,

P :
∣∣∣EP[ζ̃i]

∣∣∣ ≤ σζi γ
ζ
i , i = 1, · · · , r,

EP

[
ζ̃ζ̃T

]
� γζ0Σζ ,

 . (4.12)

Then, under our mean-CVaR setting, the weekly ordering plans of the refinery can be expressed

the following two-stage stochastic problem:

min
xraw

2xR1 + 3xR2 + max
P∈Dζ

{
EP[Q(xraw, ζ̃)] + λCVaRα,P(Q(xraw, ζ̃))

}
,

s.t. xR1 + xR2 ≤ 100,xraw = (xR1, xR2)T ≥ 0,
(4.13)

where

Q(xraw, ζ̃) = min
yprod

7yP1 + 12yP2

s.t.

(
2 + ζ̃1 3

6 3.4 + ζ̃2

)(
xR1

xR2

)
+ D

(
yP1

yP2

)
≥

(
180 + ζ̃3

162 + ζ̃4

)
,

yprod = (yP1, yP2)T ≥ 0,

(4.14)

where D = I2 is a two-dimension identity matrix. Notice that Ã and b̃ can be expressed

further as

Ã =

(
2 3

6 3.4

)
︸ ︷︷ ︸

A0

+ζ̃1

(
1 0

0 0

)
︸ ︷︷ ︸

A1

+ζ̃2

(
0 0

0 1

)
︸ ︷︷ ︸

A2

+ζ̃3

(
0 0

0 0

)
︸ ︷︷ ︸

A3

+ζ̃4

(
0 0

0 0

)
︸ ︷︷ ︸

A4

,

and

b̃ =

(
180

162

)
︸ ︷︷ ︸

b0

+ζ̃1

(
0

0

)
︸ ︷︷ ︸

b1

+ζ̃2

(
0

0

)
︸ ︷︷ ︸

b2

+ζ̃3

(
1

0

)
︸ ︷︷ ︸

b3

+ζ̃4

(
0

1

)
︸ ︷︷ ︸

b4

.

Thus, problem (4.13)-(4.14) can solved using the SDPs established Section 3. It is not hard

to find that the set {z ≥ 0 : DTz ≤ q} = {z ∈ R2
+ : z1 ≤ 7, z2 ≤ 12} is a box and has four

extreme points z∗1 = (7, 12)T , z∗2 = (0, 0)T , z∗3 = (0, 12)T and z∗4 = (7, 0)T and each extreme

point is corresponding to two linear matrix inequality constraints. The resulted SDP is solved

by SDPT3 [41] under the case of different risk aversion coefficient λ.6

5Here, we do not make any assumptions on the distribution of random vector ζ. But, in [20], the authors

assumed that the components of ζ are distributed normally, uniformly and exponentially.
6In order to obtain a high equality and comparable solution of the resulted SDP, the suitable choices of

parameters γq and γ0 are important. Toward this end, we assume that the estimations µζ and Σζ are obtained

based on a large sample data that satisfies the condition in [9] (see, e.g. (17) in Delage and Ye [9]). Using the

results of Corollary 4 in [9], we take confidence levels, δ = 0.05. Then γ1 = 0.1350, γ2 = 1.3861 in DDY . We

take for simplicity, γζi = γ1, (i = 1, · · · , 4), γ0 = 2γ2. We can show from the results in Delage and Ye [9] that

P{Pζ ∈ D(γζ , γ0)} ≥ 1− δ = 0.95 approximately holds using a similar approach.
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Table 3 gives some numerical results for different risk parameter λ. As stated by Kall and

Wallace [20], two classes of stochastic scenarios for this example are considered. One is that

they assume that there exist 15×15 = 225 realizations (scenarios) for random vector ζ̃ and 225

blocks will be decomposed in their stochastic programming algorithm, by which the first-stage

solution and cost are respectively xraw = (38.5390, 20.5390)T and cost= 138.6940. Another is

that they discretize the given distribution to 15 and 18 subintervals for the uniform and expo-

nential distribution respectively, getting 15×18 = 270 blocks that will be decomposed in their

stochastic programming algorithm, by which they obtain another pair of first-stage solution

and cost: xraw = (38.5660, 22.1410)T and cost= 141.5560. Some interesting observations can

be found from Table 3. (1) our models can easily obtain many first-stage order policies xraw
with different risk reference λ. (2) The first-stage order policy with less cost than Kall and

Wallace’s [20] stochastic programming order policy can be obtained when λ = 6 for α = 0.90

and λ = 12 for α = 0.95. (3) The first-stage order cost is convex in λ, that is, the cost is first

decreases and then increases as λ increases. This is an interesting result. Generally speaking,

the order cost will be decreasing as λ increases, like the numerical example in the previous

subsection. The increase of the order cost is also easily understood. Due to that the cost of

buying an unit raw material is much less than that of penalty caused by the shortage of an

unit raw material. Thus, as λ attains a threshold and increases continuously that leads to

decision makers’ risk aversion level is raised, more conservative order policies will be favorite.

Finally we mention that O.F.V., in the fourth and seventh column of Table 3 stands for

the objective function value (O.F.V.) of resulted SDP problem. One can find that O.F.V.

are greater than the total cost (140.7470 for the first scenario algorithm or 144.179 for the

second scenario algorithm in Kall and Wallace [20]). This is due to that our O.F.V. includes

three terms, the first-stage cost, second-stage penalty, and CVaR. That explains why they are

generally greater than the total cost in [20] with only the first two terms.

4.3 Stochastic production-transportation problem

4.3.1 Problem formulation

Suppose there are m facilities and n customer locations. Assume that each facility has

a normalized production capacity of one. The production cost per unit at each facility i is

ci. The demand from each customer location j is bj and known beforehand. We assume that∑
j bj < m. The transportation cost between facility i and customer location j is qij. The goal

is to minimize the total production and transportation cost while satisfying all the customer

orders. If we define xi ≥ 0 to be the amount produced at facility i and yij to be the amount

transported from i to j, the deterministic production-transportation problem is formulated as
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Table 3: The optimal solutions and costs for different risk parameter λ when α = 0.90 and α = 0.95

with γζi = 0.1350(i = 1, · · · , 4) and γ0 = 2.7722.

α = 0.90 α = 0.95

Cost of Cost of

λ (xR1, xR2) first-stage O.F.V. (xR1, xR2) first-stage O.F.V.

0 (42.6210, 31.7355) 180.4486 183.7536 (43.1633, 32.1724) 182.8438 186.4987

1 (40.3561, 28.5789) 166.4489 172.3759 (42.3750, 32.3595) 181.8287 188.1057

2 (39.5902,27.0032) 160.1913 164.6120 (42.9759, 31.2196) 179.6108 184.3828

3 (38.3577, 25.2278) 152.3988 157.9372 (41.1759, 30.6541) 174.3143 180.2028

4 (38.0034, 23.1137) 145.3479 151.1803 (40.5778, 29.5328) 169.7542 175.9366

5 (37.4697,22.4790) 142.3764 148.5539 (39.9808, 28.4257) 165.2389 171.7664

6 (37.2108, 21.0046) 137.4354 144.9260 (39.3849, 27.8780) 162.4038 168.2445

7 (37.5905, 22.2363) 141.8901 146.8060 (38.7902, 25.7308) 154.7729 160.0387

8 (38.1823, 22.7520) 144.6207 150.4359 (38.1968, 25.2060) 152.0118 158.1771

9 (38.7756, 23.2612) 147.3348 153.6232 (37.6048, 24.1726) 147.7278 154.3661

10 (39.3701, 23.7640) 150.0323 153.8005 (37.0144, 23.1621) 143.5154 147.6336

11 (39.9658, 24.2605) 152.7134 158.6063 (36.4256, 22.6662) 140.8499 147.0929

12 (40.5627, 24.7509) 155.3782 159.9173 (37.3095, 21.7562) 139.8878 146.7768

13 (41.1606, 25.2352) 158.0270 162.9270 (38.1969, 22.7950) 144.7788 150.0288

14 (41.7595, 25.7135) 160.6597 163.998 (39.0874, 23.3046) 148.0888 151.7778

15 (42.3594, 26.1859) 163.2767 166.9711 (41.7750, 24.3048) 156.4646 160.5089

follows:

min
m∑
i=1

cixi +
m∑
i=1

n∑
j=1

qijyij

s.t.
m∑
i=1

yij = bj, for any j,

n∑
j=1

yij = xi, for any i,

0 ≤ xi ≤ 1, yij ≥ 0, yii = yjj = 0, for any i, j.

(4.15)

We notice first that the transportation cost qij is in fact uncertainty. Then from Section

2 the two stage version of problem (4.15) with stochastic q̃ij can be expressed as follows.

min
0≤x≤1

{
cTx + sup

P∈P
{EP [Q(x, q̃)] + λCVaRα,P (Q(x, q̃))}

}
(4.16)

with

Q(x, q̃) = min

{
m∑
i=1

n∑
j=1

q̃ijyij : with constraints in (4.15)

}
. (4.17)

We use the symbol vec(·) of matlab that stacks the columns of a matrix, and denoted by

Y = (yij), then vec(Y ) is a mn-dimensional vector. Then the SDP expression of problem
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(4.16) is from Theorem 2.1,

min
x,v;z,w1,w2,Z;Y

cTx + λv + z + wT
1 µ

q + wT
2 γ

q
σ + Z · (γq0Σq + µq(µq)T )

s.t.

[
Z 1

2

(
w1 −

(
1 + λ

1−α

)
vec(Y )

)
1
2

(
w1 −

(
1 + λ

1−α

)
vec(Y )

)T λv
1−α + z

]
� 0,

[
Z 1

2
(w1 − vec(Y ))

1
2

(w1 − vec(Y ))T z

]
� 0,

m∑
i=1

yij = bj, for any j,

n∑
j=1

yij = xi, for any i,

0 ≤ xi ≤ 1, yij ≥ 0, yii = 0, for any i, j,

x ≥ 0,w2 ≥ 0,Z � 0, v, z ∈ R,w1 ∈ Rm.

(4.18)

4.3.2 Numerical results

In this subsection, we will report the numerical results of the two stage problems (4.15).

We check the proposed model by taking the pair of (m,n) with (5, 20), (5, 50), (10, 100). We

generate randomly m facilities and n customer locations within the unit square and compute

qij for each pair of (n,m). We generate randomly 5,000 uniform cost vectors q̃ from inde-

pendent uniform distributions on intervals [1.5qij, 1.5qij] for all i, j. The production cost ci
is randomly generated from a uniform distribution on the interval [1.5c, 1.5c], where c is the

average transportation cost. Similarly, the demand hj is randomly generated from the uniform

distribution on the interval [0.5m/n,m/n] so that the constraint
∑

j hj < m is satisfied.

Similar to Subsection 4.1.2, we consider three uncertainty sets, D(0, 1),D(0, 12.5) and

D(2.25, 12.5) and compare their cost under different risk aversion parameter λ and α =

0.90, 0.95.7 We compare the proposed robust approach with the data-driven (or sample)

approach with the risky neutral utility U(x) = x, see [5] for the similar statement. The data-

driven model is solved using 10,000 samples drawn from the normal distribution with given

first and second moments. For the obtained first stage optimal solution x and second stage

optimal solution Y, we compute the first stage production cost (PC) and mean transportation

cost (TC) and total cost of two stages for all test problems and approaches, see Table 4 for

our numerical results and comparisons of this example.

[Insert Table 4 about here]

We find first that the size of uncertainty sets can impact on the optimal cost and a larger

uncertainty set, such as D(2.25, 12.5), can obtain less total cost. This result is expected and

consistent with Section 4.1 because that a large uncertainty set can provide more choices for

7In this example and next example, we obtain the optimal value under different risk aversion parameter λ,

but we give the best optimal value for certain risk aversion parameter λ in reports due to the space limit. The

reader can request the detail results with different λ at any time from the correspond author.
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decision maker and include into the optimal decision in small uncertainty set as a feasible case.

This shows also that a large uncertainty set of distributions with few information can work

better than the moment-known uncertainty set D(0, 1) or DBDNT . Some other observations

are similar to Section 4.1.2.

We argue further that the proposed robust approach has better performance than data-

driven method as uncertainty set from D(0, 1) to D(2.25, 12.5). Indeed, from the total cost of

all test instances, the robust model with uncertainty set D(0, 1) has similar total cost to the

data-driven approach, and the robust model with uncertainty set D(0, 12.5) has slightly better

total cost, and for the uncertainty set D(2.25, 12.5), the robust model has the least total cost.

The explanations are two folds: one is that a large uncertainty set will provide more choices

for decision maker, and the other is that combining the CVaR risk factor into objective is

important for reducing the total cost and improving the model performance.

4.4 Single facility minimax distance problem

4.4.1 Problem formulation

Let (xi, yi)(i = 1, · · · , n) denote n customer locations on a plane. The single facility

optimal distance problem is to identify a facility location (x, y) that minimizes the maximum

distance from the facility to the customers. Assuming a rectilinear or Manhattan distance

metric, the problem with certainty case is formulated as

min
x,y

({ max
i=1,··· ,n

|xi − x|+ |yi − y|}).

Notice that the locations of n customers are possibly random and expressed as (x̃i, ỹi)(i =

1, · · · , n). Carbone and Mehrez [8] considered the stochastic coordinates (x̃i, ỹi)(i = 1, · · · , n)

with mean 0 and variance 1, identical, pairwise independent and normal distributed cases. In

the current paper, we assume that

x̃i = xi + ζ̃xi , ỹi = yi + ζ̃yi , (i = 1, · · · , n),

where xi and yi are the mean value of x̃i and ỹi. Then, minmax distance problem with

stochastic customers locations can be expressed as follows two stage problem under risky

neutral case.

min
x,y

E[Q(x, y; ζ̃)],

where

Q(x, y; ζ̃) = −min
z
−z

s.t. z + x+ y ≥ x̃i + ỹi, ∀i,
z − x− y ≥ −x̃i − ỹi, ∀i,
z + x− y ≥ x̃i − ỹi, ∀i,
z − x+ y ≥ −x̃i + ỹi, ∀i.
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This corresponds to a special case in Section 3 with c = 0 and determinate coefficient matrix

A, but random right hand side constraints. We assume further that ζ̃ = (ζx; ζy) follows the

distribution family of Dζ given by (4.12). Then we can write problem above as the robust two

stage programming form with risky aversion.

min
x,y∈X

{
sup
P∈Dζ

{
E[Q(x,y; ζ̃)] + λCVaRα(Q(x,y; ζ̃))

}}
. (4.19)

Notice that coefficient matrix A is constant and ζ̃ can be expressed as the form (3.1) using

the similar to Section 4.2.2. It is not hard to find that the dual feasible set has 4n+ 1 extreme

points in R4n that can be expressed as follows.

{0, e1, e2, · · · , en,−en+1, · · · ,−e2n, e2n+1, · · · , e3n,−e3n+1, · · · ,−e4n},

where ei(i = 1, · · · , 4n) is the 4n dimensional vector whose i-th element is one and other

elements are all zeros. Thus problem (4.19) can be solved using the SDPs approach developed

in Section 3.

4.4.2 Numerical results

In our numerical tests of this example, we randomly generate n = 10, 20, 40, 50, 60, 80, 100

customer locations within the unit square respectively. Assume that each customer location is

perturbed from its original position by a random distance in a random direction. We estimate

the first and second moments µ and Σ using 5,000 such random perturbations. Similarly, we

compare the proposed robust approach with data-driven model to find the optimal facility

locations. The data-driven model is still solved using 10,000 samples drawn from the normal

distribution with given first and second moments, and risk-neutral case of U(x) = x. For

simplicity, we consider still three uncertainty sets, D(0, 1),D(0, 12.5) and D(2.25, 12.5) in this

example and compare their maximum distance under different risk aversion parameter λ and

α = 0.90, 0.95. For each test problems, we compute the possible optimal facility location (x, y)

and the maximum distance from n customer locations to (x, y) , see Table 5 for detail.

[Insert Table 5 about here]

Some similar observations are made from Table 5. The robust model with large uncer-

tainty sets can find the facility location with smaller distance for all n. Data-driven works

better when the number of customers n is not large, such as, n = 10, 20. However, the pro-

posed robust approaches work better than the data-driven method as the number of customers

n increases. This is to be expected because the stochastic risk will be increasing and it will

be difficultly to control it by a risk-neutral model as n increases. Therefore, it is worthy to

combine a risk controlling function into the objective for a large n. A shortcoming is that the

CPU time increases rapidly as n gets very large. There are 4n + 1 extreme points for dual

feasible set and 4n+ 1 linear matrices inequalities constrains.
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5 Concluding remarks

A robust two-stage stochastic linear programming model with mean-CVaR recourse is

considered. We find that, by considering the uncertainty either in objective function or con-

straints, the model can be solved by using an SDP approach. However, the model with

uncertainty in constraints is more difficult and is shown to be an NP-Hard problem. Four

practical examples, the two-stage portfolio selection, the material order problem, the stochas-

tic production-transportation problem, and the single facility minimax distance problem are

solved by the proposed algorithms. Numerical results and comparisons with a data-driven

method indicate that the model is efficient and capable for solving practical problems.
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Cǎsopis pro Peštováńı Matematiky, 91, 423-430.
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