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Abstract10

Reconstruction of architectural structures from photographs has recently ex-11

perienced intensive efforts in computer vision research. This is achieved12

through the solution of nonlinear least squares (NLS) problems to obtain13

accurate structure and motion estimates. In Photogrammetry, NLS con-14

tribute to the determination of the 3-dimensional (3D) terrain models from15

the images taken from photographs. The traditional NLS approach for solv-16

ing the resection-intersection problem based on implicit formulation on the17

one hand suffers from the lack of provision by which the involved variables18

can be weighted. On the other hand, incorporation of explicit formulation19

expresses the objectives to be minimized in different forms, thus resulting in20

different parametric values for the estimated parameters at non-zero resid-21

uals. Sometimes, these objectives may conflict in a Pareto sense, namely, a22

small change in the parameters results in the increase of one objective and a23

decrease of the other, as is often the case in multi-objective problems. Such24

is often the case with error - in - all - variable (EIV) models, e.g., in the25
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resection-intersection problem where such change in the parameters could26

be caused by errors in both image and reference coordinates. This study27

proposes the Pareto optimal approach as a possible improvement to the so-28

lution of the resection-intersection problem, where it provides simultaneous29

estimation of the coordinates and orientation parameters of the cameras in a30

two or multistation camera system on the basis of a properly weighted multi-31

objective function. This objective represents the weighted sum of the square32

of the direct explicit differences of the measured and computed ground as33

well as the image coordinates. The effectiveness of the proposed method is34

demonstrated by two camera calibration problems, where the internal and35

external orientation parameters are estimated on the basis of the collinear-36

ity equations, employing the data of a Manhattan-type test field as well as37

the data of an outdoor, real case experiment. In addition, an architectural38

structural reconstruction of the Merton college court in Oxford (UK) via39

estimation of camera matrices is also presented. Although these two prob-40

lems are different, where the first case considers the error reduction of the41

image and spatial coordinates, while the second case considers the precision42

of the space coordinates, the Pareto optimality can handle both problems in43

a general and flexible way.44

Keywords: Pareto optimality, photogrammetric positioning,45

resection-intersection, symbolic-numeric solution, Pareto-front,46

multi-objective optimization47
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1. Introduction48

In computer vision and model-based vision, resection-intersection tech-49

nique (Chen and Medioni 1999, Mahamud et al. 2000, Triggs et al. 2001)50

is often used to perform adjustment that plays an essential role in obtaining51

accurate structure and motion estimates (see, e.g., Bartoli 2002; Olsonn et52

al. 2009), while in photogrammetry, it is used to perform bundle adjustment53

to obtain a 3-dimensional (3D) terrain models from images taken from pho-54

tographs. Indeed, in recent years, the demand for realistic reconstruction and55

modeling of objects and human bodies is increasing both for animation and56

medical applications (e.g., Remondino 2002). For example, the significant57

role played by resection and intersection is discussed e.g., in Börlin (2002),58

where resection methods is applied in radiostereometric analysis (RSA) to re-59

construct the projection geometries, while the intersection technique is used60

to reconstruct the 3D-coordinates of the patient markers. Radiostereometric61

analysis has been widely used in orthopaedics for studying, e.g., prosthetic62

implant migration and wear, joint stability and kinematics, bone growth, and63

fracture healing (Börlin 2002). These applications of resection-intersection64

method, just to list but a few, underscores the need for further improvements65

and refinements of the existing techniques, and also testing others that could66

offer more flexibility and optimum results.67

Generally, in order to determine the 3D position (X, Y, Z) of a point68

in space (e.g., the 3-dimensional (3D) coordinates of the patient markers)69

through intersection, at least two photo images of the point are required70

with coordinates (x, y) on each of the photo planes. In addition to these71

coordinates, carrying out intersection requires one to know the orientation72
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parameters of the two cameras, which is often solved through resection. For73

resection, the internal and external orientation parameters of a camera model74

are determined based on the collinearity equations (see e.g. Mikhail et al.75

2001; Forsyth and Ponce 2003; Awange and Kiema 2013). In computer76

vision, the problem of the determination of the exterior orientation param-77

eters is known as the pose estimation problem (see, e.g., Grussenmeyer and78

Al Khalil 2002). Grussenmeyer and Al Khalil (2002) present a survey of79

methods for the determination of the exterior parameters in photogramme-80

try and classify them into three groups; approximate methods, the standard81

point-based methods derived from collinearity, coplanarity or co-angularity82

conditions, and the orientation methods based on constraints and projective83

geometry concepts (e.g., Grafarend and Shan 1997a,b).84

There exists several methods for solving the combined resection-intersection85

problem, e.g., Grafarend and Shan (1997c) who present an algorithmic based86

on Möbius barycentric coordinates and Bartoli (2002) who adapt a quasi-87

linear optimizations that uses the original cost function of bundle adjustment,88

which preserves optimality, and handle a great variety of camera models in89

a unified manner. Most frequently used methods to solve resection problem,90

however, are the different variants of the direct linear transformation (DLT),91

see e.g. Young-Hoo Kwon (1998) and Hartley and Zisserman (2003). In cer-92

tain simplified cases, even symbolic or semi-symbolic solutions can be given,93

see e.g., Ameller et al. (2000), Awange and Grafarend (2005) and Awange94

et al. (2010).95

However, all of these DLT methods have three common features (see e.g.,96

Atkinson 1996), namely (i) the orientation parameters of each camera are97
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estimated independently through resection but the positions determination98

using intersection uses all of the orientation and image coordinates simulta-99

neously, (ii) the equations used for parameter estimation contain the mea-100

sured coordinates implicitly, which means that the resulting residuals have101

no physical interpretation, and (iii) because of this implicit formulation, nei-102

ther the reference nor the measured image coordinates can be weighted, and103

errors in the image as well as the reference coordinates cannot be taken into104

consideration.105

The three features discussed above put a bottleneck to the nonlinear least106

squares estimation model used in obtaining accurate structure and motion.107

The nonlinear least squares model aims at estimating a vector of parameters108

ξ, from a linearized model y = Aξ+e that includes an observation vector y,109

a vector of normally distributed errors e, and a matrix of variables A (Felus110

and Schaffrin 2005). In this model, the underlying assumption is that the111

design matrix A is fixed or error-free, which is not often the case in computer112

vision or photogrammetry since both the image and the reference coordinates113

may encounter errors. When both the observation vector y as well as the114

design matrix A contain errors, the problem is known as error-in-all-variables115

(EIV). Among the methods put forward to solve an EIV problem is the total116

least squares (TLS) method (see, e.g., Golub and Van Loan 1980; Felus and117

Schaffrin 2005; Zwanzig 2006; Neitzel 2010; Grafarend and Awange 2012).118

In a recent study, however, Paláncz and Awange (2012) showed that for119

EIV models, when multiple conflicting objectives exist, or for ill-posed prob-120

lems (see, e.g., Schaffrin and Snow 2010), the TLS lead to larger global and121

local residuals and suggested the use of Pareto optimality approach, which122
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has been widely used in economics (see, e.g., Hochman and Rodgers 1969;123

Warr 1982) to estimate the parameters in EIV models. The use of Pareto124

optimality is necessitated by the fact that many real-world problems involve125

simultaneous optimization of several incommensurable and often competing126

objectives (i.e., multi-objectives). Always, there is no single optimal solution,127

but rather a set of alternative solutions, which are optimal in the wider sense128

that no other solutions in the search space are superior to them when all129

objectives are considered (Zitler and Thiele 1999). These solutions, known130

as Pareto-optimal solutions, were introduced by the Italian economist and131

sociologist Vilfredo Pareto (1848-1923) (Pressl et al. 2010).132

Pareto optimality has been associated with multi-objective problems for133

quite sometime (see, e.g., Censor 1977; Zitzler and Thiele 1999). Other tra-134

ditionally available methods for solving multi-objective problems include the135

goal attainment approach (Wilson and Macleod 1993) and weighted averag-136

ing (Coello 1999). Considering the Pareto approach, there occur cases, for137

example, where the objective to be minimized can be expressed in different138

forms, resulting in different parametric values for the estimated unknowns139

at non-zero residiuals. Sometimes these objectives may compete in Pareto140

sense, namely a small change in the parameters result in an increase of one141

objective, while decreasing the other. The Pareto optimal set represents a set142

of optimal solutions between the conflicting objectives, which helps the user143

to gain a better understanding of the problem structure and supports the144

decision-maker in choosing the best compromise solution for the considered145

alternatives. However, in case of lack of such a supervisor, one may select an146

equilibrium solution from the Pareto-set.147
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Examples of the application of Pareto optimality are documented, e.g., by148

Mirza and Almir (2010) who investigated the application of a multi-objective149

genetic algorithm based on the Pareto approach as a tool for decision making150

support in geospatial analysis, and Pressl et al. (2010) who employs Pareto151

optimality to develop a prototype for a web-based route planning service152

for people with disabilities who have special requirements on their mobility.153

Other applications are presented in the works of Lin (1976), Zitler and Thiele154

(1999), Geisler and Trächtler (2009), Saadatseresht et al. (2009), and Sonnier155

(2010). In computer vision, the application of pareto optimality is reported156

e.g., in the works of Dunn et al. (2004) and more recently in Olague and157

Trujillo (2011,2012).158

To help address the bottleneck faced by nonlinear least squares and its159

improvement, the TLS, the present work proposes the use of Pareto opti-160

mality in photogrammetry as a possible solution to the resection-intersection161

models with EIV. The remeinder of the study is organized as follows: In162

section2, the photogrammetric resection-intersection problem is formulated163

leading to a multi-objective EIV model, which is then solved using the Pareto164

optimality discussed in section 3. Section 4 presents the Han, Manhattan,165

and Merton architectural examples, while section 5 summarizes the study.166

2. Resection-intersection and the multi-objective problem167

2.1. Resection-intersection problem168

The fundamental photogrammetric problem amounts to the determina-169

tion of the interior and exterior orientation parameters of the camera and170

to obtain the coordinates of the object space of the corresponding points171
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measured on the photos (McGlone 1989; Grussenmeyer and Al Khalil 2002).172

Photogrammetric resection is the problem of determining the interior and173

exterior orientation parameters of a camera based on known ground points174

(Xj, Yj, Zj) and their corresponding photo plane coordinates (xj, yj). The175

determination of the orientation parameters is achieved through the geomet-176

rical collinearity model equations (e.g., Awange and Kiema 2013)177

xj = η0 − f
r11 (Xj −X0) + r12 (Yj − Y0) + r13 (Zj − Z0)

r31 (Xj −X0) + r32 (Yj − Y0) + r33 (Zj − Z0)
, (1)

and,178

yj = ξ0 − f
r21 (Xj −X0) + r22 (Yj − Y0) + r23 (Zj − Z0)

r31 (Xj −X0) + r32 (Yj − Y0) + r33 (Zj − Z0)
, (2)

where η0, ξ0 are the coordinates of the perspective center on the photo plane,179

f is the focal length, ri,j are the elements of the the rotation matrix RRR, and180

X0, Y0, Z0 are the corresponding coordinates of the perspective center in the181

ground system. The parameters η0, ξ0 and f are the interior orientation182

parameters, while the elements of RRR and X0, Y0, Z0 comprise elements of the183

exterior orientation parameters (e.g., Fig. 1).184

Figure 1

The representation of the mathematical relationship between a point on the185

photo plane (xj, yj) and its corresponding point (Xj, Yj, Zj) in the object186

space can be given without the scaling factor through the collinearity equa-187

tions (1 and 2). Here, the elements of the rotation matrix are expressed by188

the elements of the skew matrix SSS as (Awange et al. 2010)189
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SSS =


0 −c b

c 0 −a

−b a 0

 .

The rotation matrix then becomes (e.g., Awange et al. 2010)190

RRR = (III3 −SSS)−1 (III3 +SSS) , (3)

where III3 is a 3 × 3 identity matrix. This leads to191

RRR =


1+a2−b2−c2
1+a2+b2+c2

2ab−2c
1+a2+b2+c2

2(b+ac)
1+a2+b2+c2

2(ab+c)
1+a2+b2+c2

1−a2+b2−c2
1+a2+b2+c2

− 2(a−bc)
1+a2+b2+c2

2(−b+ac)
1+a2+b2+c2

2(a+bc)
1+a2+b2+c2

1−a2−b2+c2
1+a2+b2+c2

 .

In a general case, there are 9 parameters to be computed, namely, the inte-192

rior orientation parameters (η0, ξ0 and f), as well as the exterior orientation193

parameters (a, b, c and X0, Y0, Z0). Every corresponding point-pair pro-194

vides 2 collinearity equations, therefore to compute the 3 internal and the195

6 external parameters, one needs a minimum 5 corresponding point-pairs.196

Consequently, even in the minimum case, we have an overdetermined system197

(5×2 =10 equations and 9 unknowns). In practice, there are more measured198

points than the minimum leading to an overdetermined system of equations,199

which can be solved for the parameters in a least squares sense (i.e., resec-200

tion).201

In its implicit form, the collinearity equations (1 and 2) can be written202

as203

ρxj = (xj − η0) (r31 (Xj −X0) + r32 (Yj − Y0) + r33 (Zj − Z0)) +

fr11 (Xj −X0) + r12 (Yj − Y0) + r13 (Zj − Z0) = 0.
(4)
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and204

ρyj = (yj − ξ0) (r31 (Xj −X0) + r32 (Yj − Y0) + r33 (Zj − Z0)) +

fr21 (Xj −X0) + r22 (Yj − Y0) + r23 (Zj − Z0) = 0,
(5)

where the elements ri,j’s of the rotation matrix RRR depend on the elements205

(a, b, c) of the skew matrix SSS. Considering n points on a photo-plane, one206

has 2n equations to estimate the parameter π = (a, b, c, X0, Y0,Z0, η0, ξ0,207

f) belonging to this image.208

In real situations, when the initial values for the parameters above are209

not known, the global solution of the overdetermined polynomial equations210

(4) and (5) is not trivial. One possibility is to solve a determined subsystem211

with numerical Groebner basis or alternatively with linear homotopy method,212

then employ the results as initial values for the extended Newton method for213

solving the overdetermined system (see e.g., Awange et al. 2010). Undoubt-214

edly, the most effective global method is the global minimization methods.215

Here we use random - search method to minimize the residual of the equa-216

tions in a least square sense. The objective function based on the implicit217

equations (4 and 5) is218

GI(π) =
n∑
j=1

(
ρ2xj + ρ2yj

)
. (6)

Frequently, the same camera is used to aquire the two photo-planes. There-219

fore the determined internal orientation parameters (f, η0, ξ0) computed from220

the data of the two photo-planes should be the same. However the simultane-221

ously estimated parameters from both photo-planes requires the solution of222

an ill-conditioned problem. Therefore the parameters are mostly estimated223

independently for the two photo-planes accepting that f (1) ≈ f (2), η
(1)
0 ≈ η

(2)
0 ,224
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and ξ
(1)
0 ≈ ξ

(2)
0 . Once the interior and exterior orientation parameters of the225

two cameras have been determined through resection, the next step entails226

the determination of the position (X, Y, Z) of a point in 3D space from at227

least 2 photo image coordinates (x, y) and (u, v) registered on (at least) two228

photo planes (e.g., Fig. 2) through the procedure known as intersection.229

Figure 2

To determine each ground coordinate (Xj, Yj, Zj), the corresponding co-230

ordinates on the two photo planes (xj, yj), and (uj, vj) are needed. It means231

that to compute the space (ground) coordinates of a point, we have 4 collinear-232

ity equations (2 equations belonging to each photo-plane) being linear in the233

3 unknowns (X, Y, Z). Therefore, theoretically, any 3 equations could be234

considered although it is more reasonable to carry out the computation si-235

multaneously as a linear regression problem.236

The two collinearity equations for the first photo plane are237

f (1) ((X −X01) r1,1 + (Y − Y01) r1,2 + (Z − Z01) r1,3) +

(x− η01) ((X −X01) r3,1 + (Y − Y01) r3,2 + (Z − Z01) r3,3) = 0,
(7)

and,238

f (1) ((X −X01) r2,1 + (Y − Y01) r2,2 + (Z − Z01) r2,3)

+ (y − ξ01) ((X −X01) r3,1 + (Y − Y01) r3,2 + (Z − Z01) r3,3) = 0.
(8)

Similarly the equations for the second photo plane are239

f (2) ((X −X02) R1,1 + (Y − Y02) R1,2 + (Z − Z02) R1,3)

+ (u− η02) ((X −X02) R3,1 + (Y − Y02) R3,2 + (Z − Z02) R3,3) = 0,
(9)
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and,240

f (2) ((X −X02) R2,1 + (Y − Y02) R2,2 + (Z − Z02) R2,3)

+ (v − ξ02) ((X −X02) R3,1 + (Y − Y02) R3,2 + (Z − Z02) R3,3) = 0.
(10)

2.2. Resection-intersection objectives241

Traditionally, the system of the collinearity equations employed to es-242

timate the parameters of the i -th camera (πi) can be written in implicit243

form,244

Pj (πi, Xj, Yj, Zj, xj, yj) = 0, j = 1, . . . , n ≥ 5, (11)

where(Xj, Yj, Zj) and (xj, yj) are the measured coordinates corresponding to245

the ground and photo plane systems, respectively. Having a minimum of two246

cameras with known parameters, the coordinates of an optional object point247

X, Y, Z can be computed from the coordinates of two projected points in two248

separate images (x, y) and (u, v) employing 4 collinearity equations249

x = px (π1, X, Y, Z)

y = py (π1, X, Y, Z)

u = pu (π2, X, Y, Z)

v = pv (π2, X, Y, Z) ,

(12)

or in implicit form,250

Px (π1, X, Y, Z, x, y) = 0

Py (π1, X, Y, Z, x, y) = 0

Pu (π2, X, Y, Z, u, v) = 0

Pv (π2, X, Y, Z, u, v) = 0.

(13)

The problem is overdetermined with 4 equations and 3 unknowns, and the251

least squares method can be used again (one-point intersection in Fig. 2).252
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In order to formulate an explicit multi-objective EIV-model, the one-point253

intersection problem in Eqn. (12) is expressed in a least squares sense employ-254

ing symbolic pseudo-inverse. The coordinates of an object point (X, Y, Z) is255

expressed explicitly as the functions of the corresponding photo plane coor-256

dinates (x, y) and (u, v) as257

X = pX (π1, π2, x, y, u, v)

Y = pY (π1, π2, x, y, u, v)

Z = pZ (π1, π2, x, y, u, v) ,

(14)

from which the unknown camera parameters (π1, π2) are determined from258

the explicit objective function259

GXYZ (π1, π2) =
n∑
j=1

WXj
(Xj − pX (π1, π2, xj, yj, uj, vj))

2 +

WYj (Yj − pY (π1, π2, xj, yj, uj, vj))
2 +

WZj
(Zj − pZ (π1, π2, xj, yj, uj, vj))

2 ,

(15)

which is constructed using every weighted jth ground point (Xj, Yj, Zj) and260

their corresponding photo planes coordinates (xj, yj) and (uj, vj), j = 1, ..., n.261

Now this objective function has a clear physical interpretation, namely, it262

is the sum of the square of the differences between the measured and the263

computed ground coordinates. Its minimization results into the orientation264

parameters of both cameras simultaneously (i.e., resection). In order to esti-265

mate the parameters π1, π2, a different objective function can be determined266

on the basis of the weighted measured and computed coordinates of the photo267
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plane points as268

Gxyuv (π1, π2) =
n∑
j=1

wxj (xj − px (π1, Xj, Yj, Zj))
2 +

wyj (yj − py (π1, Xj, Yj, Zj))
2 +

wuj (uj − pu (π2, Xj, Yj, Zj))
2 +

wvj (vj − pv (π2, Xj, Yj, Zj))
2 .

(16)

Since there exists two competing objectives (Eqns. 15 and 16), probably269

the best strategy is to find a trade-off between them, namely, to consider270

their linear combinations resulting from a mono-objective function271

G (π1, π2, λ) = λGXYZ (π1, π2) + (1− λ)Gxyuv (π1, π2) , (17)

where λ are the weighting parameters. This is a classical multi-objective272

optimization (MO) problem, where the objectives GXYZ and Gxyuv are com-273

peting with no unique solution. Instead, the concept of non-inferiority (also274

called Pareto optimality) must be used to characterize the objectives (e.g.,275

Censor 1977). The solution of a MO problem is not a particular value, but a276

set of values of the decision variables (called Perato-set). For each element in277

this set, none of the objective functions can be increased without a decrease278

of some of the remaining objective functions. Every such a decision-value is279

referred to as Pareto-optimal.280

Since the dimensions of the different objectives are different, in our case,281

the ground coordinates are in m-units and the image coordinates in pixel, it is282

reasonable to introduce normalized, dimensionless multi-objective functions,283

for example, Eqns. (15) and (16) can be written as284

G̃XYZ (π1, π2) =
GXYZ (π1, π2)−GXYZmin

GXYZmax −GXYZmin

,
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and285

G̃xyuv =
Gxyuv −Gxyuvmin

Gxyuvmax −Gxyuvmin

.

The dimensionless form of the mono-objective function then becomes286

G̃ (π1, π2, λ1, λ2) = λG̃XYZ (π1, π2) + (1− λ)G̃xyuv (π1, π2) . (18)

2.3. An alternative development of the multi - objective problem287

The symbolic form of the explicit expression of the collinearity equations288

for the space coordinates (X, Y, Z) with one-point intersection is possible289

if there are only two photo-planes. In that case, Eq. (12) or Eq. (13) can290

be solved for space coordinates as an overdetermined linear system using291

symbolic pseudoinverse. To get an alternative form of Eq. (15) for three or292

more photo-planes, which does not require the explicit form Eq. (14), let us293

introduce the adjustments of the space coordinates ∆Xj, ∆Yj, ∆Zj. Then,294

Eq. (13) can be written for the i-th camera (photo-plane) as295

PX
(
πi, Xj + ∆Xj, Yj + ∆Yj, Zj + ∆Zj, xj

(i), yj
(i)
)

= 0, j = 1, . . . , n

PY
(
πi, Xj + ∆Xj, Yj + ∆Yj, Zj + ∆Zj, xj

(i), yj
(i)
)

= 0, j = 1, . . . , n,
(19)

where i = 1, 2, . . . ,m is the number of the photo-planes. Now the objective296

function GXYZ (π1,π2,...πn) can be written as297

GXYZ (π1, π2, . . . , πm) =
n∑
j=1

WXj
∆Xj

2 +WYj∆Yj
2 +WZj

∆Zj
2, (20)

with Eq. (19) as a constraint. The payment for avoiding the explicit expres-298

sion of the space coordinates is relatively high. Using the explicit form of299

(X, Y, Z), we need to compute 9m unknown parameters. However, the num-300

ber of the unknowns parameters will be 9m + 3n in case Eq. (20) is used.301
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In addition, one should solve an optimization problem under constrains. For302

example, in case of two photo-planes (m =2) with n = 5 points on each, there303

are 9 × 2 = 18 unknown parameters versus 18 + 3 × 5 = 33.304

3. Pareto optimality305

3.1. Basic definitions306

In many real - life situations, there are multi-objective optimality problems,307

which means that there are more than one objective to be minimized or308

maximized. In cases where all of the objective functions either increase or309

decrease, there exists no optimum. However, in regions where these objective310

functions are competing or conflicting with each other, meaning that a small311

change in the independent variables will result not only in an increase of one312

objective function, but also a decrease in the others, an optimum can exist.313

We call such regions feasible regions for optimal solutions.314

A solution in such a region is said to be a Pareto optimal solution if it315

is not dominated by any other solution in that region. Pareto Optimality is316

defined as follows (Marler and Arora 2004):317

Definition: A point, x∗ ∈ X, is Pareto optimal iff there does not exist

another point, x ∈ X, such that F(x) ≤ F(x∗), and Fi(x) < Fi(x
∗) for at

least one function.

318

From the definition above, the Pareto optimal solution is therefore a set of319

solutions, rather than a single one. The independent variables representing320

these solutions in the variable space form a Pareto-set, and the corresponding321

values of the objective functions are labeled as the Pareto-front. In our case322

(e.g., Eqn. 15), the objective functions are convex, therefore the Pareto-front323

16



is also convex and connected.324

The selection of a single optimum solution from the Pareto-set needs325

a trade-off strategy to be implemented by the user (decision maker). The326

Pareto balanced solution as a single solution minimizes the sum of the values327

of the dimensionless objective functions belonging to the Pareto-front. This328

optimal solution is balanced (neutral), which means it has a preference for329

none of the objective functions. For more details on the Pareto optimality330

approach, we refer the reader to Marler and Arora (2004) and Paláncz and331

Awange (2012).332

3.2. The multi-objective optimization of the resection-intersection problem333

In order to determine the normalized dimensionless objective in Eqn.334

(18), the individual minimum and maximum values of the explicit objec-335

tives in Eqs. (15) and (16) are computed via a local method (Levenberg-336

Marquardt) with the results of the traditional solutions as initial guess val-337

ues. The maximum values are then computed by substituting the individual338

minimums into the counterpart objectives. The multi-objective problem is339

then converted into a mono-objective problem by introduction the normal-340

ized, dimensionless objective function (e.g., Eqn. (18)).341

4. Pareto application to photogrammetric resection-intersection prob-342

lem343

The traditional methods mostly based on implicit equations prefer to344

minimize the residual of these equations and result in much better fitting345

in the image coordinates than in the space coordinates (see the Manhattan346

example in Sect. 4.2). However, one may need a balance between these two347
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types of errors (camera calibration) or may prefer to minimize the error in348

the space coordinates (see the architectural reconstruction example in Sect.349

4.3). The suggested method based on Pareto optimum can provide a flexible350

technique to achieve the minimization of the selected objective of the user in351

a properly controlled way.352

To demonstrate the capability of the suggested method, three examples353

are presented. The first example in Sect. 4.1 is adopted from the literature,354

which is a real outdoor experiment estimating the orientation parameters of a355

camera from two close range images acquired by a nonmetric digital camera.356

We used this example to compare the results of our algorithm with those357

computed using the traditional approach, as well as to check the robustness358

of our algorithm in estimating all camera parameters simultaneously. The359

second example in Sect. 4.2 is a camera calibration problem, where the360

interior and exterior orientation parameters are estimated on the basis of the361

collinearity equations, employing the data of a Manhattan-type test field. In362

this example, the reduction of the transformation errors on the image, as363

well as on the space coordinates are equally important. The third example364

in Sect. 4.3 considers an architectural reconstruction problem, where real365

field data of a Merton college court in Oxford (UK) is applied to estimate366

the camera matrices. In this case, in order to reconstruct the building space367

coordinates from the image coordinates, one has to reduce the errors in the368

space coordinates.369

First, the traditional parameter estimation is presented, using implicit370

form of the corresponding equations. Then, employing numerical intersection371

via linear least squares (LLS), the quality of the traditional approach is372
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evaluated on the basis of the corresponding measured values of the ground373

and the image coordinates.374

Next, the one-point intersection problem is solved in a symbolic form by375

computing the symbolic pseudo-inverse of the linear overdetermined system376

to give explicit expressions for the space coordinates (e.g., Eqn. 14). To377

determine the unknown parameters, the two competing objective functions378

for sum of squares of the coordinate errors (e.g., Eqns. 15 and 16) are379

formulated. As a last step, the Pareto-front is computed and a single element380

of the Pareto-front selected as the Pareto optimal solution, which provides381

the smallest global error for the image as well as for the space coordinates,382

separately. In addition the quality of the suggested method is assessed by383

considering both the global and local errors, and comparing them to those384

of the traditional method.385

4.1. Step by step solution of the Han’s Example386

This example is based on the problem adopted from Han et al. (2011).387

Han for our disposal. During this outdoor experiment, close-range images388

from two exposure stations were acquired using a Nikon D-80 nonmetric389

digital single-lense reflex (DSLR) camera, see Fig. 3.390

Figure 3

The image resolution was 2896 × 1944 pixels, with pixel size of about 0.8391

cm for a target that is 20 m away from the camera. The same test was also392

performed using distorted camera positions by manually adding 30 cm errors393

to its accurate positions. The coordinates for the check and control points as394

well as the two camera stations were surveyed and precisely determined by a395
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total station. They used pre-computed parameters f, η0, ξ0, a, b, c,X0, Y0, Z0396

for both images and estimated the elements of the rotation matrix (the ro-397

tation angles) from the measurements for both images separately.398

In our computation all of the interior and exterior parameters were com-399

puted simultaneously for both images from the measurements, where the400

interior orientation parameters were allowed to take different values for dif-401

ferent images. In this way, we could check the consistency of the result of402

our parameter estimation. Employing our algorithm (described in details in403

the Appendix), the Pareto-set and the Pareto-front were computed for these404

parameters, and the Pareto balanced solution - the solution representing the405

very point of the Pareto front which is closest to the ideal point in L1 norm -406

was selected. Table 1 shows the values of the conflicting objective functions407

in case of the two extreme solutions (λ =0 and λ = 1), as well as in case of408

the Pareto optimal solution (λ = 0.34) where the G̃ has its minimum.409

Table 1

Table 2 represents the camera parameters corresponding to the Pareto op-410

timum solution as well as the results of Han et al. (2011) for both images.411

It can be seen, that although we compute all parameters from the measured412

data simultaneously- which is a difficult computation since the problem is413

an ill conditioned one - we got close results to those of Han et al. (2011)414

who estimated the interior and exterior parameters parameters separately.415

This indicates the robustness of the suggested Pareto algorithm. In addition416

the RMSE of the space coordinates in our case was 0.024 m while Han et al.417

(2011) reported a value of 0.028 m. This study illustrated again that employ-418

ing Pareto-optimality, one can decide which error is important to reduce the419
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RMSE of GXYZ (space coordinate side) or the RMSE of Gxyuv(photo plane420

coordinate side) when estimate the parameters.421

Table 2

4.2. The Manhattan-type test example422

4.2.1. Traditional solution423

First, the traditional solution of the resection problem is applied to the424

data in Table 3 from the Manhattan-type test field in Fig. (4) (Fekete and425

Schrott 2008). Let us consider the first 9 points as training and the last 6426

points as validation points. The parameter estimation is then carried out for427

the training points via solving nonlinear least squares problem represented428

by 9 × 4 implicit collinearity equations. The validation points serves as a429

check for the quality of the proposed procedure. The points were labeled430

in a way that the region of training points covered the validation points.431

Figure 5 shows the Voronoi-cells of the training and the validation points.432

The validation points are numbered as 1 - 9, and the training points are433

numbered 10 - 15 for both photo planes.434

Table 3
435

Figure 5

The results of the computation are presented in Table 4. The correspond-436
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ing rotation matrices are437

RRR1 =


0.98586 −0.0174065 0.166662

0.0403779 0.98996 −0.135455

−0.162631 0.140269 0.976666

 ,

and

RRR2 =


0.995006 −0.0257385 −0.0964346

−0.0140006 0.920634 −0.390176

0.0988235 0.389577 0.915676

 .

Substituting these parameters into the collinearity equations, the errors in438

the image coordinates (∆x,∆y) as the difference of the measured and com-439

puted values are determined. Table 5 shows these errors as well as those of440

the L2-norm of the error vectors, (∆xi,∆yi)
T for both photo-planes. Since441

there are 15 points on each photo plane, our linear system consists of 60442

linear equations containing 45 unknowns. Substituting the parameters com-443

puted from the resection into the collinearity equations and solving the linear444

least squares intersection problem, the space coordinates are obtained. The445

differences between the measured and computed values (∆X, ∆Y, ∆Z), as446

well as the L2-norm of the error vectors (∆Xi, ∆Yi,∆Zi)
T are presented in447

Table 6.448

Table 5
449

Table 6

4.2.2. The suggested Pareto optimality method450

In order to improve this algorithm, two features can be considered (i)451

the interior and exterior parameters are estimated simultaneously for both452
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photo planes using resection (bundle adjustment), or (ii) the parameters are453

determined by solving the multi-objective optimization problem using Pareto454

optimality with the objectives Gxyuv and GXYZ constructed from the explicit455

expressions of the images as well as from the ground coordinates (e.g., Eqs.456

15 and 16). This last feature represents the real novelty of our contribution.457

In order to get this explicit expression for the space coordinates in GXYZ,458

the one-point intersection problem is solved using Mathematica computer459

algebra system. After the computation of the dimensionless form of the460

conflicting objective functions, the mono-objective function G̃ in Eqn. (18)461

will be minimized with the parameters λ ∈[0, 1] leading to the Pareto-set.462

As an illustration, Fig. 6 shows the parameter a, one of the element of463

the skew matrix S as function of λ. Using Levenberg-Marquardt method464

in parallel way on i7 Intel Nehalem processor with 4 cores (8 threads), the465

computational speed-up was 1.89 seconds (i.e., about 2 times faster than a466

single core machine) in the case of the two photo-planes.467

Figure 6

The Pareto-front, i.e., the corresponding values of the dimensionless ob-468

jective functions to the Pareto-set, together with the Pareto balanced solution469

belonging to λ = 0.5 as well as the result of the traditional solution based470

on the implicit equations are shown in Fig. 7.471

Figure 7

Figure (7) shows that the traditional solution using implicit form of the472

collinearity equations is not Pareto optimal, since it does not belong to the473
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Pareto-front. It is remarkable that the left-hand side of the Pareto-front in474

the figure is very steep, where the minimum of residual of the photo-plane475

coordinates G̃xyuv is changing rapidly, while there is practically no change in476

the minimum of the residual of the ground coordinates, G̃XYZ on the right-477

hand side of the figure.478

4.2.3. Computation of the selected single solution479

Although the Pareto balanced optimum belonging to λ = 0.5 provides a480

minimum for the normalized total objective (mono-objective), G̃XYZ + G̃xyuv481

= 0.0579521 in Eqn. (18), which is considerably smaller than that of the482

traditional solution (1.21389), namely it has considerably smaller residual483

for the ground coordinates G̃XYZ= 0.0178549 than the traditional solution484

(1.21375), its residual for the photo-plane coordinates however is greater485

G̃xyuv = 0.0400972 than that of the traditional solution (0.00014471). Fortu-486

nately, there exists a portion of the Pareto-front, under the horizontal line,487

where the optimums represent a superior region over the traditional solu-488

tion, i.e., where both normalized objectives are smaller than those of the489

traditional solutions (see Fig. 8).490

Figure 8

This section belongs to the parameter values of λ ≤ 0.00137153. Let us491

select from this section the optimal solution which belongs to λ = 0.00137.492

The corresponding Pareto optimal transformations parameters are shown in493

Table 7. Now, this selected single solution provides smaller residuals (global494

errors) for both objectives than the traditional solution as indicated in Table495

8. The mean and variance of the local error vectors are presented in case of496
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the traditional and the Pareto optimum solution in Table 9. As is expected,497

according to the global result, the selected single optimum solution has re-498

duced the error in the space coordinates considerably, without practical error499

increasing in the image coordinates. The reason for this is due to the fact500

that the traditional solution has a strong preference to minimize the image501

coordinates instead of errors of the space coordinates (see Fig. 7).502

Table 7
503

Table 8
504

Table 9

4.3. Architectural reconstruction problem505

There has been intensive effort in Photogrammetry and Computer Vision506

research on reconstruction of architecture from photographs. In the following507

example, the Pareto optimality approach is employed for reconstruction of508

a Merton College court in Oxford. The data is adopted from Werner at al.509

(1999) and are presented in Fig. 9 as well as in Table 10. The points in 3D510

can be seen in Fig. 10.511

Figure 9
512

Figure 10

Most frequently, in such photogrammetric applications, instead of collinearity513

equations, the relation between the coordinates of points in 3D space and the514

corresponding coordinates on an image can be represented by the camera515

25



matrix CCC given as516


xi

yi

1

 =


c11 . . c14

. . . .

c31 . . c11




Xi

Yi

Zi

1

 , (21)

also known as the projection matrix (e.g., Werner et al. 1999). Since the517

overriding goal is to compute the 3D space coordinates of an architectural518

object as precisely as possible, one has to estimate the elements of the camera519

matrix in such a way that the space coordinates errors are minimized as much520

as possible.521

Table 10

4.3.1. Traditional computation of the camera matrix522

First, using these data the estimation of the elements of the two camera523

matrices will be carried out employing implicit equations derived from these524

matrices. The explicit equations for the image coordinates are,525

xi −
(c11, c12, c13, c14) . (Xi, Yi, Zi, 1) T

(c31, c32, c33, c34) . (Xi, Yi, Zi, 1) T
= 0

and526

yi −
(c21, c22, c23, c24) . (Xi, Yi, Zi, 1) T

(c31, c32, c33, c34) . (Xi, Yi, Zi, 1) T
= 0,

with their implicit forms given as527

−c14 + c34xi − c11Xi + xiXi − c12Yi + c32xiYi − c13Zi + c33xiZi = 0

and528

−c24 − c21Xi + c34yi +Xiyi − c22Yi + c32yiYi − c23Zi + c33yiZi = 0.
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We have 25 points, therefore to compute the elements of the two camera529

matrices, there are 50 equations for each camera. This is a linear regression530

problem. The resulting camera matrices are531

C1 =


549.624 −4237.12 1778.75 39094.4

−3970.36 −1084.98 −1206.85 38254.2

1 −2.60846 −2.64161 77.6154

 ,

and532

C2 =


640.323 −1684.9 789.539 13121.

−1595.68 −285.016 −481.946 15709.3

1 −0.390185 −0.809379 25.7232

 .

Now, let us employ the Pareto optimum solution. As its first step, we should533

solve the one-point intersection problem.534

4.3.2. Symbolic solution of one-point intersection problem535

In this case, the four equations are536

−c14 + c34x− c11X + xX − c12Y + c32xY − c13Z + c33xZi = 0
537

−c24 − c21X + c34y +Xy − c22Y + c32yY − c23Z + c33yZ = 0

for the first image and538

−Xc11 − Y c12 − Zc13 − c14 +Xu+ Y c32u+ Zc33u+ c34u
539

−Xc21 − Y c22 − Zc23 − c24 +Xv + Y c32v + Zic33v + c34v,

for the second image. The symbolic solution of this overdetermined system540

for X, Y, Z is then computed using Mathematica computer algebra system.541

For X for example, we have542

pX (π1, π2, xj, yj, uj, vj) = X,
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where the parameters are the elements of the camera matrices, namely543

π1 = (c11, c12, c13, c14, c21, c22, c23, c24, c32, c33) ,

and544

π2 = (c11, c12, c13, c14, c21, c22, c23, c24, c32, c33) .

Multiobjective optimization problem545

Now, the competing objective functions based on the explicit equations546

can be defined for the image coordinates as547

Gxy (π1) =
∑n

i=1

[(
xi − (c11,c12,c13,c14).(Xi,Yi,Zi,1)

T

(c31,c32,c33,c34).(Xi,Yi,Zi,1)
T

)2
+
(
yi − (c21,c22,c23,c24).(Xi,Yi,Zi,1)

T

(c32,c32,c33,c34).(Xi,Yi,Zi,1)
T

)2]
,

and548

Guv (π2) =
∑n

i=1

[(
ui − (c11,c12,c13,c14).(Xi,Yi,Zi,1)

T

(c31,c32,c33,c34).(Xi,Yi,Zi,1)
T

)2
+
(
vi − (c21,c22,c23,c24).(Xi,Yi,Zi,1)

T

(c31,c32,c33,c34).(Xi,Yi,Zi,1)
T

)2]
,

then549

Gxyuv (π1, π2) = Gxy (π1) +Guv (π2) .

For the space coordinates,550

GXYZ (π1, π2) =
∑n

i=j

[
(Xj − pX (π1, π2, xj, yj, uj, vj))

2 + (Yj − pY (π1, π2, xj, yj, uj, vj))
2]+[

(Zj − pZ (π1, π2, xj, yj, uj, vj))
2] .

The corresponding mono-objective problem leads to Eqn. (18). The Pareto-551

set is computed as before, and the corresponding Pareto-front with the Pareto552

balanced solution presented in Fig. 11. Since our aim is a 3D reconstruc-553

tion, we prefer to reduce the objective GXYZ, i.e., the errors in the space554

coordinates. The selected optimum should be on the Pareto-front, where555

considerable reduction only in GXYZ is not possible since this would increase556
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Gxyuv. Therefore the optimum was selected at λ=0.1 as shown by the green557

point in Fig. 11.558

Figure 11

Table 11 shows the global errors of the different solutions. It can be seen559

that in our case, the implicit solution reduces the error of the images coordi-560

nates efficiently, but results in a bigger error in the space coordinates. The561

corresponding camera matrices are562

C1 =


215.792 −16133.623 4996.427 156824.915

−15154.350 −4002.361 −4629.336 144267.485

1 −9.9157 11.611 304.012

 ,

and563

C2 =


720.2154 −2097.8694 652.181 14288.789

−2042.393 −255.0849 −1199.115 20866.450

1 0.158828 −1.34154 30.01594

 .

The Table 12 shows that the mean values of the space coordinates errors564

as well as their variances are smaller in case of the Pareto solutions than in565

case of the implicit method. In addition it is also true for the error vectors566

[∆X,∆Y,∆Z]T .567

Table 10
568

Table 11
569

Table 12
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5. Conclusions570

We suggested a new method to solve photogrammetric resection-intersection571

problem. This method based on the explicit formulations of the error of the572

space as well as the image coordinates leads to a multi-objective optimization573

problem with competitive objectives. The Pareto solution of this optimiza-574

tion problem provides the user full control to decide which error should be575

considered to be more important to decrease. In the absence of a decision576

maker, our method can result in an optimal solution where the residuals for577

both objectives are smaller than the case of the traditional implicit solution.578

The illustrative examples indicated that not only the global errors, but also579

the local errors and their variance can be reduced considerably. Although580

solving a multi-objective optimization problem requires more computation581

effort than the single objective problem, employing Levenberg-Marquardt582

algorithm in parallel way on a multicore processor minimizes this handicap.583

It should also be mentioned that in contrast to the TLS (total least square)584

method, this approach allows for the incorporation of both measuring and585

modelling errors.586
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Appendix599

Summary of the steps of the algorithm600

Read input data601

The coordinates of the points on the photo - planes :602

xj
(i), yj

(i), j = 1, 2, ...n, i = 1, 2, ...m603

The space coordinates :604

Xj, Yj, Zj, j = 1, 2, ...n,605

where n is the number of points on a photo - plane, and m is the number606

of the photo-planes.607

Defining the objective functions608

a) for the photo - planes:609

Gxy (π1, π2, ...πm) =
∑m

i=1

∑n
j=1wxj

(
xj

(i) − px (πi, Xj, Yj, Zj)
)
2 +610

wyj
(
yj

(i) − py (πi, Xj, Yj, Zj)
)
2

611

b) for the space coordinates612

- use one - point intersection to express the space coordinates explicitely,613

see Eq.(14):614

GXYZ (π1, π2, ...πm) =
∑n

j=1WXj

(
Xj

(i) − pX
(
π1, π2, ...πm, xj

(i), yj
(i)
))

2 +615

WYj

(
Yj

(i) − pY
(
π1, π2, ...πm, xj

(i), yj
(i)
))

2+WZj

(
Zj

(i) − pZ
(
π1, π2, ...πm, xj

(i), yj
(i)
))

2
616
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- alternatively use implicit expression of the space coordinates as con-617

straint while minimizing the adjustments of the space coordinates, see Eq.(20).618

GXYZ (π1, π2, ...πm) =
∑n

j=1WXj
∆Xj

2 +WYj∆Yj
2 +WZj

∆Zj
2,619

with the constraints620

PX
(
πi, Xj + ∆Xj, Yj + ∆Yj, Zj + ∆Zj, xj

(i), yj
(i)
)

= 0, j = 1..n621

PY
(
πi, Xj + ∆Xj, Yj + ∆Yj, Zj + ∆Zj, xj

(i), yj
(i)
)

= 0, j = 1..n.622

Computing the dimensionless form of the conflicting objective functions623

a) MinimizeGxy to getπ1
(xy), π2

(xy), ...πm
(xy)

624

b) MinimizeGXYZ to getπ1
(XYZ), π2

(XYZ), ...πm
(XYZ)

625

c) The maximum values of the objective functions626

Gxymax = Gxy

(
π1

(XYZ), π2
(XYZ), ...πm

(XYZ)
)

627

GXYZmax = GXYZ

(
π1

(xy), π2
(xy), ...πm

(xy)
)

628

d) Compute the dimensionless forms629

G̃xy (π1, π2, ...πm) =
Gxy(π1,π2,...πm)−Gxymin

Gxymax−Gxymin
630

and631

G̃XYZ (π1, π2, ...πm) = GXYZ(π1,π2,...πm)−GXYZmin

GXYZmax−GXYZmin
632

Computing the Pareto set633

a) Set discrete values λk∈[0, 1], k =1,2, ...N634

635

b) Minimize the mono-objective function for all λk636

G̃ (π1, π2, ...πm, λk) = λkG̃XYZ (π1, π2, ...πm) + (1− λk) G̃xy (π1, π2, ...πm)637

to get the Pareto-set of (λk, π1
(k), π2

(k), ...πm
(k)) , k =1,2, ...N638
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Computing the Pareto front639

a) Set the interpolation functions: π1(λ), π2(λ)...πm(λ) from the discrete640

values641

b) Substitute these functions into the objective functions,642

G̃xy(λ) = G̃xy (π1(λ), π2(λ), ...πm(λ))643

and644

G̃XYZ(λ) = G̃XYZ (π1(λ), π2(λ), ...πm(λ))645

Then we get the Pareto-front represented in parametric form: G̃xy(λ) -646

G̃XYZ(λ)647

Selecting a single solution648

a) λ = 0649

we get G̃min = G̃xymin therefore the point of the Pareto−front for λ =650

0 is
(
G̃XYZmax, G̃xymin

)
.651

b) λ = 1652

we get G̃min = G̃XYZmin therefore the point of the Pareto−front−653

front for λ = 1 is
(
G̃XYZmin, G̃xymax

)
.654

Consequently to minimize the error of the coordinates of the photo-planes655

we should select a point of the Pareto-front represented by the parameter λ∗656

<< 1, and vica versa to minimize the error of the space coordinates one657

should select a point of the Pareto-front with λ∗ >> 0.658

659

This is therefore a trade-off job for the decision maker.660

c) compute the camera parameters πi
∗ employing the selected λ∗ as661

πi
∗(λ∗) for i= 1,2,...m.662
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Selecting the Pareto-balanced solution663

This solution can minimize the overall errors of the coordinates of photo-664

planes as well as the space coordinates. The point of the Pareto-front rep-665

resenting this solution is the closest point to the ideal point (0, 0), which666

represents zero error for G̃xy as well as for G̃XYZ.667

a) use L1 norm668

min
λ
G̃xy(λ) + G̃XYZ(λ) −→ λ*

b) alternatively use L2 norm669

min
λ

√(
˜(Gxy(λ)

)
2 +

(
G̃XYZ(λ)

)
2 −→ λ*
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List of Tables809

Table 1: The extreme and the Pareto optimum solutions810

λ GXY Z Gxyuv RSME RSME G̃ = G̃XY Z + G̃xyuv

10−8 GXY Z Gxyuv

10−5

0 0.01382 1.22089 0.0326025 3.06455 0 + 1 = 1

1 0.00705 48.7398 0.0232875 19.3629 1 + 0 = 1

0.34 0.00723 1.92424 0.0235795 3.84732 0.0263 + 0.0148 = 0.0411

Table 2: Camera parameters corresponding to the selected single Pareto811

optimum solution and the results of Han et al. (2011) for both images.812

. image 1 image 2 image 1 image 2

Han et al (2011) Han et al (2011)

f 0.188843 0.188843 0.019101 0.019443

η0 0.011899 0.011899 0.012430 0.012703

ξ0 0.008080 0.008080 0.008148 0.007342

X0 305206.651 305206.651 305207.000 305213.000

Y0 2767915.18 2767915.18 2767915.44 2767927.92

Z0 31.345 31.345 30.786 30.831

ω −2.8592 −2.0151 −2.8836 −2.0603

ϕ −1.2802 −0.7971 −1.2256 −0.7529

κ −2.8419 −1.9666 −2.8645 −2.0005
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Table 3: Ground coordinates and the corresponding image coordinates813

on the two photo planes where the ground coordinates are (Xi, Yi, Zi) and814

the coordinates of the corresponding points on the images are (xi, yi) and815

(ui, vi), respectively. These data were divided into a training set (1-9) and a816

validation set (10-15) (Source: Fekete and Schrott 2008).817

Point X Y Z x y u v

[cm] [cm] [cm] [pixel] [pixel] [pixel] [pixel]

111 37.092837.092837.0928 270.932270.932270.932 60.564560.564560.5645 −1904.98−1904.98−1904.98 1075.321075.321075.32 −1481.2−1481.2−1481.2 1180.571180.571180.57

222 155.314155.314155.314 270.415270.415270.415 70.796870.796870.7968 −944.874−944.874−944.874 1182.31182.31182.3 −413.785−413.785−413.785 1190.51190.51190.5

333 186.293186.293186.293 270.774270.774270.774 29.5529.5529.55 −513.899−513.899−513.899 1002.21002.21002.2 −160.768−160.768−160.768 926.867926.867926.867

444 37.288437.288437.2884 211.556211.556211.556 20.370620.370620.3706 −1702.67−1702.67−1702.67 448.357448.357448.357 −1451.84−1451.84−1451.84 527.715527.715527.715

555 216.672216.672216.672 271.041271.041271.041 10.59810.59810.598 −210.173−210.173−210.173 935.471935.471935.471 57.333457.333457.3334 818.785818.785818.785

666 276.377276.377276.377 271.479271.479271.479 40.135340.135340.1353 305.651305.651305.651 1082.491082.491082.49 556.102556.102556.102 940.561940.561940.561

777 276.824276.824276.824 241.776241.776241.776 50.234750.234750.2347 303.859303.859303.859 852.757852.757852.757 614.891614.891614.891 803.118803.118803.118

888 336.705336.705336.705 211.719211.719211.719 30.748230.748230.7482 902.528902.528902.528 492.02492.02492.02 1052.181052.181052.18 475.928475.928475.928

999 96.937896.937896.9378 122.618122.618122.618 56.973456.973456.9734 −1550.04−1550.04−1550.04 −316.229−316.229−316.229 −1107.88−1107.88−1107.88 −104.459−104.459−104.459

10 96.6709 271.279 19.8864 −1204.64 934.683 −876.831 913.651

11 126.527 270.967 31.904 −1023.43 989.818 −645.626 965.759

12 66.573 241.361 25.873 −1489.44 707.986 −1168.83 759.207

13 186.946 240.736 15.5808 −489.126 698.11 −163.128 663.198

14 156.746 211.534 18.9318 −772.346 455.653 −414.46 487.708

15 97.5291 182.007 34.018 −1350.6 227.194 −978.389 345.786
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Table 4: Result of the parameter estimation (photogrammetric resection)818

for the Manhattan-type test example.819

. photo− plane photo− plane

1 2

a 0.0697596 0.203521

b 0.083313 −0.0509637

c 0.0146198 0.00306368

X0 [m] 283.531 169.305

Y0 [m] 131.52 43.3521

Z0 [m] 302.716 299.139

η0 −101.108 −58.4434

ξ0 88.5091 104.555

f 2707.91 2654.7

Table 5: The errors of the image coordinates (measured-computed).820

. Mean Variance L2 − normL2 − normL2 − norm

[pixel] [pixel2
]

[pixel]

Training setTraining setTraining set ∆x ∆y ∆x ∆y Mean Variance

photo− plane1 2.4733 3.6567 4.9693 1.2772 4.7363 2.93474.7363 2.93474.7363 2.9347

photo− plane2 2.38101 3.4946 3.8441 3.8482 4.6224 3.77154.6224 3.77154.6224 3.7715

Validation setValidation setValidation set . . .

photo− plane1 5.1082 2.0776 7.5663 2.5446 5.71485.71485.7148 7.41217.41217.4121

photo− plane2 5.6771 1.8655 8.0390 1.3439 6.35146.35146.3514 3.82693.82693.8269
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Table 6: Error in the space coordinates (measured-computed).821

. Mean Variance L2 − normL2 − normL2 − norm

[cm] [cm2] [cm]

. ∆X ∆Y ∆Z ∆X ∆Y ∆Z Mean Variance

Training setTraining setTraining set 0.3107 0.2745 0.3166 0.0548 0.0162 0.0338 0.5765 0.03700.5765 0.03700.5765 0.0370

Validation setValidation setValidation set 0.7403 0.3204 0.7035 0.1132 0.0556 0.0672 1.11331.11331.1133 0.12350.12350.1235

Table 7: The parameter values of the optimal Pareto solution (λ =822

0.00137)823

. photo− plane photo− plane

1 2

a 0.0694594 a 0.206368

b 0.0829882 b −0.0519138

c 0.0147064 c 0.00269866

X01 283.46 X02 168.859

Y01 131.854 Y02 41.6848

Z01 301.617 Z02 300.968

η01 −98.2993 η02 −54.5653

ξ01 88.39 ξ02 112.255

f1 2696.62 f2 2678.54
824

825
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Table 8: Comparison of the global results of the different solutions826

Solution GXYZ Gxyuv G̃XYZ G̃xyuv G̃

[cm2]
[
pixel2

]
Traditional solution 3.29327 447.842 1.21375 0.00014471 1.21389

Pareto balanced 1.79202 1570.96 0.0178549 0.0400972 0.0579521

Selected single optimum 2.44152 447.817 0.535245 0.000143808 0.535389

Ideal minimum 1.76961 443.774 0 0 1

Ideal maximum 3.02495 28555.1 1 1 1

Table 9: Statistics of L2-norm of the local error vectors827

. Traditional solution Selected single

Pareto optimum

Mean Variance Mean Variance

Training setTraining setTraining set . .

photo− plane1 4.7363 2.9347 4.7700 2.6275

photo− plane2 4.6224 3.7715 4.5871 4.0813

space coordinates 0.57650.57650.5765 0.03700.03700.0370 0.49820.49820.4982 0.02600.02600.0260

Validation setValidation setValidation set . .

photo− plane1 5.7148 7.4121 6.0545 6.9435

photo− plane2 6.3514 3.8269 5.9766 2.9984

space coordinates 1.11331.11331.1133 0.12360.12360.1236 0.98710.98710.9871 0.05520.05520.0552

Table 10: Image and space coordinates of the points appearing in Fig. 9828
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(Source: Werner et al. 1999).829

Point x[pixel] y[pixel] u[pixel] v[pixel] X[m] Y [m] Z[m]

1 705.999 98.9828 745.015 107.986 6.66074 −0.60789 4.15341

2 537.06 243.164 565.024 278.734 4.57591 −0.314284 0.381324

3 886.637 352.008 938.827 416.001 2.10037 −0.205085 7.35645

4 274.06 55.0357 255.239 80.2127 7.28601 5.14973 −0.395317

5 1020.15 146.064 1020.12 170.596 4.71216 0.165413 9.40504

6 351.763 332.001 337.832 366.963 2.87013 3.88323 0.0713809

7 595.754 127.136 631.718 143.193 6.69286 −0.693863 1.67512

8 427.277 175.001 447.456 203.001 5.86426 1.40346 −0.735147

9 240.998 377.619 203.998 434.228 1.81334 6.00578 0.0141997

10 691.011 347.1 722.031 401.938 2.33644 −0.150519 4.07266

11 296.71 92.038 283.676 117.139 6.75543 4.66651 −0.419889

12 168.112 214.997 119.784 252.987 4.30466 7.29488 −0.0117434

13 698.692 155. 740.268 174. 5.80751 −0.925267 3.76603

14 765.159 445.002 801.956 521.002 0.732124 −0.382526 5.24415

15 694.685 119. 736.68 132.002 6.47018 −0.910284 3.70673

16 2.98298 128.5 2.96668 181.091 5.03421 9.90634 0.316602

17 830.993 128.003 884.692 138.002 5.77407 −0.855155 6.26391

18 604.007 238.555 635.01 273.123 4.45486 −0.350295 2.11096

19 735.994 305.993 769.558 354.002 2.97984 −0.156468 4.9221

20 842.392 63.6569 898.512 63.4244 6.53113 −0.553974 6.72735

21 737.164 359.996 770.001 419.999 2.08665 −0.150263 4.91769

22 590.272 178.001 630.331 203. 5.8271 −1.02223 1.2605

23 899.698 434.012 955.923 520.004 0.883655 −0.387393 7.42723

24 110.061 281.037 45.0181 330.655 3.15523 8.21419 0.0342828

25 713.818 285.001 748.573 328.005 3.37495 −0.375693 4.3691246



Table 11: Comparison of the global results of the different solutions830

Solution GXYZ Gxyuv G̃XYZ G̃xyuv G̃

[m2]
[
pixel2

]
Implicit solution 52.787 7671.0 1.24279 0.002040 1.24483

Pareto balanced 2.265962.265962.26596 42098.542098.542098.5 0.0246850.0246850.024685 0.01674750.01674750.0167475 0.04143250.04143250.0414325

Pareto optimum

λ = 0.1 1.793081.793081.79308 113010.113010.113010. 0.013280.013280.01328 0.0470410.0470410.047041 0.0603210.0603210.060321

Minimum 1.24211.24211.2421 2895.622895.622895.62 000 000 −

Maximum 42.71742.71742.717 2.34372× 1062.34372× 1062.34372× 106 111 111 −

Table 12: Comparison of the statistics of the local results of the differ-831

ent solutions, where ∆ = (∆X,∆Y,∆Z)T is the error vector of the space832

coordinates.833

Selected single

Solution Implicit Pareto balanced Pareto optimal

λ = 0.1

M(∆X), [m] 0.0301540.0301540.030154 0.00390710.00390710.0039071 0.00005498490.00005498490.0000549849

M(∆Y), [m] −0.0138212−0.0138212−0.0138212 −0.011871−0.011871−0.011871 −0.00231642−0.00231642−0.00231642

M(∆Z), [m] −0.0671351−0.0671351−0.0671351 0.003510960.003510960.00351096 −0.000160302−0.000160302−0.000160302

σ2(∆X), [m2] 0.06092080.06092080.0609208 0.009235920.009235920.00923592 0.007060270.007060270.00706027

σ2(∆Y), [m2] 0.7398650.7398650.739865 0.04733090.04733090.0473309 0.04115540.04115540.0411554

σ2(∆Z), [m2] 1.392831.392831.39283 0.03767260.03767260.0376726 0.02649030.02649030.0264903

M (L2 − norm(∆)) , [m] 0.932450.932450.93245 0.2590980.2590980.259098 0.2356540.2356540.235654

σ2 (L2 − norm(∆)) , [m2] 1.293771.293771.29377 0.02448580.02448580.0244858 0.01686480.01686480.0168648
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Figure 1: Orientation of the photo space with respect to the object space. {ξO, ηO, c} define

elements of interior orientation while {XO, YO, ZO} are part of the exterior orientation

elements besides the rotation elements
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Figure 2: Photogrammetric 3D intersection. x, y are the image coordinates of the left

photo while u, v are the corresponding coordinates of the same image on the right photo.

X,Y, Z provides the corresponding coordinates in the object space
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Figure 3: The control and check points of images acquired at the two camera stations (the

figure adopted from Han et al. (2011).
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Figure 4: The general Manhattan test field with 22 points. The example in this work used

only 15 points for evaluation since the other data points were corrupted.
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Figure 5: The Voronoi-cells of the training (1 - 9) and the validation points (10-15) on

two photo planes.
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Figure 6: The parameter (a) of the skew matrix SSS as function of λ.
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Figure 7: The Pareto-front with the Pareto balanced optimum (green). The results of the

traditional method is shown in blue.
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Figure 8: The optimum solution of the Pareto-front, which provides smaller residual for

both objectives than those of the traditional solution (red points under the blue line).

Figure 9: Left: The first photo-plane of Merton College, Oxford, with the data points in

red. Right: the second photo-plane of Merton College, Oxford, with the data points in

blue.
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Figure 10: The Merton College’s data points in 3D with the cloud-point model as back-

ground.
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Figure 11: The Pareto-front with the Pareto balanced solution (blue point) and Pareto

optimum solution (green point) for the architectural reconstruction.
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