

School of Information Systems

A Framework for Active Software Engineering
Ontology

Udsanee Pakdeetrakulwong

This thesis is presented for the Degree of
Doctor of Philosophy

of
Curtin University

February 2017

ii

Declaration

 To the best of my knowledge and belief, this thesis contains no material

previously published by any other person except where due acknowledgement has

been made.

This thesis contains no material which has been accepted for the award of

any other degree or diploma in any university.

Udsanee Pakdeetrakulwong

20 February 2017

iii

Abstract

Software agent and multi-agent systems have attracted considerable attention

and become active research areas in recent years. Furthermore, the advent of the

Semantic Web technology has provided the underlying infrastructure that allows

software agents to process data and perform sophisticated tasks on behalf of users.

Consequently, the agent-based technology has become much more practical and the

number of emerging real-world applications has increased, spanning a wide range of

domains.

In this thesis, the multi-agent approach is utilised to address the issues

associated with the passive structure of ontologies in terms of knowledge

assimilation and knowledge dissemination. This research has developed a state-of-

the-art framework for active ontology based on a multi-agent system. In this thesis,

the Software Engineering Ontology is integrated with a multi-agent system to

provide active support to software development teams to effectively manage and

share software engineering knowledge and software project information when they

are collaboratively working on software development projects. The framework

makes three main contributions by offering: i) automated knowledge capture of

software project information, ii) effective management of knowledge captured in the

Software Engineering Ontology, and iii) active platforms for multi-site distributed

software development environments. The framework has been realised through the

prototype system as proof-of-concept experiments. The prototypes are evaluated

based on existing case studies found in the literature. The evaluation is undertaken to

assess the effectiveness and efficiency of the framework in assisting collaborative

team members to manage and share software engineering knowledge relevant to

various activities throughout the software development life cycle.

iv

Acknowledgements

I would like to express my deepest gratitude and appreciation to my

supervisor, Dr. Ponnie Clark. I thank her for her consistent support and

encouragement and for helping me to grow as a researcher. She dedicated much time

to my thesis and always provided valuable feedback. I would not have been able to

accomplish all that I did without her suggestions, ideas, and motivation. I would also

like to thank my co-supervisor, Dr. Wendy Hui, for her guidance and

encouragement. In addition, my appreciation extends to the other member of my

thesis committee, Dr. Vidyasagar Potdar, for his kind support.

This thesis would not have been possible without the support and

encouragement of my family. A special thanks to my wonderful husband, Suksawat

Sae-Lim, who has always been beside me and has supported me in many ways

throughout the journey. I also thank my lovely daughter, Natkrita Pakdeetrakulwong,

who inspires me every day. Furthermore, many thanks to my lovely sisters for their

ongoing love and caring.

In addition, I am grateful to the Royal Thai Government Scholarship Program

and the Australia Awards–Endeavour Scholarships and Fellowships Program for the

financial support provided for pursuing the PhD degree.

I also would like to express my sincere thanks to Ms. Bruna Pomella for

proofreading this thesis. Finally, I would like to thank all my friends particularly

Dang and Thoa’s family, Koy and Mike Watkins, Emanuel, Ilham, Sara, Ernita,

Novita, Yuni, Vy, Imran, Ariful, Nahid, Omid, Azadeh, Hassan, Rohini, Borak,

Shahadat, and other fellow PhD candidates at Enterprise Unit 4 Technology Park

with whom I have shared a memorable and enjoyable time. You have all contributed

in some way to my development as a researcher and academic.

v

Dedication

I dedicate this thesis to the loving memory of my late parents, Chokchai

Pakdeetrakulwong and Ponnapa Pakdeetrakulwong.

vi

List of Publications

The following papers have been published either based on or related to the

research presented in this thesis:

Referred Journal Articles

Pakdeetrakulwong, Udsanee, Pornpit Wongthongtham, Waralak V. Siricharoen, and

Naveed Khan. 2016. "An Ontology-Based Multi-Agent System for Active

Software Engineering Ontology." Mobile Networks and Applications 21 (1):

65-88. Springer US. doi: 10.1007/s11036-016-0684-x. (2015 Impact factor:

1.538; 2010 ERA-B)

Pakdeetrakulwong, Udsanee, and Pornpit Wongthongtham. 2013. "State of the Art of

a Multi-Agent Based Recommender System for Active Software Engineering

Ontology." International Journal of Digital Information and Wireless

Communications (IJDIWC) 3 (4): 363-376.

Book Chapter
Wongthongtham, Pornpit, Udsanee Pakdeetrakulwong, and Syed Hassan Marzooq.

2017. "Ontology Annotation for Software Engineering Project Management

in Multisite Distributed Software Development Environments." In Software

Project Management for Distributed Computing: Life-Cycle Methods for

Developing Scalable and Reliable Tools, ed. Zaigham Mahmood, 315-343.

Cham: Springer International Publishing.

Referred Conference Articles

Pakdeetrakulwong, Udsanee, Pornpit Wongthongtham, Suksawat Sae-Lim, and

Hassan Marzooq Naqvi. 2016. "SEOMAS: An Ontology-Based Multi-Agent

Approach for Capturing Semantics of Software Project Information." In

Proceedings of the 4th International Conference on Enterprise Systems,

vii

Melbourne, Victoria, Australia, 2-3 November 2016. 110-121. IEEE. doi:

10.1109/ES.2016.21. (26% full paper acceptance rate)

Pakdeetrakulwong, Udsanee, Pornpit Wongthongtham, and Naveed Khan. 2015. "An

Ontology-Based Multi-Agent System to Support Requirements Traceability

in Multi-Site Software Development Environment." In Proceedings of the

ASWEC 2015 24th Australasian Software Engineering Conference, Volume

II, Adelaide, South Australia, Australia, 28 September 2015 – 1 October

2015. 96-100. 2811700: ACM. doi: 10.1145/2811681.2811700.

Pakdeetrakulwong, Udsanee, Wongthongtham Pornpit, and Waralak V. Siricharoen.

2014. "Recommendation Systems for Software Engineering: A Survey from

Software Development Life Cycle Phase Perspective." In Internet

Technology and Secured Transactions (ICITST), 2014 9th International

Conference for, London, United Kingdom, 8-10 December 2014. 137-142.

IEEE. doi: 10.1109/ICITST.2014.7038793.

Pakdeetrakulwong, Udsanee, and Pornpit Wongthongtham. 2015. "Use and Design

of Ontology-Based Multi-Agent System for Multi-Site Software

Development Environment." In The 3rd Annual Conference on Engineering

and Information Technology, Osaka, Japan, 22-24 March 2015. 538-544.

Pakdeetrakulwong, Udsanee, and Pornpit Wongthongtham. 2013. "Towards Active

Software Engineering Ontology." In The International Conference on E-

Technologies and Business on the Web (EBW2013), Bangkok, Thailand, 7-9

May 2013. 206-211. The Society of Digital Information and Wireless

Communication.

viii

Table of Contents

Declaration ... ii

Abstract ... iii

Acknowledgements .. iv

Dedication ...v

List of Publications .. vi

Table of Contents ... viii

List of Figures ...xvi

List of Tables ..xix

List of Abbreviations.. xx

 Introduction ...1

1.1 Introduction ...1

 Background and Signification of the Research Problem3

1.2.1 Software Engineering Ontology and Its Passive Structure Problem3

1.2.2 Problem in Multi-site Software Development Environment5

 Motivations of Research ..8

1.3.1 Time Consuming and Expensive Approaches of Capturing Knowledge9

1.3.2 Ineffectiveness to Obtain Knowledge Captured in the Ontology 10

1.3.3 Inefficient Communication... 10

1.3.4 Lack of Real-time Awareness for Coordination Needed to Manage
Work Dependencies ... 11

 The Concerns that Need to be Addressed by a Framework for Active
Software Engineering Ontology ... 12

1.4.1 Automated Knowledge Capture of Software Project Information 12

1.4.2 Effective Management of Knowledge Captured in the Software
Engineering Ontology .. 13

1.4.3 Active Platforms for Multi-site Software Development Environments 14

 Objectives of the Thesis ... 16

 Thesis Structure ... 17

 Conclusion ... 20

 References ... 20

 Literature Review .. 26

 Introduction ... 26

 Ontology-based semantic annotation .. 27

2.2.1 Evaluation of Semantic Annotation of Software Project Information 29

ix

 Ontology-based Multi-agent Systems ... 30

2.3.1 Evaluation of Ontology-based Multi-agent Systems ... 38

 Assistive Systems for Software Engineering ... 39

2.4.1 Requirement Gathering and Analysis ... 39

2.4.2 Software design ... 41

2.4.3 Software Implementation and Maintenance .. 42

2.4.4 Software Testing .. 45

2.4.5 Evaluation of Assistive Platforms in Software Engineering 48

 Critical Evaluation of Existing Approaches: an Integrated View 49

2.5.1 Lack of effective approach to automate knowledge capture of software
project information .. 50

2.5.2 Lack of Effective Management of Knowledge Captured in the Ontology 51

2.5.3 Lack of Active Platforms Available for Multi-site Software
Development Environments ... 52

 Conclusion ... 54

 References ... 54

 Problem Definition .. 64

 Introduction ... 64

 Preliminary Concepts for Active Software Engineering Ontology..................... 65

 Passive Software Engineering Ontology Problems ... 66

3.3.1 Manually Capturing Software Project Information ... 66

3.3.2 Lack of Effective Management of the Software Engineering Ontology
Instantiations ... 68

 Knowledge Access and manipulation .. 68

 Timely Awareness .. 68

3.3.3 Availability of Active Platforms for Multi-site Software Development
Environments ... 69

 Knowledge Management .. 70

 Communication .. 70

 Coordination... 71

 Underlying Research Issues ... 72

3.4.1 Research Issue 1: Automated Knowledge Capture of Software Project
Information .. 72

3.4.2 Research Issue 2: Software Engineering Ontology Instantiations
Management .. 73

3.4.3 Research Issue 3: Active Platforms for Multi-site Software
Development Environments ... 74

 Research Methodology... 76

3.5.1 Overview of Design Science Research Paradigm .. 77

3.5.2 Choice of Design Science Research Framework ... 80

x

 Conclusion ... 86

 References ... 86

 Ontology-based Multi-agent Approach Solution Proposal 90

 Introduction ... 90

 Solution Requirements ... 91

4.2.1 Requirement 1: Requirement of Automated Knowledge Capture of
Software Project Information ... 91

4.2.2 Requirement 2: Requirement of Software Engineering Ontology
Instantiations Management... 92

4.2.3 Requirement 3: Requirement of Active Platforms for Multi-site
Software Development Environments .. 93

4.2.4 Requirement 4: Requirement of Framework Evaluation.................................... 93

 Agent-Based Technology ... 94

4.3.1 Software Agent .. 94

4.3.2 Multi-Agent System ... 96

4.3.3 The integration of ontology and multi-agent systems .. 97

 Ontology-Based Multi-Agent Systems Solution Proposal for a
Framework for Active Software Engineering Ontology 99

4.4.1 Ontology-Based Multi-Agent Systems as a Solution for Automated
Knowledge Capture of Software Project Information...................................... 100

4.4.2 Ontology-Based Multi-Agent System as a Solution for Software
Engineering Ontology Instantiations Management.. 101

4.4.3 Ontology-based Multi-agent Systems as a Solution for Active Platforms
for Multi-site Software Development Environments 102

 Conclusion ... 104

 References ... 104

 Conceptual Framework .. 108

 Introduction ... 108

 Overview of Existing Agent-Oriented Software Engineering
Methodologies ... 109

5.2.1 GAIA .. 109

5.2.2 Agent Unified Modelling Language (AUML) .. 109

5.2.3 Multi-agent Systems Engineering (MaSE) and Organisation-based
Multi-agent System Engineering (O-MaSE) ... 110

5.2.4 MAS-CommonKADS .. 110

5.2.5 MESSAGE .. 111

5.2.6 Process for Agent Societies Specification and Implementation (PASSI) 111

5.2.7 PROMETHEUS... 112

5.2.8 The Agent-Oriented Development Methodology (ADEM) 112

 Development Approaches .. 113

xi

5.3.1 Macro-perspective ... 113

5.3.2 Micro-perspective .. 114

 Active Software Engineering Ontology through a Multi-Agent System
Engineering ... 115

5.4.1 System Requirements ... 115

5.4.2 Roles and Agent Types .. 116

5.4.3 Architecture Modelling .. 120

5.4.4 Structural design of the agent society ... 123

5.4.5 Agent Interoperations ... 124

 Conclusion ... 127

 References ... 127

 Ontology-based Multi-agent Approach for Capturing Software Project
Information .. 131

 Introduction ... 131

 Ontology-based Multi-agent System to Capture Software Project
Information .. 132

 User Agent... 134

6.3.1 Structure .. 134

6.3.2 Behaviours ... 136

 Overview .. 136

 ACL message generation behaviour .. 137

 Output generation behaviour ... 138

6.3.3 Interactions .. 139

 VersionControl Agent .. 140

6.4.1 Structure .. 140

6.4.2 Behaviours ... 141

 Overview .. 141

 VersionControlManager Behaviour... 142

6.4.3 Interactions .. 143

 Annotation Agent... 144

6.5.1 Structure .. 144

6.5.2 Behaviours ... 146

 Overview .. 146

 Semantic Annotation behaviours ... 147

6.5.2.2.1 IdentifySourceCodeKeyConcepts behaviours 148

6.5.2.2.2 AnnotateSourceCode behaviours ... 149

6.5.3 Interactions .. 151

 Ontology Agent ... 152

6.6.1 Structure .. 153

xii

6.6.2 Behaviours ... 154

 Overview .. 154

 Ontology Population behaviour... 154

6.6.3 Interactions .. 156

 Implementation .. 157

 Results ... 162

 Practical uses ... 170

 Discussion ... 179

 Conclusion ... 181

 References ... 181

 Ontology-based Multi-agent Approach for Software Engineering
Ontology Instantiations Management ... 184

 Introduction ... 184

 Ontology-based Multi-agent Approach for Software Engineering
Ontology Instantiations Management ... 185

 User Agent... 186

7.3.1 Structure .. 186

7.3.2 Behaviours ... 187

 ACL message generation behaviour .. 188

 Output Generation Behaviour ... 188

7.3.3 Interactions .. 189

 Ontology Agent ... 191

7.4.1 Structure .. 191

7.4.2 Behaviours ... 192

 Overview .. 192

 Instance Knowledge Management Behaviours .. 193

7.4.2.2.1 QueryKnowledge behaviour .. 194

7.4.2.2.2 AddInstanceKnowledge behaviour .. 195

7.4.2.2.3 ModifyInstanceKnowledge behaviour ... 195

7.4.2.2.4 DeleteInstanceKnowledge behaviour ... 196

7.4.3 Interactions .. 198

 Recommender Agent ... 200

7.5.1 Structure .. 200

7.5.2 Behaviours ... 201

 Overview .. 201

 Recommendation Management Behaviours... 202

7.5.2.2.1 GenerateChangeImpactRecommendation behaviour 203

7.5.2.2.2 GenerateChangeImpactNotification behaviour................................. 204

7.5.2.2.3 ManageMonitoring behaviour ... 204

xiii

7.5.3 Interactions .. 206

 Practical Uses of the SEOMAS approach to Support Requirement
Traceability .. 208

7.6.1 Requirements Interdependencies Modelling ... 208

7.6.2 Agent Capabilities.. 210

7.6.2.1 Manipulating a requirement captured in the Software Engineering
Ontology .. 211

7.6.2.2 Recommend change impact on related requirements 211

 Recommend change impact on other related software artefacts 212

 Notify relevant team members about the impact of the requirement
change. ... 213

7.6.2.5 Generate traceability matrix .. 213

7.6.3 Case Study ... 213

 Scenario 1 - Querying instance knowledge .. 214

 Scenario 2 - Modifying instance knowledge .. 215

 Scenario 3 - Adding new instance knowledge ... 218

 Discussion ... 220

7.8 Conclusion ... 222

 References ... 223

 Active Platforms for Multi-site Software Development Environments 226

 Introduction ... 226

 Platforms Framework ... 227

 Knowledge Capture Platform ... 231

 Query Platform .. 235

 Monitoring Platform .. 237

 Manipulation Platform ... 239

 Practical Uses .. 241

8.7.1 Problem Analysis ... 241

8.7.2 Platform Uses .. 242

 Discussion ... 245

8.8.1 Software Engineering Knowledge Management ... 246

 Knowledge Capture .. 246

 Knowledge Search .. 246

 Knowledge Dissemination .. 247

 Knowledge Maintenance .. 247

8.8.2 Knowledge Sharing and Reuse ... 248

8.8.3 Communication ... 248

8.8.4 Coordination .. 249

 Conclusion ... 250

xiv

 References ... 250

 Evaluation of the Framework for Active Software Engineering
Ontology .. 252

 Introduction ... 252

 Framework Requirements .. 253

9.2.1 Automated Knowledge Capture of Software Project Information 253

9.2.2 Software Engineering Ontology Instantiations Management 254

9.2.3 Active Platforms for Multi-site Software Development Environments 255

 Prototype Systems Evaluation .. 255

9.3.1 Evaluation of Automated Knowledge Capture of Software Project
Information .. 256

9.3.2 Evaluation of Software Engineering Ontology Instantiations
Management .. 263

9.3.3 Evaluation of Active Platforms for Multi-site Software Development
Environments ... 270

 Discussion of Results ... 275

9.4.1 Automated Knowledge Capture of Software Project Information 275

9.4.2 Effective Management of Software Engineering Ontology Instantiations 276

9.4.3 Active Platforms for Multi-site Software Development Environments 277

 Conclusion ... 278

 References ... 279

 Recapitulation and Future Work ... 281

 Introduction ... 281

 Recapitulation .. 282

 Contribution of the Thesis .. 285

10.3.1 Contribution 1: Current State-of-the-art Research ... 285

10.3.2 Contribution 2: Conceptual Framework .. 286

10.3.3 Contribution 3: A Systematic Approach to Capture Semantics of
Software Project Information ... 286

10.3.4 Contribution 4: A Systematic Approach to Manage Software
Engineering Ontology Instantiations... 288

10.3.5 Contribution 5: Active Platforms for Multi-site Software Development
Environments ... 289

10.3.6 Contribution 6: Prototype Implementation and Evaluation 290

 Future work ... 291

10.4.1 Future Work Focusing on the Framework Enhancement 291

10.4.2 Future Work on the Intelligent System Enhancement 293

 Conclusion ... 295

 References ... 295

xv

Appendix A Additional Information of the Case Study of an Online Shopping
Software Development ... 298

xvi

List of Figures

Figure 1-1: Overview of knowledge representation in the Software Engineering
Ontology (Wongthongtham et al. 2009) ...4

Figure 1-2: A framework of active Software Engineering Ontology .. 16

Figure 3-1: Design Science Research Methodology Process Model (Peffers et al. 2007,
54) ... 81

Figure 5-1: Macro- and micro-perspective of AOSE (Zimmermann 2006) 113

Figure 5-2: The active Software Engineering Ontology through a multi-agent system
architecture .. 121

Figure 5-3: AUML class diagram of the macro-perspective of an agent society 123

Figure 5-4: Overall interactions among the agents .. 126

Figure 6-1: Micro-perspective of each agent type described in AUML models 132

Figure 6-2: AUML class diagram at implementation level of a user agent 136

Figure 6-3: Overview of user agent behaviours ... 137

Figure 6-4: The GenerateACLMessage behaviour details ... 138

Figure 6-5: Details of GenerateOutput behaviour .. 139

Figure 6-6: Agent interaction of a user agent .. 140

Figure 6-7: AUML class diagram at implementation level of the versioncontrol agent 141

Figure 6-8: Overview of the versioncontrol agent behaviours ... 142

Figure 6-9: Activities of ImportProjectInformation behaviour... 143

Figure 6-10: Agent interaction of the versioncontrol agent .. 144

Figure 6-11 AUML class diagram at implementation level of the annotation agent 146

Figure 6-12: Behaviour overview diagram of the annotation agent .. 147

Figure 6-13: Details of IdentifySourceCodeKeyConcepts behaviour 148

Figure 6-14: Details of AnnotateSourceCode behaviour ... 151

Figure 6-15: Agent interactions of the annotation agent .. 152

Figure 6-16 AUML class diagram at implementation level of the ontology agent 153

Figure 6-17: Behaviour overview diagram of the ontology agent for the ontology
population .. 154

Figure 6-18: Details of PopulateInstance behaviour .. 155

Figure 6-19: Agent interactions of the ontology agent ... 156

Figure 6-20: The automated knowledge capture by the SEOMAS approach 157

Figure 6-21: The content reference model in JADE (Caire and Cabanillas 2010) 159

Figure 6-22: An ACL message requesting to import a Java source code file into the
version control repository ... 160

Figure 6-23: A Java source code file imported into the version control repository 161

Figure 6-24: The interactions among agents captured by a sniffer agent 161

xvii

Figure 6-25: Parsed Source code to be annotated with the Software 162

Figure 6-26: A Java source code being annotated with concepts and their relationships
defined in the Software Engineering Ontology ... 164

Figure 6-27: Output of annotation from the BankAccount.java source code 166

Figure 6-28: Populated instances and their relations presented in Protégé tool....................... 167

Figure 6-29: BankAccount Java class being interlinked with a metadata term to its
relevant entity in DBpedia dataset .. 167

Figure 6-30: Information about Java class file from DBpedia .. 168

Figure 6-31: OntoGraf presentation of the BankAccount class instance................................. 169

Figure 6-32: Protégé reasoner’s logs for consistency checking of new
populated instances .. 170

Figure 6-33: Vehicle registration class diagram in a multi-site development
environment ... 172

Figure 6-34: Agents in the SEOMAS platform ... 174

Figure 6-35: Existing bug reported to the Car class ... 175

Figure 6-36: Recommend an expert or a potential fixer for a new bug report......................... 176

Figure 6-37: The potential fixer’s name attached in the bug report .. 176

Figure 6-38: A message to notify a potential bug fixer or an expert about a new bug............. 176

Figure 6-39: Related information about the Car class .. 178

Figure 6-40: A message to the bug reporter giving a notice of the bug status......................... 179

Figure 7-1: AUML class diagram at implementation level of a user agent 187

Figure 7-2: The GenerateACLMessage behaviour detail ... 188

Figure 7-3: The GenerateACLMessage behaviour detail ... 189

Figure 7-4: Agent interactions of a user agent ... 190

Figure 7-5: AUML class diagram at implementation level of the ontology agent................... 192

Figure 7-6: Behaviour overview diagram of the ontology agent .. 193

Figure 7-7: Activities of QueryKnowledge behaviour ... 194

Figure 7-8: Activities of AddInstanceKnowledge behaviour ... 195

Figure 7-9: Activities of ModifyInstanceKnowledge behaviour .. 196

Figure 7-10: Activities of DeleteInstanceKnowledge behaviour .. 197

Figure 7-11: Interactions among agent types of the ontology agent 199

Figure 7-12: AUML class diagram at implementation level of the recommender agent 201

Figure 7-13: Behaviour overview diagram of the recommender agent 202

Figure 7-14: Activities of GenerateChangeImpactRecommendation behaviour 203

Figure 7-15: Activities of GenerateChangeImpactNotification behaviour.............................. 204

Figure 7-16: Activities of ManageMonitoring behaviour .. 205

Figure 7-17: Interactions among agent types of the recommender agent 207

Figure 7-18: Types of potentially affected requirements ... 211

Figure 7-19: New R is added to existing requirement R2 ... 212

xviii

Figure 7-20: Types of potential affected artefacts ... 213

Figure 7-21: Agents in the SEOMAS platform ... 214

Figure 7-22: Excerpt of a traceability matrix... 215

Figure 7-23: An ACL message requesting to modify the Requirement FR01 216

Figure 7-24: Recommendation of potentially affected artefacts ... 217

Figure 7-25: A message to confirm the modification of the requirement FR01 217

Figure 7-26: Messages to notify the authors of potentially affected artefacts 218

Figure 7-27: A new added instantiation of a Requirements class ... 220

Figure 8-1: Software Engineering knowledge management and sharing infrastructure 227

Figure 8-2: Four levels of Software Engineering Ontology-based multi-agent system
knowledge management and knowledge sharing platforms 229

Figure 8-3: A flow of the processes when utilising the platforms .. 231

Figure 8-4: Alex user agent requests to import a Java source code file into
the version control repository ... 232

Figure 8-5: Result of annotation from the Employee Java source code 234

Figure 8-6: Excerpt of querying test report of the requirement FR03 235

Figure 8-7: Use cases related to a use case UC9.. 236

Figure 8-8: Result of use cases and test cases required to be tested with a use case
UC9 ... 236

Figure 8-9: Message to give notice of requirement testing coverage 239

Figure 8-10: Recommendation of potentially affected artefacts ... 240

Figure 8-11: Messages to notify the authors of potentially affected artefacts 240

Figure 8-12: Use case and test case fragment of traceability (Leffingwell and Widrig
2000, 354) ... 242

Figure 8-13: Notification about missing requirement information ... 243

Figure 8-14: Excerpt of querying traceability matrix with missing use cases
and test cases ... 244

Figure 8-15: Excerpt of querying traceability matrix after adding missing use cases
and test cases ... 244

Figure 8-16: Message to notify a tester regarding FR06 is updated 245

Figure 9-1: Use case and test case fragment of traceability ... 270

xix

List of Tables

Table 2-1: Review of some existing ontology-based multi-agent systems................................ 34

Table 2-2: Summary of reviewed assistive systems according to software development
activities .. 45

Table 3-1: Set of activities of DSRM process mapped with the thesis chapters 85

Table 4-1: Differences between traditional software applications and software agents
(adapted from Turban, Sharda and Delen 2010) .. 95

Table 5-1: The mapping of system requirements to agents’ roles and their associated
agent types ... 118

Table 6-1: Content slots for semantic annotation request .. 160

Table 7-1: Dahlstedt’s Interdependency model ... 209

Table 7-2: Change impact rules adapted from (Göknil, Kurtev and van den Berg 2008) 210

Table 9-1: Bug resolution process described in (Wongthongtham, Dillon and Chang
2011) ... 257

Table 9-2: Bug resolution process with supporting from the SEOMAS approach 258

Table 9-3: Requirement change process described in (Lai and Ali 2013, 46-51) 264

Table 9-4: Requirement change process with support from the SEOMAS approach 265

Table 9-5: Scenarios for investigating missing project information (adapted from
Leffingwell and Widrig 2000, 354-356) ... 270

Table 9-6: Proactively monitoring of project information by the SEOMAS platforms 271

xx

List of Abbreviations

ACL Agent Communication Language

ADEM Agent-Oriented Development Methodology

AOSE Agent-Oriented Software Engineering

AST Abstract Syntax Tree

AUML Agent Unified Modelling Language

DC Dublin Core

FOAF Friend-of-a-Friend

FIPA Foundation for Intelligent Physical Agents

JADE Java Agent Development Framework

KQML Knowledge Query and Manipulation Language

MAS Multi-agent System

MaSE Multi-agent Systems Engineering

O-MaSE Organisation-based Multi-agent Systems Engineering

OWL Web Ontology Language

PASSI Process for Agent Societies Specification and

Implementation

RDF Resource Description Framework

SEOMAS Software Engineering Ontology through a Multi-Agent

System

xxi

SE Ontology Software Engineering Ontology

SIOC Semantically-Interlinked Online Communities

SKOS Simple Knowledge Organisation System

UML Unified Modelling Language

1

 Introduction

1.1 Introduction

The evolution of Web technologies began with Web 1.0 which is considered

as the traditional document-centric Web (Sheth and Thirunarayan 2013). Then it

moved to Web 2.0, focusing on user-generated contents or community-oriented

information gathering. However, the substantial amount of data and unstructured

content that are generated make it difficult for users to efficiently search web

contents. Therefore, Web 3.0, also known as Semantic Web, was developed to

alleviate this problem. Berners-Lee (1999) stated that the real power of the Semantic

Web is realised when the Web content is understandable and processable by

computer. The underlying structure of the Semantic Web is that data are given

structure and well-defined meaning so that they can enable software agents to

understand contents on the Web and process the information to carry out

sophisticated tasks for users (Chu and Yang 2012). A software agent is a computer

system situated in some environment and has the ability to perform autonomous

actions in order to achieve its desired objective (Wooldridge 2009). With the

Semantic Web technology, agents can be more effective and efficient in discovering

and retrieving of knowledge because information is semantically annotated and can

be understood by them. In other words, agents can act as autonomous software

entities that can assist their users through the automation of tasks such as information

discovery, information integration, and services monitoring with minimum human

involvement.

The agent-based technology has become much more practical and has

attracted considerable attention in recent years. Although an agent can work as a

stand-alone entity to perform a particular task on behalf of a user, many of the agent-

based applications are operated in environments that contain multiple agents

collaboratively working together as a group, otherwise known as a multi-agent

system. Multi-agent systems offer various advantages compared with a single agent,

such as reliability and robustness, modularity, scalability, adaptability, concurrency,

2

parallelism, and dynamism (Elamy 2005). They are employed in several real-world

applications, spanning a wide range of domains such as e-learning, healthcare, web-

services, supply chain management, etc.

In this thesis, a multi-agent approach is utilised to address the issues

associated with the passive structure of ontologies in terms of knowledge

assimilation and knowledge dissemination. This research has developed a state-of-

the-art framework for active ontology based on a multi-agent system. In this thesis,

the Software Engineering Ontology, the ontology designed for multi-site distributed

software development, is integrated with a multi-agent system to provide active

support to team members by giving them access to software engineering knowledge

when they are working in software development projects. The framework makes

three main contributions by offering: i) automated knowledge capture of software

project information, ii) effective management of knowledge captured in the Software

Engineering Ontology, and iii) active platforms for multi-site software development

environments. The framework has been realised through the prototype system as

proof-of-concept experiments. The prototypes are evaluated based on existing case

studies found in the literature. The evaluation is undertaken to assess the

effectiveness and efficiency of the framework in assisting collaborative team

members to manage and share software engineering knowledge throughout various

software development activities in the software life cycle.

To this end, the next section introduces and describes the Software

Engineering Ontology and its passive structure, and provides an overview of multi-

site distributed software development. It then explains the need for a framework to

make the ontology active, and the concerns that need to be addressed by the proposed

framework. The research objectives are stated and the chapter concludes with an

outline of the thesis structure.

3

 Background and Signification of the Research
Problem

In this section, the Software Engineering Ontology is introduced. This is

followed by an explanation of the issues associated with its passive structure. The

section concludes with a brief overview of a multi-site software development

environment including its benefits and challenges.

1.2.1 Software Engineering Ontology and Its Passive Structure Problem

The Software Engineering Ontology (SE Ontology) (Wongthongtham et al.

2009; Wongthongtham et al. 2005) was first developed to facilitate efficient

collaboration among software development team members who are geographically

distributed. It is considered to be an effective means of clarifying concepts and

project information and enabling knowledge-sharing among team members. It

represents software engineering knowledge and concepts, software development

methodologies, software tools and techniques. The software engineering knowledge

captured in the Software Engineering Ontology comes from two sources, namely, the

Software Engineering Body of Knowledge (SWEBOK), an international standard

describing generally accepted knowledge about software engineering (Abran et al.

2004), and the software engineering textbook of Ian Sommerville (Sommerville

2004).

The Software Engineering Ontology comprises two sub-ontologies: the

generic ontology and the application-specific ontology. The generic ontology

contains concepts and relationships annotating the whole set of software engineering

concepts (e.g., the vocabulary, the semantic interconnections, and logic for the

software development) which are captured as domain knowledge. The application-

specific ontology is an explicit specification of software engineering for a particular

software development project, and is defined as sub-domain knowledge. For

instance, if a software development project is implemented using object-oriented

paradigm, the concepts of object-oriented development (e.g., use cases, class

diagrams) are included in the application-specific ontology. However, the concept of

a data flow diagram may not be necessarily included (Wongthongtham et al. 2009).

4

Additionally, in each project, software project information including the

actual project data, project agreement, and project understanding which is

specifically for a particular project need, is captured as instance knowledge. They are

related to each other according to the specific relations between the concepts. Put

differently, once the Software Engineering Ontology has been developed, it is

populated with software project information as the ontology instances (or instances

of concepts). The population process is generally achieved by mapping software

project information to the concepts described in the ontology. When the mappings

have been completed, software project information is conceptualised and is in a

semantically rich as well as machine-readable form.

The Software Engineering Ontology can facilitate common understanding

and consistent communication among distributed software project teams by allowing

them to access shared software engineering knowledge and to query the

semantically-linked project information. Figure 1-1 provides an overview of

knowledge representation in the Software Engineering Ontology.

Figure 1-1: Overview of knowledge representation in the Software Engineering

Ontology (Wongthongtham et al. 2009)

However, the Software Engineering Ontology has the same passive structure

as that of other ontologies. After the ontology has been developed and used in the

ontology deployment phase, its passive structure gives rise to two main challenges

regarding knowledge assimilation and knowledge dissemination. Knowledge

5

assimilation is related to the process of capturing and representing the domain-

specific knowledge in a formal conceptual model, while knowledge dissemination is

the process of delivering the knowledge to different types of applications or

communicating the knowledge to users (Forbes 2013).

In terms of knowledge assimilation, because of the passive structure of the

Software Engineering Ontology, a software team member manually extracts software

engineering knowledge from the software project information and maps it to the

concepts defined in the Software Engineering Ontology. This manual approach to

capturing knowledge requires a great deal of time and effort on the user’s part.

In terms of knowledge dissemination, ontology users are required to

explicitly request the information that they need. Moreover, given the passive

structure of the ontology, the users need to know exactly the concepts and

relationships to which they are referring. Otherwise, they may not be able to obtain

or manipulate the knowledge captured in the ontology. However, users sometimes

have some knowledge of an issue, rather than knowing precisely which concepts and

relationships are defined in the ontology. As a result, they may not be able to obtain

the knowledge that they require.

It is to be noted that in this thesis, the focus is on the application-specific

ontology including the software project information captured in it as instance

knowledge. Changes of domain knowledge in the generic ontology which introduces

new concepts and changes in the conceptualisation are out of the scope of this thesis.

1.2.2 Problem in Multi-site Software Development Environment

The Software Engineering Ontology has been developed to assist team

members who are working in multi-site software development environments.

However, with its passive structure, it has several shortcomings. Hence, the need for

improvement has provided the motivation for this research. Accordingly, in this

section, a brief overview is given of a multi-site software development environment

including its benefits and challenges.

Multi-site distributed software development projects take place in an

6

environment where project teams are dispersed across multiple sites. This type of

software development setting is also known as global software development. A

multi-site software development project offers several strategic and economic

benefits (Jiménez, Piattini and Vizcaíno 2009; Ågerfalk et al. 2008). For example, in

many countries such as China, India, Vietnam, and Philippines, a large labour pool of

competent IT professionals is available at reasonably low wages. Therefore, this can

help to decrease software development costs. Furthermore, a ‘follow-the-sun’

development model in the global software development context provides a virtual

24-hour workday to maximise productivity and reduce development time. This is

done by one team, at the end of the workday, passing its tasks to another team at a

different development site in a different time zone. Moreover, this provides access to

local opportunities such as the market and customers. These advantages have made

multi-site distributed software development an attractive approach for software

companies, becoming a prevalent trend in recent years (Jain and Suman 2015).

Nonetheless, reports in the literature indicate that not all global software

development projects benefit from working in a distributed environment. The

International Conference on Global Software Engineering (ICGSE) 2015 industry

panel stated that 20-25% of outsourcing contracts fail within the first two years and

50% fail within five years (Ebert, Kuhrmann and Prikladnicki 2016; Ebert 2011).

Software industries should be concerned about the challenges of working across

multiple sites as it may require additional effort to overcome potential problems. The

challenges arising from geographical, temporal, and socio-cultural distances in multi-

site distributed software development are summarised below.

• Lack of effective and efficient communication

In traditional co-located software development, informal

communication plays a significant role in coordination activities (Holmstrom

et al. 2006). However, because of geographical distances and time-zone

differences, communication among distributed teams is usually in electronic

form and asynchronous mode with limited opportunities for informal

communication or face-to-face communication (Noll, Beecham and

Richardson 2011). These factors can reduce the frequency and richness of

communication among remote teams. Moreover, there may be ambiguity in

7

the written communications that can lead to misunderstanding or

misinterpretation.

• Misinterpretation or misunderstanding resulting from the diversity of

languages and cultures

Development teams are often comprised of members from different

nations. The diversity of languages, cultures, and education backgrounds are

major factors that have a significant effect on the way in which development

teams interpret a certain situation and respond to it. Moreover, different levels

of language proficiency can result in misunderstandings or difficulty in

following a discussion (Philip, Schwabe and Ewusi-Mensah 2009).

• Lack of effective and efficient coordination

 Coordination in software development refers to the act or action of

orchestrating each development task in order to contribute to the overall

objective of a software project (Lanubile 2009). Coordination problems arise

as a result of insufficient communication due to geographical distance. When

team members are geographically dispersed, they have little knowledge of

what other members at different sites are doing (Boden 2011). Therefore,

they may not be aware of what and when they are required to coordinate or to

manage work dependencies. Coordination issues also make it difficult to keep

track of the evolution of software due to changes.

In the literature, several studies have found that lack of coordination

among team members can create unwanted side effects such as prolonged

task resolution time, increase in software defects, and duplication of tasks

(Cataldo and Herbsleb 2013; Souza and Redmiles 2008). These issues can

affect software productivity or the quality of the final product. For example,

when there is a change in requirements, this should be made known to

relevant team members in a timely manner so that they can be aware of the

change and take appropriate action to communicate and coordinate with

others.

8

• Lack of shared understanding and knowledge sharing

Software development is a collaborative and knowledge-intensive

activity. One of the main critical factors contributing to its success is shared

understanding and effective knowledge sharing (Zahedi, Shahin and Ali

Babar 2016). Unfortunately, geographical distance means physical

separation, temporal distance, and language and cultural barriers that impede

the shared understanding and knowledge sharing. Therefore, in order to

address these issues, the implicit knowledge residing in each individual team

member must be made explicit and accessible to other project members who

require it.

 Motivations of Research

Although the Software Engineering Ontology has been developed to clarify

software engineering concepts and software project information, and to enable

knowledge sharing among distributed team members, its passive structure has raised

several concerns that have motivated this research. These concerns are stated as

follows.

• The current approaches for capturing knowledge are time consuming and

expensive.

• The process of obtaining knowledge captured in the ontology is ineffective.

• Communication is inefficient.

• There is a lack of real-time awareness when coordination is needed to manage

software dependencies.

9

1.3.1 Time Consuming and Expensive Approaches of Capturing Knowledge

Software development generates a large amount of software project

information, e.g., project data, project agreement, project understanding, etc.

Software artefacts are also part of project data produced throughout the software life

development cycle. These artefacts include: software requirement specifications from

the requirement gathering phase, UML diagrams from the software design phase,

source code from the implementation phase, and test plans from the testing phase,

etc. However, this software project information is in syntactic form so the structures

are not conducive to an understanding of the semantics, and thus may create

ambiguities (e.g. misunderstanding or misinterpretation) (Panagiotou,

Paraskevopoulos and Mentzas 2011). This issue is particularly significant in a multi-

site software development context where project members are geographically

dispersed and they have less face-to-face contact. In addition, information related to

the software project is distributed across various software repositories and the

interconnections among these software repositories are typically not explicit (Iqbal et

al. 2009). In other words, there is no link among software repositories; therefore, the

relevant software project information is not easily and readily accessible.

The Software Engineering Ontology was developed to define common

sharable software engineering knowledge and to enable knowledge integration

among relevant software artefacts. Project team members can use it to capture

software development knowledge by mapping software project information to the

concepts defined in the Software Engineering Ontology. Once the software project

information has been mapped, it is conceptualised and semantically linked so that it

can be used to clarify any ambiguity in communication and to enable knowledge

integration and sharing among software project development teams. However,

because of its passive structure, one of the main challenges is that in order to capture

software project information, project team members mostly do it manually. There is

a lack of an effective approach that can help them to automate the knowledge-

capturing task. Given the considerable volume of software project information

produced, the knowledge-capturing approach that relies primarily on software teams’

manual processing is not practical because it is time-consuming, laborious, tedious,

and error-prone. Moreover, because the manual approach requires a great amount of

effort from team members, it could discourage them from sharing their knowledge

10

with others.

1.3.2 Ineffectiveness to Obtain Knowledge Captured in the Ontology

The Software Engineering Ontology is a comprehensive ontology covering

all the aspect of software engineering. It consists of a large set of software

engineering concepts, their relations and their constraints. Software project

information is also captured in the ontology to allow team members to query the

semantically-linked project development information to facilitate their tasks. In order

to obtain the knowledge captured in the ontology, project team members are required

to explicitly request and specify the concepts and relations to which they are

referring; otherwise, they might not be able to obtain the knowledge needed.

However, it could happen that a user might not be aware of certain relevant

knowledge that exists in the ontology (e.g., new knowledge that has just recently

been captured, a new member who has just joined the project team). Hence, some

useful knowledge may be overlooked. In other words, given the passive structure of

the Software Engineering Ontology, there is a lack of an effective approach that can

proactively deliver useful and relevant knowledge to project team members.

1.3.3 Inefficient Communication

In a collaborative software development environment, project teams require

effective and efficient communication in order to coordinate their work. This is

particularly important in a multi-site distributed software development setting in

order to overcome the barriers imposed by long distance and different time zones

(Alqhtani and Qureshi 2014). Even though the Software Engineering Ontology can

facilitate effective communication among team members in terms of providing

shared understanding of software development information to overcome the issues

regarding misinterpretations, misunderstandings, and miscommunications, some

aspects of efficient communication are still missing and need to be improved. The

communication is not efficient in the sense that information cannot be targeted or

directed to every team member who needs to know about it in a timely manner.

When an issue arises, a team member mostly depends on the traditional means of

11

communication (e.g., phone calls, emails, online chats, etc.) which are not very

conducive to semantic understanding. Effective and efficient communication is

considered critical for the success of a software project (Purna Sudhakar 2012; Lind

and Culler 2013). If the communication is not effective and efficient enough to

enable software team members to be kept well-informed of the project’s progress,

there is a higher probability of challenges resulting from different levels of

anticipation.

1.3.4 Lack of Real-time Awareness for Coordination Needed to Manage
Work Dependencies

The development of a large-scale software project is complex and requires

the whole software system to be decomposed into smaller modules. Because the

software modules need to interact with each other, this creates work dependencies,

and thus produces the need for coordination among software development teams

(Oliva and Gerosa 2012). Coordination become more complex as the degree of

distribution of team members increases and it can lead to a lack of team awareness. If

project team members are not aware of coordination needs in order to manage work

dependencies in a timely manner, software quality and software development

productivity might be affected, resulting in duplication of tasks, software defects, and

additional effort to rectify the problems (Cataldo and Herbsleb 2013). Although

several existing methods and tools have been proposed to help project team members

to be aware of when coordination is needed in order to manage work dependencies,

they do not provide real-time awareness to support efficient coordination (Blincoe,

Valetto and Damian 2015). Real-time awareness is critical because the awareness

will be valuable if it occurs when the information is useful.

Several software development issues arise from a lack of real-time awareness

of the need for coordination. Software development projects involve various work

dependencies and linkages which need information about others’ activities and their

coordination (Cataldo et. al. 2009). These dependencies result in critical challenges if

they are not managed properly in particular during software maintenance and

software evolution. Changes are inevitable and can occur at any stage in the software

development life cycle. There are different types of changes such as changes in

12

users’ requirements, changes in the system’s environment, or ongoing maintenance

to correct failures. With every type of change, the overall quality, schedule, and cost

of a software project are affected if the change is not well-managed. For example,

when there is a change in a software artefact, it generally impacts on other artefacts.

Although several change impact analysis techniques (e.g., Gupta, Tripathi and

Kuswaha 2015; Shahid and Ibrahim 2016) are applied or the Software Engineering

Ontology is in use, these can assist project teams only to a certain extent. They do

not provide real-time awareness of the change and need for coordination to other

team members. As a consequence, inconsistencies among software artefacts can

result because relevant members might not be aware of the change and do not

coordinate to notify others of the change within appropriate time constraints. This

may lead to software defects that compromise the quality of a software system (Pete

and Balasubramaniam 2015).

 The Concerns that Need to be Addressed by a
Framework for Active Software Engineering
Ontology

In this section, there are three main concerns that need to be addressed by a

framework for active Software Engineering Ontology. They are identified as follows.

• Automated Knowledge Capture of Software Project Information

• Effective Management of Knowledge Captured in the Software Engineering

Ontology

• Active Platforms for Multi-site Distributed Software Development

Environments

1.4.1 Automated Knowledge Capture of Software Project Information

Various types of software project information that are produced throughout

the software development life cycle describe different levels of abstraction and

13

perspectives of a software system. However, they are in syntactic format that does

not facilitate the understanding of the concepts or meaning (Panagiotou and Mentzas

2009). The syntactic representation of software project information produces several

issues such as ambiguities, difficulty in data integration, limitation of information

retrieval, etc. These problems are more significant in a multi-site software

development environment where project team members are dispersed across several

locations and face-to-face communication (e.g., formal or information meeting) is

limited. As a result, software project information should be transformed into

semantic representation in order to alleviate the aforementioned issues. Some

existing approaches have been introduced to capture the semantics of a software

project (e.g., Qiang, Ming and Zhiguang 2008; Zygkostiotis, Dranidis and Kourtesis

2009). However, many of them are based on manual approaches or require effort

from project team members to carry out additional steps in the knowledge capturing

process because they are not integrated in a software development process. The

manual capturing of knowledge of software project information is time-consuming,

labour-intensive, tedious and error-prone task. In order to tackle these issues, there is

the need for a systematic approach that can automatically capture knowledge of

software project information and that is seamlessly integrated in a software

development process. Once this information has been captured and conceptualised, it

can be semantically interlinked with other relevant information. It can then be used

to clarify any ambiguity in communication and to enable knowledge sharing among

team members. This knowledge is also in machine-readable format which means that

it can be understood by software agents. As a result, the agents can make use of this

knowledge to assist project teams with their software development activities such as

managing project issues, monitoring software project status, suggesting solutions or

experts.

1.4.2 Effective Management of Knowledge Captured in the Software
Engineering Ontology

Once software project information has been captured in the ontology

repository, this knowledge has to be managed effectively. The management of this

knowledge includes various operations, namely, retrieving, adding, modifying, and

deleting. In order to obtain the knowledge captured in the Software Engineering

14

Ontology, project team members need to explicitly request it and know exactly the

concepts and relationships to which they are referring. However, it is often the case

that a person who utilises the ontology may try to resolve an issue but he/she cannot

translate it into the exact concepts and relations contained in the ontology.

Furthermore, because of the considerable amount of knowledge captured in the

ontology, it is possible that software teams might not be aware of the existence of

certain knowledge. This could lead to valuable knowledge being overlooked.

Furthermore, during software development, software changes are inevitable

in all stages of a software project (Basri et al. 2016). Software project information is

always evolving, often making it difficult to manage dependencies that exist between

software artefacts (e.g., maintaining consistencies). Therefore, it is important to have

an effective management of knowledge captured in the ontology to reflect the

software change that can support real-time awareness of the need for coordination.

Relevant team members should be informed about the change and its impact in a

timely manner so that they can coordinate to accommodate the change within a

proper time frame.

Accordingly, there is a need to develop a systematic approach that can

provide active support to help software teams obtain and manipulate software

engineering knowledge captured in the Software Engineering Ontology effectively.

This active support is able to deliver knowledge that is potentially useful to software

teams even without receiving an explicit request. Moreover, it can assist team

members to maintain real-time awareness for effective and efficient coordination in

order to manage work dependencies.

1.4.3 Active Platforms for Multi-site Software Development Environments

Software development is a knowledge- and collaborative-intensive process

the success of which mostly depends on project team members effectively managing

and sharing software engineering knowledge through efficient and timely

collaboration and interaction. This is particularly critical in a multi-site software

development setting where a high degree of collaboration and knowledge sharing is

required (Shiva et al. 2009). Software development activities are interconnected, and

15

team members need support with software engineering knowledge throughout

various phases of a software life cycle. As a result, there is a need to have platforms

for multi-site software development environments that can support remote team

members to effectively manage and share software engineering knowledge when

they are engaged in software development activities throughout the software life

cycle. The active platforms are intended to assist remote teams to collaborate through

effective and efficient communication and coordination in order to minimise the

challenges related to physical and temporal distance. The active platforms mentioned

in this thesis are similar to the cutting-edge inventions such as Amazon.com or

Youtube.com. They do not only make information available to users, and passively

rely on them to pull the information needed; these websites also proactively deliver

useful information to their users. Likewise, the platforms are intended to provide

software engineering knowledge to project team members in a flexible manner either

by information-delivery push or information-delivery pull mode. In other words, the

platforms can reactively provide knowledge in response to a user’s request or

proactively deliver knowledge that can assist team members with their tasks.

In summary, Figure 1-2 describes the framework for active Software

Engineering Ontology. They are intended to cover both knowledge assimilation and

knowledge dissemination phases. The active support can assist software team

members in terms of automating knowledge capturing process that is transparently

integrated into daily software development activities (e.g., integrated with the

process of importing software artefacts into version control repositories). If the

knowledge captured in the ontology is manipulated to reflect a software change, the

active support proactively provides real-time awareness of coordination needs, or

other useful information that is relevant to team members’ tasks (e.g., change impact

analysis, expert identification). Furthermore, the active support includes proactive

monitoring of software project information to identify any possibility of

encountering deviation before an actual issue occurs. Notifications are provided to

corresponding team members on a push-based delivery mode without receiving an

explicit request.

16

Figure 1-2: A framework of active Software Engineering Ontology

 Objectives of the Thesis

In the previous sections, the motivations and the concerns that need to be

addressed for a framework of active Software Engineering Ontology are outlined.

Three major concerns have been identified and are the basis for the research

objectives of this thesis. The primary objective of this thesis is to develop a

framework for active Software Engineering Ontology that can be used to provide

active support to assist software development team members with software

engineering knowledge when they are working on software development projects.

The research objective can be segmented into the following sub-objectives:

Sub-objective 1: To develop a framework for active Software Engineering

Ontology specifically focusing on the ontology deployment phase. The framework is

intended to address challenges resulted from the passive structure of the Software

Engineering Ontology in regard to knowledge assimilation and knowledge

dissemination.

Sub-objective 2: To develop an approach to automate knowledge capture of

software project information that is seamlessly integrated into the software

development process.

17

Sub-objective 3: To develop an approach to access and manage software

engineering knowledge captured in the Software Engineering Ontology effectively.

Sub-objective 4: To develop active platforms for multi-site software

development environments that can assist remote project team members to manage

and share software engineering knowledge throughout the software development life

cycle.

Sub-objective 5: To evaluate the effectiveness and efficiency of the proposed

framework and platforms based on existing case studies found in the literature

through the prototype system used as proof-of-concept experiments.

 Thesis Structure

The thesis is structured as follows.

Chapter 1: Introduction (current chapter)

This chapter introduces issues arising from the passive structure of the

Software Engineering Ontology. It discusses the motivations for this study and the

concerns that need to be addressed by a framework for active Software Engineering

Ontology. Furthermore, the objective and sub-objectives of this research are stated

and the structure of this thesis is briefly described.

Chapter 2: Literature Review

This chapter provides the survey of the literature related to ontology-based

semantic annotation, ontology-based multi-agent systems and assistive systems in

software engineering. The literature related to each area is reviewed and evaluated.

At the end of the chapter, a critical evaluation using an integrated view is discussed.

Chapter 3: Problem Definition

The first section of this chapter presents the key concepts and definitions that

are used in this thesis. An overview of the problems is provided and the underlying

18

research issues related to these problems are discussed. At the end of the chapter, a

summary of research approaches is given. A design science research methodology is

chosen as the preferred option to address the research issues and for the development

of the proposed solution.

Chapter 4: Ontology-based Multi-agent Approach Solution Proposal

This chapter begins with an overview of the key solution requirements for the

framework solution development. The scientific approach based on ontology-based

multi-agent systems is investigated and used as a solution for the identified research

issues.

Chapter 5: Conceptual Framework for active Software Engineering

Ontology

This chapter presents a brief overview of well-known existing agent-oriented

software engineering methodologies. The integration of the macro-perspective and

micro-perspective of agent-oriented software engineering as well as the AUML

methodology are used to implement the framework solution. Then, the analysis and

design phases of the macro-perspective are discussed in detail to derive the overall

solution including the structure of an agent society and its dynamic interactions.

They result in the agent specifications for each agent type. These specifications are

refined in Chapter 6 and Chapter 7 according to each solution proposal.

Chapter 6: Ontology-based Multi-agent Approach for Capturing

Software Project Information

This chapter provides a detailed description of the ontology-based multi-

agent approach for capturing software project information. The approach consists of

two main processes: semantic annotation and ontology population. The agents that

are involved in these processes are discussed in detail in respect to structure features,

behaviours, and inter-agent interactions. The practical use of this approach as a

means of assisting collaborative project team members to address software

development issues is provided and discussed.

19

Chapter 7: Ontology-Based Multi-agent Approach for Software

Engineering Ontology Instantiations Management

This chapter presents a detailed description of the ontology-based multi-agent

approach to manage Software Engineering Ontology instantiations. The agents

involved in managing the knowledge captured in the Software Engineering Ontology

are discussed in detail in respect to structure features, behaviours, and inter-agent

interactions. The practical use of the approach as a means of assisting project team

members to coordinate their work is provided and discussed.

Chapter 8: Active Platforms for Multi-site Software Development

Environment

This chapter presents active platforms for multi-site software development

environments that are intended to assist distributed project teams to effectively

manage and share software engineering knowledge throughout the various phases of

the software development life cycle. Four platforms, namely, semantic annotation,

knowledge query, monitoring, and knowledge manipulation, are demonstrated along

with their practical uses. The chapter is concluded with a discussion of the ways that

the platforms tackle the issues identified in Chapter 3.

Chapter 9: Evaluation of the Framework for Active Software

Engineering Ontology

This chapter demonstrates prototypes as proof-of-concept experiments.

Several scenario experiments based on existing case studies found in the literature

are carried out to evaluate the effectiveness and efficiency of the framework. The

chapter is concluded with a discussion of the evaluation results in an integrated view

according to the framework solution requirements.

Chapter 10: Recapitulation and Future Work

This chapter concludes the thesis by summarising the research that has been

carried out and the contributions that it has made to this field of study. Moreover, it

offers several suggestions for future research that may extend the proposed

20

framework developed in this thesis.

 Conclusion

In this chapter, the passive structure of the Software Engineering Ontology

and its issues are discussed. These have led to the motivations for this study. Several

major concerns that need to be addressed by a framework for active Software

Engineering Ontology are highlighted. Finally, the thesis objectives are stated and

the thesis structure is described.

In the next chapter, the literature related to existing approaches is reviewed in

order to provide a comprehensive background and a synopsis of the relevant

literature. In addition, it will be evaluated in terms of the concerns related to passive

Software Engineering Ontology in order to identify the gaps that this research can

address.

 References

Abran, Alain, JW Moore, P Bourque, R Dupuis, and LL Tripp. 2004. "Software

Engineering Body of Knowledge." IEEE Computer Society, Angela Burgess.

Ågerfalk, Pär J., Brian Fitzgerald, Helena Holmström Olsson, and Eoin Ó Conchúir.

2008. "Benefits of global software development: The known and unknown."

In Making Globally Distributed Software Development a Success Story:

International Conference on Software Process, ICSP 2008 Leipzig, Germany,

May 10-11, 2008 Proceedings, eds Qing Wang, Dietmar Pfahl and David M.

Raffo, 1-9. Berlin, Heidelberg: Springer Berlin Heidelberg.

Alqhtani, Mashael Saeed, and M Rizwan Jameel Qureshi. 2014. "A proposal to

improve communication between distributed development teams."

International Journal of Intelligent Systems and Applications 6 (12): 34-39.

doi: http://dx.doi.org/10.5815/ijisa.2014.12.05.

http://dx.doi.org/10.5815/ijisa.2014.12.05

21

Basri, Sufyan, Nazri Kama, Faizura Haneem, and Saiful Adli Ismail. 2016.

"Predicting Effort for Requirement Changes During Software Development."

In Proceedings of the Seventh Symposium on Information and

Communication Technology, Ho Chi Minh City, Viet Nam, 380-387.

3011096: ACM. doi: 10.1145/3011077.3011096.

Berners-Lee, Tim. 1999. "Weaving the Web: The Past, Present and Future of the

World Wide Web by Its Inventor (with M. Fischetti)." London: Orion

Business Books.

Blincoe, Kelly, Giuseppe Valetto, and Daniela Damian. 2015. "Facilitating

coordination between software developers: A study and techniques for timely

and efficient recommendations." Software Engineering, IEEE Transactions on

41 (10): 969-985.

Boden, Alexander. 2011. "Coordination and Learning in Global Software

Development: Articulation Work in Distributed Cooperation of Small

Companies.", University of Siegen 2011.

Cataldo, M., A. Mockus, J. A. Roberts, and J. D. Herbsleb. 2009. "Software

Dependencies, Work Dependencies, and Their Impact on Failures." IEEE

Transactions on Software Engineering 35 (6): 864-878. doi:

10.1109/TSE.2009.42.

Cataldo, M., and J. D. Herbsleb. 2013. "Coordination breakdowns and their impact

on development productivity and software failures." IEEE Transactions on

Software Engineering 39 (3): 343-360. doi: 10.1109/TSE.2012.32.

Chu, Hai-Cheng, and Szu-Wei Yang. 2012. "Innovative Semantic Web services for

next generation academic electronic library via web 3.0 via distributed

artificial intelligence." In Intelligent Information and Database Systems, 118-

124. Springer Berlin Heidelberg.

Ebert, Christof. 2011. "The dark side: Challenges." In Global Software and IT, 19-

25. John Wiley & Sons, Inc.

22

Ebert, Christof, Marco Kuhrmann, and Rafael Prikladnicki. 2016. "Global software

engineering: An industry perspective." IEEE Software 33 (1): 105-108. doi:

10.1109/ms.2016.27.

Elamy, A.H. 2005. "Perspectives in agent-based technology." AgentLinkNews 18:

19-22.

Forbes, David E. 2013. "A Framework for Assistive Communications Technology in

Cross-Cultural Healthcare." School of Information Systems, Curtin Business

School, Curtin University.

Gupta, Avinash, Aprna Tripathi, and Dharmendra Singh Kuswaha. 2015. "Use case

based approach to analyze software change impact and its regression test effort

estimation." In Advanced Computer and Communication Engineering

Technology: Proceedings of the 1st International Conference on

Communication and Computer Engineering, eds Hamzah Asyrani Sulaiman,

Mohd Azlishah Othman, Mohd Fairuz Iskandar Othman, Yahaya Abd Rahim

and Naim Che Pee, 1057-1067. Cham: Springer International Publishing.

Holmstrom, H., E. O. Conchuir, P. J. Agerfalk, and B. Fitzgerald. 2006. "Global

software development challenges: A case study on temporal, geographical and

socio-cultural distance" 2006 IEEE International Conference on Global

Software Engineering (ICGSE'06), doi: 10.1109/ICGSE.2006.261210.

Iqbal, Aftab, Oana Ureche, Michael Hausenblas, and Giovanni Tummarello. 2009.

"Ld2sd: Linked Data Driven Software Development" The 21st International

Conference on Software Engineering and Knowledge Engineering (SEKE

2009), Boston, USA.

Jain, Ritu, and Ugrasen Suman. 2015. "A systematic literature review on global

software development life cycle." SIGSOFT Software Engineering Notes 40

(2): 1-14. doi: 10.1145/2735399.2735408.

Jiménez, Miguel, Mario Piattini, and Aurora Vizcaíno. 2009. "Challenges and

improvements in distributed software development: a systematic review."

Advances in Software Engineering 2009: 1-16. doi: 10.1155/2009/710971.

23

Lanubile, Filippo. 2009. "Collaboration in distributed software development." In

Software Engineering: International Summer Schools, ISSSE 2006-2008,

Salerno, Italy, Revised Tutorial Lectures, eds Andrea De Lucia and Filomena

Ferrucci, 174-193. Berlin, Heidelberg: Springer Berlin Heidelberg.

Lind, Mary R, and Evetta Culler. 2013. "Information technology project

performance: The impact of critical success factors." Perspectives and

Techniques for Improving Information Technology Project Management: 39.

Noll, John, Sarah Beecham, and Ita Richardson. 2011. "Global software development

and collaboration: barriers and solutions." ACM Inroads 1 (3): 66-78. doi:

10.1145/1835428.1835445.

Oliva, G. A., and M. A. Gerosa. 2012. "A method for the identification of logical

dependencies" 2012 IEEE Seventh International Conference on Global

Software Engineering Workshops, doi: 10.1109/ICGSEW.2012.19.

Panagiotou, Dimitris, and Gregoris Mentzas. 2009. "A Knowledge Workbench for

Software Development" The 5th International Conference in the I-Semant.css

series on Semantic Technologies (I-SEMANTICS), Graz, Austria.

Panagiotou, Dimitris, Fotis Paraskevopoulos, and Gregoris Mentzas. 2011.

"Knowledge-Based Interaction in Software Development." Intelligent

Decision Technologies 5 (2): 163-175.

Pete, I., and D. Balasubramaniam. 2015. "Handling the Differential Evolution of

Software Artefacts: A Framework for Consistency Management" 2015 IEEE

22nd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), doi: 10.1109/SANER.2015.7081889.

Philip, Tom, Gerhard Schwabe, and Kweku Ewusi-Mensah. 2009. "Critical issues of

offshore software development project failures." In The 13th International

Conference on Information Systems, Phoenix, USA.

Purna Sudhakar, Goparaju. 2012. "A model of critical success factors for software

projects." Journal of Enterprise Information Management 25 (6): 537-558.

doi: doi:10.1108/17410391211272829.

24

Qiang, Lu, Chen Ming, and Wang Zhiguang. 2008. "A semantic annotation based

software knowledges sharing space" Network and Parallel Computing, 2008.

NPC 2008. IFIP International Conference on, doi: 10.1109/npc.2008.55.

Shahid, M., and S. Ibrahim. 2016. "Change impact analysis with a software

traceability approach to support software maintenance" 2016 13th

International Bhurban Conference on Applied Sciences and Technology

(IBCAST), doi: 10.1109/IBCAST.2016.7429908.

Sheth, A., and K. Thirunarayan. 2013. Semantics Empowered Web 3.0: Managing

Enterprise, Social, Sensor, and Cloud-based Data and Services for Advanced

Applications: Morgan & Claypool.

Shiva, Sajjan G., Sarah B. Lee, Lubna A. Shala, and Chris B. Simmons. 2009.

"Knowledge management in global software development." International

Journal of Distributed Sensor Networks 5 (1): 6-6. doi:

10.1080/15501320802498513.

Sommerville, I. 2004. Software Engineering. 7th ed: Pearson Education Limited.

Souza, Cleidson R. B. de, and David F. Redmiles. 2008. "An empirical study of

software developers' management of dependencies and changes." In

Proceedings of the 30th International Conference on Software Engineering,

Leipzig, Germany, 241-250. 1368122: ACM. doi: 10.1145/1368088.1368122.

Wongthongtham, P., E. Chang, T.S. Dillon, and I. Sommerville. 2009. "Development

of a software engineering ontology for multi-site software development."

IEEE Transactions on Knowledge and Data Engineering 21 (8): 1205-1217.

doi: 10.1109/TKDE.2008.209.

Wongthongtham, Pornpit, Elizabeth Chang, Chan Cheah, and Tharam S Dillon.

2005. "Software engineering sub-ontology for specific software development."

In Software Engineering Workshop, 2005. 29th Annual IEEE/NASA,

Maryland, USA, April 7, 2005. 27-33. IEEE. doi: doi: 10.1109/SEW.2005.4.

Wooldridge, Michael. 2009. An Introduction to Multiagent Systems: John Wiley &

Sons.

25

Zahedi, Mansooreh, Mojtaba Shahin, and Muhammad Ali Babar. 2016. "A

systematic review of knowledge sharing challenges and practices in global

software development." International Journal of Information Management 36

(6, Part A): 995-1019. doi: http://dx.doi.org/10.1016/j.ijinfomgt.2016.06.007.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

http://dx.doi.org/10.1016/j.ijinfomgt.2016.06.007

26

 Literature Review

 Introduction

As mentioned in the previous chapter, the aim of this thesis is to assist

software development team members with software engineering knowledge when

they are working on software development projects. Generally, when an ontology has

been created and evaluated from the development stage, it is then transited to the

deployment stage which enables the interaction between the ontology and the

application system (Jain, Malik and Lathar 2010). There are two main phases/stages

associated with the ontology deployment stage, namely, knowledge assimilation and

knowledge dissemination (Forbes 2013). Knowledge assimilation is related to the

process of capturing and representing the domain-specific knowledge in a formal

conceptual model, while knowledge dissemination is related to the process of

delivering the knowledge to different types of applications or communicating the

knowledge to users. In order to make the Software Engineering Ontology active, the

focus will be on both the knowledge assimilation and knowledge dissemination

phases.

In this chapter, a comprehensive survey is conducted of various existing

approaches relevant to this research in order to provide a sufficiently broad

background and pertinent literature synopsis. They are grouped under three

categories: ontology-based semantic annotation, ontology-based multi-agent systems,

and assistive systems in software engineering. The structure of this chapter is as

follows:

• In Section 2.2, a review of the ontology-based semantic annotation

approaches is presented, followed by an evaluation of ontology-based

semantic annotation approaches for capturing software project information.

• In Section 2.3, a review of the ontology-based multi-agent systems is

presented, followed by an evaluation of these systems.

27

• In Section 2.4, a review of the assistive systems in software engineering

according to the software development activities in the software life cycle is

presented, followed by an evaluation of these systems.

• The chapter concludes with Section 2.5 which contains a critical evaluation of

the existing approaches from an integrated perspective which includes the

ontology-based semantic annotation for capturing software project

information, the ontology-based multi-agent systems, and the assistive

systems in software engineering.

 Ontology-based semantic annotation

Knowledge assimilation is the process of capturing and representing the

domain-specific knowledge in a formal conceptual model (Forbes 2013). Schwotzer

and Berlin (2008) see it as a process whereby new knowledge is captured and

incorporated into the knowledge base. When large amounts of knowledge need to be

captured, an important point is the assimilation of extracted knowledge by means of

systematic approaches that do not require great amount of human effort. The

captured knowledge can be conceptually represented using the ontological model. In

the literature, several studies have proposed the use of ontology-based semantic

annotation, or semantic annotation for short, to express a formal representation of the

resource’s content by connecting it to concepts defined in an ontology. Ontology is a

major part of an application domain description and is used as a means of identifying

semantically-related annotations. Semantic annotation is deployed to generate

intelligent content and provide a wide range of benefits to content-oriented intelligent

applications (Yang 2006). Kiyavitskaya (2006) states that semantic annotation has

been widely used in several applications and in different areas such as

personalisation, text summarisation and question answering, information filtering,

and intelligent knowledge management. In the Semantic Web, semantic annotation

tools are used to annotate web documents, enabling human and machine to

understand web contents. Amardeilh (2009) points out that another advantage of

semantic annotation is that it can be used to supplement an ontology populating task

28

which is a process that enriches the knowledge base with new instances of the

concepts, attributes and relations defined by the ontology model. In this work, the

semantic annotation process is a step performed to extract relevant information

related to the concerned domain from a set of documents and then map it with the

concepts defined in the domain ontology. The aim is to obtain new instances before

populating them to a knowledge base constrained by the ontology.

In the software development domain, the semantic annotation process is used

to tackle problems regarding inappropriate, incomplete, and inconsistent syntactic

descriptions of software development artefact properties and qualities. It also helps to

enable automated knowledge acquisition tasks (Graubmann and Roshchin 2006). The

semantic annotation provides the opportunity to transform software development

artefacts so that they are conceptually organised and can be semantically linked. It

helps to facilitate the integration of data from multiple software artefacts produced

during the software development process (e.g. requirement specification, design

documents, source code). Qiang, Ming, and Zhiguang (2008) implement a semantic

annotation-based software knowledge-sharing space to improve the level of

knowledge sharing and facilitate collaborative work among project members.

Ontologies are used to create a link between software artefact contents and the

abstract knowledge in the space. However, the annotation process is done manually

by team members. Zygkostiotis, Dranidis, and Kourtesis (2009) propose a manual

approach to semantically annotate Java source code using domain ontologies for the

purpose of software reuse. This approach makes use of the standard annotation

facility equipped with the release of Java 5.0 to add metadata to source code

elements. In (Arantes and Falbo 2010), the authors discuss the use of semantic

annotations in requirements document templates to support the management and

evolution of requirements. The semi-automatic annotation process is based on the

conceptualisation captured in the defined software requirement ontology. In

(Panagiotou and Mentzas 2011b), the authors propose KnowBench, a semantic-based

knowledge management system to assist developers to reuse code or knowledge

about solving problems that had been previously addressed in the organisation. The

source code is captured by means of both manual and semi-automatic annotation.

Damljanovic, Amardeilh, and Bontcheva (2009) introduce an automatic approach to

enhance semantic access to software artefacts (e.g., software document, source code)

29

using the semantic annotation process. This approach is based on the text analysis

technique. The authors utilise the PROTON KM ontology1 to interlink documents

based on the identified key concepts. Taglialatela and Taglino (2012) propose an

approach to enrich the semantic description of source code by semantically

annotating it with a common domain ontology. The goal is to develop a semantic-

based search and retrieval of software artefacts in order to facilitate software reuse.

The annotation mechanism is based on the analysis of the source code comments

which are added by a developer. The annotation process is automatic. However, the

quality of the annotation result depends on the quality of the code comments.

 Tichy, Köerner, and Landhäußer (2010) propose an approach to

automatically create software models from natural language texts with semantic

annotation. In (Graubmann and Roshchin 2006), the authors present a concept

whereby automated software composition is supported by semantic modelling and

making use of the annotation process and semantic extensions through knowledge-

based techniques.

2.2.1 Evaluation of Semantic Annotation of Software Project Information

In the software engineering domain, a significant amount of literature

contains proposals for semantically annotating software project-related information.

A number of works have contributed to source code semantic annotation. However,

most of the reviewed approaches are based on manual and semi-automatic

annotation. The manual approaches (e.g., Qiang, Ming, and Zhiguang 2008;

Zygkostiotis, Dranidis, and Kourtesis 2009) are considered inappropriate because

they are tedious, time consuming, and error-prone, especially when a large volume of

software artefacts is generated within a project. The semi-automatic annotation

approaches (e.g., Arantes and Falbo 2010; Panagiotou and Mentzas 2011b) can be a

good solution; however, they still require human intervention at some annotation

level.

Some works have proposed the automatic approach (e.g., Graubmann and

Roshchin 2006; Damljanovic, Amardeilh, and Bontcheva 2009; Tichy, Köerner, and

1 http://proton.semanticweb.org/2005/04/protonkm

30

Landhäußer 2010; Taglialatela and Taglino 2012). However, most of them are based

on text analysis techniques so that they are applicable only to textual artefacts (e.g.,

software requirement specification, software documents); they are not suitable for the

semantic annotation of certain types of artefacts such as source code. In addition,

most of the reviewed works regarding semantic annotation approaches in the

software engineering domain focus only on semantic annotation which is intended to

create semantic descriptions of software resources. Fewer works have paid attention

to populating the ontology which is the task of adding new instances of concepts to

the ontology (Petasis et al. 2011). The new instances could be derived from the

semantic annotation.

Source code is considered as the main, centrally located artefact and is

critical in software development; therefore, the need to capture its semantics in order

to facilitate remote communication, coordination and knowledge sharing is obvious.

Hence, given the volume of source code that needs to be dealt with, it is imperative

to have a systematic approach for automating semantic annotation and ontology

population tasks in order to ease the burden of manual tasks. This approach should

be automated, or should require minimum human effort.

 Ontology-based Multi-agent Systems

From the literature, it is evident that considerable efforts have been put into

the integration of ontologies and multi-agent systems, also known as ‘ontology-based

multi-agent’ approaches in order to disseminate the knowledge captured in

ontologies. Furthermore, some researchers have mentioned them as a means of

facilitating knowledge assimilation by capturing and incorporating the knowledge

into the ontology knowledge base. These works encompass various domains

including software engineering, health, and education, to name a few. In the software

engineering domain, a series of researches related to ontology-based multi-agent

systems to support software development activities have been undertaken.

MAEST (Maamri and Sahnoun 2007) is a multi-agent system that is intended

to assist testers during the testing process. An ontology for software testing is

31

developed to model several aspects related to testing software systems such as testing

activities, testing methods, software artefacts, information about the environment in

which testing is conducted, available resources, and the requirements of the test

results. The agents use this information as a means of sharing knowledge and

facilitating consistent communications.

In (Palacio et al. 2009), the authors propose an ontology-based multi-agent

system to provide support for remote collaboration in multi-site distributed software

development environments. In this work, agents are structured into two agencies,

namely, user agency and the project agency to create Collaborative Working Spheres

(CSW) for software developers to obtain information related to other remote team

members’ activities. A shared component ontology is created and used by the agents

to facilitate consistent communication between the agents in different agencies.

Lee and Wang (2009) introduce an ontology-based computational intelligent

multi-agent for Capability Maturity Model Integration (CMMI) assessment. This

system consists of three main agents interacting with one another to achieve the goal

of effectively summarising the evaluation reports of the software engineering process

in regard to CMMI assessment. The CMMI ontology is developed specifically based

on the fundamental knowledge of the Process and Product Quality Assurance

(PPQA) process area of CMMI. The software agents make use of the defined

concepts in this ontology to extract key sentences from the evaluated reports in order

to enable the relevant team members to comprehend it easily and quickly.

The integration of multi-agent systems and Software Product Lines (SPL) is

addressed in (Nunes et al. 2011). It provides a solution for producing higher quality

software at lower development costs and less time-to-market by taking advantage of

agent technologies. The ontology is used to model the Multi-agent System Product

Lines (MAS-PLs) domain. The agents use this ontology to facilitate inter-agent

communication.

The authors of (Monte-Alto et al. 2012) and (Teixeira and Huzita 2014)

propose a context processing mechanism called ContextP-GSD (Context Processing

on Global Software Development) that utilises contextual information to assist users

during the software development process. This mechanism applies agent-based

32

technology to process contextual information and support human resource allocation.

The OntoDiSEN ontology (Chaves et al. 2011) is developed to represent

context information in a global software development environment. The software

agents use this ontology for context information retrieval and reasoning. In addition,

the authors claim that the proposed ontology agent can manipulate the ontology

instance knowledge such as updating contextual information or inserting new inferred

action and facts. However, no details are provided to show how the ontology agent

can perform these tasks.

In (Hadzic et al. 2009b), the authors offer a case study of an ontology-based

multi-agent system in which collaborative agents are interacting and mediating with

the Software Engineering Ontology to support multi-site software development teams.

This thesis is the extension and the realisation of this work.

For the health domain, Hadzic et al. (2009a) propose a framework to unify

the multi-agent approach with the human disease ontology in order to create an

intelligent information retrieval system for human disease. The proposed ontology

represents the knowledge regarding human diseases. The agents make use of this

ontology for information retrieval and information analysis and to facilitate

consistent communications among agents and knowledge reasoning.

 Wang et al. (2010) introduce an ontology-based multi-agent system for

intelligent healthcare applications to assist users to evaluate diets. The ontologies

have been developed to represent personal profiles and food models. Agents use

these ontologies to analyse appropriate diet information based on a user profile.

Li and Mackaness (2015) develop a system that is based on a multi-agent

architecture to support decision-making for epidemic management. The system is

intended to enhance the performance of information retrieval in a dynamic decision-

making environment. Inexperienced personnel can use this system to locate online

data and to process services for spatio-temporal analysis of a specified environmental

epidemic. Ontologies for dataset and service semantics are used to describe general

concepts of GIS web service and epidemiology data management, while lightweight

ontologies for simple spatial and temporal reasoning are used to add spatial and

temporal semantics to the geospatial data. The agents utilise these ontologies to

33

enable automated semantic service discovery and composition.

In educational domain, Oriche, Chekry, and Khaldi (2013) propose a

semantic annotation system based on three main agents to manage the semantic

annotation of educational resources. These agents utilise the domain ontology to

assign domain knowledge to learning objects. Once these resources have been

annotated, they are conceptualised and organised well so that they can be delivered

to the users on demand according to their profiles and needs.

Dolia (2010) presents an ontology-based multi-agent system to provide

useful information regarding academic institutions such as course information,

course registration and scheduling. The Academic Institute Ontology is developed to

define concepts and relationships that exist in university teaching environments. The

agents make use of this ontology to facilitate their understanding for consistent

communication and to provide responses to various types of queries.

 In (García-Sánchez et al. 2008) and (García-Sánchez et al. 2009), the authors

propose an ontology-based multi-agent framework to automatically discover,

compose, invoke and monitor web services. Several kinds of ontologies, namely,

application and domain ontology, agent local knowledge ontology, negotiation

ontology, and semantic web services ontologies are utilised in this framework. In

these works, the agents make use of these ontologies to automatically discover,

compose, and invoke the available web services, and to facilitate consistent agent

communication. The researchers evaluated the proposed framework by applying it to

the e-commerce and biology domains.

In (Parhi, Pattanayak and Patra 2015), the authors develop an ontology-based

multi-agent system to discover appropriate cloud services as requested by consumers.

The system consists of three agents collaboratively working to provide dynamic

searching for a cloud service. The Cloud Service Ontology is developed to represent

cloud service description. The agents use this ontology for reasoning about the

services and for information retrieval.

In addition to the abovementioned works, ontology-based multi-agent

approaches have been used extensively in other domains. For example, Yang, Lo,

and Steele (2007) introduce an ontology-based multi-agent system for the

34

accommodation services industry to support the online accommodation market. The

domain ontology is used to facilitate agent communication and collaboration as well

as the development of an ontology-based data transformation mechanism for data

structure translation.

Ying, Ray, and Lewis (2013) introduce MOMA, a framework for creating

ontology-based multi-agent systems, and incorporated an experiment in financial

application development. MOMA consists of two main development phases:

ontology development and agent development. However, the researchers focus only

on the development of ontology and the use of the ontology to drive the

implementation of the agent application. The agent development part is treated as a

black box, but no details are provided regarding the design of the agent’s application.

The agents make use of the ontology to facilitate consistent inter-agent

communication and coordination.

Iribarne et al. (2014) propose an ontological web trading agent approach for

environmental information retrieval. This work attempted to address the complexity

of information retrieval in the information system to support environmental

management. The ontologies used in this system are intended for information

retrieval and to facilitate agent communication.

Table 2-1 provides a summary of the aforementioned ontology-based multi-

agent systems.

Table 2-1: Review of some existing ontology-based multi-agent systems
Application

Domain

Source Objectives of ontology-

based multi-agent systems

Purpose of agent’s

use of ontology

Software

Engineering

(Maamri and
Sahnoun 2007)

Provide assistance to

software testers by

automating the process of

test.

- Represent domain

knowledge about

software testing

- Facilitate agent

communication

(Palacio et al.

2009)

Assist software

development team to

identify or create

-Facilitate

consistent

communication

35

Application

Domain

Source Objectives of ontology-

based multi-agent systems

Purpose of agent’s

use of ontology

opportunities for remote

collaboration establishment

between the agents

in different

agencies.

(Hadzic et al.

2009b)

Provide support for multi-

site software development

teams as a communication

framework

- Represent

software

engineering domain

knowledge

- Information

retrieval

- Facilitate agent

communication

(Lee and Wang

2009)

Summarise the evaluation

reports of the software

engineering process in

regard to CMMI assessment

- Use defined

concepts to extract

the key sentences

from the evaluated

reports

- Support reasoning

of the term relation

(Nunes et al.

2011)

Provide a solution for

producing higher quality

software at lower

development costs and less

time-to-market

- Facilitate inter-

agent

communication

(Monte-Alto et al.

2012)

Process contextual

information and support

human resource allocation

- Contextual

information

retrieval

- Knowledge

reasoning

(Teixeira and

Huzita 2014)

Support human resource

allocation in globally

distributed software

projects.

- Information

retrieval

- Knowledge

reasoning

- Knowledge

36

Application

Domain

Source Objectives of ontology-

based multi-agent systems

Purpose of agent’s

use of ontology

manipulation

Health (Hadzic et al.

2009a)

Intelligent and dynamic

information retrieval of

human disease information

- Represent medical

domain knowledge

regarding human

diseases

- Information

retrieval and

analysis

- Facilitate agent

communication

- Knowledge

reasoning

(Wang et al. 2010) Evaluate the health of diets - Represent personal

profile and food

model

- Information

analysis

(García-Sánchez et

al. 2008)

Dynamically retrieve

biological information

-Facilitate agent

communication and

coordination

- Information

retrieval

(Li and Mackaness

2015)

Enhance the performance of

Epidemiology information

retrieval in a dynamic

decision-making

environment

- Information

retrieval

- Spatial and

temporal reasoning

Education

(Dolia 2010) Provide useful information

for users in academic

institutes

- Facilitate the

interactions among

different agents

- Information

retrieval

(Oriche, Chekry Automate the semantic

annotation of educational

- Assign domain

knowledge to

37

Application

Domain

Source Objectives of ontology-

based multi-agent systems

Purpose of agent’s

use of ontology

and Khaldi 2013) resources educational

resources

E-commerce (Yang, Lo and
Steele 2007)

Support communication,

interaction, and

management among

different parties engaged in

the accommodation e-

market

- Facilitate agent

communication

- Describe agent

services

(García-Sánchez et

al. 2009)

Facilitate the selection of

the provider whose

proposal best matches the

users’ preferences

-Facilitate agent

communication and

coordination

- Information

retrieval

Finance (Ying, Ray and

Lewis 2013)

Automate some market

analysis tasks

- Represent

financial domain

knowledge

- Facilitate agent’s

communication and

collaboration

Environment (Iribarne et al.

2014)

Address the complexity of

information retrieval in the

information system

supporting environment

management

- Information

retrieval

- Facilitate agent

communication

Cloud service (Parhi, Pattanayak

and Patra 2015)

Discover appropriate cloud

services as requested by

consumers

- Represent cloud

service description

- Reasoning

- Information

retrieval

38

2.3.1 Evaluation of Ontology-based Multi-agent Systems

Although there is substantial literature on ontology-based multi-agent

systems, the existing approaches have two shortcomings that this thesis intends to

address, namely, the ontology-based multi-agent system for manipulating ontology

instances, and the ontology-based multi-agent system that can provide support

covering various activities in the software development life cycle.

First, in the literature, most of the ontology-based multi-agent systems focus

on facilitating the dissemination of knowledge captured in the ontology. However,

very little attention has been paid to utilising the ontology-based multi-agent

approach for assimilating knowledge captured in the ontology, i.e., the ontology

instantiation manipulation. The purposes for which the software agents make use of

the ontology can be categorised as follows:

1) representing application and domain knowledge (e.g., Maamri and

Sahnoun 2007; Hadzic et al. 2009a; Hadzic et al. 2009b; Lee and Wang 2009; Wang

et al. 2010; Ying, Ray and Lewis 2013; Parhi, Pattanayak and Patra 2015);

2) locating and retrieving the information (e.g., García-Sánchez et al. 2008;

García-Sánchez et al. 2009; Hadzic et al. 2009a; Hadzic et al. 2009b; Dolia 2010;

Wang et al. 2010; Monte-Alto et al. 2012, Teixeira and Huzita 2014; Iribarne et al.

2014; Li and Mackaness 2015);

3) reasoning the knowledge (e.g., Monte-Alto et al. 2012; Teixeira and

Huzita 2014; Hadzic et al. 2009a; Li and Mackaness 2015; Parhi, Pattanayak and

Patra 2015);

4) facilitating agents’ communication (e.g., Maamri and Sahnoun 2007;

Yang, Lo and Steele 2007; García-Sánchez et al. 2008; Hadzic et al. 2009a; Hadzic

et al. 2009b; Palacio et al. 2009; García-Sánchez et al. 2009; Dolia 2010; Nunes et al.

2011; Ying, Ray and Lewis 2013; Iribarne et al. 2014); and

5) facilitating semantic annotation of resources (e.g., Oriche, Chekry and

Khaldi 2013).

39

Although some research (e.g., Monte-Alto et al. 2012; Teixeira and Huzita

2014) mentions the utilising of software agents to manipulate the ontology

instantiations, no details or supporting information are provided to explain how the

agents work on the ontology manipulation task. Because software agents are able to

read and reason published knowledge with the guidance of the ontology (Hadzic et

al. 2009b), it would be a challenge to utilise the ontology-based multi-agent approach

for assimilating knowledge in order to manage the evolution of ontology

instantiations.

Second, over recent years, the deployment of ontology-based multi-agent

systems for effectively disseminating software development knowledge to support

software team members has become more prevalent. Nevertheless, many of the

works are specific in that they address only a particular task or a certain issue. Thus,

it would be a challenge to investigate the use of the ontology-based multi-agent

approach to provide useful support for software development team that can cover

several tasks spanning the software life cycle.

 Assistive Systems for Software Engineering

In the literature, several researchers have proposed assistive systems to help

team members and stakeholders to obtain useful project-related information during

the software development process. They can be categorised according to software

development activities as follows.

2.4.1 Requirement Gathering and Analysis

This activity is considered one of the most critical activities during the

software development life cycle because problems of requirement-related issues can

have a great impact and even cause the failure of the software project. It includes the

tasks of eliciting, analysing, and specifying the functional and behavioural properties

of a software intensive system (Castro-Herrera et al. 2009). The majority of the

reviewed assistive systems for this activity focus on the requirement engineering

40

process. Mobasher and Cleland-Huang (2011) highlight three areas where assistive

systems such as recommendation systems can support requirement engineering tasks.

These are:

• identifying potential stakeholders for a given project;

• generating possible user requirements or features; and

• providing useful information for decision making about requirement-related

issues.

Numerous proposals for assistive systems for the online requirement

elicitation process through the use of online tools such as wikis or forums are found

in (Castro-Herrera, Cleland-Huang and Mobasher 2009a; Castro-Herrera et al. 2009;

Castro-Herrera and Cleland-Huang 2009; Castro-Herrera, Cleland-Huang and

Mobasher 2009b). In (Castro-Herrera, Cleland-Huang and Mobasher 2009a), the

authors develop an assistive system for requirements elicitation in large-scale

software projects. The system uses data-mining techniques and a collaborative

recommendation approach to build a system that can support collaborations with

stakeholders who are involved in software requirement elicitation, by placing

stakeholders in appropriate discussion forums. In (Castro-Herrera et al. 2009), two

techniques to enhance stakeholder profiles are employed to improve the performance

of the assistive system for online requirements elicitations. In (Castro-Herrera and

Cleland-Huang 2009), the approach that utilises machine learning techniques for

identifying potential stakeholders to place to the relevant forums is discussed.

Furthermore, in (Castro-Herrera, Cleland-Huang and Mobasher 2009b), the authors

improve the quality of the system in order to support the dynamically evolving online

forums when there are new posts and new users by focusing on two variations of the

standard KNN algorithm: Binary Profiles, and Inclusion of Knowing Data.

Other research works that support requirement elicitation in large scale

software projects with a focus on stakeholder analysis are StakeNet, StakeRare, and

StakeSource. StakeNet (Lim, Quercia and Finkelstein 2010) uses social networks to

identify and analyse the stakeholders. It asks stakeholders to recommend other

stakeholders and then builds a social network from their recommendations. Finally, it

prioritises stakeholders using social network measures. StakeRare (Soo Ling and

41

Finkelstein 2012) stands for Stakeholder and Recommender-assisted method for

requirements elicitation. It extends StakeNet by providing additional features for

prioritizing the requirements using stakeholders’ ratings weighted by their project

influence. StakeSource (Lim et al. 2013) is a web-based tool that automates the

StakeNet approach for stakeholder analysis. It uses Web 2.0 technologies such as

crowdsourcing and social networking to identify and prioritise stakeholders.

INTELLIREQ (Felfernig et al. 2012) is a group decision environment

designed to support the decision-making process in requirement negotiation. It

suggests which requirements should be implemented within the scope of the small-

sized software projects. By applying group recommendation technologies,

INTELLIREQ can improve the usability and the quality of decision-making support

in requirements engineering environments.

Unlike the aforementioned systems that focus on requirement elicitation, in

(Dumitru et al. 2011), the authors develop an assistive system that models and

identifies product features during the domain analysis process. This system employs

association rule mining to identify the relationship between product features and then

generates a feature recommendation.

2.4.2 Software design

Many of the assistive applications developed for this activity focus mainly on

helping designers to find or make a decision about the design pattern that is the most

appropriate for a given problem. Guéhéneuc and Mustapha (2007) propose an

assistive system to support work on design pattern. The system is based on analysing

the textual descriptions of design patterns and then extracting important words.

These words are then compared with the key words chosen by the user. Because this

approach is based on the similarity of those key words, it might not exactly match

what a user desires. The other limitation is that users cannot query using natural

language. They can make choices only from those provided by the system.

Designer Pattern Recommender (DPR) (Palma et al. 2012) is an assistive

system that suggests appropriate reusable design patterns for a software designer. It

is based on a simple Goal-Question-Metric (GQM) model for the interactivity. It

42

employs a weighting scheme and ranking for selecting a pattern. Suresh et al. (2011)

develop a design pattern assistive system to assist developers to identify the right

design pattern for their given situation. Although they claim that the search facility

can be extended to search any category of software design patterns because of the

same underlying schema, the current system can support only the search for Gang of

Four (GoF) patterns.

The abovementioned systems are based on natural language techniques;

therefore, they are subject to ambiguous interpretation by different users. Liu et al.

(2014) propose an automated approach for service-oriented architecture (SOA)

design patterns advisement. A lightweight ontology is constructed and used to

provide a formal description and organisation structure of SOA design patterns. The

system obtains the user’s requirement in the form of question and answer in order to

avoid the complexities associated with the use of natural language. It then identifies

appropriate design patterns based on the user’s answer to the proposed question and

the sorting choice of property value in Constraint Program (CP).

2.4.3 Software Implementation and Maintenance

The majority of existing assistive systems have been developed to assist

software development teams with software implementation and maintenance. They

can help developers with a wide range of programming tasks such as suggesting

source code, identifying related artefacts, and resolving bug issues. Examples of

these are given below.

DebugAdvisor (Ashok et al. 2009) is proposed as a search tool for debugging

that provides all contextual information related to a bug issue. Developers can search

bug reports from multiple software repositories with a single query. The system

returns a bug description ranked list that matches the query and then uses it to

identify the related artefacts such as experts, source code and functions from the

generated relationship graph. McMillan, Poshyvanyk, and Grechanik (2010)

introduce an approach to identify source code examples by matching key words in

queries to the documentations of Application Programming Interface (API) calls

rather than source code by using text-based Information Retrieval. They consider that

43

the documentation may contain terminology that is closer to user queries than is the

source code. However, this approach utilises neither the developer’s contextual

information nor user profiles to supplement the representation.

Fishtail (Sawadsky and Murphy 2011) is a plugin tool for the Eclipse IDE

which is intended to automatically identify source code examples from the web that

are relevant to a developer’s current task. Task context is captured to obtain key

words when the developer interacts with the related artefacts. It then automatically

queries the web using those key words and identifies relevant pages for the user.

However, because Fishtail does not consider the history of visited web pages that a

developer has previously found to be useful, it cannot identify appropriate pages with

high accuracy. Cordeiro, Antunes, and Gomes (2012) propose a context-based

recommendation to support problem solving in software development. They develop

a client/server tool to integrate recommendation of question/answering web resources

in the developer’s work environment to provide automatic assistance when the

exception errors occur. The content on stack overflow which is a question/answering

website for software development issues has been used and processed for

information extraction, representation and indexing to generate the knowledge base.

In contrast to the above mentioned assistive systems, Dhruv (Ankolekar et al.

2006), Switch! (Maalej and Sahm 2010), and KnowBench (Panagiotou and Mentzas

2011a) utilise the Semantic Web technologies which are ontologies to support

knowledge representation of software project-related information. Dhruv (Ankolekar

et al. 2006) is intended to assist developers with problem-solving activities in the

open source software community. Ontologies are used to describe the structure of the

project and interaction within the community, and to provide a basis for determining

how artefacts are related. They can enable developers to identify related software

artefacts and relevant bug information during the bug resolution process. Switch!

(Maalej and Sahm 2010) is a context-aware artefact recommendation and switching

tool that can assist software developers to switch artefacts based on their task

semantics and interaction history. The TeamWeaver Ontologies are used to describe

the task semantic model, artefacts and their relationship with each other. Instead of

just analysing artefacts stored in the repository, Switch! uses interaction data to

generate more precise recommendations. KnowBench (Panagiotou and Mentzas

44

2011a) is an ontology-based knowledge management system that helps software

developers to manage error handling and to reuse software components. It is

integrated into the Eclipse IDE in order to capture the knowledge generated during

the software development process as soon as it is generated.

Some assistive systems are intended to help developers to locate relevant

experts, thereby saving time during the software development process. Examples of

these systems are as follows.

SmallBlue (Ching-Yung et al. 2008), also known as IBM Atlas, provides a

relevance-ranked list of experts from the social network connection by associating

their names with topics extracted from emails and instant massages. An Artificial

Intelligence algorithm is applied to infer users’expertise and their social network.

Rather than relying only on search algorithms or techniques to obtain the required

information, SmallBlue utilises the organisational and social contexts of developers

to make the suggestion more reliable. Ensemble (Xiang et al. 2008) is an assistive

application that helps software team members to communicate about their current

work by identifying relevant people to contact when there is an update on particular

artefacts. Codebook (Begel, Yit Phang and Zimmermann 2010) is a social network

web service that links developers and their work artefacts and maintains connections

with other software team members. Conscius (Moraes et al. 2010) is an assistive

system that locates a source code expert for a given software project by using

communication history (archived mail threads), source code, documentation and

software configuration management change history. A mining algorithm has been

used to relate the emails to the documentation or source code. Steinmacher, Wiese,

and Gerosa (2012) propose a system that helps newcomers to discover the expert

who has the skill matching the selected issue to mentor a particular technical task

regarding technical and social aspects. They use historical information from source

code repositories, mail lists threads and issue tracker comments to determine the

social score; the workspace context from user interaction with the IDE is used to

produce the developers’ technical score and to collect developers’ recent activities

for calculating their current interest score.

45

2.4.4 Software Testing

Quality assurance is one of the most important processes for achieving

software product quality. Assistive systems can be applied to assist team members to

manage various activities related to software testing. Examples of recent works are

given below.

Kpodjedo et al. (2008) propose a system that focuses on identifying critical

classes that deserve to get more attention because they are frequently subject to

change and have an impact on other classes. Miranda, Aranha, and Iyoda (2012)

develop a assistive system for allocating test cases to testers. The system is

integrated in the Eclipse Integrated Development Environment. It offers two main

benefits to team members involved in testing. First, it helps test managers to allocate

test cases faster. Second, it can provide useful information to a new test manager

regarding test cases and tester details as well as the history of previous allocations. Li

and Zhang (2012) introduce a platform for software test case reuse which is based on

the ontology representation and the knowledge management model. It is intended to

assist test engineers to retrieve and reuse existing test cases effectively.

A summary of reviewed assistive systems according to activities in the

software development life cycle is presented in Table 2-2.

Table 2-2: Summary of reviewed assistive systems according to software
development activities

Activities Applications/
Authors

Objective Semantic
knowledge

representation

Information
delivery

mode

Requirement
gathering and
analysis

(Castro-Herrera,
Cleland-Huang
and Mobasher
2009a

Facilitate the placement
of stakeholders into
related discussion forums

No Push

(Castro-Herrera
et al. 2009)

Enhance the placement
of stakeholders into
related discussion forums
for collaborative work to
generate requirements

No Push

(Castro-Herrera
and Cleland-
Huang 2009)

Identify potential
stakeholders for a given
topic

No Not
specifically
mentioned

46

Activities Applications/
Authors

Objective Semantic
knowledge

representation

Information
delivery

mode

(Castro-Herrera,
Cleland-Huang
and Mobasher
2009b)

Enhance the forum
recommender to handle
the challenges of
dynamically nature of
online forums which
constantly evolve
according to new posts
and new users

No Not
specifically
mentioned

StakeNet
(Lim, Quercia
and Finkelstein
2010)

Identify and prioritise
stakeholders and their
roles

No Pull

StakeRare
(Soo Ling and
Finkelstein 2012)

Identify and prioritise
requirements for
requirement elicitation

No Pull

(Dumitru et al.
2011)

Identify product features
during the domain
analysis process

No Push

INTELLIREQ
(Felfernig et al.
2012)

Recommend
requirements that should
be implemented
according to software
project scope

No Pull

StakeSource
(Lim et al. 2013)

Identify and prioritise
stakeholders and their
roles

No Not
specifically
mentioned

Software
Design

DPR
(Guéhéneuc and
Mustapha 2007)

Help designers to find or
decide which pattern to
use for a particular
design problem

No Pull

(Suresh et al.
2011)

Find a suitable pattern to
users

No Pull

(Liu et al. 2014) Assist users to select
appropriate SOA design
patterns

Yes
Lightweight

Ontology

Pull

Software
Implementati
on and

Dhruv
(Ankolekar et al.
2006)

Support open source
software communities
regarding bug resolution
with the Semantic Web

Yes
Heavyweight

Ontology

Push

47

Activities Applications/
Authors

Objective Semantic
knowledge

representation

Information
delivery

mode

Maintenance Ensemble
(Xiang et al.
2008)

Identify relevant people
to contact when artefacts
get updated

No Push

SmallBlue
(Ching-Yung et
al. 2008)

Discover expert from the
social network

No Pull

DebugAdvisor
(Ashok et al.
2009)

Provide a search tool for
debugging

No Pull

Codebook
(Begel, Yit
Phang and
Zimmermann
2010)

Help developers to
discover and maintain
connections to others

No Pull

Conscius
(Moraes et al.
2010)

Locate expert on a given
software project

No Pull

McMillan,
Poshyvanyk, and
Grechanik
(2010)

Suggest source code by
making use of API call
documentation

No Pull

Switch!
(Maalej and
Sahm 2010)

Facilitate software
developers in switching
artefacts based on their
task semantics and
interaction history.

Yes
Lightweight

Ontology

Pull

KnowBench
(Panagiotou and
Mentzas 2011a)

Assist developers to
manage error handling
and to reuse software
component

Yes
Lightweight

Ontology

 Pull

Fishtail
(Sawadsky and
Murphy 2011)

Support source code
writing

No Push

Cordeiro,
Antunes, and
Gomes (2012)

Help developers access
to question/answering
web resources when code
fails with an exception

No Pull

(Steinmacher,
Wiese and
Gerosa 2012)

Support newcomers to
find relevant experts

No Pull

Software
Testing

(Kpodjedo et al.
2008)

Identify critical classes
that need special
attention

No Pull

48

Activities Applications/
Authors

Objective Semantic
knowledge

representation

Information
delivery

mode

(Miranda,
Aranha and
Iyoda 2012)

Help to allocate test
cases to testers

No Pull

(Li and Zhang
2012)

Assist test engineer to
retrieve and reuse
existing test cases

Yes
Heavyweight

Ontology

Pull

2.4.5 Evaluation of Assistive Platforms in Software Engineering

A large number of assistive systems have been developed to assist team

members with software engineering knowledge when they are working on various

software development activities. However, the assistive systems reviewed above

have three limitations: they apply to only a specific software development activity;

they mostly use typical knowledge representation and syntactic matching techniques;

and generally, the user has to initiate a request for a specific piece of information.

First, all the systems described above have been developed to support

software teams by providing useful software project information when they are

working on a software development project. However, these systems are task-

specific and most of them focus on software implementation and maintenance

activities. Although project team members can benefit from individual systems

which address separate software development activities, the need for integrated

tools/services to support software development activities across the software life

cycle is also important (Sengupta, Chandra and Sinha 2006).

Second, most of the reviewed assistive systems use typical knowledge

representation and syntactic matching techniques which could produce ambiguity in

keyword-based queries. One word may have several meanings. For example, the

word ‘Java’ refers to either a programming language or an island. Hence, assistive

systems could use the Semantic Web and ontologies to tackle this problem.

Ontologies not only facilitate knowledge access and sharing, but also enable

semantic query and semantic matching to improve obtained results. Some of the

aforementioned systems (e.g., Liu et al. 2014; Maalej and Sahm 2010; Panagiotou

49

and Mentzas 2011a) have made use of ontologies for semantic knowledge

representation; however, these are lightweight rather than heavyweight ontologies.

A lightweight ontology includes only a hierarchy of concepts and a hierarchy of

relations. On the other hand, a heavyweight ontology is enriched with axioms that

can be used to infer the semantic interpretation of concepts and relations (Fürst and

Trichet 2006). Thus, if the assistive systems make use of a heavyweight ontology

such as the Software Engineering Ontology, which is a comprehensive ontology

covering all the aspect of software engineering, they would be able to provide greater

support for information access by searching only for relevant information, thereby

improving the query retrieval result.

Finally, there are two approaches for delivering information to users: push

and pull. An information push is an approach whereby the systems deliver

knowledge or useful information without the user having to explicitly request it. This

is opposite to an information pull approach that requires users to query the

knowledge or initiate their requests so that the systems can provide the knowledge.

Most of the reviewed assistive systems deliver the knowledge based on the

information pull approach. This approach has the advantage that it does not cause an

information overload problem to users because they can request the knowledge as

needed. Nonetheless, they may not be aware of the existence of the knowledge and

therefore may miss information that could be useful for their work. Therefore,

effective assistive systems should be able to proactively deliver relevant information

to their users based on an appropriate context by considering what to deliver and

when to push it to users.

 Critical Evaluation of Existing Approaches: an
Integrated View

In this section, the existing systems and approaches carried out in the

literature are discussed evaluated, and the main issues that need to be addressed for

devising a framework that enables an active Software Engineering Ontology, are

identified. This section provides an overview of all the issues.

50

The main shortcomings of the existing systems and approaches pertain to

three areas.

• Lack of effective approach to automate knowledge capture of software

project information

• Lack of effective management of knowledge captured in the ontology

• Lack of active platforms available for multi-site software development

environments

2.5.1 Lack of effective approach to automate knowledge capture of software
project information

As discussed in section 2.2, in the literature regarding software engineering

domain, several works have been conducted on knowledge assimilation by capturing

software project information via semantic annotation. Some of them are still based

on the manual semantic annotation approaches (e.g., Qiang, Ming and Zhiguang

2008; Zygkostiotis, Dranidis and Kourtesis 2009). The manual approaches have

major shortcomings: they are tedious, time-consuming, prone-to-error, and require a

great deal of human effort. Several works have attempted to overcome these issues

by taking a semi-automatically semantic annotation approach (e.g., Arantes and

Falbo 2010; Panagiotou and Mentzas 2011b). However, they still require additional

human intervention. Recently, the focus has shifted toward the automated approaches

to capture the semantics of software project information which are more efficient and

require either minimal or no effort from software team members. However, most of

the reviewed approaches (e.g., Graubmann and Roshchin 2006; Damljanovic,

Amardeilh and Bontcheva 2009; Taglialatela and Taglino 2012) are based on the

analysis of text. Therefore, they are appropriate for software artefacts that contain

text descriptions such as software documents, software requirement specification.

However, they are not suitable for capturing knowledge of certain types of artefacts

such as source code.

In addition, the outputs from the capturing process of those approaches are

mostly in RDF (Resource Description Framework) and RDFS (Resource Description

51

Framework Schema). RDF is particularly aimed at describing the semantics of

information in a machine-understandable and machine-processable form. RDFS

extends RDF with schema vocabulary such as Class, subClassOf, Property, domain,

range. Fewer studies have been conducted to populate the captured knowledge into

the ontology repository in OWL (Web Ontology Language) which was developed as

an extension of RDF and RDFS. Even though RDF and RDFS is useful for

describing resources with simple semantics containing objects and their relations, it

has certain limitations. For example, it does not provide transitive, inverse or

symmetrical properties, which OWL can do. Because OWL is very expressive and

the relation between classes can be formally defined based on description logics,

capturing knowledge and storing it in OWL is more advantageous. It allows

properties of software resources to be described and inferred from a knowledge base.

As a result, there needs to be a specific area of research that focuses on

knowledge assimilation by automatically capturing semantics of software project

information and storing the captured knowledge in the ontology repository for

subsequent use. This requires a systematic approach to assign software engineering

domain concepts to the software project information, and to populate the captured

knowledge in the ontology knowledge base. In Chapter 3, the need for such a

systematic approach is explained. In Chapter 4, the proposed solution is presented

and discussed in detail.

2.5.2 Lack of Effective Management of Knowledge Captured in the Ontology

Changes are inevitable and can occur in any stage of a software project.

There are different types of changes including changes in users’ requirements,

changes in the system’s environment, or ongoing maintenance to correct failures.

Once the software development project information has been captured in the

Software Engineering Ontology, it continuously evolves throughout its lifetime. Any

change to software project information can lead to the inconsistency of knowledge

captured in the Software Engineering Ontology. If such a change is not managed

appropriately, it could prevent the use of knowledge. During a multi-site distributed

software development project, remote team members need current and accurate

information about the people and the artefacts that might be affected by the change

52

made by team members at different sites. Therefore, real-time awareness is important

and has become a critical factor that can help software teams to properly manage the

change and its impact on software evolution.

In the literature, several researchers have proposed the use of agent-based

technology together with ontologies for the purpose of knowledge assimilation and

knowledge dissemination. Most of the reviewed ontology-based multi-agent systems

make use of ontologies to support software agents in the following tasks:

1) representing application and domain knowledge

2) locating and retrieving the information

3) reasoning the knowledge

4) facilitating agent’s communication and interoperability

5) facilitating semantic annotation

Even though some works (Monte-Alto et al. 2012; Teixeira and Huzita 2014)

have claimed to manage the evolution of knowledge captured in the ontology by

software agents, to the best of our knowledge, none of them explicitly addresses how

the agents can manipulate this knowledge. The explanation is only at an abstract

level. As mentioned earlier, knowledge in a software development project constantly

evolves; therefore, there is the need for an approach that can effectively manage the

evolution of knowledge captured in the Software Engineering Ontology. The lack of

an effective approach to manage captured knowledge is discussed in Chapter 3. The

solution is proposed in Chapter 4.

2.5.3 Lack of Active Platforms Available for Multi-site Software
Development Environments

Software development is considered as a knowledge-intensive, complex and

collaborative activity. The quality of a software product largely depends on the

quality of the software process which is the result of the activities conducted

throughout the software development process. An effective software process is

associated with people, tools, and procedures working as an integrated whole (Paulk

2002). Therefore, much research attention has been given to the development of

software applications or tools that can assist project team members to perform their

tasks effectively. Even though project teams can benefit from tools specifically

53

designed for individual software development activities, the assistive integrated tools

that can be used for related activities can be of more benefit. Ossher, Harrison, and

Tarr (2000) point out that the identification of the requirement for integrated support

for software development activities throughout the various phases of software

development life cycle represents the genesis of software engineering environments.

They define the software engineering environments (SEEs) as “the integrated

collections of software applications that facilitate software engineering activities

across the software life cycle”.

As discussed in section 2.4.5, in the existing literature, all of the reviewed

assistive systems are intended to provide knowledge support to development teams

only for particular software development activities or a specific phase in the software

development life cycle. In particular, they focus on software implementation and

maintenance tasks. However, software development activities and their artefacts are

interconnected. The work or a change in one activity may have an effect on the work

in other activities. Therefore, software development team members need to be

supported in their various activities. This is particularly so in a multi-site software

development environment where team members are geographically dispersed, and

inadequate communication and coordination are the main factors that can hinder the

success of a software project. It is important to have assistive platforms for multi-site

software development environments that can assist remote team members to work

collaboratively throughout the various phases in a software development life cycle

(Sengupta, Chandra and Sinha 2006).

Furthermore, many of the reviewed systems do not operate in a proactive

manner. This means that they mostly rely on certain efforts of team members for

knowledge acquisition. Frequently, team members may not be aware of the existence

of the useful knowledge due to the large amount of information or because they are

new members who have just joined the project. The lack of active platforms that can

provide effective knowledge management and knowledge sharing in order to deliver

the right information to the right people at the right time is an issue that still needs to

be addressed in this research.

The lack of active platforms for multi-site software development

environments is discussed in Chapter 3, and the solution is presented in Chapter 4.

54

 Conclusion

This chapter has reviewed the current state-of-the-art in ontology-based

semantic annotation, ontology-based multi-agent systems, and assistive systems for

software engineering. The relevant literature is discussed to provide the necessary

background and context to address the identified gaps related to making the Software

Engineering Ontology active. The reviewed literature evidently indicates that

substantial progress has been made to support project team members when they are

working on software development project. However, the existing systems and

approaches still have shortcomings in terms of (1) the lack of an effective approach

to automate knowledge capture of software project information; (2) the lack of

effective management of knowledge captured in the ontology; and (3) the lack of

active platforms available for multi-site software development environments.

Based on this review, in the next chapter, the key concepts, problem

definition and research issues pertaining to the framework for making the Software

Engineering Ontology active, are identified.

 References

Amardeilh, Florence. 2009. "Semantic annotation and ontology population." In

Semantic Web engineering in the Knowledge Society, 135-160. IGI Global.

Ankolekar, A., K. Sycara, J. Herbsleb, R. Kraut, and C. Welty. 2006. "Supporting

online problem-solving communities with the Semantic Web." In Proceedings

of the 15th international conference on World Wide Web, Edinburgh,

Scotland, 575-584. ACM. doi: 10.1145/1135777.1135862.

Arantes, L. d. O., and R. d. A. Falbo. 2010. "An infrastructure for managing semantic

documents" 2010 14th IEEE International Enterprise Distributed Object

Computing Conference Workshops, Vitoria, Brazil, doi:

10.1109/EDOCW.2010.17.

55

Ashok, B., Joseph Joy, Hongkang Liang, Sriram K. Rajamani, Gopal Srinivasa, and

Vipindeep Vangala. 2009. "DebugAdvisor: a recommender system for

debugging." In Proceedings of the the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, Amsterdam, The Netherlands, 373-382.

1595766: ACM. doi: 10.1145/1595696.1595766.

Begel, A., Khoo Yit Phang, and T. Zimmermann. 2010. "Codebook: discovering and

exploiting relationships in software repositories" Software Engineering, 2010

ACM/IEEE 32nd International Conference on, doi:

10.1145/1806799.1806821.

Castro-Herrera, C., and J. Cleland-Huang. 2009. "A machine learning approach for

identifying expert stakeholders" Managing Requirements Knowledge (MARK),

2009 Second International Workshop on, doi: 10.1109/mark.2009.1.

Castro-Herrera, C., J. Cleland-Huang, and B. Mobasher. 2009a. "Enhancing

stakeholder profiles to improve recommendations in online requirements

elicitation" Requirements Engineering Conference, 2009. RE '09. 17th IEEE

International, doi: 10.1109/re.2009.20.

Castro-Herrera, Carlos, Jane Cleland-Huang, and Bamshad Mobasher. 2009b. "A

recommender system for dynamically evolving online forums." In

Proceedings of the third ACM Conference on Recommender systems, New

York, New York, USA, 213-216. 1639751: ACM. doi:

10.1145/1639714.1639751.

Castro-Herrera, Carlos, Chuan Duan, Jane Cleland-Huang, and Bamshad Mobasher.

2009. "A recommender system for requirements elicitation in large-scale

software projects." In Proceedings of the 2009 ACM Symposium on Applied

Computing, Honolulu, Hawaii, 1419-1426. 1529601: ACM. doi:

10.1145/1529282.1529601.

Chaves, A.P., I. Steinmacher, L. Leal, G. Camila, E.H.M. Huzita, and A.B. Biasão.

2011. "OntoDiSENv1: An ontology to support global software development."

CLEI Electronic Journal 14 (2): 2-2.

56

Ching-Yung, Lin, K. Ehrlich, V. Griffiths-Fisher, and C. Desforges. 2008.

"SmallBlue: people mining for expertise search." MultiMedia, IEEE 15 (1):

78-84. doi: 10.1109/mmul.2008.17.

Cordeiro, J., B. Antunes, and P. Gomes. 2012. "Context-based recommendation to

support problem solving in software development" Recommendation Systems

for Software Engineering (RSSE), 2012 Third International Workshop on,

doi: 10.1109/rsse.2012.6233418.

Damljanovic, Danica, Florence Amardeilh, and Kalina Bontcheva. 2009. "CA

manager framework: creating customised workflows for ontology population

and semantic annotation." In Proceedings of the Fifth International

Conference on Knowledge Capture, Redondo Beach, California, USA, 177-

178. 1597770: ACM. doi: 10.1145/1597735.1597770.

Dolia, Prashant M. 2010. "Integrating ontologies into multi-agent systems

engineering (MaSE) for university teaching environment." Journal of

Emerging Technologies in Web Intelligence 2 (1): 42-47.

Dumitru, Horatiu, Marek Gibiec, Negar Hariri, Jane Cleland-Huang, Bamshad

Mobasher, Carlos Castro-Herrera, and Mehdi Mirakhorli. 2011. "On-demand

feature recommendations derived from mining public product descriptions." In

Proceedings of the 33rd International Conference on Software Engineering,

Waikiki, Honolulu, HI, USA, 181-190. 1985819: ACM. doi:

10.1145/1985793.1985819.

Felfernig, Alexander, Christoph Zehentner, Gerald Ninaus, Harald Grabner, Walid

Maalej, Dennis Pagano, Leopold Weninger, and Florian Reinfrank. 2012.

"Group decision support for requirements negotiation." In Advances in User

Modeling, eds Liliana Ardissono and Tsvi Kuflik, 105-116. Springer Berlin

Heidelberg.

Forbes, David E. 2013. "A Framework for Assistive Communications Technology in

Cross-Cultural Healthcare." School of Information Systems, Curtin Business

School, Curtin University.

57

Fürst, Frédéric, and Francky Trichet. 2006. "Heavyweight ontology engineering." In

On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops:

OTM Confederated International Workshops and Posters, AWeSOMe, CAMS,

COMINF, IS, KSinBIT, MIOS-CIAO, MONET, OnToContent, ORM, PerSys,

OTM Academy Doctoral Consortium, RDDS, SWWS, and SeBGIS 2006,

Montpellier, France, October 29 - November 3, 2006. Proceedings, Part I, eds

Robert Meersman, Zahir Tari and Pilar Herrero, 38-39. Berlin, Heidelberg:

Springer Berlin Heidelberg.

García-Sánchez, Francisco, Jesualdo Tomás Fernández-Breis, Rafael Valencia-

García, Juan Miguel Gómez, and Rodrigo Martínez-Béjar. 2008. "Combining

semantic web technologies with multi-agent systems for integrated access to

biological resources." Journal of Biomedical Informatics 41 (5): 848-859. doi:

http://dx.doi.org/10.1016/j.jbi.2008.05.007.

García-Sánchez, Francisco, Rafael Valencia-García, Rodrigo Martínez-Béjar, and

Jesualdo T. Fernández-Breis. 2009. "An ontology, intelligent agent-based

framework for the provision of Semantic Web services." Expert Systems with

Applications 36 (2, Part 2): 3167-3187. doi:

http://dx.doi.org/10.1016/j.eswa.2008.01.037.

Graubmann, P., and M. Roshchin. 2006. "Semantic annotation of software

components." In Software Engineering and Advanced Applications, 2006.

SEAA '06. 32nd EUROMICRO Conference on, Aug. 29 2006-Sept. 1 2006.

46-53. doi: 10.1109/euromicro.2006.54.

Guéhéneuc, Yann-Gaël, and Rabih Mustapha. 2007. "A simple recommender system

for design patterns." Proceedings of the 1st EuroPLoP Focus Group on

Pattern Repositories.

Hadzic, Maja, Pornpit Wongthongtham, Tharam Dillon, and Elizabeth Chang. 2009a.

"Case Study I: Ontology-Based Multi-Agent System for Human Disease

Studies." In Ontology-Based Multi-Agent Systems, 179-216. Springer Berlin

Heidelberg.

http://dx.doi.org/10.1016/j.jbi.2008.05.007
http://dx.doi.org/10.1016/j.eswa.2008.01.037

58

———. 2009b. "Case study II: Ontology-based multi-agent system for software

engineering studies." In Ontology-Based Multi-Agent Systems, 217-270.

Springer.

Iribarne, Luis, Nicolás Padilla, Rosa Ayala, José A Asensio, and Javier Criado. 2014.

"OntoTrader: An ontological web trading agent approach for environmental

information retrieval." The Scientific World Journal 2014: 25. doi:

10.1155/2014/560296.

Jain, Vishal, Sanjay Kr. Malik, and Pankaj Lathar. 2010. "Ontology: Development,

deployment and merging aspects in Semantic Web: An overview." National

Journal by IMS Noida: 23-27.

Kiyavitskaya, Nadzeya. 2006. "Tool Support for Semantic Annotation." International

Doctorate School in Information and Communication Technologies DIT -

University of Trento

Kpodjedo, Segla, Filippo Ricca, Philippe Galinier, and Giuliano Antoniol. 2008.

"Not all classes are created equal: toward a recommendation system for

focusing testing." In Proceedings of the 2008 International Workshop on

Recommendation Systems for Software Engineering, Atlanta, Georgia, 6-10.

1454250: ACM. doi: 10.1145/1454247.1454250.

Lee, Chang-Shing, and Mei-Hui Wang. 2009. "Ontology-based computational

intelligent multi-agent and its application to CMMI assessment." Applied

Intelligence 30 (3): 203-219. doi: 10.1007/s10489-007-0071-1.

Li, Sen, and William A Mackaness. 2015. "A multi-agent-based, semantic-driven

system for decision support in epidemic management." Health Informatics

Journal 21 (3): 195-208. doi: 10.1177/1460458213517704.

Li, X., and W. Zhang. 2012. "Ontology-based testing platform for reusing" 2012

Sixth International Conference on Internet Computing for Science and

Engineering, doi: 10.1109/ICICSE.2012.18.

Lim, S. L., D. Damian, F. Ishikawa, and A. Finkelstein. 2013. "Using web 2.0 for

stakeholder analysis: StakeSource and its application in ten industrial

59

projects." In Managing Requirements Knowledge, eds Walid Maalej and Anil

Kumar Thurimella, 221-242. Springer Berlin Heidelberg.

Lim, Soo Ling, Daniele Quercia, and Anthony Finkelstein. 2010. "StakeNet: using

social networks to analyse the stakeholders of large-scale software projects."

In Proceedings of the 32nd ACM/IEEE International Conference on Software

Engineering - Volume 1, Cape Town, South Africa, 295-304. 1806844: ACM.

doi: 10.1145/1806799.1806844.

Liu, Lei, Pinxin Miao, Luka Pavlic, Marjan Hericko, and Rui Zhang. 2014. "An

ontology-based advisement approach for SOA design patterns." In The 8th

International Conference on Knowledge Management in Organizations, eds

Lorna Uden, Leon S. L. Wang, Juan Manuel Corchado Rodríguez, Hsin-

Chang Yang and I. Hsien Ting, 73-84. Springer Netherlands.

Maalej, Walid, and Alexander Sahm. 2010. "Assisting engineers in switching

artifacts by using task semantic and interaction history." In Proceedings of the

2nd International Workshop on Recommendation Systems for Software

Engineering, Cape Town, South Africa, 59-63. 1808935: ACM. doi:

10.1145/1808920.1808935.

Maamri, Ramdane, and Zaidi Sahnoun. 2007. "MAEST: multi-agent environment for

software testing." Journal of Computer Science 3 (4): 249-258.

McMillan, Collin, Denys Poshyvanyk, and Mark Grechanik. 2010. "Recommending

source code examples via API call usages and documentation." In Proceedings

of the 2nd International Workshop on Recommendation Systems for Software

Engineering, Cape Town, South Africa, 21-25. 1808925: ACM. doi:

10.1145/1808920.1808925.

Miranda, Breno Alexandro Ferreira de, Eduardo Henrique da Silva Aranha, and

Juliano Manabu Iyoda. 2012. "Recommender systems for manual testing:

deciding how to assign tests in a test team." In Proceedings of the ACM-IEEE

International Symposium on Empirical Software Engineering and

Measurement, Lund, Sweden, 201-210. 2372289: ACM. doi:

10.1145/2372251.2372289.

60

Mobasher, Bamshad, and Jane Cleland-Huang. 2011. "Recommender systems in

requirements engineering." AI Magazine 32 (3): 81-89.

Monte-Alto, Helio, Alberto Biasão, Lucas Teixeira, and Elisa Huzita. 2012. "Multi-

agent applications in a context-aware global software development

environment distributed computing and artificial intelligence." 265-272.

Springer Berlin / Heidelberg.

Moraes, Alan, Eduardo Silva, Cleyton da Trindade, Yuri Barbosa, and Silvio Meira.

2010. "Recommending experts using communication history." In Proceedings

of the 2nd International Workshop on Recommendation Systems for Software

Engineering, Cape Town, South Africa, 41-45. 1808929: ACM. doi:

10.1145/1808920.1808929.

Nunes, Ingrid, CarlosJ P. Lucena, Uirá Kulesza, and Camila Nunes. 2011. "On the

development of multi-agent systems product lines: A domain engineering

process." In Agent-Oriented Software Engineering X, 125-139. Springer

Berlin Heidelberg.

Oriche, Aziz, Abderrahman Chekry, and Mohamed Khaldi. 2013. "Intelligent agents

for the semantic annotation of educational resources." International Journal of

Soft Computing and Engineering (IJSCE) 3 (5): 2231-2307.

Ossher, Harold, William Harrison, and Peri Tarr. 2000. "Software engineering tools

and environments: A roadmap." In Proceedings of the Conference on The

Future of Software Engineering, Limerick, Ireland, 261-277. 336569: ACM.

doi: 10.1145/336512.336569.

Palacio, R. R., A. L. Moran, V. M. Gonzalez, and A. Vizcaino. 2009. "Providing

Support for Starting Collaboration in Distributed Software Development: A

Multi-agent Approach" Computer Science and Information Engineering, 2009

WRI World Congress on, doi: 10.1109/CSIE.2009.723.

Palma, F., H. Farzin, Y. Gueheneuc, and N. Moha. 2012. "Recommendation system

for design patterns in software development: An DPR overview"

Recommendation Systems for Software Engineering (RSSE), 2012 Third

International Workshop on, doi: 10.1109/rsse.2012.6233399.

61

Panagiotou, Dimitris , and Gregoris Mentzas. 2011a. "Leveraging software reuse

with knowledge management in software development." International Journal

of Software Engineering and Knowledge Engineering 21 (05): 693-723. doi:

doi:10.1142/S0218194011005414.

Panagiotou, Dimitris, and Gregoris Mentzas. 2011b. "Leveraging software reuse with

knowledge management in software development." International Journal of

Software Engineering and Knowledge Engineering 21 (05): 693-723.

Parhi, Manoranjan, Binod Kumar Pattanayak, and Manas Ranjan Patra. 2015. "A

multi-agent-based framework for cloud service description and discovery

using ontology." In Intelligent Computing, Communication and Devices:

Proceedings of ICCD 2014, Volume 1, eds C. Lakhmi Jain, Srikanta Patnaik

and Nikhil Ichalkaranje, 337-348. New Delhi: Springer India.

Paulk, Mark. 2002. "Capability maturity model for software." In Encyclopedia of

Software Engineering. John Wiley & Sons, Inc.

Petasis, Georgios, Vangelis Karkaletsis, Georgios Paliouras, Anastasia Krithara, and

Elias Zavitsanos. 2011. "Ontology population and enrichment: State of the

art." In Knowledge-Driven Multimedia Information Extraction and Ontology

Evolution: Bridging the Semantic Gap, eds Georgios Paliouras, Constantine D.

Spyropoulos and George Tsatsaronis, 134-166. Berlin, Heidelberg: Springer

Berlin Heidelberg.

Qiang, Lu, Chen Ming, and Wang Zhiguang. 2008. "A semantic annotation based

software knowledges sharing space" Network and Parallel Computing, 2008.

NPC 2008. IFIP International Conference on, doi: 10.1109/npc.2008.55.

Sawadsky, Nicholas, and Gail C. Murphy. 2011. "Fishtail: from task context to

source code examples." In Proceedings of the 1st Workshop on Developing

Tools as Plug-ins, Waikiki, Honolulu, HI, USA, 48-51. 1984722: ACM. doi:

10.1145/1984708.1984722.

Schwotzer, Thomas, and FHTW Berlin. 2008. "Building context aware P2P systems

with the shark framework." In Fourth International Conference on Topic

Maps Research and Applications, Leipzig, Germany, 157-168.

62

Sengupta, Bikram, Satish Chandra, and Vibha Sinha. 2006. "A research agenda for

distributed software development." In Proceedings of the 28th International

Conference on Software Engineering, Shanghai, China, 731-740. 1134402:

ACM. doi: 10.1145/1134285.1134402.

Soo Ling, Lim, and A. Finkelstein. 2012. "StakeRare: Using social networks and

collaborative filtering for large-scale requirements elicitation." Software

Engineering, IEEE Transactions on 38 (3): 707-735. doi: 10.1109/tse.2011.36.

Steinmacher, I., I. S. Wiese, and M. A. Gerosa. 2012. "Recommending mentors to

software project newcomers" Recommendation Systems for Software

Engineering (RSSE), 2012 Third International Workshop on, doi:

10.1109/rsse.2012.6233413.

Suresh, SS, MM Naidu, S Asha Kiran, and Pune Tathawade. 2011. "Design pattern

recommendation system: a methodology, data model and algorithms." In

International Conference on Computational Techniques and Artificial

Intelligence (ICCTAI'2011), Pattaya, Thailand 7-8 October 2011.

Taglialatela, Andrea, and Francesco Taglino. 2012. "A semantics-based approach to

software reuse" The Fifth Interop-Vlab.It Workshop on Complexity of Systems,

Complexity of Interoperability in conjunction with itAIS 2012., Rome, Italy,

Teixeira, Lucas O., and Elisa H. M. Huzita. 2014. "DiSEN-AlocaHR: A multi-agent

mechanism for human resources allocation in a distributed software

development environment." In Distributed Computing and Artificial

Intelligence, 11th International Conference, eds Sigeru Omatu, Hugues

Bersini, M. Juan Corchado, Sara Rodríguez, Paweł Pawlewski and Edgardo

Bucciarelli, 227-234. Cham: Springer International Publishing.

Tichy, Walter F., Sven J. Köerner, and Mathias Landhäußer. 2010. "Creating

software models with semantic annotation." In Proceedings of the Third

Workshop on Exploiting Semantic Annotations in Information Retrieval,

Toronto, ON, Canada, 17-18. 1871973: ACM. doi:

10.1145/1871962.1871973.

63

Wang, Mei-Hui, Chang-Shing Lee, Kuang-Liang Hsieh, Chin-Yuan Hsu, Giovanni

Acampora, and Chong-Ching Chang. 2010. "Ontology-based multi-agents for

intelligent healthcare applications." Journal of Ambient Intelligence and

Humanized Computing 1 (2): 111-131. doi: 10.1007/s12652-010-0011-5.

Xiang, P. F., A. T. T. Ying, P. Cheng, Y. B. Dang, K. Ehrlich, M. E. Helander, P. M.

Matchen et al. 2008. "Ensemble: a recommendation tool for promoting

communication in software teams." In Proceedings of the 2008 International

Workshop on Recommendation Systems for Software Engineering, Atlanta,

Georgia, 1-1. 1454259: ACM. doi: 10.1145/1454247.1454259.

Yang, K, AC Lo, and RJ Steele. 2007. "An Ontology-based Multi-Agent System for

the Accommodation Industry." In The Thirteenth Australasian World Wide

Web Conference, AusWeb07, New South Wales, Australia, 30 June - 4 July

2007. 193-205.

http://ausweb.scu.edu.au/aw07/papers/refereed/yang/paper.html.

Yang, Kun. 2006. "A Conceptual Framework for Semantic Web-based E-

Commerce." Département d'informatique et de génie logiciel, Université

Laval.

Ying, Wier, Pradeep Ray, and Lundy Lewis. 2013. "A methodology for creating

ontology-based multi-agent systems with an experiment in financial

application development." In System Sciences (HICSS), 2013 46th Hawaii

International Conference on, Wailea, Maui, Hawaii, USA, January 7-10, 2013.

3397-3406. IEEE.

Zygkostiotis, Zinon, Dimitris Dranidis, and Dimitrios Kourtesis. 2009. "Semantic

annotation, publication, and discovery of Java software components: an

integrated approach" The 2nd Workshop on Artificial Intelligence Techniques

in Software Engineering (AISEW 2009), Thessaloniki, Greece: CEUR-WS.

org.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

http://ausweb.scu.edu.au/aw07/papers/refereed/yang/paper.html

64

 Problem Definition

 Introduction

In Chapter 1, the passive structure of the Software Engineering Ontology has

been briefly discussed, and this has provided the motivation for this research. It then

highlights the need for a systematic approach to make the Software Engineering

Ontology active and explains the concerns associated with the development of a

framework for active Software Engineering Ontology. Chapter 2 surveys the

literature to provide the necessary background and reviews the existing works to

identify gaps in researchers’ past attempts to make the Software Engineering

Ontology active. As discussed in Chapter 2, even though substantial studies have

proposed various approaches to the assimilation and dissemination of knowledge

captured in ontologies, they still have shortcomings. First, the approaches to capture

software project information are still ineffective in terms of automating the capturing

process and instantiating the ontology knowledge base. Second, once the software

project information is captured in the ontology, the management of software

engineering knowledge is not yet effective. Several approaches in the software

engineering domain have been proposed to integrate the agent-based technology with

ontologies, also known as the ontology-based multi-agent approach, to facilitate

knowledge dissemination. However, these works cover only a specific software

development activity or address a particular software development issue.

Additionally, most of these works focus only on utilising software agents to access

and disseminate knowledge captured in ontologies, but not on using agents to

manipulate the knowledge. A software agent has the ability to understand the

knowledge defined in ontologies and the knowledge base because it is in machine-

readable and processable form. Therefore, it would be a challenge to use the agent to

manage the evolution of this knowledge. Furthermore, software development is a

knowledge-intensive activity that requires software teams to obtain useful knowledge

to facilitate their daily work and for timely decision making. This is particularly

critical in multi-site software development settings where project teams are dispersed

across multiple sites. Therefore, there is a need for assistive platforms that can

65

actively help remote team members to manage and share software engineering

knowledge in order to enable effective collaborative work during software

development activities throughout the life cycle.

In order to address these shortcomings, in this chapter, the problems arising

from the passive structure of the Software Engineering Ontology, that are the focus

of this thesis, are discussed. These problems will lead to the research issues that will

be tackled in order to solve them. The chapter is then concluded with the research

methodology and research framework for the development of a systematic solution.

 Preliminary Concepts for Active Software
Engineering Ontology

In this section, the definitions of the key concepts used in this thesis are given

as follows.

Active Software Engineering Ontology

Definition: Active Software Engineering Ontology refers to the Software

Engineering Ontology which is equipped with the active support that can be used to

proactively facilitate and assist its users with software engineering knowledge when

they are working on a multi-site software development project.

Software Project Information

Definition: Software project information refers to project data (e.g., software

documentation, requirements, UML diagrams, source code, bug reports, test cases),

project agreement, and project understandings that are produced within a software

development project.

Software Engineering Domain Knowledge

Definition: Software engineering domain knowledge or domain knowledge

for short is defined as a set of software engineering concepts.

Software Engineering Instance Knowledge

Definition: Software engineering instance knowledge or instance knowledge

66

for short is defined as software project information that is captured according to the

software engineering domain knowledge. The instance knowledge is also known as

instantiation.

Semantic Annotation

Definition: Semantic annotation is a process used to capture software

engineering knowledge from the software project information based on the concepts

described in the Software Engineering Ontology.

Ontology Population

Definition: Ontology population is a process whereby new instances resulting

from the semantic annotation process are added in order to enrich the ontology

knowledge base.

 Passive Software Engineering Ontology Problems

The nature of existing ontologies including the Software Engineering

Ontology is passive, which results in two main challenges regarding knowledge

assimilation and knowledge dissemination. The key problems related to these two

challenges are identified as follows.

3.3.1 Manually Capturing Software Project Information

Definition: Manually capturing software project information, in the context

of this thesis, refers to the conventional knowledge assimilation approach to

manually extract software engineering knowledge from the software project

information and map it as instance knowledge to the concepts defined in the Software

Engineering Ontology.

A software development project produces a large volume of software project

information. However, this is in syntactic form so their structures are not conducive

to an understanding of the semantics, and therefore may create ambiguities (e.g.

incorrect or different interpretations). This problem is particularly significant in a

67

multi-site distributed software development context where project members are

geographically dispersed. The ambiguity problem cannot be easily resolved through

direct or face-to-face communication in a formal or informal meeting. Furthermore,

in this type of setting, information related to the software project is scattered across

various, unlinked software repositories. This results in two main challenges. First,

this software project information is not readily accessible because of its dispersal in

several distributed software repositories. Second, there is a lack of integration among

relevant software artefacts. The Software Engineering Ontology has been developed

to define common sharable software engineering knowledge and to enable

knowledge integration in a multi-site software development environment. Project

team members can transform software project information to the concepts defined in

the Software Engineering Ontology as instance knowledge. Once the software

project information is transformed, it is conceptualised and semantically linked so

that it can be used to dispel any ambiguity in remote communication and to enable

knowledge sharing among distributed software project development teams.

However, given the huge volume of software project information produced

within a software project, the manual approach that relies primarily on software

teams’ processing, is not practical. Because human resources are sparse, an extensive

manual capture of large software project information can be an extremely time-

consuming, laborious, tedious, and error-prone task. As a result, such challenges

could discourage team members from sharing their knowledge with their colleagues.

Some existing approaches are proposed to capture software project information by

means of the semantic annotation process. However, several of them are based on

manual or semi-automatic approaches which still require additional intervention from

project members. Some automatic semantic annotation approaches are introduced but

they mostly rely on text analysis techniques for knowledge extraction which may not

be suitable for certain types of software artefacts (e.g., source code). Moreover,

substantial research efforts have been made to enrich software project information

metadata by means of semantic annotation process in order to improve its

comprehension and its search ability. However, fewer works have been concerned

with populating the annotated resources as the ontology instantiations which can

provide a better reasoning capability to derive new knowledge not explicitly defined

in the ontology.

68

3.3.2 Lack of Effective Management of the Software Engineering Ontology
Instantiations

Definition: Lack of effective management of the Software Engineering

Ontology instantiations, in the context of this thesis, refers to the complication of

obtaining software project information captured in the ontology. It also refers to a

lack of effective management of the impact associated with the instance knowledge

manipulation which reflects the evolution of software project information.

The key concepts here are those of knowledge access and manipulation as

well as timely awareness which are further defined below.

 Knowledge Access and manipulation

Definition: Knowledge access and manipulation, in the context of this thesis,

refers to the ability to obtain or manipulate software project information captured in

the Software Engineering Ontology.

Software engineering knowledge and software project information are

captured and organised according to concepts and relations specified by the Software

Engineering Ontology. To obtain or manipulate this knowledge, project team

members need to know exactly the concepts and relationships to which they are

referring. However, it is often the case that a person who utilises the ontology may

try to resolve an issue, but he/she cannot translate it into the exact concepts and

relations formed in the ontology. As a consequence, the use of the Software

Engineering Ontology alone is not an effective means of resolving the issue.

Furthermore, due to the large amount of knowledge captured in the ontology,

it could be possible that software teams are not aware of the existence of certain

knowledge in the ontology, or even if they are, they might not be able to find it

effectively. Therefore, there is the possibility that potentially useful knowledge will

be ignored.

 Timely Awareness

Definition: Timely awareness, in the context of this thesis, refers to having

knowledge about the current state of other team members’ work and achieving the

69

coordination necessary to manage work dependencies during the software

development process.

In a multi-site software development environment, project team members are

geographically distributed. Physical and temporal distances make it difficult to

maintain group awareness. The Software Engineering Ontology can assist dispersed

teams to overcome the issue concerning limited awareness of others’ work through

the instance knowledge which explicitly specifies the current status of the project.

However, team members have to retrieve such information by themselves. If they do

not realise that such information is available in the ontology, the issues regarding

awareness and remote coordination still remain. An example that can be used to

explain this scenario is the management of software evolution. Software project

information is subject to continuous evolution according to the changes that can

occur over time. In a multi-site distributed software project, this software evolution

presents a challenge in terms of maintaining consistency among software

development artefacts. Even though the Software Engineering Ontology is utilised in

this project, with its passive structure, it does not make relevant team members aware

of the change. If dispersed team members are not promptly made aware of what other

people at different sites are doing, such as making a change, inconsistencies related

to artefacts and remote coordination can occur. With respect to this example, in order

to be of most benefit, awareness must be timely enough to allow project team

members to fully understand what is going on at the other sites and react to them at

the appropriate time (Tekinerdogan et al. 2012). Accordingly, timely awareness

achieved by means of just-in-time knowledge about coordination needs is important,

particularly in a multi-site distributed software development setting.

3.3.3 Availability of Active Platforms for Multi-site Software Development
Environments

Definition: Active platforms for multi-site software development

environments, in the context of this thesis, refers to the availability and suitability of

current software development tools and technologies that can assist distributed

software project teams to effectively manage and share software engineering

knowledge when they are engaged in software development activities throughout the

70

software development life cycle.

The key concepts of active platforms for multi-site distributed software

development environments are knowledge management, communication and

coordination.

 Knowledge Management

Definition: Knowledge management, in the context of this thesis, refers to the

ability to manage and share software project information contained in the Software

Engineering Ontology through a series of stages ranging from capture, search and

dissemination, through to maintenance.

Software development is a knowledge- and collaborative-intensive process,

the success of which depends on the effectiveness with which software engineering

knowledge is managed and shared among project team members (Kavitha and

Ahmed 2011). This is particularly critical in a multi-site distributed software

development context where the collaboration is affected by physical and temporal

distance. The passive structure of software Engineering Ontology imposes

limitations, such as the need for manual knowledge capture and passive knowledge

distribution, on effective knowledge management for knowledge sharing.

Furthermore, following our review of works, presented in Chapter 2, it is evident that

there is a lack of ready-to-use assistive platform or tool that can actively assist

remote team members to manage and share software engineering knowledge in order

to facilitate collaborative work that covers various software development activities

throughout the software life cycle.

 Communication

Definition: Communication, in the context of this thesis, refers to the effective

and efficient exchange of information among software development teams.

Communication is considered effective if it is clear to the receivers. Efficient

communication is specifically targeted and timely to the receivers so that they can

use it to facilitate their work or to make decisions at the appropriate time.

 Communication in multi-site distributed software development settings

71

should be effective and efficient in order to overcome the barriers that are imposed

by long distance and different time-zones (Alqhtani and Qureshi 2014). The

Software Engineering Ontology defines common shareable software engineering

knowledge. It is used as a solution for knowledge representation in order to reduce

miscommunication, misunderstanding, and misinterpretation of issues in multi-site

software development environments. However, because of its passive structure,

certain crucial elements of efficient communication are still missing: i) the

communication provided by the ontology is not efficient in the sense that it cannot

target the relevant people, and ii) the communication provided by the ontology needs

to be timely which means that it should be available and just-in-time for project team

members to facilitate their work or to make appropriate decisions.

 Coordination

Definition: Coordination, in the context of this thesis, refers to the ability to

manage dependencies among tasks and task holders or to maintain the consistency of

software products.

In a software development project, coordination needs arise due to

dependencies among tasks and software artefacts. Coordination become more

complex as the degree of distribution of team members increases and it can lead to a

lack of team awareness. However, because of decreased communication, remote

software teams might not, within an appropriate time frame, obtain information on

what other teams at different sites are doing; thus, they may not be aware of work

dependencies that can cause coordination problems. Although the Software

Engineering Ontology can be used to facilitate remote coordination by making

project tasks explicit, because of its passive structure, team members have to rely on

their own efforts to meet their coordination needs. Existing methods and tools also

have limitations in terms of providing timely information to ensure efficient

coordination among software development teams (Blincoe, Valetto and Damian

2015). For example, in (Sengupta, Chandra and Sinha 2006), the authors point out

that existing requirements management tools do not provide adequate support for

remote coordination and collaboration. When a requirement is changed, the

information is not propagated to relevant project teams in a timely and proactive

manner to enable them to be aware of coordination needs. Consequently, a

72

discrepancy occurs regarding distant teams’ understanding of the project,

subsequently leading to software quality or productivity problems.

 Underlying Research Issues

In the previous section, the problems associated with the passive structure of

the Software Engineering Ontology have been identified. In this section, the

underlying research issues that need to be addressed in order to solve the

aforementioned problems, or in other words, to make the ontology active are

discussed. These four issues are related to:

• automated knowledge capture of software project information

• Software Engineering Ontology instantiations management

• active platforms for multi-site software development environments

• evaluation for prototyping proof-of-concept

In the next section, these research issues are clearly defined and explained in

detail.

3.4.1 Research Issue 1: Automated Knowledge Capture of Software Project
Information

Automated knowledge capture of software project information, in the

context of the framework for active software Engineering Ontology, is defined as

automatically capturing software engineering knowledge from software project

information based on the concepts defined in the Software Engineering Ontology and

then populating it in the ontology knowledge base. The purpose is to enable

knowledge sharing by making the knowledge available to other project team

members. In software development project, large amounts of information are

produced and stored in various locations. This poses two main challenges. First, this

software project information is not readily accessible because of its dispersed nature.

73

Second, there is a lack of integration among relevant software artefacts. In the

literature, some existing research attempted to address these issues by capturing

software project information and structuring it in conceptualised form. However,

most of the proposals are based on manual or semi-automatic approaches. Thus,

considerable effort is still required from software team members when undertaking

this work. The lack of an effective approach to capture software engineering

knowledge has raised the research issue for the automated knowledge capture of

software project information. An effective approach is needed that can automatically

capture software project information and populate it in the ontology. Once this

information is captured and organised well, relevant concepts can be interlinked.

Consequently, related software project information will not appear in isolation, but

will be included within a large group of related information that is easily and readily

accessible. Moreover, the software agents will be able to understand and make use of

this knowledge. They can provide useful information to distributed project teams in

order to dispel any ambiguity resulting from remote or inadequate communication, to

address major software development issues, and to facilitate effective and efficient

coordination.

3.4.2 Research Issue 2: Software Engineering Ontology Instantiations
Management

 Software Engineering Ontology instantiations management, in the context of

the framework for active Software Engineering Ontology, is defined as accessing

software engineering knowledge and manipulating instance knowledge.

Software Engineering Ontology instantiations management are defined

below.

• Knowledge retrieval

Knowledge retrieval refers to the ability to identify and extract

instance knowledge captured in the ontology repository. The process of

knowledge retrieval includes query, search, and proactive monitoring of

software project information in order to identify a possible deviation or

disruptive event before an actual issue arises. A proactive notification is

74

provided to corresponding team members in a push-based delivery mode.

• Instance knowledge manipulation

Instance knowledge manipulation refers to the ability to add, modify,

and delete instance knowledge and then identify the potential impact of the

change made to the instantiations based on the relationship defined in the

Software Engineering Ontology. Notifications are pushed to relevant team

members to make them aware of the change. In a multi-site software

development environment, communication and coordination are critical

challenges because of physical and temporal distances. Team awareness with

respect to the change made by other members at different sites is important.

Therefore, proactive and timely knowledge delivery to avoid any confusion

and integration risks can help to reduce the distance barrier.

3.4.3 Research Issue 3: Active Platforms for Multi-site Software
Development Environments

 Active platforms for multi-site software development environments, in the

context of the framework for active Software Engineering Ontology, refer to

platforms used to operate the application programs that assist collaborative software

teams to manage and share software engineering knowledge throughout the software

development life cycle in a multi-site software development environment.

Software development is considered as a knowledge-intensive, complex and

collaborative activity. The quality of a software product largely depends on the

quality of the software process which is the result of the activities conducted

throughout the software development process. In addition, it involves the integration

of knowledge from multiple sources which is constantly evolving according to the

changing needs of customers and business environments. Therefore, software

development knowledge should be formalised, stored, distributed, and easily shared

among project team members. A knowledge management approach can be used to

support these activities and improve the development process so that better software

quality and productivity can be achieved. Additionally, an effective knowledge

management approach can also help to address the challenges faced in multi-site

75

distributed software development regarding remote communication and coordination.

These challenges could be major causes of project delay or failure. In a distributed

setting, project team members frequently work on tasks in parallel. Technical

dependencies between software development tasks mean that team members must

have efficient coordination. Timely and efficient awareness of coordination needs is

important and critical in a globally distributed project (Blincoe, Valetto and Damian

2015).

Software development is a collaborative activity in which team members

interact with each other. Most software development tasks require collaboration

between team members who are probably not physically present at the same location.

In addition, coordination in dispersed teams becomes more difficult as problems

arise from remote communication and a lack of group awareness. Remote

coordination requires more people to participate, resulting in delays. When there is a

change, it may involve several people from multiple sites and increases the time

needed for development tasks. Several mechanisms (e.g. project reviews, conference

calls, progress reports) are required to minimise task dependencies in a multi-site

distributed software development environment. Therefore, collaborative tools must

support the software development process in order to allow monitoring activities and

managing of dependencies, notifications and implementation of corrective measures

(Jiménez, Piattini and Vizcaíno 2009).

Hence, there is a need for active platforms for multi-site software

development environments that can enable effective knowledge management and

sharing in order to facilitate remote collaboration among distributed project

members. In this research, effective knowledge management comprises the following

activities:

• Knowledge capture

Knowledge capture refers to the ability to automate the process of

transforming software project information knowledge into a conceptualised

and semantically rich form according to the concepts defined in the Software

Engineering Ontology, and then instantiating it into the Software Engineering

Ontology knowledge base as new instances.

76

• Knowledge search

Knowledge search refers to the process of accessing and retrieving

knowledge captured in the Software Engineering Ontology. This activity is

initiated by a user.

• Knowledge dissemination

 Knowledge dissemination is different from knowledge search in the

sense that it is initiated by the system and does not require a user to explicitly

make a request (Natali and Falbo 2002). In other words, it refers to the

proactive delivery of software engineering knowledge and project

information to software team members who may need it.

• Knowledge maintenance

Knowledge maintenance is the process of adding, modifying, or

deleting particular knowledge instances.

Remote software teams can utilise such platforms to support their

collaborative work throughout the various phases of the software development life

cycle in order to minimise the challenges related to temporal and physical distances.

The platforms are intended to improve the effectiveness and efficiency of

communication and coordination, and to provide useful information to address

software development issues and to support decision making.

 Research Methodology

In this section, the research methodology that this research will follow to

ensure that the framework development is based on a quality scientific method, is

described. Design science research is chosen as a research paradigm as it is the most

appropriate approach for investigating problems in the domain of Information

Systems research (Hevner et al. 2004). Hevner’s design science research guidelines

(Hevner et al. 2004) and Peffers’s design science research methodology process

model (Peffers et al. 2007) are incorporated to present a complete research

77

methodology that addresses the research issues and guides the framework

development.

3.5.1 Overview of Design Science Research Paradigm

Over the years, many researchers in the Information Systems research

community have adopted design science research approach and have acknowledged

the value of design science as an information systems research paradigm (Peffers et

al. 2007; Gregor and Hevner 2013; Walls, Widmeyer and El Sawy 1992). Hevner

and Chatterjee (2010) point out that the design science research paradigm is very

relevant to Information Systems research and it supports a pragmatic research

paradigm that focuses on the innovation of artefacts to resolve real-world problems.

Hevner et al. (2004) propose a set of guidelines for conducting and evaluating good

design science research. In this section, each guideline is addressed in terms of what

is proposed and how it is implemented in this research.

Guideline 1: Design as an Artefact

“Design-science research must produce a viable artefact in the form of a

construct, a model, a method, or an instantiation” (Hevner et al. 2004, 83).

The artefacts of this research include the conceptual framework and

architecture designed for active Software Engineering Ontology (proposed in

Chapter 5), the frameworks for assimilating and disseminating knowledge captured

in the Software Engineering Ontology (proposed in Chapter 6 and Chapter 7), and

the active platforms to facilitate collaborative work in a multi-site software

development environment (proposed in Chapter 8).

Guideline 2: Problem Relevance

 “The objective of design-science research is to develop technology-based

solutions to important and relevant business problems” (Hevner et al. 2004, 83).

This guideline addresses the need for problem relevance. In this thesis, the

problems associated with the passive structure of the Software Engineering Ontology

are addressed in Section 3.3. In brief, the challenges arising from remote

78

communication and coordination in multi-site software development project have

been formerly addressed by the use of the Software Engineering Ontology. However,

because of its passive structure, the assimilation and dissemination of knowledge still

requires a great amount of effort from software teams. As a result, what is needed is

active support that can help team members to effectively manage and share software

engineering knowledge captured in the ontology in order to facilitate remote

collaborative work through effective and efficient communication and coordination.

Guideline 3: Design Evaluation

“The utility, quality, and efficacy of a design artefact must be rigorously

demonstrated via well-executed evaluation methods” (Hevner et al. 2004, 83).

This guideline emphasises that the evaluation of the designed artefacts is an

essential component of the research process. Venable, Pries-Heje, and Baskerville

(2016) consider the evaluation of the design artefacts and theories to be a key activity

in the Design Science Research approach. They point out that it can ensure the rigour

of the research to achieve research objectives, and provides feedback for further

improvement.

In this research, the proposed framework and platforms are evaluated through

the prototype system as proof-of-concept experiments. A framework for evaluation

in design science research addressed by Venable, Pries-Heje, and Baskerville (2012)

is adopted. Experiments based on case studies in the literature are conducted to

evaluate the effectiveness and efficiency of the proposed framework through the

implemented prototype which is presented in Chapter 9.

Guideline 4: Research Contributions

“Effective design-science research must provide clear and verifiable

contributions in the areas of the design artefact, design foundations, and/or design

methodologies” (Hevner et al. 2004, 83).

This guideline highlights the need for a science research project to make

several clear contributions. In this research, a framework for active Software

Engineering Ontology is intended to provide active support to assist collaborative

software development teams to effectively access, manage and share software

79

engineering knowledge as well as project information to enable effective and

efficient communication and coordination among teams. Furthermore, the proposed

framework and platforms could serve as a reference model for the development of

similar systems in other domains.

Guideline 5: Research Rigor

“Design science research relies upon the application of rigorous methods in

both the construction and evaluation of the design artefact” (Hevner et al. 2004, 83).

The design and construction of the research framework for active Software

Engineering Ontology is presented in Chapter 5. They are based on rigorous

methodologies for agent-oriented software engineering. In Chapter 6 and Chapter 7,

the frameworks for solution implementation and outcomes are described in detail to

demonstrate the applicability in a problem domain. To evaluate the research

framework, a prototype system is implemented and evaluated through several

existing case studies found in the literature according to the framework requirements

in Chapter 9.

Guideline 6: Design as a Search Process

“The search for an effective artefact requires utilising available means to

reach desired ends while satisfying laws in the problem environment” (Hevner et al.

2004, 83).

Hevner et al. (2004) state that design science is an iterative process used to

search for the best or most effective solution for realistic Information Systems

problems. Each step requires the search process in order to identify appropriate

means to reach the desired ends. In Chapter 2, the extensive literature review related

to this research is presented. The review shows the state of the art ontology-based

semantic annotation, ontology-based multi-agent systems, and assistive systems in

software engineering in order to identify the gaps that this research can address.

These gaps and the problems associated with the passive structure of the Software

Engineering Ontology are combined, leading to an identification of the research

issues in Chapter 3 and the proposed solution requirements in Chapter 4. In Chapter

5, the existing agent-oriented software engineering methodologies are reviewed and

80

the most appropriate methodologies are selected to implement the framework.

Guideline 7: Communication of Research

“Design science research must be presented effectively both to technology-

oriented as well as management-oriented audiences” (Hevner et al. 2004, 83).

This guideline addresses the importance of disseminating new knowledge

and communicating this to audiences who have different perspectives and

information needs. In Chapters 5-9 of this thesis, technology-oriented audiences are

provided with sufficient details regarding how the research frameworks are designed,

implemented, and evaluated. Moreover, in these chapters, management-oriented

audiences are given information regarding practical applications to demonstrate how

the framework can help them manage software development information effectively

within a multi-site distributed software development setting so that they can decide

whether or not the proposed framework should be adopted given their specific

organisation context.

3.5.2 Choice of Design Science Research Framework

Peffers et al. (2007) propose a design science research framework (DSRM)

for the development and presentation of design science research in Information

Systems. They provided a process model and a mental model to carry out and present

the design science research. Their design science methodology process model

involves six activities as shown in Figure 3-1.

81

Figure 3-1: Design Science Research Methodology Process Model (Peffers et al.
2007, 54)

There are four research entry points depending on the nature of the project. If

the research is a problem-centred initiation the idea for which stemmed from the

observation of the problem or from a suggested future research direction, the entry

point is activity 1 (identify problem and motivate). The entry point for an objective-

centred solution for an industry project is activity 2 (Objective-centred solution). A

design and development-centred initiation could be from an existing artefact used to

solve a different problem or it might be considered as a similar idea. This kind of

research will start with activity 3 (Design and development). Lastly, a client/context-

initiated solution could be from observing a practical solution such as a real world

project. The entry point will be activity 4 (Demonstration).

In this research, the entry point is “Problem-centred initiation” because the

idea comes from the observation of the problem. The lack of active support to

assimilate and disseminate knowledge captured in the Software Engineering

Ontology could hinder the use of the ontology. Therefore, there is the need for a

framework that makes the Software Engineering Ontology active. Hence, the entry

point for this research is activity 1 (Identify problem and motivate) and six other

activities follow as explained below.

Activity 1: Identify problem and motivate

The Software Engineering Ontology was developed to clarify the software

engineering concepts and project information as well as to enable knowledge sharing

82

among project team members who are geographically located across multiple

software development sites (Wongthongtham et al. 2009). However, the current

Software Engineering Ontology has a passive structure in regard to knowledge

assimilation and knowledge dissemination. In order to capture a large amount of

software project information into a conceptualised and semantically rich form, a

great amount of effort is required from software teams to manually transform this

information into knowledge captured in the Software Engineering Ontology. As a

consequence, the manual approach could discourage them from sharing their

knowledge with other team members. Its passive structure also raises the need to

know exactly the concepts and relationships to which software team member are

referring in the ontology. Otherwise, they may not be able to access or manipulate

the knowledge required. Therefore, what is needed is active support that can help

software teams to effectively manage and share knowledge captured in the Software

Engineering Ontology. The ultimate goal is to enable software project teams to

maintain collaborative work through effective and efficient communication and

coordination.

Activity 2: Define objectives of a solution

The primary objective of this thesis is to develop a framework for active

Software Engineering Ontology that can provide active support in order to assist

software development team members with software engineering knowledge when

they are working on software development projects. The research objective can be

segmented into the following sub-objectives:

Sub-objective 1: To develop a framework for active Software Engineering

Ontology specifically focusing on the ontology deployment phase. The framework is

intended to address challenges resulted from the passive structure of the Software

Engineering Ontology in regard to knowledge assimilation and knowledge

dissemination. This is addressed in Chapter 5.

Sub-objective 2: To develop an approach to automate knowledge capture of

software project information that is seamlessly integrated into the software

development process. The proposed approach is elaborated and discussed in Chapter

6.

83

Sub-objective 3: To develop an approach to access and manage software

engineering knowledge captured in the Software Engineering Ontology effectively.

The proposed approach is elaborated and discussed in Chapter 7.

Sub-objective 4: To develop active platforms for multi-site software

development environments that can support remote project team members to manage

and share software engineering knowledge througout various phases of the software

life cycle. The development of these platforms is presented in Chapter 8.

Sub-objective 5: To evaluate the effectiveness and efficiency of the proposed

framework and platforms based on existing case studies found in the literature

through the prototype system used as proof-of-concept experiments. The evaluation

is presented in Chapter 9.

Activity 3: Design and development

During the design and development process, the objectives of the proposed

solutions are transformed to determine the artefact’s functionality and its

architecture. In this thesis, the design of the active Software Engineering Ontology

conceptual framework and its architecture is described in Chapter 5, while the design

and development of the frameworks and platforms corresponding to the research sub-

objectives are presented in Chapters 6-8.

Activity 4: Demonstration

To demonstrate the feasibility of the proposed framework and platforms to

solve one or more instances of the problem, the working prototype system is

designed and implemented. The prototype system is used to demonstrate the

feasibility of the framework and platforms to facilitate collaborative software

development teams through effective and efficient communication and coordination.

The demonstrations are presented in Chapters 6-8.

Activity 5: Evaluation

This activity observes and measures how well the proposed framework can

provide solutions for the research issues. The framework requirements are compared

with the results from the prototype demonstration. Three quantitative parameters,

84

namely, time to complete the task, number of team members involved in the task,

and number of team members’ actions, are used to measure the efficiency of the

framework and platforms in assisting software team members to work

collaboratively on software development projects. The evaluation of the proposed

framework is presented in Chapter 9.

Activity 6: Communication

Various parts of this research have been presented at several international

conferences and have been published in the conference proceedings and in peer-

reviewed journals throughout the research process as follows.

• The research motivation and the preliminary conceptual framework for the

active Software Engineering Ontology were presented at The International

Conference on E-Technologies and Business on the Web (EBW2013) and

published in the conference proceedings (Pakdeetrakulwong and

Wongthongtham 2013b). An extended version of this paper was submitted

to the International Journal of Digital Information and Wireless

Communications (IJDIWC) (Pakdeetrakulwong and Wongthongtham

2013a).

• A survey of existing systems/tools related to assistive systems for software

engineering was presented in The 9th International Conference for Internet

Technology and Secured Transactions (ICITST 2014) and published in the

conference proceedings (Pakdeetrakulwong, Wongthongtham and

Siricharoen 2014).

• The design of the conceptual framework focusing on overall system

architecture and inter-agent interactions was presented at The 3rd Annual

Conference on Engineering and Information Technology and published in

the conference proceedings (Pakdeetrakulwong and Wongthongtham

2015).

• The design and implementation of the framework for the Software

Engineering Ontology instantiations management were presented at The

24th Australasian Software Engineering Conference (ASWEC 2015), and

85

published in the conference proceedings (Pakdeetrakulwong,

Wongthongtham and Khan 2015).

• The extended version of the above paper was published in The Journal of

Mobile Network and Application. The design, implementation, and

evaluation of the framework and platforms for the Software Engineering

Ontology instantiations management were presented. The prototype

demonstrated the feasibility of using the framework and platforms to

support requirements traceability tasks within a multi-site software

development project. The result was discussed and compared with existing

works in the literature (Pakdeetrakulwong, Wongthongtham, Siricharoen,

et al. 2016).

• The design, implementation, and evaluation of the framework and

platforms for capturing software project information were presented at The

4th International Conference on Enterprise Systems and published in the

conference proceedings (Pakdeetrakulwong, Wongthongtham, Sae-Lim, et

al. 2016).

This thesis is also the main means of communication and is intended for

academic audiences. Table 3-1 shows the thesis chapters that are mapped with the set

of activities of the design science research methodology process model.

Table 3-1: Set of activities of DSRM process mapped with the thesis chapters

Activity Thesis Chapters

1. Identify problem and motivate Chapters 1-3

2. Define objectives of a solution Chapter 1

3. Design and development Chapters 5-8

4. Demonstration Chapters 6-8

5. Evaluation Chapter 9

6. Communication
Two journal articles, one book
chapter, five conference
papers, and one thesis (this
thesis)

86

 Conclusion

In this chapter, the key terminologies used in this chapter and throughout the

thesis are defined. The problems facing the passive structure of the Software

Engineering Ontology are also addressed. They comprise the manual capture of

software project information, the lack of effective management of the ontology

instantiations, and the current lack of active platforms to support multi-site software

project teams. Then the research issues which need to be addressed as a basis for the

new framework in order to produce the solution to these problems are proposed.

Finally, a summary of research approaches is given. A design science research

methodology is chosen as the preferred option to address these research issues and

for the development of the proposed solution.

In the next chapter, the key requirements of any solution development are

described. The conceptual solution to the issues addressed in this chapter is

presented. An ontology-based multi-agent approach is proposed as the conceptual

solution to develop the framework to make the Software Engineering Ontology

active. The reason for the choice of the research conceptual solution is also given.

 References

Alqhtani, Mashael Saeed, and M Rizwan Jameel Qureshi. 2014. "A proposal to

improve communication between distributed development teams."

International Journal of Intelligent Systems and Applications 6 (12): 34-39.

doi: doi:http://dx.doi.org/10.5815/ijisa.2014.12.05.

Blincoe, Kelly, Giuseppe Valetto, and Daniela Damian. 2015. "Facilitating

coordination between software developers: A study and techniques for timely

and efficient recommendations." Software Engineering, IEEE Transactions on

41 (10): 969-985.

Gregor, Shirley, and Alan R Hevner. 2013. "Positioning and presenting design

science research for maximum impact." MIS Quarterly 37 (2): 337-355.

http://dx.doi.org/10.5815/ijisa.2014.12.05

87

Hevner, Alan, and Samir Chatterjee. 2010. "Design science research in Information

Systems." In Design Research in Information Systems: Theory and Practice,

9-22. Boston, MA: Springer US.

Hevner, Alan R., Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. "Design

science in Information Systems research." MIS Quarterly 28 (1): 75-105.

Jiménez, Miguel, Mario Piattini, and Aurora Vizcaíno. 2009. "Challenges and

improvements in distributed software development: a systematic review."

Advances in Software Engineering 2009: 3.

Kavitha, R. K., and M. S. Irfan Ahmed. 2011. "A knowledge management

framework for agile software development teams" 2011 International

Conference on Process Automation, Control and Computing, doi:

10.1109/PACC.2011.5978877.

Natali, Ana Candida Cruz, and RA Falbo. 2002. "Knowledge management in

software engineering environments" Proceedings of the XVI Brazilian

Symposium on Software Engineering (SBES'2002),

Pakdeetrakulwong, U., P. Wongthongtham, and W. V. Siricharoen. 2014.

"Recommendation systems for software engineering: A survey from software

development life cycle phase perspective." In Internet Technology and

Secured Transactions (ICITST), 2014 9th International Conference for, 8-10

Dec. 2014. 137-142. IEEE. doi: 10.1109/ICITST.2014.7038793.

Pakdeetrakulwong, Udsanee, and Pornpit Wongthongtham. 2013a. "State of the art

of a multi-agent based recommender system for active software engineering

ontology." International Journal of Digital Information and Wireless

Communications (IJDIWC) 3 (4): 363-376.

———. 2013b. "Towards active software engineering ontology" The International

Conference on E-Technologies and Business on the Web (EBW2013),

Bangkok, Thailand: The Society of Digital Information and Wireless

Communication.

88

———. 2015. "Use and design of ontology-based multi-agent system for multi-site

software development environment" The 3rd Annual Conference on

Engineering and Information Technology, Osaka, Japan: ACEAIT.

Pakdeetrakulwong, Udsanee, Pornpit Wongthongtham, and Naveed Khan. 2015. "An

ontology-based multi-agent system to support requirements traceability in

multi-site software development environment" Proceedings of the ASWEC

2015 24th Australasian Software Engineering Conference, Volume II,

Adelaide, SA, Australia, 2811700: ACM. doi: 10.1145/2811681.2811700.

Pakdeetrakulwong, Udsanee, Pornpit Wongthongtham, Suksawat Sae-Lim, and

Hassan Marzooq Naqvi. 2016. "SEOMAS: An ontology-based multi-agent

approach for capturing semantics of software project information" The 4th

International Conference on Enterprise Systems, Melbourne, Victoria,

Australia: IEEE Computer Society.

Pakdeetrakulwong, Udsanee, Pornpit Wongthongtham, Waralak V. Siricharoen, and

Naveed Khan. 2016. "An ontology based multi-agent system for active

software engineering ontology." Mobile Networks and Applications 21 (1): 65-

88. doi: 10.1007/s11036-016-0684-x.

Peffers, Ken, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. 2007.

"A design science research methodology for Information systems research."

Journal of Management Information Systems 24 (3): 45-77.

Sengupta, Bikram, Satish Chandra, and Vibha Sinha. 2006. "A research agenda for

distributed software development." In Proceedings of the 28th International

Conference on Software Engineering, Shanghai, China, 731-740. 1134402:

ACM. doi: 10.1145/1134285.1134402.

Tekinerdogan, Bedir, Semih Cetin, Muhammad Ali Babar, Patricia Lago, and Juho

Mki. 2012. "Architecting in global software engineering." SIGSOFT Software

Engineering Notes 37 (1): 1-7. doi: 10.1145/2088883.2088900.

Venable, John, Jan Pries-Heje, and Richard Baskerville. 2012. "A comprehensive

framework for evaluation in design science research." In Design Science

89

Research in Information Systems. Advances in Theory and Practice, 423-438.

Springer.

———. 2016. "FEDS: a framework for evaluation in design science research."

European Journal of Information Systems 25 (1): 77-89. doi:

10.1057/ejis.2014.36.

Walls, Joseph G, George R Widmeyer, and Omar A El Sawy. 1992. "Building an

information system design theory for vigilant EIS." Information systems

research 3 (1): 36-59.

Wongthongtham, P., E. Chang, T.S. Dillon, and I. Sommerville. 2009. "Development

of a software engineering ontology for multi-site software development."

IEEE Transactions on Knowledge and Data Engineering 21 (8): 1205-1217.

doi: 10.1109/TKDE.2008.209.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

90

 Ontology-based Multi-agent
Approach Solution Proposal

 Introduction

In the previous chapter, the problems facing the passive Software

Engineering Ontology and their underlying research issues were identified. The

research issues comprise: i) automated knowledge capture of software project

information; ii) Software Engineering Ontology instantiations management; and iii)

active platforms for multi-site software development environments.

This chapter addresses the identified issues and suggests solution proposals

for each of the identified research issues. First, an overview of the three key

requirements of the solution development is presented. Then the current available

technologies that are able to satisfy the solution requirements are reviewed. The

agent-based technology is considered to be able to provide active components

according to their features, namely, autonomy, reactivity, pro-activeness, and social

ability. It is also found that the multi-agent system consisting of multiple agents that

act in an environment to achieve a common goal is a promising technology for the

realisation of the distributed collaborative systems. Therefore, a careful study is

carried out to examine the feasibility of integrating the multi-agent system and the

ontology also known as the ontology-based multi-agent approach as a basis for a

possible solution for a framework of active Software Engineering Ontology.

91

 Solution Requirements

The aim of this research is to develop a framework for active software

Engineering Ontology using a design science research approach as discussed in

Chapter 3. Three key research issues are identified and any new solution for active

Software Engineering Ontology should address and provide a solution for these key

issues. In this section, four solution requirements for the proposed framework are

given as follows.

• Automated Knowledge Capture of Software Project Information

• Software Engineering Ontology Instantiations Management

• Active Platforms for Multi-site Software Development Environments

• Framework Evaluation

4.2.1 Requirement 1: Requirement of Automated Knowledge Capture of
Software Project Information

In order to develop a framework for making the Software Engineering

Ontology active, the first requirement is the assimilation of software development

knowledge into the ontology knowledge base during the development process with

very minimal additional effort from team members.

Because software project information is generally in syntactic form which

can create ambiguity issues during the remote communication, the information needs

to be transformed into a conceptually formalised and organised form in order to

facilitate the sharing of understanding and the semantic linkage with other relevant

resources. The Software Engineering Ontology can be utilised to provide the

software engineering domain knowledge for the semantic annotation process.

However, due to the large volume of software project information generated, the

capturing process needs to be automated and transparently integrated into the

software development process in order to avoid unnecessary complexity and to

minimise the workload of software team members, thereby encouraging them to

share the knowledge with others. Once the software project information is

semantically annotated and populated as the ontology instantiations, it can be

subsequently used to clarify any ambiguity resulting from remote communication

92

and to enhance the team’s coordination. Moreover, this knowledge is in machine

understandable form, enabling it to be understood by the software agents. They can

make use of this knowledge to support distributed project teams to manage project

issues or to suggest solutions and provide expertise to address issues that are raised.

4.2.2 Requirement 2: Requirement of Software Engineering Ontology
Instantiations Management

Once the software project information has been captured and conceptualised

in the Software Engineering Ontology as instantiations, the knowledge needs to be

managed. The management of the instantiations includes retrieving knowledge,

adding new instantiations, and modifying or deleting existing instantiations.

In order to provide access to knowledge, the knowledge retrieved from the

Software Engineering Ontology can be delivered to team members by means of

information-pull or information-push mode. For the information-pull mode, project

teams initiate the search or query the semantic linked project information captured in

the ontology explicitly. Nonetheless, it might be the case that they are not aware of

the existence of certain knowledge shared in the ontology or even if they are, they

might not be able to search for it effectively. Therefore, the management of Software

Engineering Ontology instantiations can provide active support by delivering

information that is potentially useful without requiring users to explicitly make a

request (information-push). This information could be obtained by processing the

existing knowledge in the ontology.

Because software development knowledge is always evolving as a result of

fluctuating requirements and technology advances, it is critical that the instantiations

management deal with the instance knowledge manipulation (i.e., add, delete,

modify) to reflect the software project evolution. Moreover, because of the

geographical and temporal distances in a multi-site software development setting,

when the instantiations are manipulated, the Software Engineering Ontology

instantiations management should include proactive features to support remote

communication in order to maintain team members’ awareness and coordination. For

example, relevant distributed team members who are dispersed geographically

should promptly be informed about any changes made at different sites that possibly

93

affect their workspace.

4.2.3 Requirement 3: Requirement of Active Platforms for Multi-site
Software Development Environments

Active platforms for multi-site software development environments are

required as main forms to enable effective knowledge assimilation and knowledge

dissemination for the proposed active Software Engineering Ontology framework.

They are intended to enable the communication and coordination in a multi-site

software development project to be done in a more efficient and productive manner.

The platforms are required to capture knowledge generated during the software

development process and populate it in the ontology repository in order to enable

knowledge sharing and reuse. Even though each software project is different, sharing

similar knowledge could be useful for team members to expedite their tasks.

Regarding knowledge dissemination, the platforms can offer both passive and active

means of communication since the user can either query the required information, or

the platforms can provide knowledge that is likely to be relevant to the users’ tasks.

The platforms are also equipped with a proactive monitoring and notification service

in order to actively inform team members about useful information or alert them to

any event that could change the project’s as-planned schedule or affect the project

performance. The platforms play significant roles in supporting software

development activities across the software development life cycle in order to reduce

the physical and temporal distance barriers faced by remote team members.

4.2.4 Requirement 4: Requirement of Framework Evaluation

Automated knowledge capture of software project information enables

software project information to be automatically captured into the ontology

knowledge base. Software Engineering Knowledge instantiations management

enables the captured knowledge to be accessed and manipulated more effectively.

Active platforms are used to facilitate effective software engineering knowledge

management and sharing to enable effective and efficient communication and

coordination among software development teams within a multi-site software

development project. Integrating all ideas, processing them into practice, and

94

evaluating them by means of a working prototype system as a proof-of-concept are

required for the active Software Engineering Ontology framework. The prototype

systems will be used to demonstrate the realisation and feasibility of the proposed

framework as well as to check whether the framework fulfils its purpose and solves

the key issues associated with passive Software Engineering Ontology.

 Agent-Based Technology

4.3.1 Software Agent

The agent-based technology has attracted considerable attention and become

active research areas in recent years. In addition, the advent of the Semantic Web

technology has provided the underlying infrastructure that allows software agents to

process data and perform sophisticated tasks on behalf of users. Regarding the term

“agent”, the following definition is widely accepted:

“An agent is a computer system that is situated in some environment and that

is capable of autonomous action in this environment in order to meet its delegated

objectives.” (Wooldridge 2009, 21)

Accordingly, the key properties of an agent are as follows (Wooldridge and

Jennings 1995; Jennings 2000)

• Autonomy: agents encapsulate some state and make decisions on what to do

based on this state without the direct intervention of humans or others.

• Reactivity: agents are situated in an environment and are able to perceive this

environment through their sensors. Then, through effectors, they respond in a

timely fashion to changes that occur in their environment.

• Pro-activeness: agents do not simply act in response to their environment.

They are able to exhibit goal-directed behaviour by taking the initiative.

• Social ability: agents are able to cooperate with humans and other agents in

95

order to achieve their design objectives.

Software agents can be differentiated from traditional software applications

in terms of certain characteristics. The differences between traditional software

applications and software agents are presented in Table 4-1 which is adapted from

(Turban, Sharda and Delen 2010).

Table 4-1: Differences between traditional software applications and software

agents (adapted from Turban, Sharda and Delen 2010)

Characteristics

Traditional software
applications

Software agents

Nature

Static Dynamic

Autonomy

Follow instructions Be able to perform tasks without
direct control, or at least with
the minimum of human
intervention

Manipulation

User initiates every action Sense the environment and react
autonomously

Interactivity

Non-interactivity Can interact with other agents,
humans, or software programs

Temporal
continuity

Terminate when process is
complete

Continue to run over time
(persistent)

Concurrency

Generate process in one dedicated
server with limited processing
power

Dispatch simultaneously to
accomplish several parts of a
task in parallel

Mobility

Stay in one place Be able to travel from one
machine to another

From Table 4-1, it is clear that the software agents are different from

traditional software applications. Moreover, compared with the object-oriented

paradigm, the agent technology can be considered as a descendant that improves the

nature of passive objects with the notion of autonomous actors (Braubach et al.

2005). In contrast to simple objects with methods that can be invoked by other

objects, an agent communicates with other agents by means of message-passing. In

96

addition, it can act proactively to accomplish its individual goal. Agents can work as

stand-alone entities to perform particular tasks on behalf of a user. However, many

agent applications are based on environments that contain multiple agents

collaboratively working together as a group. This is also known as a multi-agent

system.

4.3.2 Multi-Agent System

Even though an individual agent can perform a task on behalf of a single

user, its capacity is limited by its knowledge and resources. Thus, agents are usually

implemented in a multi-agent context. A multi-agent system (MAS) consists of

multiple agents acting in an environment to achieve a common goal or their

individual goals (Ye, Zhang and Vasilakos 2016). There is an increasing interest in

MAS research because of its significant advantages including its ability to solve

problems that may be too large for a single agent. MAS allows a complex task to be

decomposed into sub-tasks, each of which is then assigned to an individual agent to

undertake independently, but which can be supported by a knowledge base. They

have distributed architectures which control distribution by utilising the mechanisms

of cooperation and coordination.

MAS have various advantages over a single agent, such as reliability and

robustness, modularity, scalability, adaptability, concurrency, parallelism, and

dynamism (Elamy 2005). When a system is implemented based on MAS

architecture, it is easy to add a new functionality or to modify an existing

functionality. Within MAS, the functionality is created by calling the service that a

particular agent offers. Therefore, in order to add a new functionality, a new agent

responsible for a new service can be added into a system. In order to modify or

improve the functionality of the system, the existing agent can be modified or

substituted with a new one. In this case, a system is loosely coupled which means

that it is easy to extend, remove, and modify without breaking down the system. In

addition, MAS can make the system more fault-tolerant by replacing an agent that

has crashed with a new agent that can be launched on the fly as a substitute for a

failing agent (Terje and Marius 2015).

97

MAS are suitable for applications that require distributed and concurrent

processing capabilities. They are employed in the applications in several domains

such as supply chain management (Rady 2011; Zimmermann 2006; Ngan and

Kanagasabai 2013), web-services (Mohamed and Makhlouf 2014; García-Sánchez et

al. 2009), healthcare (Dolgui et al. 2015; Shakshuki and Reid 2015; Isern, Sánchez

and Moreno 2010), e-learning (Terje and Marius 2015), etc. When a group of

individual agents constitutes MAS, it is crucial to have a mechanism that can control

such a group. Communication is a key for MAS to exhibit social behaviour (e.g.,

share information, coordinate their tasks). Individual agents in MAS interact with

one another by exchanging messages using a specific Agent Communication

Language (ACL). The purpose of ACL is to enable agents to convey messages to one

another with meaningful statements (Vaniya, Lad and Bhavsar 2011). Most ACLs

are based on the speech-act theory. Speech acts are expressed by means of standard

key words also known as communicative acts or performatives (e.g., request, inform,

confirm, and propose). They are used to inform the intention of the communication

from the sender to the receiver. The agent's message consists of various parameters

such as sender, receiver, content language, ontology, and the actual content.

Examples of well-known ACL languages are KQML (Knowledge Query and

Manipulation Language) and FIPA-ACL (Foundations for Intelligent Physical

Agents-Agents Communication Language) proposed by FIPA (The Foundation for

Intelligent Physical Agents 2015). FIPA is the relevant standardisation body that

promotes agent-based technology and the interoperability of its standards with other

technologies.

4.3.3 The integration of ontology and multi-agent systems

Ontologies play an important role in enabling knowledge representation,

knowledge management, and knowledge sharing. Many applications benefit greatly

from making use of ontologies as a means of achieving semantic interoperability

among heterogeneous and distributed systems. They are considered as one of the key

enablers for the emerging Semantic Web by making the Web content accessible to

humans and computers (Li, Wu and Yang 2005). Ontologies are in a machine-

understandable and processable format, thereby enabling the software agents to

understand the contents autonomously. Therefore, the integration of ontologies and

98

multi-agent systems, also known as the ontology-based multi-agent approach, allows

software applications to benefit from both technologies. For instance, ontologies can

assist with data retrieval, while the agents can act as autonomous software entities

that can interact with the environment and with other agents (Garanina, Sidorova and

Bodin 2013).

In recent years, the ontology-based multi-agent approach has attracted

considerable interest in research to support various works operated in distributed and

dynamic environments. As presented and discussed in Chapter 2 regarding the state-

of-the-art ontology-based multi-agent systems, the majority of research has focused

on the use of ontology to facilitate agents’ communication, represent domain

knowledge and help to locate and retrieve information, and reasoning the knowledge.

• Facilitating agents’ communication

In a multi-agent system, each agent usually cooperates with other agents to

achieve a common goal; therefore, it needs the ability to communicate and interact

with other agents by exchanging messages. The agent communication languages

such as KQML and FIPA-ACL specify the syntax of the exchange messages but not

the semantics of the messages. In this case, ontology can be additionally supplied in

the messages to formalise the semantics of the exchanged message in a format that is

understandable by agents in order to facilitate consistent communication and

interoperability.

• Representing domain knowledge and helping to locate and retrieve

information

Ontology can be used to describe domain knowledge and information content

which is pertinent to that domain. With the use of ontologies in MAS, domain

knowledge does not need to be embedded within the agents. Therefore, it creates an

opportunity to share and reuse the domain knowledge and also has the potential to

reuse the MAS infrastructure for other applications. Moreover, software agents have

the ability to read and understand knowledge captured in ontologies. Therefore, they

are able to locate and retrieve the information requested by their user.

• Reasoning the knowledge

99

The use of ontologies coupled with MAS can support knowledge

representation and reasoning capabilities of software applications that are developed

by deploying the MAS approach. The integration of ontologies in MAS can lead to

the creation of logic rules that can be applied by a semantic reasoner to infer new

knowledge not explicitly defined in ontologies (Freitas et al. 2015).

The benefits of both technologies can be had by integrating ontology and

MAS. Ontology is used for knowledge representation, knowledge integration,

knowledge sharing and reuse. The features of the software agent and MAS, such as

autonomy, reactivity, pro-activeness, social ability, adaptability and dynamism,

provide a potential solution for applications that are complex, dynamic and

distributed. Therefore, they can be deployed in the application if only one of the

approaches cannot satisfactorily resolve the problem. As the ontology and agent-

based technology address different aspects of the same problem, they complement

each other. Therefore, the ontology-based multi-agent system has been chosen as the

preferred scientific approach for this research as explained in the next section.

 Ontology-Based Multi-Agent Systems Solution
Proposal for a Framework for Active Software
Engineering Ontology

In Chapter 3, three research issues have been identified: i) automated

knowledge capture of software project information, ii) Software Engineering

Ontology instantiations management, and iii) active platforms for multi-site software

development environments. They lead to the solution requirements for each research

issue stated in Section 4.2. In the previous section, definitions of software agent,

multi-agent system are given. The integration of ontology and multi-agent system

and its benefit are also described. In this section, the features of the ontology-based

multi-agent approach are explained to show their appropriateness for each solution as

an underlying architecture for the framework of active Software Engineering

Ontology.

Over the years, agent-based technology has become a promising solution to

100

support working processes in a distributed environment (Hammouch, Medromi and

Sayouti 2015). Its concepts and features such as autonomy, reactivity, proactivity,

and sociability of a software agent, can assist remote collaborative teams who are

dispersed across boundaries, and can also be applied to data, expertise, and resources

that are scattered. In the software engineering domain, due to the globalisation of

software development and for a number of business reasons, several software

companies have adopted a multi-site software development approach that enables

project team members to work across multiple sites. While on the one hand, a

globally dispersed project offers several advantages, on the other hand, it creates

additional challenges in regard to communication, coordination and information

sharing. The Software Engineering Ontology is an underlying knowledge

representation of software engineering knowledge that enables all team members

working on a multi-site software development project to have a common

understanding. However, it does not possess a degree of autonomy, and nor can it

adapt dynamically to any change such as the capturing of new software project

information, proactively delivering useful information without the user’s explicit

request, or alerting team members to an unusual event that might change the project

plan. Put differently, it still heavily relies on the user’s effort to manage such

situations although the Software Engineering Ontology is in use. As a means of

addressing this limitation, agent-based technology can be integrated with the

ontology to provide the autonomous and flexible features. Consequently, the

integration of the Software Engineering Ontology and agent-based technology or the

ontology-based multi-agent approach is regarded as the best means of addressing the

solution requirements for a framework of active Software Engineering Ontology as

described in the following section.

4.4.1 Ontology-Based Multi-Agent Systems as a Solution for Automated
Knowledge Capture of Software Project Information

To reiterate the definition given in Chapter 3, “Automated knowledge capture

of software project information, in the context of the framework for active software

Engineering Ontology, is defined as automatically capturing software engineering

knowledge from software project information based on the concepts defined in the

Software Engineering Ontology and then populating it in the ontology knowledge

101

base.” Because software development-related information generated within a

software project is in syntactic form, its structure is not conducive to an

understanding of the semantics, and therefore may create ambiguities (e.g. incorrect

or different interpretations). Moreover, due to the great amount of this information, it

is not practical to manually annotate it. The ontology-based multi-agent approach is

able to automatically capture the semantics of software project information and

populate it in the ontology repository by means of the semantic annotation process

and ontology population. Software Engineering Ontology is deployed by a software

agent to provide software engineering domain knowledge to software development

artefacts. The agent annotates software project information according to the

corresponding concepts and then generates new instances which are subsequently

populated into the ontology repository. The aforementioned processes can be done

by software agents with minimum human intervention. In addition, the utilisation of

agents can speed up the process because they are able to act in parallel. To sum up,

an ontology-based multi-agent approach will encourage team members to share their

knowledge by offering automated and transparent support to semantically capture

software project information when they are working on software development

process.

4.4.2 Ontology-Based Multi-Agent System as a Solution for Software
Engineering Ontology Instantiations Management

In Chapter 3, this definition was given:“Software Engineering Ontology

instantiations management, in the context of the framework for active Software

Engineering Ontology, is defined as accessing software engineering knowledge and

manipulating instance knowledge.” Software engineering knowledge and software

development project information are presented in the Software Engineering Ontology

in machine-understandable and machine-processable form. Thus, a software agent is

able to access and process this knowledge with the guidance of the ontology. As a

result, the ontology-based multi-agent approach will not only respond to users’

requests to retrieve the knowledge required (information pull), but also offer the

mechanisms to disseminate proactively the knowledge that is potentially useful to

them (information push). The agents can do this by inferring the knowledge based on

the semantic relations defined in the ontology.

102

As a consequence, the ontology-based multi-agent approach to access and

manipulate Software Engineering Ontology instance knowledge can assist team

members by facilitating some time-consuming tasks such as searching for relevant

information to address project development issues, locating experts, analysing the

impact of a change in software artefacts as well as propagating the change and its

impact to relevant team members, proactively monitoring particular software project

information to detect potential disruptive event or deviation. In this case, even

though software teams may not be aware of the existence of the knowledge or they

might not be able to search for it effectively, the ontology-based multi-agent system

approach can help them to locate the information and can deliver it to them. The

proactive knowledge delivery can mitigate the arduous task of having to explicitly

search for useful knowledge; in other words, it can deliver the knowledge at the right

time to the right people who need it.

4.4.3 Ontology-based Multi-agent Systems as a Solution for Active Platforms
for Multi-site Software Development Environments

According to the definition given in Chapter 3, “Active platforms for multi-

site software development environments, in the context of the framework for active

Software Engineering Ontology, refer to frameworks to operate the application

programs that assist collaborative software teams to manage and share software

engineering knowledge across software life cycle in a multi-site software

development environment.” In a co-located software development environment,

informal communication is a key factor in knowledge sharing and collaborative

work. However, in a multi-site software development setting, physical and temporal

distances create communication gaps which could impede the sharing of knowledge

and team collaboration. Therefore, there is the need for a good development

infrastructure that includes active platforms for effective knowledge management to

simplify the process of capturing, searching, and distributing software engineering

knowledge. This will enable effective knowledge sharing and team collaboration in a

distributed setting. The Software Engineering Ontology-based multi-agent approach

can fulfil these requirements for the reasons given below.

First, the Software Engineering Ontology, which is a comprehensive

103

ontology covering all the aspects of software engineering in the software

development life cycle, can contribute to knowledge management by representing the

shared software development knowledge relevant to a software project. Because the

knowledge captured in the ontology is in machine processable form that software

agents can read and process it. Therefore, the ontology-based multi-agent approach

can offer the platforms that are equipped with the underlying knowledge

representation and active components to manage the knowledge. These active

platforms include the knowledge capture platform, the knowledge query platform,

the knowledge monitoring platform, and the knowledge maintenance platform. The

knowledge capture platform is used to automate the process of formalising and

conceptualising the knowledge generated during the software development process.

The knowledge query platform is used to retrieve shared software project

information. The knowledge monitoring platform monitors particular software

project information in order to anticipate any deviation or disruptive event and then

notify corresponding team members before an issue actually arises. Finally, the

knowledge maintenance platform is used to maintain software development

knowledge captured in the Software Engineering Ontology. These active platforms

can provide useful knowledge to distributed team members in a flexible manner by

means of either the push or pull mode of information delivery. Thus, these platforms

can reactively provide knowledge based on user requests or proactively deliver

knowledge that the team members may need for their specific tasks.

Second, in a multi-site software development environment, software team

members do not reside at the same place, but are dispersed in different locations.

Two main key factors that can contribute to the success of this development setting

are effective and efficient communication and coordination (Khan and Khan 2014;

Jimnez et al. 2009). Communication is considered effective if it is targeted and clear

to the receivers. It is considered efficient if the communication is clear and timely.

Effective and efficient coordination refers to the ability to improve group awareness

to manage task dependencies and artefact dependencies in a timely and proactive

manner, e.g., early enough to drive their decision making. The ontology-based multi-

agent approach can respond to these needs. With the social ability, multiple agents

communicate and collaborate with each other in order to achieve goals. They can

engage in dialogues with other software agents in order to facilitate effective and

104

efficient communication with the relevant team members. With the integration of the

Software Engineering Ontology and the agent’s features of reactivity and proactivity,

remote communication can be clear (without ambiguity), targeted, and timely. These

features can improve timely awareness within distributed teams and can lead to

effective and efficient coordination. At the appropriate time, team members can be

made aware of when they should coordinate in order to respond to others’ activities

carried out at different sites.

 Conclusion

This chapter begins with an overview of the four key solution requirements

for the framework of active Software Engineering Ontology solution development.

Definitions and explanations of a software agent, the differences between agent and

traditional software applications, multi-agent system, and the integration of ontology

and multi-agent systems, are given to justify the feasibility of using the ontology-

based multi-agent approach as the underlying framework of this study. Then

explanations of how the ontology-based multi-agent system approach can be utilised

to serve each solution requirement, namely, automated knowledge capture of

software project information, Software Engineering Ontology instantiations

management, and active platforms for multi-site software development

environments, are given. In the next chapter, the development approach for an

active Software Engineering Ontology framework will be discussed in detail.

 References

Braubach, Lars, Alexander Pokahr, Dirk Bade, Karl-Heinz Krempels, and Winfried

Lamersdorf. 2005. "Deployment of distributed multi-agent systems." In

Engineering Societies in the Agents World V: 5th International Workshop,

ESAW 2004, Toulouse, France, October 20-22, 2004. Revised Selected and

Invited Papers, eds Marie-Pierre Gleizes, Andrea Omicini and Franco

Zambonelli, 261-276. Berlin, Heidelberg: Springer Berlin Heidelberg.

105

Dolgui, Alexandre, Jurek Sasiadek, Marek Zaremba, N. Benhajji, D. Roy, and D.

Anciaux. 2015. "15th IFAC Symposium onInformation Control Problems in

Manufacturing Patient-centered multi agent system for health care." IFAC-

PapersOnLine 48 (3): 710-714. doi:

http://dx.doi.org/10.1016/j.ifacol.2015.06.166.

Elamy, A.H. 2005. "Perspectives in agent-based technology." AgentLinkNews 18:

19-22.

The Foundation for Intelligent Physical Agents. 2015. Accessed January 5, 2016,

http://www.fipa.org.

Freitas, Artur, Alison R Panisson, Lucas Hilgert, Felipe Meneguzzi, Renata Vieira,

and Rafael H Bordini. 2015. "Integrating ontologies with multi-agent systems

through CArtAgO artifacts" 2015 IEEE/WIC/ACM International Conference

on Web Intelligence and Intelligent Agent Technology (WI-IAT), Singapore:

IEEE.

Garanina, Natalia Olegovna, Elena A Sidorova, and Evgeny V Bodin. 2013. "A

multi-agent approach to unstructured data analysis based on domain-specific

onthology" The 22nd International Workshop on Concurrency, Specification

and Programming, Warsaw, Poland: Citeseer.

García-Sánchez, Francisco, Rafael Valencia-García, Rodrigo Martínez-Béjar, and

Jesualdo T. Fernández-Breis. 2009. "An ontology, intelligent agent-based

framework for the provision of Semantic Web services." Expert Systems with

Applications 36 (2, Part 2): 3167-3187. doi:

http://dx.doi.org/10.1016/j.eswa.2008.01.037.

Hammouch, H., H. Medromi, and A. Sayouti. 2015. "Toward an intelligent system

for project management based on the multi agents systems" 2015 10th

International Conference on Intelligent Systems: Theories and Applications

(SITA), doi: 10.1109/SITA.2015.7358412.

Isern, David, David Sánchez, and Antonio Moreno. 2010. "Agents applied in health

care: A review." International Journal of Medical Informatics 79 (3): 145-166.

doi: http://dx.doi.org/10.1016/j.ijmedinf.2010.01.003.

http://dx.doi.org/10.1016/j.ifacol.2015.06.166
http://www.fipa.org/
http://dx.doi.org/10.1016/j.eswa.2008.01.037
http://dx.doi.org/10.1016/j.ijmedinf.2010.01.003

106

Jennings, Nicholas R. 2000. "On agent-based software engineering." Artificial

Intelligence 117 (2): 277-296. doi: 10.1016/s0004-3702(99)00107-1.

Jimnez, Miguel, Mario Piattini, Aurora Vizca, and no. 2009. "Challenges and

improvements in distributed software development: a systematic review."

Advances in Software Engineering 2009: 1-16. doi: 10.1155/2009/710971.

Khan, Rafiq Ahmad, and Siffat Ullah Khan. 2014. "Communication and coordination

challenges in offshore software outsourcing relationships: A systematic

literature review protocol." Gomal University Journal of Research 30 (1): 9-

17.

Li, Li, Baolin Wu, and Yun Yang. 2005. "Agent-based ontology integration for

ontology-based applications." In Proceedings of the 2005 Australasian

Ontology Workshop - Volume 58, Sydney, Australia, 53-59. 1151943:

Australian Computer Society, Inc.

Mohamed, Gharzouli, and Derdour Makhlouf. 2014. "To implement an open-MAS

architecture for Semantic Web services discovery: what kind of P2P protocol

do we need?" International Journal of Agent Technologies and Systems

(IJATS) 3 (6): 58-71. doi: 10.4018/ijats.2014070103.

Ngan, Le Duy, and Rajaraman Kanagasabai. 2013. "Semantic Web service

discovery: State-of-the-art and research challenges." Personal and Ubiquitous

Computing 17 (8): 1741-1752. doi: 10.1007/s00779-012-0609-z.

Rady, Hussein A. 2011. "Multi-agent system for negotiation in a collaborative supply

chain management." International Journal of Video & Image Processing and

Network Security IJVIPNS-IJENS 11 (5).

Shakshuki, Elhadi, and Malcolm Reid. 2015. "Multi-agent system applications in

healthcare: Current technology and future roadmap." Procedia Computer

Science 52: 252-261.

Terje, Kristensen, and Dyngeland Marius. 2015. "Design and development of a

multi-agent e-learning system." International Journal of Agent Technologies

and Systems (IJATS) 7 (2): 19-74. doi: 10.4018/IJATS.2015040102.

107

Turban, Efraim, Ramesh Sharda, and Dursun Delen. 2010. Decision Support and

Business Intelligence Systems: Prentice Hall Press.

Vaniya, Sandip, Bhavesh Lad, and Shreyansh Bhavsar. 2011. "A survey on agent

communication languages." In International Conference on Innovation,

Management and Service, Singapore, 16-18 September 2011. IACSIT.

Wooldridge, Michael. 2009. An Introduction to Multiagent Systems: John Wiley &

Sons.

Wooldridge, Michael, and Nicholas R Jennings. 1995. "Intelligent agents: Theory

and practice." The Knowledge Engineering Review 10 (02): 115-152.

Ye, D., M. Zhang, and A. V. Vasilakos. 2016. "A survey of self-organization

mechanisms in multiagent systems." IEEE Transactions on Systems, Man, and

Cybernetics: Systems PP (99): 1-21. doi: 10.1109/TSMC.2015.2504350.

Zimmermann, Roland. 2006. Agent-based Supply Network Event Management,

Whitestein Series in Software Agent Technologies. Switzerland: Birkhäuser

Verlag.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

108

 Conceptual Framework

 Introduction

In the previous chapter, the four key solution requirements for the framework

of active Software Engineering Ontology solution development were identified. This

was followed by the justification of an ontology-based multi-agent approach as a

solution to the corresponding research issues and each solution requirements,

namely, automated knowledge capture of software project information, Software

Engineering Ontology instantiations management, and active platforms for multi-site

software development environments.

This chapter begins with a brief overview of several existing agent-oriented

software engineering methodologies in order to justify the appropriate methodology

to be used for the development of the proposed framework. In this thesis, the basic

software engineering processes such as analysis, design, implementation and

evaluation are used and integrated with the Agent Unified Modelling Language

(AUML) in order to provide the complete development processes of the framework

of active Software Engineering Ontology. The framework development is divided

into the macro-perspective and the micro-perspective as proposed in (Zimmermann

2006). The first one involves the design of an agent society as a whole while each

individual agent type is regarded as a black-box. The latter one refers to the detailed

design of each agent type. In this chapter, only the macro-perspective is considered

and discussed in order to create the structure of an agent society and its inter-agent

interactions. The micro-perspective will be discussed subsequently in Chapters 6 and

7.

109

 Overview of Existing Agent-Oriented Software
Engineering Methodologies

A number of methodologies have been proposed that offer well-defined

guidelines and systematic approaches for the development of a multi-agent system.

These methodologies differ in their intended purposes, concepts, approaches,

processes, and modelling notations. Several examples of these methodologies are

presented with brief descriptions below.

5.2.1 GAIA

GAIA was one of the first methodologies intended to facilitate the

development of an agent-based system (Wooldridge, Jennings and Kinny 2000;

Wooldridgey and Ciancarini 2001). It consists of two main phases, namely, the

analysis phase and design phase. The results of these two phases are a set of models

that are used to implement the multi-agent system. In the analysis phase, the agent’s

roles and its associated protocols are analysed in order to produce the roles model

and interactions model. In the design phase, different agent types are derived from

the identified roles in order to create the agent model. The services or functions of

the agents are also described to create the services model. Finally, the

communication links between different agent types are defined as the acquaintance

model.

5.2.2 Agent Unified Modelling Language (AUML)

Agent Unified Modelling Language (AUML) has been used as a standard

representation by FIPA in order to describe agent communication and protocols

(Huget and Odell 2005; Huget, Odell and Bauer 2004). The main purpose of AUML

is to give developers a notation to analyse, design, and implement an agent-based

system. It is based on the UML object-oriented modelling representation and it is

extended to represent agents, their behaviour, and interactions among them.

Therefore, the developers who are familiar with the UML diagrams can easily

understand and use the AUML diagrams to capture the agent concepts and its

interactions.

110

5.2.3 Multi-agent Systems Engineering (MaSE) and Organisation-based
Multi-agent System Engineering (O-MaSE)

Multi-agent Systems Engineering (MaSE) has been developed to facilitate

the entire development process of a multi-agent system from problem description to

realisation (DeLoach 2004; Wood and DeLoach 2001). It comprises three main

phases, namely, analysis, design, and implementation. MaSE applies a number of

standard UML object-oriented modelling notations to describe the agent types in a

system and their interactions to other agents. It also includes an architecture-

independent detailed definition of the internal design of an agent. MaSE is designed

to develop general-purpose multi-agent systems and provides several advantages.

However, it needed some improvement, such as the inclusion of a mechanism to

model agent interactions within the environment. Thus, MaSE has now been replaced

by the Organisation-based Multi-agent Systems Engineering (O-MaSE).

The purpose of O-MaSE methodology is to assist developers to create

customised agent-oriented software engineering processes. A metamodel, a set of

method fragments, and a set of method construction guidelines are the three main

components of the O-MaSE methodology. The metamodel identifies a set of key

components that are required for the analysis, design, and implementation of a multi-

agent system. The method identifies the separate tasks that need to be executed to

create a set of work products such as code, models, or a set of activities and their

actors. The method construction guidelines show how the method fragments are

related to each other (DeLoach 2014).

5.2.4 MAS-CommonKADS

MAS-CommonKADS originated from the extension of CommonKADS, a

well-known knowledge engineering methodology, and object-oriented methodology

for the development of a multi-agent system (Carlos and Mercedes 2005). The MAS-

CommonKADS software development life cycle comprises five main phases:

conceptualisation, analysis, design, implementation and testing, and operation. In the

111

conceptualisation phase, the agent properties are identified. The analysis phase

involves an analysis of the system from different perspectives. The outputs from the

analysis phase are refined in the design phase. The system is coded and tested during

the development and testing phase. Finally, during the operation phase, the system is

operated and maintained.

5.2.5 MESSAGE

MESSAGE is an agent-oriented software engineering methodology that

includes the analysis and design phases of the multi-agent systems development

(Francisco, Jorge and Philippe 2005). It extends the basic UML concepts with new

agent-relevant concepts and notations as well as enriches with the Rational Unified

Process (RUP) model for the analysis and design of the system. The objective of the

analysis phase is to produce a system specification or an analysis model to define the

problem to be resolved. During the design phase, the artefacts produced in the

analysis model are mapped into software entities (e.g., classes, objects, operation

signatures, interfaces, etc.) for the implementation.

5.2.6 Process for Agent Societies Specification and Implementation (PASSI)

Process for Agent Societies Specification and Implementation (PASSI) is a

methodology for the development of a multi-agent system that combines design

models and concepts from object-oriented software engineering and artificial

intelligence techniques (Massimo 2005). PASSI is made up of five models, namely,

system requirements model, agent society model, agent implementation model, code

model, and deployment model. The system requirements model is related to the

analysis of the system with respect to agency and its purpose. The agent society

model involves the interactions and dependencies among agents of the society. The

agent implementation model defines development detail of the system architecture

with regard to classes, attributes, and methods. The code model describes a

representation of the system at the code level. Finally, the deployment model

represents the distribution of sub-systems across hardware processing units and their

migration between processing units.

112

5.2.7 PROMETHEUS

Prometheus is a methodology that allows developers to analyse, design, and

implement a multi-agent system by covering all software engineering processes

(Gomez, Isern and Moreno 2007; Padgham and Winikoff 2003). Prometheus has

been specifically designed to facilitate the development of the belief-desire-intention

(BDI) agents. There are three main phases as follows.

• System specification - This phase focuses on the identification of the

functionalities of the systems.

• Architectural design - This phase is to identify which agents should exist in

the system and then assign their functionalities including events, interactions,

and shared data objects.

Detailed design - This phase focuses on the design of the internal structure of

individual agents and how they complete their tasks within a system.

5.2.8 The Agent-Oriented Development Methodology (ADEM)

The Agent-Oriented Development Methodology (ADEM) is a development

methodology that focuses on modelling aspects of agent-based systems utilising the

Agent-Modelling Language (AML) as a modelling language (Sturm and Shehory

2014). ADEM comprises method fragments, techniques, artefacts, and guidelines to

support the creation of multi-agent system models. It principally addresses the

business modelling, requirements, and analysis and design workflows. Even though

ADEM does not cover the whole software development process and defines only the

multi-agent system-specific parts of the process, it extends RUP to define other parts

in order to complete the methodology.

113

 Development Approaches

In order to develop the framework for active Software Engineering Ontology,

a suitable software engineering methodology is required. In this thesis, the AUML

has been chosen as an appropriate methodology for the development process. AUML

is an extension of UML modelling representation for agents and has been selected as

the standard de facto used by FIPA to capture agent concepts and their interactions.

However, the AUML focuses mainly on the design of multi-agent systems by using

and extending the widely-used UML notations. The methodology does not cover the

complete process of software development life cycle. Therefore, the basic software

engineering processes (i.e., analysis, design, implementation, and evaluation)

(Zimmermann 2006; Nienaber 2008) are additionally integrated with the AUML in

this thesis in order to complete a full life-cycle specification of the system

development.

According to Zimmermann (2006), the fundamental software engineering

steps are generally applied to the development of agent-based systems. There are two

main categories of these systems, namely, macro-perspective and micro-perspective

(Figure 5-1).

Figure 5-1: Macro- and micro-perspective of AOSE (Zimmermann 2006)

5.3.1 Macro-perspective

The macro-perspective (Zimmermann 2006) focuses on the analysis and

design phases of an agent society as a whole, while an individual agent is regarded as

114

a black-box. The requirements of a multi-agent system are analysed and the overall

solution is designed which includes the structure of the agent society and the

interactions and dependencies among different agent types. These specifications are

subsequently refined in the micro-perspective in the next chapters. There are two

main phases in the macro-perspective, namely, the analysis phase and the design

phase.

Within the analysis phase, the environment, roles, and interactions are

considered according to the system requirements. Their details are given below.

• The environment of a multi-agent system is analysed. For example, the

domain and the problem that a system is intended to provide a solution or the

objectives of a system.

• The roles to fulfil main functions of a multi-agent system are defined.

• Interactions between functions are modelled to define the cooperation.

At the end of the system analysis phase, the outputs of this phase are used in

the design phase in order to model the holistic model of the system. The defined

roles are realised as agent types. The structural dependencies between them are also

identified to form an agent society. Then the interactions in the analysis phase are

transformed into speech act communications among different agent types.

5.3.2 Micro-perspective

The outputs of the design phase of the macro-perspective become the

specifications for each agent type. These specifications are refined into resources,

behaviours, and interactions during the design phase of the micro-perspective as

follows (Bauer and Müller 2004; Zimmermann 2006).

• Resources – These comprise the information that an agent can use to perform

activities, namely, its internal knowledge assets, its goals, and external

resources (e.g., rules, databases, ontologies).

• Behaviours – They describe how an agent performs activities that utilise its

115

available resources to satisfy its goal.

• Interactions – They describe how an agent interacts with other agents in order

to exchange information according to the agent’s behaviours.

In the next section, the development of the active Software Engineering

Ontology through a multi-agent agent system in accordance with the macro-

perspective is discussed in detail.

 Active Software Engineering Ontology through a
Multi-Agent System Engineering

In this section, the macro-perspective of the active Software Engineering

Ontology through a multi-agent system (SEOMAS) framework is discussed. First,

the system requirements according to the previously defined research issues are

analysed. These requirements lead to the identification of corresponding roles and

agent types in the framework. Finally, the structure of an agent society is defined

along with its dynamic interactions among different agent types.

5.4.1 System Requirements

The proposed SEOMAS framework is intended to provide active support to

assist software development team members with software engineering knowledge

when they are working on software development projects. The requirements of the

system are listed below.

• Knowledge capture of software project information

- Annotating new imported software project information imported into

the version control repository with the appropriate concepts defined in

the Software Engineering Ontology.

- Populating new instance knowledge identified from the semantic

annotation process.

116

• Software Engineering Ontology instantiations management

- Querying instance knowledge.

- Manipulating instance knowledge (i.e., adding, modifying, deleting).

- Recommending the impact of instance knowledge manipulation

according to software evolution by considering the change made and

how it affects other artefacts and team members.

• Advanced services in addition to the instantiations management

- Providing useful and relevant knowledge (e.g. a potential bug fixer or

expert, information about software components and their

dependencies).

- Proactively monitoring software project information to detect the

probability of deviations or disruptive events in anticipation of

encountering situations that may threaten the success of the software

project.

- Generating real-time notification messages to enable effective

management of the awareness of remote software development teams.

5.4.2 Roles and Agent Types

The aforementioned system requirements are mapped and assigned various

roles as following.

• VersionControlManager

This role is to manage the version control repository. In this research,

the focus is on the import of source code artefacts into the version control

repository, leading to the activation of the semantic annotation process.

• SemanticAnnotator

This role is to automate the semantic annotation process. The source

code which is considered as the main artefact centrally located and critical in

software development is assigned with software engineering domain

knowledge concepts in order to clarify any ambiguity in distant

communication.

117

• InstanceKnowledgeManager

This role is to access and manage the instance knowledge. It involves

querying, adding, modifying, or deleting the instance knowledge. The addition

of new instance knowledge also includes the population of the ontology with

new instances identified by the SemanticAnnotator role.

• Recommender

This role is to generate recommendation regarding the impact of a

change made to the instantiation. It also involves the monitoring of certain

instantiations in order to proactively identify any possible deviation or

disruptive events before they actually occur. In addition, it manages the

messages that are sent to notify other relevant agents.

• ACLMessageGenerator

 This role translates the request from a user into an ACL message and

sends it to a corresponding agent.

• OutputGenerator

This role transforms the content of an ACL message into meaningful

output and delivers it to the user.

• DomainKnowledgeManipulationRequester and DomainKnowledgeManager

These two roles are related to the Software Engineering Ontology

evolution which is about the manipulation of domain knowledge of the

Software Engineering Ontology. The DomainKnowledgeManipulation-

Requester role maintains the output from the Software Engineering Social

Network system (SESN) in an ontology evolution repository and notifies the

ontology agent to update the Software Engineering Ontology domain

knowledge. More information about SESN can be found in (Aseeri 2011) and

(Kasisopha 2013). The DomainKnowledgeManager is responsible for updating

the Software Engineering Ontology domain knowledge.

 All the abovementioned system requirements and roles derive the specific

agent types according to the cluster of roles as shown in Table 5-1.

118

Table 5-1: The mapping of system requirements to agents’ roles and their associated agent types

System requirements Roles Cluster of roles Agent types

Manage the version control repository VersionControlManager Version control
management

VersionControl
agent

Capture software engineering knowledge from the

software project information based on the concepts

described in the Software Engineering Ontology
SemanticAnnotator

Semantic
annotation

Annotation
agent

Querying domain knowledge.
DomainKnowledgeManager

Knowledge
management Ontology agent

Manipulating domain knowledge

Querying instance knowledge.
InstanceKnowledgeManager

Manipulating instance knowledge

Recommending the impact of instance knowledge

manipulation

Recommender

Recommendation
and notification

management

Recommender
agent

Providing useful and relevant knowledge

Proactively monitoring software project information

Generating real-time notification messages

119

System requirements Roles Cluster of roles Agent types

Maintaining the output from the Software Engineering
Social Network system (SESN) in an ontology
evolution repository

DomainKnowledge-
ManipulationRequester

Domain
knowledge

manipulation
proposal

Evolution
agent 1

Mediating between a user and the system ACLMessageGenerator Communication
management User agent

OutputGenerator

1 The evolution agent is not included because its functionality is beyond the scope of this thesis. See section 5.4.3 for more detail.

120

5.4.3 Architecture Modelling

 The proposed architecture of the SEOMAS framework is illustrated in

Figure 5-2. It comprises six agent types with brief descriptions of their roles as

follows.

User agent (UA) is a mediator between a user and the system. A user

employs his/her user agent to perform tasks on his/her behalf. Its roles are

ACLMessageGenerator and OutputGenerator.

VersionControl agent (VA) is responsible for managing the version control

repository. In this research, this agent focuses on the import of new source code

file(s) into the version control repository. Its role is VersionControlManager.

Annotation agent (AA) is responsible for annotating software project

information that is imported into the version control repository. Its role is

SemanticAnnotator.

Ontology agent (OA) is responsible for accessing and manipulating the

Software Engineering Ontology domain and instance knowledge. It also manages the

ontology population according to the semantic annotation process. Its roles are

DomainKnowledgeManager and InstanceKnowledgeManager.

Recommender agent (RA) is responsible for generating recommendations

and notification (e.g., change impact analysis, expert identification). Its role is

Recommender.

Evolution agent (EA) is responsible for facilitating the Software Engineering

Ontology evolution. Its role is DomainKnowledgeManipulationRequester.

It is to be noted that the Software Engineering Ontology domain knowledge

evolution is beyond the scope of this thesis. In addition, currently there are many

research efforts in the ontology evolution field such as those of (De Leenheer 2009;

Zablith et al. 2015; Palma et al. 2012). Therefore, the role DomainKnowledge-

ManipulationRequester of the evolution agent and the role DomainKnowledge-

Manager of the ontology agent are not pertinent to this research. In this research, the

121

focus is on the management of the evolution of instance knowledge only. The

architecture of active Software Engineering Ontology through a multi-agent system

is shown in Figure 5-2. The evolution agent and its interaction with the ontology

agent are represented in grey to indicate that they are not implemented.

Figure 5-2: The active Software Engineering Ontology through a multi-agent system
architecture

In Figure 5-2, a user agent is initialised when each user logs in to the system.

It will check with the user profile in order to manage the access level allocation

according to the user’s role in the software project such as project manager, team

leader, requirement engineer, analyst, developer and tester. This ensures that each

user has the level of access enabling him/her to perform operations that are his/her

responsibility. There are four main processes: semantic annotation and ontology

population, query, ontology instantiations manipulation, and monitoring. They are

differentiated by the colour of the arrows. The explanation of these processes is as

122

follows.

The semantic annotation and ontology population processes are represented

by the red arrows. When a team member would like to import new software project

information file (e.g., source code) into the version control repository, his/her user

agent sends a request message to the versioncontrol agent. The versioncontrol agent

then imports the requested file into the version control repository. Once the

annotation agent perceives that the file is imported, it applies the ontological concept

from the Software Engineering Ontology domain knowledge to semantically

annotate the project information to identify new instances. The ontology agent then

inserts these new instances into the ontology knowledge base. Finally, the Software

Engineering Ontology is populated with new instances.

The query process is indicated by the green arrows. It starts with the user

sending a query to his/her user agent. The user agent generates a message and sends

it to the ontology agent which is responsible for querying the knowledge in the

ontology. The ontology agent then retrieves the requested information and sends it

back to the user agent.

The Software Engineering Ontology instantiations manipulation process is

indicated by the brown arrows. Once the user agent receives a request to manipulate

the instance knowledge, it generates a request message to the ontology agent. The

ontology agent requests the recommender agent to send a recommendation regarding

the impact of a change made to the instantiation to the user agent. If the user

confirms the manipulation request, the ontology agent manipulates the instance

knowledge and the recommender agent sends the notifications to relevant user agents

about the change made and how it affects the users’ workspaces.

The monitoring of particular instance knowledge is indicated by the purple

arrows. There are three main events that trigger the recommender agent to send a

notification to the corresponding user which are: i) a threshold is reached, ii) a

specific condition occurs, and iii) every appointed period of time is met (day, week,

month, etc.). More details in regard to proactively monitoring of software project

information are given in Chapter 7, section 7.5.2.2.3.

123

5.4.4 Structural design of the agent society

In the design phase of the macro-perspective, the AUML class diagram at the

conceptual level is used to provide the structure of an agent society in order to

describe the structural interdependencies between the agents (Huget 2003). In

addition, it provides an overview of the main types of knowledge assets or

knowledge resources that an agent requires in order to fulfil its task (Figure 5-3).

11
<<agent>>
User agent

<<agent>>
VersionControl agent

<<agent>>
Annotation agent

<<agent>>
Ontology agent

1..*

1

1

1

11

<<agent>>
Recommender agent

1

1

1..*

1

<<class>>
SE Ontology

<<class>>
SE Ontology

<<class>>
SE Ontology

11

<<class>>
SE Ontology

11
11

<<class>>
Rules/Formulas

1..*1

<<class>>
SE Ontology

11

<<class>>
Other vocabularies

and datasets

1..*1

1..* 1

Figure 5-3: AUML class diagram of the macro-perspective of an agent society

In Figure 5-3, user agents have a many-to-one relationship with the

versioncontrol agent. Each user agent sends a request to the versioncontrol agent to

import new project information file into the version control repository. The

versioncontrol agent has a direct link to the annotation agent with a one-to-one

relationship to initiate the semantic annotation service. The annotation agent also has

a one-to-one relationship with the ontology agent for the ontology population of new

instances identified from the annotation process. The ontology agent has a one-to-

one relationship with the recommender agent to request for generating

recommendations and notifications. Lastly, the ontology agent and the recommender

agent have a one-to-many relationship with user agents in order to deliver retrieved

result, recommendations, and notifications to the corresponding user agents.

Furthermore, in this diagram, the knowledge assets that the agents require in

order to fulfil their tasks are represented as classes. Every agent needs the Software

124

Engineering Ontology to facilitate consistent communication. The annotation agent

requires knowledge from the Software Engineering Ontology to semantically

annotate software project information. It also requires knowledge from additional

classes such as other vocabularies and datasets in order to enrich semantic

descriptions of the annotated software project information. Moreover, depending on

the particular task, the recommender agent needs specific rules or formulas to apply

to the retrieved instance knowledge in order to process the recommendations.

5.4.5 Agent Interoperations

In order to achieve the SEOMAS goals, multiple agents need to interact with

one another according to their roles. The AUML sequence diagram is used to model

the dynamic interactions within the agent society as presented in Figure 5-4. The

standardised FIPA Request interaction protocol (FIPA 2002) is used as a main

protocol in this research. The content of the messages is defined based on the

Software Engineering Ontology in order to facilitate consistent communication

among different agents.

According to semantic annotation of software project information and

ontology population, once a developer finalises the source code, he/she makes a

request to import it into the version control repository through his/her user agent. The

user agent then creates an ACL request message and sends it to the versioncontrol

agent. After the file is imported, the annotation agent is initiated to semantically

annotate the source code with the Software Engineering Ontology domain concepts.

It then sends a request to the ontology agent to populate the new instances identified

from the annotation process into the Software Engineering Ontology repository.

When querying instance knowledge, a user agent sends a message to the

ontology agent. The ontology agent retrieves the instance knowledge as requested

and then sends the result back to the user agent. If not result is retrieved, a failure

message is sent to the user agent.

In order to manipulate the Software Engineering Ontology instance

knowledge, a user agent sends a request to the ontology agent. The ontology agent

sends a request to the recommender agent to notify the user about the change impact

125

that can be occurred from the manipulation to make him/her aware of any unintended

side effects. If the user confirms the request, the ontology agent manipulates the

instance knowledge as requested. The recommender agent then sends the

notifications about the instance knowledge manipulation and the potentially affected

artefacts to the relevant user agents.

Regarding the monitoring of software project information, when the

recommender agent monitors particular instance knowledge and can identify any

deviation, the notification is generated and sent to the relevant user agents.

At the conclusion of the design phase of the macro-perspective, the outputs

which are regarded as agent specifications for each agent type will be refined in the

micro-perspective. These specifications are refined into resources, behaviours, and

interactions and presented according to the proposed solutions of the framework of

active Software Engineering Ontology in Chapters 6 and 7. In these two chapters, the

prototype system is implemented and evaluated in terms of their ability to provide

active support to remote team members working collaboratively in a multi-site

software development setting.

126

User agent VersionControl agent

REQUEST
(ProjectInformation

ImportRequest) Import project info
to version control

repository

Ontology agentAnnotation agent

REQUEST
(AnnotationRequest) Annotate project

information

Recommender agent

REQUEST
(InstancePopulation)

Populate instancesINFORM (Ontology
PopulationNotification)

FAILURE

x
[not success]

[success]INFORM (QueryResult)

FAILURE

x
[not success]

[success]CONFIRMATION

Generate change impact
recommendation

Generate change
impact notification

Manipulate
instances

Query instances

Capture Knowledge

Query Knowledge

Instance Knowledge
Manipulation REQUEST

 (AddInstanceRequest/ModifyInstanceRequest/DeleteInstanceRequest)

REQUEST
 (ConfirmModificationRequest|ConfirmDeletionRequest)

REQUEST
 (ChangeImpact

NotificationRequest)

REQUEST
 (ChangeImpact

Recommendation
Request)

Project Monitoring

Monitoring instance
knowledge

INFORM (Notification)

xx

[condition met]

[condition not met]

x
[not success]

[success]
CONFIRMATION

FAILURE

REQUEST (QueryRequest)

INFORM
(ChangeImpactRecommendation)

INFORM
(ChangeImpactNotification)

Figure 5-4: Overall interactions among the agents

127

 Conclusion

This chapter begins with a brief overview of several well-known existing

agent-oriented software engineering methodologies. The integration of the macro-

perspective and micro-perspective of agent-oriented software engineering as well as

the AUML methodology are used to implement the active Software Engineering

Ontology through multi-agent system framework. Then the analysis and design

phases of the macro-perspective are discussed in detail to derive the overall solution

including the structure of agent society and its dynamic interactions that results in the

agent specifications of each agent type. These specifications will be used for the

micro-perspective of the agent-oriented software engineering.

The next chapters describe the micro-perspective of the SEOMAS agents and

the SEOMAS platforms in accordance with the proposed solutions of the framework

for active Software Engineering Ontology in the order summarised. They are then

followed by the evaluation chapter which details the evaluation of the complete

framework.

Chapter 6 - Solution 1: Automated Knowledge Capture from Software

Project Information

Chapter 7 – Solution 2: Software Engineering Ontology Instantiations

Management

Chapter 8 – Solution 3: Active Platforms for Multi-site Software

Development Environments

Chapter 9 – Active Software Engineering Ontology Framework Evaluation

 References

Aseeri, Ahmed Abdulridha. 2011. "Lightweight Community-Driven Approach to

Support Ontology Evolution." Master of Philosophy (Information Systems),

Curtin University.

128

Bauer, Bernhard, and Jörg Müller. 2004. "Methodologies and modeling languages."

Luck M., Ashri R. D’Inverno M.(eds.): Agent-Based Software Development.

Artech House Publishers, Boston, London.

Carlos, A. Iglesias, and Garijo Mercedes. 2005. "The agent-oriented methodology

MAS-CommonKADS." In Agent-Oriented Methodologies, 46-78. Hershey,

PA, USA: IGI Global.

De Leenheer, Pieter. 2009. "On Community-based Ontology Evolution."

Dissertation, Vrije Universiteit Brussel, Brussels, Belgium.

DeLoach, Scott A. 2004. "The MaSE methodology." In Methodologies and Software

Engineering for Agent Systems: The Agent-Oriented Software Engineering

Handbook, eds Federico Bergenti, Marie-Pierre Gleizes and Franco

Zambonelli, 107-125. Boston, MA: Springer US.

———. 2014. "O-MaSE: An extensible methodology for multi-agent systems." In

Agent-Oriented Software Engineering: Reflections on Architectures,

Methodologies, Languages, and Frameworks, eds Onn Shehory and Arnon

Sturm, 173-191. Berlin, Heidelberg: Springer Berlin Heidelberg.

FIPA. 2002. Foundation for intelligent physical agents: FIPA request interaction

protocol specification. Accessed November 23, 2015,

http://www.fipa.org/specs/fipa00026/SC00026H.pdf.

Francisco, J. Garijo, J. Gomez-Sanz Jorge, and Massonet Philippe. 2005. "The

MESSAGE methodology for agent-oriented analysis and design." In Agent-

Oriented Methodologies, 203-235. Hershey, PA, USA: IGI Global.

Gomez, C, D Isern, and A Moreno. 2007. Software engineering methodologies to

develop multi-agent systems: state-of-the-art.

Huget, Marc-Philippe. 2003. "Agent UML class diagrams revisited." In Agent

Technologies, Infrastructures, Tools, and Applications for E-Services, 49-60.

Springer.

http://www.fipa.org/specs/fipa00026/SC00026H.pdf

129

Huget, Marc-Philippe, and James Odell. 2005. "Representing agent interaction

protocols with agent UML." In Agent-Oriented Software Engineering V: 5th

International Workshop, AOSE 2004, New York, NY, USA, July 19, 2004.

Revised Selected Papers, eds James Odell, Paolo Giorgini and Jörg P. Müller,

16-30. Berlin, Heidelberg: Springer Berlin Heidelberg.

Huget, Marc-Philippe, James Odell, and Bernhard Bauer. 2004. "The AUML

approach." In Methodologies and Software Engineering for Agent Systems:

The Agent-Oriented Software Engineering Handbook, eds Federico Bergenti,

Marie-Pierre Gleizes and Franco Zambonelli, 237-257. Boston, MA: Springer

US.

Kasisopha, Natsuda. 2013. "Development of Semantic Wiki as a Basis for Software

Engineering Ontology Evolution." Master of Philosophy (Information

Systems), Curtin University.

Massimo, Cossentino. 2005. "From requirements to code with PASSI methodology."

In Agent-Oriented Methodologies, eds Henderson-Sellers Brian and Giorgini

Paolo, 79-106. Hershey, PA, USA: IGI Global.

Nienaber, Rita C. 2008. "A Model for Enhancing Software Project Management

Using Software Agent Technology." University of South Africa.

Padgham, Lin, and Michael Winikoff. 2003. "Prometheus: A methodology for

developing intelligent agents." In Agent-Oriented Software Engineering III:

Third International Workshop, AOSE 2002 Bologna, Italy, July 15, 2002

Revised Papers and Invited Contributions, eds Fausto Giunchiglia, James

Odell and Gerhard Weiß, 174-185. Berlin, Heidelberg: Springer Berlin

Heidelberg.

Palma, Raúl, Fouad Zablith, Peter Haase, and Oscar Corcho. 2012. "Ontology

evolution." In Ontology Engineering in a Networked World, eds Mari Carmen

Suárez-Figueroa, Asunción Gómez-Pérez, Enrico Motta and Aldo Gangemi,

235-255. Springer Berlin Heidelberg.

Sturm, Arnon, and Onn Shehory. 2014. "The landscape of agent-oriented

methodologies." In Agent-Oriented Software Engineering: Reflections on

130

Architectures, Methodologies, Languages, and Frameworks, eds Onn Shehory

and Arnon Sturm, 137-154. Berlin, Heidelberg: Springer Berlin Heidelberg.

Wood, Mark F., and Scott A. DeLoach. 2001. "An overview of the multiagent

systems engineering methodology." In Agent-Oriented Software Engineering:

First International Workshop, AOSE 2000 Limerick, Ireland, June 10, 2000

Revised Papers, eds Paolo Ciancarini and Michael J. Wooldridge, 207-221.

Berlin, Heidelberg: Springer Berlin Heidelberg.

Wooldridge, Michael, Nicholas R. Jennings, and David Kinny. 2000. "The Gaia

methodology for agent-oriented analysis and design." Autonomous Agents and

Multi-Agent Systems 3 (3): 285-312. doi: 10.1023/a:1010071910869.

Wooldridgey, Michael, and Paolo Ciancarini. 2001. "Agent-oriented software

engineering: The state of the art." In Agent-Oriented Software Engineering:

First International Workshop, AOSE 2000 Limerick, Ireland, June 10, 2000

Revised Papers, eds Paolo Ciancarini and Michael J. Wooldridge, 1-28.

Berlin, Heidelberg: Springer Berlin Heidelberg.

Zablith, Fouad, Grigoris Antoniou, Mathieu d'Aquin, Giorgos Flouris, Haridimos

Kondylakis, Enrico Motta, Dimitris Plexousakis, and Marta Sabou. 2015.

"Ontology evolution: a process-centric survey." The Knowledge Engineering

Review 30 (01): 45-75. doi: 10.1017/S0269888913000349.

Zimmermann, Roland. 2006. Agent-based Supply Network Event Management,

Whitestein Series in Software Agent Technologies. Switzerland: Birkhäuser

Verlag.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

131

 Ontology-based Multi-agent
Approach for Capturing
Software Project Information

 Introduction

The previous chapter focuses on the macro-perspective of agent-oriented

software engineering. The result is a holistic model of an ontology-based multi-agent

system which describes agent types, their roles, and basic interactions among agents.

In this chapter, the micro-perspective design of each agent type involved in the

semantic annotation of software project information and the ontology population is

explored. The ultimate goal is to capture, with minimum human intervention, the

knowledge pertaining to the software engineering domain contained in the project

information. Once the knowledge is captured and populated in the Software

Engineering Ontology, it can subsequently be used by project team members or

software agents to clarify any ambiguity or to address major software development

issues.

The chapter begins with the design of the internal models of the SEOMAS

agents, namely, user agent, versioncontrol agent, annotation agent, and ontology

agent who work collaboratively to capture knowledge of software project

information. Then the proposed design is realised by the prototype system

implementation for proof-of-concept experiments. Afterwards, the practical

application based on a case study related to bug resolution activities in a multi-site

software development project is demonstrated.

132

 Ontology-based Multi-agent System to Capture
Software Project Information

A large volume of software project information is produced in software

projects. Manually transforming or mapping them into a semantically rich form for

shared understanding is time-consuming, laborious, tedious and prone to error.

Hence, it is important to use a systematic approach to automate the knowledge

capture of software project information. Source code is considered as the main

artefact centrally located and critical in software development; therefore, this chapter

focuses on capturing software engineering knowledge from the source code. The

Software Engineering Ontology is mainly used to provide software engineering

domain knowledge by means of a semantic annotation process, and to link the

instances generated. In addition, it is used to facilitate consistent communication

between agents.

There are four main agent types involved in the knowledge capturing process,

namely, user agent, version control agent, annotation agent, and ontology agent.

They work collaboratively to assist project team members to capture knowledge from

source code artefacts by being transparently integrated into daily software

development tasks (i.e., version control). In the next section, details of each agent

type are given within the micro-perspective of AOSE. These details include

structures, agent behaviours and related agent interactions, and are described in

AUML models as shown in Figure 6-1.

Figure 6-1: Micro-perspective of each agent type described in AUML models

The structure of an agent is presented by the AUML class diagram at the

• Presented by AUML class diagrams at the
implementation levelStructures

• Presented by AUML activitiy diagramsBehaviours

• Presented by AUML sequence diagramsInteractions

133

implementation level presented in (Zimmermann 2006) which is adapted from

(Huget 2003; Bauer 2002). The AUML class diagram at the implementation level

depicts several aspects of an agent as follows.

• Role - All roles given to an agent type from the micro-perspective are

presented.

• Knowledge Asset – Main types of knowledge resources that an agent type

requires in order to fulfil its task.

• Behaviour – Various behaviours that an agent requires to fulfil its objective

are presented. They are similar to methods in object-oriented class diagrams.

Each behaviour is demonstrated in the format of Behaviour-type [pre-

condition] Beheaviour name [post-condition]. If a pre-condition is achieved,

the behaviour will be activated. A post-condition demonstrated the goal

which is achieved. Three types of behaviours are distinguished according to

(Zimmermann 2006; Huget 2003) which are proactive, reactive, and internal.

Proactive behaviours (Pro) are initiated by an agent based on their

knowledge, goals, or some given conditions such as timer, exceptions, or

conditions. Reactive behaviours (Reac) are triggered by a change in the

environment received with the agent’s sensor or in reaction to other agents’

actions. Internal behaviours (Int) are not visible to other agents. They are

initiated by a direct call from other behaviours or by a precondition which is

the consequence of another agent’s behaviour and are defined within the

agent.

• Perception: The various types of inputs that an agent perceives through its

sensors are presented.

• Protocol: The interaction protocols that an agent uses to construct a

conversation message to communicate with other agents. The standardised

FIPA Request interaction protocol (FIPA 2002) is used as a main protocol in

this research.

• Collaborator: The other agent types that an agent collaborates with.

134

There are two steps to model behaviours of an agent. The first step is to

structure the overview of all behaviours of an agent and the second step is to model

details of a behaviour with its various activities, potential alternatives and required

inputs and outputs. They are modelled based on UML activity diagrams proposed in

(Zimmermann 2006) adapted from a proposal of (Huget 2003). The interactions

among each agent type are modelled based on AUML sequence diagrams according

to its behaviours that act upon incoming messages or sending messages to other

agents.

 User Agent

A user agent is mainly responsible for mediating between a user and the

system. It manages user interface presentation and interactions. A user employs

his/her user agent to perform tasks on his/her behalf. In this chapter, a user makes a

request to import a software project information file to the version control repository

through his/her user agent. It then sends a request to the versioncontrol agent to

import the file. Once the file has been imported and has automatically captured and

populated in the Software Engineering Ontology, a user agent also receives a

messages to notify the user to validate and verify the logical consistency of the

ontology instances.

It is to be noted that in this chapter, the focus is only on the design and

development of the SEOMAS approach for the automated knowledge capture of

software project information. Therefore, the user agent’s features and behaviours

associated with the management of Software Engineering Ontology instantiation are

not mentioned here but will be described in Chapter 7.

6.3.1 Structure

An overview of the structural features of a user agent is illustrated with the

AUML class diagram at implementation level in Figure 6-2. Two main roles are

assigned to a user agent, namely, ACLMessageGenerator and OutputGenerator. The

135

knowledge asset or resource that any user agent requires to conduct its activities is

the Software Engineering Ontology. A user agent uses it as a shared ontology that

enables knowledge-level communication in the Software Engineering domain and

facilitates consistent communication among agents. The concepts defined in the

ontology are derived from the concepts structured in the Software Engineering to

facilitate agent interoperability. Every software agent type uses the Software

Engineering Ontology to assist in creating its ACL messages and to translate the

content received from other agents. The benefit of using the Software Engineering

Ontology for the agents’ communication is that it enables semantic interoperability

so that the messages will be understood by all agents. A user agent collaborates with

the version control agent by asking it to import software project information file (i.e.,

source code file) into a version control repository. It also collaborates with the

ontology agent by receiving a message to notify a team member about the ontology

population.

The ACLMessageGenerator role derives the reactive behaviour

GenerateACLMessage, while the OutputGenerator role derives the reactive

behaviour GenerateOutput. These two behaviours are analysed in the subsequent

section. Perceptions of a user agent are based on a request from its user

(userRequest) and from the ACL messages received from the versioncontrol agent

(confirmation or failure) and the ontology agent (ontologyPopulationNotification).

Regarding the protocol being used, a user agent employs an ACL message with a

FIPA-request protocol to request the versioncontrol agent to import a source code

file to a version control repository.

<<Agent>>
User Agent

Role
- ACLMessageGenerator
- OutputGenerator

Knowledge Asset
Software Engineering Ontology

Collaborator
- VersionControl agent
- Ontology agent

Behaviour
<<Reactive>>
 - Reac [userRequest] GenerateACLMessage [messageGenerated]

136

 - Reac [messageReceived] GenerateOutput [outputGenerated]
 - Reac [newUserInput] ReceiveUserInput [userInputProcessed]
- Reac [newMessage] ReceiveMessage [messageReceived]

<<Internal>>
 - Int [isCalled] SendMessage [messageSent]

Perception
- userRequest
- ACL_Messages(confirmation|failure|ontologyPopulationNotification)

Protocol
- Initiates the FIPA-request protocol with the versioncontrol agent

Figure 6-2: AUML class diagram at implementation level of a user agent

6.3.2 Behaviours

 Overview

An overview of the behaviours associated with the roles of a user agent and

the interdependencies between these behaviours is depicted in Figure 6-3. The

behaviour diagrams based on UML activity diagrams adopted from (Zimmermann

2006) are used to describe these behaviours. There are three behaviours that realise

the functions of sensors and effectors of a user agent:

1. The reactive behaviour ReceiveUserInput is triggered when a user makes

a new request through his/her user agent.

2. The reactive behaviour ReceiveMessage is activated when a new agent

message is received. It extracts the message content and makes it

available to other behaviours of the agent.

3. The internal behaviour SendMessage is initiated by other behaviours of

the agent. It works by sending out ACL messages to other agents.

It is to be noted that the behaviours ReceiveMessage and SendMessage are

two basic behaviours used for realising functions of sensors and effectors of all agent

types in the SEOMAS framework.

As an ACLMessageGenerator role, the reactive behaviour GenerateACL-

Message acts upon user requests that are received by the ReceiveUserInput

behaviour. It translates user requests into ACL messages and sends them to the

137

corresponding agent by the SendMessage behaviour. Within an OutputGenerator

role, when a user agent receives a message by the ReceiveMessage behaviour, the

reactive behaviour GenerateOutput is triggered. It transforms the ACL message into

a meaningful output and displays it to the user.

Figure 6-3: Overview of user agent behaviours

 ACL message generation behaviour

The ACLMessageGenerator role is realised by the behaviour

GenerateACLMessage. It constructs the ACL message based on a user request and

user input parameter. Detailed AUML activity diagrams for this behaviour are shown

in Figure 6-4. When a new request from a user is received, the GenerateACLMessage

behaviour becomes active. First, it identifies the type of requested service (e.g.

import software project information). Second, it defines the communicative act of a

newly constructed ACL message (e.g. Request) to indicate the action that the

message is meant to perform. Third, it specifies who is sending this message and to

whom this message is being sent. In this chapter, a user agent sends a request for

importing software project information to the versioncontrol agent. Then it sets the

interaction protocols to construct an agent conversation message (e.g., FIPA-

Request). The Software Engineering Ontology is registered to provide the context of

the system and to support the interpretation of the content by the receiving agent.

138

Then it defines the message content and the content language to indicate the

representation of the message content. Finally, a new ACL message is sent to other

agent types through the SendMessage behaviour.

[userRequest] GenerateACLMessage [messageGenerated]

Identify user request
service type

Define the ACL message
communicative act

Send ACL message to
receiver agent

UserRequest

ACL_MessageVA

ACL
(ProjectInformationImport

Request)
to VA

SE Ontology

UserRequest

Input/Output/
External Resource

Control flow

Set interaction protocol

[messageGenerated]

Flow description

Specify the sender and receiver
agent

Register shared ontology

Create content message

Set content language

Figure 6-4: The GenerateACLMessage behaviour details

 Output generation behaviour

When a user agent receives a message from other agents, the reactive

behaviour GenerateOutput is activated (Figure 6-5). It first identifies a received ACL

message content and the communicative act to analyse the type of message (e.g.

inform, confirm, failure). The output is generated based on the communicative act

type and the content of the message. Finally, the output is sent to be displayed to the

user. In this chapter, a user agent perceives a message from the versioncontrol agent

to notify the result of importing software project information file into the version

control repository or a message from the ontology agent to notify about the ontology

population.

139

[messageReceived] GenerateOutput [outputGenerated]

Identify received message and the ACL
message communicative act

Generate output based on the
communicative act type

ACL_MessageOA,VA

Input/Output/
External Resource

Control flow[outputGenerated]

Flow description

Display output to a user

ACL
(ReceivedMessage)

from VA,OA

SE Ontology

Display to user

Figure 6-5: Details of GenerateOutput behaviour

6.3.3 Interactions

The AUML sequence diagram is used to demonstrate the interactions among

different agent types. Figure 6-6 illustrates the main interactions among a user agent,

the versioncontrol agent, and the ontology agent resulting from the behaviours of a

user agent, namely, GenerateACLMessage and GenerateOutput. The

GenerateACLMessage behaviour of a user agent generates an ACL message to

request the versioncontrol agent to import software project information file into a

version control repository. The GenerateOutput behaviour manages the ACL

messages sent from the version control agent and the ontology agent by transforming

them into meaningful outputs which are then delivered to a user.

140

User agent VersionControl agent

REQUEST
(ProjectInformationImportRequest)

FAILURE

Import Project Information
to version control
repository

[not success]

[success]

x

Agent interaction

User interaction
Flow description

Ontology agent

Populate
Instance

CONFIRM

INFORM
(OntologyPopulationNotification)

Behaviour:
GenerateACLMessage

GenerateOutput

Figure 6-6: Agent interaction of a user agent

 VersionControl Agent

The versioncontrol agent is mainly responsible for managing the version

control repository. In this thesis, once it receives a request from a user agent, it

imports the requested software project information file into the version control

repository.

6.4.1 Structure

An overview of the structural features of the versioncontrol agent is provided

in the AUML class diagram at the implementation level presented in Figure 6-7.

There is only one role associated with this agent which is the

VersionControlManager role. This role involves managing software project

information in the version control repository. The main knowledge assets of the

versioncontrol agent is the Software Engineering Ontology used as a shared ontology

that enables knowledge-level communication in the Software Engineering domain in

141

order to facilitate consistent communication among agents.

The perception of the versioncontrol agent is an ACL request message to

import software project information file issued by a user agent

(projectInformationImportRequest). Its interactions are performed by employing

ACL messages with the FIPA-request protocol to collaborate with a user agent and

the annotation agent. It responds to the FIPA-request protocol with a user agent to

import project information file into the version control repository while it initiates

the FIPA-request protocol with the annotation agent to annotate software project

information.

<<Agent>>
VersionControl Agent

Role
- VersionControlManager

Knowledge Asset
Software Engineering Ontology

Behaviour
<<Reactive>>
- Reac [newMessage] ReceiveMessage [messageReceived]
<<Internal>>
- Int [projectInformationImportRequest] ImportProjectInformation
[requestProcessed]
- Int [isCalled] SendMessage [messageSent]

Perception
ACL_Messages(ProjectInformationImportRequest)

Protocol
- Responds to the FIPA-request protocol with a user agent to import project
information file into the version control repository
- Initiate the FIPA-request protocol with the annotation agent to annotate
software project information

Collaborator
- User agent
- Annotation agent

Figure 6-7: AUML class diagram at implementation level of the versioncontrol agent

6.4.2 Behaviours

 Overview

An overview of behaviours associated with the roles of the versioncontrol

agent and the interdependencies between these behaviours is depicted in Figure 6-8.

Two basic behaviours, ReceiveMessage and SendMessage, are defined to realise the

142

functions of sensors and effectors of the agents. ReceiveMessage is a reactive

behaviour that responds to a new message received from other agents. It extracts the

message content and makes it available to other behaviours of the agent.

SendMessage is an internal behaviour used to generate and send out the ACL

message to other agents.

A reactive behaviour ImportProjectInformation, acts upon a user agent’s

request perceived by the ReceiveMessage behaviour. It is responsible for retrieving

the requested project information file from the software project information

repository and importing it into the version control repository. Once the file is

imported, it initiates the SendMessage behaviour to request the annotation agent to

initiate the semantic annotation process.

Figure 6-8: Overview of the versioncontrol agent behaviours

 VersionControlManager Behaviour

The VersionControlManager role is realised by a reactive behaviour,

ImportProjectInformation. It becomes active when a request to import software

project information is perceived by the behaviour ReceiveMessage. The behaviour

ImportProjectInformation retrieves a requested project information file from the

project information repository. If the project information file is retrieved

successfully, it is imported into the version control repository. Then, a message to

confirm the success of the file import is sent to a user agent and a request for a

143

semantic annotation process is sent to the annotation agent. However, if the file

retrieval from the project information repository fails, a message to notify the failure

is sent to a user agent (Figure 6-9).

Reac [ProjectInformationImportRequest] ImportProjectInformation [requestProcessed]

Identify
project information import request

Import software project
information file into version

control repository

ACL
(ProjectInformation-

ImportRequest)
from UA

ACL_MessageUA

Version Control
Repository

Input/Output/
External Resource

Control flow

Flow description

Send annotation request to
AA

Send confirmation
message to UA

ACL_MessageAA

ACL_MessageUA

SE Ontology

Retrieve project information file

Send failure message to UA

[success][not success]

[requestProcessed]

ACL
(AnnotationRequest)

 to AA

[requestProcessed]

Software Project
Information
Repository

ACL (Confirmation/
Failure) to UA

Figure 6-9: Activities of ImportProjectInformation behaviour

6.4.3 Interactions

Figure 6-10 illustrates the interactions among the versioncontrol agent, a user

agent, and the annotation agent within the behaviour ImportProjectInformation.

Once the versioncontrol agent receives a request from a user agent, it imports the

software project information file into the version control repository and sends the

results back to a user agent. It also interacts with the annotation agent by sending a

request to annotate a software project information file.

144

User agent VersionControl agent

REQUEST
(ProjectInformationImportRequest)

FAILURE

Retrieve the file from the
project information
repository

[not success]

[success]

x

Agent interaction

User interaction
Flow description

Annotation agent

REQUEST (AnnotationRequest)

CONFIRM

Behaviour:
ImportProjectInformation

Import the file into the
version control repository

Figure 6-10: Agent interaction of the versioncontrol agent

 Annotation Agent

The annotation agent is mainly responsible for semantically annotating

software project information (i.e., source code artefact). It responds to an annotation

request from the versioncontrol agent by carrying out a semantic annotation process

in order to identify new instances of the Software Engineering Ontological concepts

from the source code artefacts.

6.5.1 Structure

An overview of the structural features of the annotation agent is provided in

the AUML class diagram at the implementation level presented in Figure 6-11. The

role associated with this agent is SemanticAnnotator. The SemanticAnnotator role is

to semantically annotate source code artefacts with the appropriate concepts defined

in the Software Engineering Ontology. Its main resources comprise various

knowledge assets, namely, Software Engineering Ontology, and other ontologies and

145

controlled vocabularies.

• The Software Engineering Ontology is used to provide domain

knowledge to source code artefacts during the annotation process, and

to link the instances generated from the annotated source code

elements. Furthermore, it is used as a shared ontology that enables

knowledge-level communication in the Software Engineering domain

in order to facilitate consistent communication among agents.

• Other ontologies and controlled vocabularies are used to enrich the

semantic description of the annotated source code. For example,

Friend-of-a-Friend (FOAF) vocabulary (Brickley and Miller 2014) is

used for information describing people and representing relationships.

Simple Knowledge Organisation System (SKOS) (Miles et al. 2005)

is used to aggregate concepts/terminologies into a single concept

scheme. The Semantically-Interlinked Online Communities (SIOC)

(Breslin et al. 2006) is used to describe information from online

communities. Dublin Core (DC) (Weibel et al. IETF RFC 2413,

1998) is used for resource description. In addition, the annotated

source code elements are also interlinked with the DBpedia dataset in

order to provide an extended view of them. DBpedia is chosen here

because it is a community effort to extract structured information

from Wikipedia1 and to make this information available on the web.

It contributes to the Linked Data idea by interlinking with several data

sources on the Web via RDF links (Auer et al. 2007).

The annotation agent fulfils its role with two main behaviours:

IdentifySourceCodeKeyConcepts and AnnotateSourceCode. Details of these roles

are analysed and discussed in the next section. The main perception of the annotation

agent is the annotation request (annotationRequest) from the versioncontrol agent. Its

interactions are performed by employing ACL messages with the FIPA-request

protocol to collaborate with the versioncontrol agent and the ontology agent. It

responds to the FIPA-request protocol with the versioncontrol agent for the source

code annotation and it initiates the FIPA-request protocol with the ontology agent for

1 https://www.wikipedia.org/

146

the ontology population.

<<Agent>>
Annotation Agent

Role
- SemanticAnnotator

Knowledge Asset
Software Engineering Ontology, Other ontologies and controlled vocabularies

Behaviour
<<Reactive>>
- Reac [annotationRequest] IdentifySourceCodeKeyConcepts
 [sourceCodeIdentified]

- Reac [newMessage] ReceiveMessage [messageReceived]
<<Internal>>
- Int [sourceCodeIdentified] AnnotateSourceCode [sourceCodeAnnotated]
- Int [isCalled] SendMessage [messageSent]

Perception
ACL_Messages(annotationRequest)

Protocol
- Responds to the FIPA-request protocol with the versioncontrol agent for
source code annotation
- Initiates the FIPA-request protocol with the ontology agent for ontology
population

Collaborator
- VersionControl agent
- Ontology agent

Figure 6-11 AUML class diagram at implementation level of the annotation agent

6.5.2 Behaviours

 Overview

An overview of behaviours associated with the roles of the annotation agent

and the interdependencies between these behaviours is depicted in Figure 6-12. Two

basic behaviours, ReceiveMessage and SendMessage, are defined to realise the

functions of sensors and effectors of the agents. ReceiveMessage is a reactive

behaviour that responds to a new message received from other agents. It extracts the

message content and makes it available to other behaviours of the agent.

SendMessage is an internal behaviour used to generate and send out the ACL

message to other agents.

A reactive behaviour IdentifySourceCodeKeyConcepts, acts upon the

147

versioncontrol agent’s request perceived by the ReceiveMessage behaviour. It is

responsible for retrieving the requested source code file from the version control

repository. It then identifies the key elements that are being used in the source code

(e.g., class, field, method, and interface). SourceCodeIdentified, as the post-

condition, is applicable as the pre-condition to an internal behaviour

AnnotateSourceCode. This behaviour semantically annotates the source code key

concepts using the Software Engineering Ontology in order to identify new instances

of the ontological concepts. In addition, it also applies other relevant domain

ontologies and controlled vocabularies to enrich and interlink their semantic

descriptions. Once these processes are done, the SendMessage behaviour is activated

to send a request to the ontology agent to populate these annotated source code

elements into the ontology repository as new instantiations.

Figure 6-12: Behaviour overview diagram of the annotation agent

 Semantic Annotation behaviours

The SemanticAnnotator role involves two behaviours: a reactive behaviour

and an internal behaviour, which are IdentifySourceCodeKeyConcepts and

AnnotateSourceCode, respectively.

148

6.5.2.2.1 IdentifySourceCodeKeyConcepts behaviours

An incoming request for source code annotation from a user agent is

managed by the IdentifySourceCodeKeyConcepts behaviour. Two main steps are

performed after a request has been identified:

1. Source code retrieval

 This step is to retrieve the requested source code file from the version

control repository.

2. Key concept identification

 This step is to identify the key concepts that are being used in the

source code. The source code is analysed and parsed to produce an abstract syntax

tree (AST) which is a representation of the abstract syntactic structure of the source

code written in a programming language, for example, classes, fields, methods,

constructors, parameters as well as in-line comments (e.g., JavaDoc). For source

code comments such as author, versions are also identified and parsed in order to

obtain a meaningful term-based description of the source code (Figure 6-13).

Reac [annotationRequest] IdentifySourceCodeKeyConcepts [sourceCodeIdentified]

Identify
AnnotationRequest

ACL
(Annotation-

Request)
from VA

Version Control
repository

Input/Output/
External Resource
Control flow

Flow description

ACL_MessageVA

SE Ontology

Retrieve source code file

[sourceCodeIdentified]

[sourceCode
Identified]

Parse source code to
identify key concept

elements

Figure 6-13: Details of IdentifySourceCodeKeyConcepts behaviour

149

6.5.2.2.2 AnnotateSourceCode behaviours

After the IdentifySourceCodeKeyConcepts behaviour accomplishes its task of

key concept identification, the AnnotateSourceCode behaviour is initialised as

indicated in the pre-condition [sourcecodeIdentified]. It annotates the source code

elements with the appropriate concepts defined in the Software Engineering

Ontology and other well-known ontologies and vocabularies, as well as to enrich and

to interlink the annotated source code with similar concepts in other datasets (Figure

6-14). This behaviour comprises two main tasks:

1) Source code annotation

The identified source code elements and other software artefacts are

assigned software engineering domain concepts that correspond to their semantic

description specified in the Software Engineering Ontology. Examples of these

concepts are Class, Field, Method, Parameter, Modifier, etc. The source code

elements that are assigned to those concepts are used to construct statements in the

format of RDF/OWL triples which comprise three elements, namely, subject,

predicate, and object (subject, predicate, object). The subject part identifies the thing

that the statement is about. The predicate part identifies the property or characteristic

of the subject that the statement specifies. The object part identifies the value of the

property or characteristic (Beckett and McBride 2004). The RDF/OWL statement

can be used to semantically describe:

• resource type of the source code elements such as (HelloWorld, type,

Class),

• attribute of the source code elements such as (HelloWorld,

isMainClass, “True”), or

• to define the relationship between source code elements such as

(HelloWorld, hasMethod, main).

2) Enrichment and Interlinking

In this step, other relevant domain ontologies and controlled vocabularies,

namely, FOAF, DC, SKOS, SIOC are reused to enrich and interlink the semantic

150

description of the annotated source code. For example, all the source code elements

(e.g., class, package, interface, etc.) are annotated with the relationship rdf:type as

Dublin Core Metadata Initiative (DCMI) Type ‘Software’ 2. If the name of an author

is available in the source code, then this relationship is defined in the resulting

RDF/OWL triple by using foaf:name. The use of existing domain ontologies can

enhance the re-useability factor and promote data interoperability (Ashraf, Hussain

and Hussain 2012) as well as help to find semantic similarities with other similar

entities described in different semantic repositories. Interlinking also includes the

construction of semantic relationships between the annotated source code elements

and other entities defined in other dataset on the Web, namely, Wikipedia. In other

words, interlinking can enable extensive textual information related to the annotated

source code elements or other project-related resources to be retrieved from the

Wikipedia website. To extract structured information from Wikipedia and then

transform it into RDF, DBpedia has been developed by the research community. The

URI according to the format http://dbpedia.org/resource/Name corresponds with the

URL of the source Wikipedia article, which has the pattern http://en.wikipedia.org/

wiki/Name (Bizer et al. 2009). The annotation agent interlinks the annotated source

code elements with the corresponding DBpedia entity by using the owl:sameAs

property. This property is used to specify that the URIs of the annotated elements and

those of DBpedia actually refer to the same entities.

After the source code has been annotated with the Software Engineering

Ontology domain concepts as well as enriched and interlinked with other ontologies

and controlled vocabularies, a message is sent to request the ontology agent to insert

the annotated source code into the ontology as new instances.

2 http://dublincore.org/documents/2012/06/14/dcmi-terms/?v=dcmitype#Software

151

Int [sourceCodeIdentified]AnnotateSourceCode [sourceCodeAnnotated]

Annotate source code key concept
elements by assigning software

engineering concepts

Input/Output/
External Resource
Control flow

Flow description

SE Ontology

Enrich the annotated source code
with other ontologies and controlled

vocabularies

SourceCode
Identified

[sourceCodeAnnotated]

Other controlled
vocabularies/

ontologies

DBpedia dataset

Identify each source code key
concept element

Interlink the annotated source code
with DBPedia dataset

Send ontology population request to
the ontology agent

ACL
(Population-

Request)
to OAACL_MessageOA

Identify and assign relationships
between source code elements

according to the SE Ontology
concepts and relationships

Figure 6-14: Details of AnnotateSourceCode behaviour

6.5.3 Interactions

Figure 6-15 illustrates the interactions among the annotation agent, the

versioncontrol agent, and the ontology agent resulting from the behaviours of the

annotation agent. Within the behaviour IdentifySourceCodeKeyConcepts, the

annotation agent receives a request to annotate source code from the version control

agent. It then retrieves a source code file from the version control repository and

identifies key concepts from the source code elements. Once the source key concepts

have been identified, the behaviour AnnotateSourceCode is triggered to semantically

annotate the source code key concepts to identify new instances of the Software

Engineering Ontology. Then it sends a request to populate these new instances to the

ontology agent.

152

VersionControl agent Annotation agent

Retrieve source code
and identify key
concepts

Agent interaction

User interaction

Flow description

Ontology agent

REQUEST (PopulationRequest)

Populate
Instance

REQUEST (AnnotationRequest)

Annotate and enrich
source code elements

Behaviour:
IdentifySourceCodeKeyConcepts

AnnotateSourceCode

Figure 6-15: Agent interactions of the annotation agent

 Ontology Agent

The ontology agent is mainly responsible for managing instance knowledge

captured in the Software Engineering Ontology such as query, addition,

modification, deletion. However, in this chapter, the details of the design and

development of the ontology agent pertain only to the addition of new instance

knowledge identified from the semantic annotation process. The

InstanceKnowledgeManager role of the ontology agent is realised by a reactive

behaviour PopulateInstance in this chapter given in the following section. More

details of the ontology agent associated with this role used to manage Software

Ontology Instantiations will be given in Chapter 7.

153

6.6.1 Structure

An overview of the structural features of the ontology agent is provided in

Figure 6-16. In order to manage the instance knowledge, there is only one role

associated with the ontology agent which is the InstanceKnowledgeManager. In this

chapter, this role is to populate the Software Engineering Ontology with new

instances identified by the annotation agent. The ontology agent’s only knowledge

asset is the Software Engineering Ontology. The Software Engineering Ontology

domain knowledge is used to enable consistent communication among agents, while

the Software Engineering Ontology repository is used to store new instances

populated.

The ontology agent fulfils its role with the main behaviour PopulateInstance.

The main perception of the ontology agent is the population request

(populationRequest) from the annotation agent. Its interactions are performed by

responding to the ACL message with the FIPA-request protocol to the annotation

agent.

<<Agent>>
Ontology Agent

Role
- InstanceKnowledgeManager

Knowledge Asset
Software Engineering Ontology

Behaviour
<<Reactive>>
- Reac [populationRequest] PopulateInstance [instancePopulated]
- Reac [newMessage] ReceiveMessage [messageReceived]
<<Internal>>
- Int [isCalled] SendMessage [messageSent]

Perception
ACL_Messages (populationRequest)

Protocol
- Responds to the FIPA-request protocol with the annotation agent for the
ontology population

Collaborator
- Annotation agent
- User agent

Figure 6-16 AUML class diagram at implementation level of the ontology agent

154

6.6.2 Behaviours

 Overview

A behaviour overview diagram of the ontology agent only for the ontology

population process is presented in Figure 6-17. The InstanceKnowledgeManager role

is realised by the reactive behaviour PopulateInstance. It is activated when it

perceives a request (populationRequest) as specified in the pre-condition. It extends

the Software Engineering Ontology repository with new instances identified by the

annotation agent.

Figure 6-17: Behaviour overview diagram of the ontology agent for the ontology
population

 Ontology Population behaviour

Once the new instances are identified by the annotation agent by means of a

semantic annotation process, they are ready to be populated into the Software

Engineering Ontology repository as new ontological instances. In other words, the

ontology population process is equivalent to the instance generation by means of

inserting new instances of concepts, properties and relations into the Software

Engineering Ontology instance knowledge base. According to description logics

(DL) (Nardi and Brachman 2003), an ontology as a knowledge base comprises two

knowledge components, namely, TBox and ABox. The TBox contains domain

definitions that describe concepts and properties. The Abox, also called assertional

155

knowledge, specifies the individuals of the domain concepts derived from the TBox.

To put it differently, the TBox comprises concepts and their relations while the Abox

consists of instances of concepts or individuals. The Software Engineering Ontology

and other ontologies are considered as the TBox while all annotated data with these

ontologies are considered as the ABox. Therefore, the ontology population process

performed by the PopulateInstance behaviour manages the insertion of annotated

data as instances in the Abox.

The PopulateInstance behaviour is activated when a request from the

annotation agent is perceived. It inserts the annotated and enriched source code

elements into the Software Engineering Ontology instance knowledge base as new

ontology instantiations. Once the population process is completed, it sends a message

to notify the user agent who requests to import a source code file into the version

control repository in order to validate and verify the logical consistency of the new

instantiations (Figure 6-18).

Reac [populationRequest] PopulateInstance [instancePopulated]

Input/Output/
External Resource
Control flow

Flow description

Insert new instances identified from the
semantic annotation process into the SE

Ontology repository

ACL
(Population-

Request)
from AA

[InstancePopulated]

SE Ontology

Send message to notify the user agent
about the ontology population ACL_MessageUA

ACL
(OntologyPopulation

Notification)
to UA

Identify PopulationRequest
ACL_MessageAA

SE Ontology

Figure 6-18: Details of PopulateInstance behaviour

156

6.6.3 Interactions

All interactions that result from the behaviours of the ontology agent are

shown in Figure 6-19. The ontology agent receives an ontology population request

from the annotation agent. Then it populates the Software Engineering Ontology

with the new instances identified from the annotation process. Lastly, it sends the

notification of the ontology population back to the user agent.

User agent Annotation agent

INFORM
(OntologyPopulationNotification)

Agent interaction

User interaction

Flow description

Ontology agent

REQUEST (PopulationRequest)

Populate
Instance

Behaviour:
PopulateInstance

Figure 6-19: Agent interactions of the ontology agent

After the team member receives the notification about the ontology

population of new instances, as a domain expert, he/she will validate and verify the

instances to check their logical consistency. The new additional instances populated

in the Software Engineering Ontology repository must be checked to determine

whether they conform to the Software Engineering Ontology; this is done by

checking the consistency of instances with reference to the ontology. This quality

assurance process is done manually to ensure the production of quality information.

This process can be done through ontology reasoners such as FaCT++, Pellet,

RacerPro, HermiT, etc.

In order to summarise the semantic annotation and the ontology population

process performed by the SEOMAS agents as described above, the whole process is

shown graphically in Figure 6-20.

157

Figure 6-20: The automated knowledge capture by the SEOMAS approach

 Implementation

The prototypes are used as proof-of-concept experiments of the proposed

framework. Java source code is selected for a proof-of-concept implementation. Jena,

a Java framework for building Semantic Web applications, is used to make a

connection between agents and the Software Engineering Ontology and to provide

several functionalities such as create, read, modify triples in RDF/OWL. Qdox is

used as a parser for the extraction of source code elements. JADE, Java Agent

Development Framework (Liao et al. 2011), which is an agent middleware, is chosen

to implement the agent platform and to provide a development framework. JADE is

developed from Java and is completely based on the Foundation for Intelligent

Physical Agents (FIPA) specifications (Bellifemine, Caire and Greenwood 2007).

Agent Communication Language (ACL) defined by FIPA is chosen as the language

158

of communication between agents. JADE provides various implemented FIPA-

specified interaction protocols such as FIPA-Query, FIPA-Request and so on to

construct agent conversation messages. As JADE complies with FIPA

specifications, it offers several components necessary for agent management. These

components are automatically activated at the agent platform start-up. For example,

Directory Facilitator (DF) agents provide a naming service and yellow pages service.

The Agent Management System (AMS) supervises access and usage of the agent

platform. The Remote Monitoring Agent (RMA) keeps track of all registered agents.

The Sniffer Agent (SA) monitors all message communications between agents. Both

FIPA and JADE support the use of ontologies in their agent systems.

JADE helps to integrate ontologies to represent the application domain

through its content reference model (Caire and Cabanillas 2010) as shown in Figure

6-21. The Software Engineering Ontology is registered to this model through the

ontological elements, namely, predicates, concepts, and agent actions so that it can

be accessed by JADE agents and used as the content of an ACL message.

• Concept is an expression that indicates an entity with a complex structure

which can be defined in terms of slots, for example, (Class :name

“BankAccount”) stating that the class name is BankAccount.

• Predicate is an expression that refers to something about the status of the

world such as (hasMethod (Class :name “BankAccount”) (Method: name

deposit)) stating that the class BankAccount has method deposit.

• Agent action is a special concept that indicates an action which can be

performed by an agent, for instance, (Query (Class :name

“BankAccount”)) stating that the agent can query the class BankAccount.

In JADE, the agent actions are implemented as the objects of the class

jade.core.behaviours.Behaviour.

159

Figure 6-21: The content reference model in JADE (Caire and Cabanillas 2010)

The following five steps are used to integrate the Software Engineering

Ontology into the JADE agent platform (Bellifemine, Caire and Greenwood 2007).

 1. Define ontology in JADE including the schemas that define the types of

predicates, agent actions and concepts relevant to the Software Engineering

Ontology.

2. Develop ontological Java classes according to all types of predicates, agent

actions and concepts in the ontology. This step can be done by using the Ontology

Bean Generator Protégé plug-in (Aart 2007). It helps to generate JADE-compliant

Java-classes from RDF(S), XML and Protégé projects.

3. Choose a suitable content language that is used by all agents to maintain

the correct semantics and expression of terms for successful communication. In this

work, the Semantic Language (SL) proposed by FIPA is chosen.

4. Register the selected content language (SL) and the defined ontology (SE

Ontology) with the agent.

5. Create and handle content expression as Java objects that are instances of

the classes in step 2. JADE will translate these Java objects to/from strings or

sequences of bytes that fit the content slot of an ACL message. Table 6-1 shows the

content slots for a request to semantically annotate a Java file sent from a user agent

160

to the recommender agent. The ACL message for this request is shown in Figure

6-22.

Table 6-1: Content slots for semantic annotation request

Sender Alex user agent

Receiver VersionControl agent

Communicative act REQUEST

Language fipa-sl

Ontology SEOntology

Interaction protocol FIPA-Request

Content C:\Users\15643403\Documents\CodeTestAnno\
BankAccount.java

Message: (REQUEST

 :sender (agent-identifier :name "Alex Agent@MASPlatform"

 :addresses (sequence http://C-D-0004872.staff.ad.curtin.edu.au:7778/acc))

 :receiver (set (agent-identifier :name VersionControlAgent@MASPlatform))

 :content "C:\Users\15643403\Documents\CodeTestAnno\BankAccount.java"

 :language fipa-sl

 :ontology SEOntology

 :protocol FIPA-Request

)

Figure 6-22: An ACL message requesting to import a Java source code file into the
version control repository

The communicative act (or performative type) is a required parameter of all

ACL messages to indicate the action that the message conveys. In this case, a

REQUEST communicative act is used. The Software Engineering Ontology, is used

as the ontology context for this content. It is a shared ontology based on the Software

Engineering Ontology for facilitating agent consistent communication. The agents

can use it to represent the knowledge and to send messages containing this

knowledge. The interaction protocol specifies predefined sequences of messages that

can be used to design agents’ interactions. In this example, the FIPA-Request

protocol is used to specify that a user agent wants to request the versioncontrol agent

to import a source code file into the version control repository. The versioncontrol

161

agent extracts the content and obtains the name of the Java file (i.e.

BankAccount.java). Then it imports the requested file into the version control

repository as shown in Figure 6-23.

Figure 6-23: A Java source code file imported into the version control repository

Figure 6-24 presents the interactions among collaborative agents which are

captured by a sniffer agent.

Figure 6-24: The interactions among agents captured by a sniffer agent

162

 Results

In this chapter, the SEOMAS approach is capable of automatically capturing

knowledge from the software project information (i.e., source code). After the

version control agent imports a source code into the version control repository, the

annotation agent starts the semantic annotation process. An example of how a single

line of Java source code is parsed and annotated with the concepts and relationships

defined in the Software Engineering Ontology by the annotation agent is shown in

Figure 6-25. The code “public Class BankAccount” declares a class called

BankAccount. The annotation agent parses this code to turn it into an AST as

presented in Figure 6-25. It traverses this tree by processing the root node Class

Declaration and realises that a Class instance will be generated. Then it processes the

Name node to annotate and generate the instance of the Class class which is

BankAccount. After that, it visits the Modifier node to annotate and generate the

instance of the Modifier class which is public. In the ontology, class Class has a

relationship hasAccessModifier with class Modifier; therefore, the annotation agent

creates a relationship between the instances of these two classes (i.e., BankAccount

and public) with the relationship hasAccessModifier.

Figure 6-25: Parsed Source code to be annotated with the Software
Engineering Ontology concepts and relations.

163

The annotation result of the Java source code, BankAccount.java 3 is shown

in Figure 6-26. Each source code element is annotated with concepts and relations

defined in the Software Engineering Ontology. For example, BankAccount is

annotated as a Class and a Constructor, public is annotated as a Modifier, balance is

annotated as a Field, deposit is annotated as a Method, etc. These elements are also

identified as instances of their corresponding concepts. For instance, BankAccount

becomes an instance of a class Class, balance is an instance of a class Field, deposit

is an instance of a class Method, etc.

 Each concept in the ontology has relationships to associate it with other

concepts. For instance, a class Class has a relationship hasAccessModifier to relate it

with a class Modifier and a relationship hasMethod to relate it with a class Method.

The Class relationship also inherits its relationship to the instance level. Thus,

BankAccount as an instance of class Class has a relationship hasAccessModifier to

relate it with public as an instance of class Modifier. It also has a relationship

hasMethod to relate it with getBalance which is an instance of class Method.

3 http://homepages.uel.ac.uk/A.Kans/pm1/week3.pdf

164

Figure 6-26: A Java source code being annotated with concepts and their

relationships defined in the Software Engineering Ontology

165

Figure 6-27 shows the output from the semantic annotation of the

BankAccount.java source code.

============ Semantic Annotation START =============================

File Name >> BankAccount.Java

File Creation data >> 1462943261803

Java Classes --> BankAccount

Class belongs to package: BankAccountExample

Class has following field(s):

Field Name: accountNumber AccessModifier: private DataType: Java.lang.String

Field Name: accountName AccessModifier: private DataType: Java.lang.String

Field Name: balance AccessModifier: private DataType: double

Class has AccessModifier: public

Constructor: BankAccount

Class has following method(s):

BankAccount

getAccountName

getAccountNumber

getBalance

deposit

withdraw

Method name: BankAccount

Modifier: public

Parameters:

Name: numberIn DataType: Java.lang.String

Name: nameIn DataType: Java.lang.String

Method name: getAccountName

Method return type: Java.lang.String

Modifier: public

Method name: getAccountNumber

Method return type: Java.lang.String

Modifier: public

166

Method name: getBalance

Method return type: double

Modifier: public

Method name: deposit

Method return type: void

Modifier: public

Parameters:

Name: amountIn DataType: double

Method name: withdraw

Method return type: void

Modifier: public

Parameters:

Name: amountIn DataType: double

============== Semantic Annotation END =============================

Figure 6-27: Output of annotation from the BankAccount.java source code

The ontology agent populates the Software Engineering Ontology by

inserting new instances derived from the semantic annotation process into the

ontology repository. For example, in Figure 6-28, BankAccount is semantically

annotated and identified as instances of ClassType (Class), Constructor, and Method.

In addition, because the BankAccount instance is enriched with the Software concept

of Dublin Core Metadata Initiative (DCMI), so it is an instance of a Software class as

well. The annotated source code elements are also enriched by interlinking them

with other relevant data source in order to provide an extended view of them. Figure

6-29 demonstrates that the annotated Java class BankAccount is interlinked with the

DBpedia dataset named http://dbpedia.org/page/Java_class_file. The link is created

by using an owl:sameAs property to specifiy that the URI of the annotated element

and that of the DBpedia dataset refer to the same resource (Figure 6-29). As a

consequence, additional information about the Java class file can be obtained or

queried from DBpedia website (http://dbpedia.org) (Figure 6-30).

167

Figure 6-28: Populated instances and their relations presented in Protégé tool

<rdf:Description

rdf:about="http://www.seontology.org/test/specificOnto.owl#BankAccount">

…….

 <owl:sameAs rdf:resource="http://dbpedia.org/page/Java_class_file"/>

 </rdf:Description>

Figure 6-29: BankAccount Java class being interlinked with a metadata term to its
relevant entity in DBpedia dataset

168

Figure 6-30: Information about Java class file from DBpedia4

Figure 6-31 depicts the instances and relationships of class BankAccount.

The graph is generated by the OntoGraf plug-in.

4 http://dbpedia.org/page/Java_class_file

169

Figure 6-31: OntoGraf presentation of the BankAccount class instance.

In order to ensure that the new populated instances conform to the Software

Engineering Ontology, they need to be verified by means of logical consistency

checking. In this case, HermiT 1.3.8, which is the built-in reasoner of Protégé 5.0.0,

is chosen for this task. The result is shown in Figure 6-32. The system does not

return any inconsistency warning, indicating that the new instances conform to the

ontology. The time taken to reason the ontology is 2435ms.

170

Figure 6-32: Protégé reasoner’s logs for consistency checking of new
populated instances

 Practical uses

In this section, the practical uses of the SEOMAS approach to automate the

semantic annotation of source code are demonstrated through a case study in a multi-

site software development environment. The case study is derived from

(Wongthongtham, Dillon and Chang 2011).

Suppose that a multi-national software company were running a multi-site

software development project at four sites: Perth, Shanghai, Dublin, and Bangalore.

After releasing V1.1 Build 20140205, a bug is found by Richard@Perth. Richard

immediately files the bug in the project’s issue-tracking system. Given its great

severity, the following day Richard files another urgent request in the issue-tracking

system, hoping to increase its priority ranking so that it can draw greater attention

from developers. The bug report is soon opened on the same day by

Vishay@Bangalore. He comes up with a quick fix and adds a comment at the end of

the report, giving the report the status of "re-evaluation pending". One week later,

Arleno@Shanghai files a duplicate bug which is soon recognised as a repeated report

171

two days later. Arleno then realises that the solution (being a temporary measure) is

not good enough. He discusses the issue with his team members and supervisor who

add comments to the report and direct their concerns back to the Bangalore Lab.

Based on Arleno's detailed information, Larry@Bangalore soon provides another

bug fix solution. This fix is then picked up by Michael@Dublin, a technical lead who

used to work with the component in the software package. Michael points out that

Larry's fix might produce deadlocks in another related component and suggests

reverting to the first fix. The next day, Larry soon fixes the bug based on Michael's

instruction. Michael checks the fix, and marks the bug report status as "resolved" and

closes the bug. The same day, Lisa@Shanghai states that the latest fix results in a

connection timeout. Later on, Larry asks her to explain the affected component. At

this point, Michael steps in, fixes the bug, and explains his fix. A few days later,

Richard finally determines that the bug issue has been “resolved”. The bug has led to

a discussion in all three sites regarding the architecture of the component library.

From the scenario above, it is evident that even though the bug was not too

complex and required a simple modification to fix the problem, it took a long time to

resolve and close it. Difficulties arose because the software development-related

information relevant to the bug was distributed across multiple software repositories

with no links among them. This could result in duplicate bug reports. Moreover,

because of the lack of integration of software artefacts that were similar or related,

the information required to resolve the bug issue was not readily accessible.

Therefore, even though the bug was simple to fix, developers had to spend more time

on resolving the problem. Another challenge stemmed from there being no

knowledge support enabling the identification of team members who were more

likely to be able to resolve the bug issue. In this scenario, several attempts were made

to fix the bugs by people with no expertise in dealing with this particular problem.

Lastly, the lack of knowledge-sharing was one of the main issues that caused the

delay. Larry did not know the impact of making a change to a certain component and

there was no available document or information to which he could refer.

This scenario is used as a case study to demonstrate the application of the

proposed approach. The case study is based on a vehicle registration system being

developed by a multi-site team located across various sites. Software developers

172

communicate, coordinate, manage and share software development project

information captured in the Software Engineering Ontology through the collaborative

agents during the bug resolution process. A class diagram of a vehicle registration

application in Figure 6-33 covers the main components of any normal Java-based

project.

Car
Class

VehicleRegistration
Main Class

Vehicle
Interface

Information
Super class

Information

MotorBike
Classuses

uses

inherits

implements

inherits

implements

Vishay
Bangalore

Richard
Perth

Arleno
Shanghai

Alex
Dublin

Alex
Dublin

Figure 6-33: Vehicle registration class diagram in a multi-site development
environment

The vehicle registration system is being developed in a multi-site

development environment. Software developers are dispersed across four sites,

namely, Perth, Bangalore, Dublin, and Shanghai. The Vehicle and Information

classes provide generalised features of any type of vehicle. They are implemented

and inherited by the Car and the MotorBike class. The VehicleRegistration is a main

class that invokes either the Car or the MotorBike class based on a user selection.

All the classes above are annotated and populated in the Software

Engineering Ontology repository by means of the SEOMAS approach. They are also

semantically interlinked with other relevant software project information captured in

the ontology. In other words, software project-related software information will not

appear in isolation, but will be part of a large group of related information.

Therefore, it is easily and readily accessible to software development teams. This

information includes:

• Project description such as project name, description, list of

173

developers.

• Project development team information such as developer name,

location, time zone, role, list of source code artefacts they are working

on.

• Source code artefacts such as package, class, super class, interface,

constructor, field, method, and developer.

• Source control commit log such as developers, source code, summary

of a commit log (e.g., fix bug ID).

• Bug reports information such as bug ID, bug description, bug type,

severity, reporter, and developer/fixer.

• Archived communication related to bug and issues such as discussion

on the mailing list, forum, and developer.

The real power of the automated knowledge capture is realised when the

knowledge is used to facilitate collaborative team members to communicate and

coordinate effectively and efficiently as well as to enable knowledge sharing among

them. Project teams can use this knowledge to assist their work or to address

software development issues while working on software development projects. In

order to demonstrate the practical use of the knowledge captured, the SEOMAS

approach for the Software Engineering Ontology instantiations management which

will be presented in the next chapter are utilised. In the following scenarios, the

ontology agent and the recommender agent access the captured knowledge with the

guidance of the Software Engineering Ontology to offer insight-providing

information that can help to resolve the bug issues.

Figure 6-34 shows all agents in the SEOMAS platform. Each agent has a

unique name and ID. Agents execute tasks and interact with each other by

exchanging ACL messages. The SEOMAS platform consists of multiple containers

which are implemented among distributed hosts. Each container represents each

development site and it can host multiple agents. The Main-Container is where the

JADE system agents, e.g., AMS, DF, RMA and the main SEOMAS agents, i.e., the

174

annotation agent, the versioncontrol agent, the ontology agent, and the recommender

agent are situated. Each user agent lives in the container according to its software

development site.

Figure 6-34: Agents in the SEOMAS platform

Scenario 1- Provide information in regard to existing bug reports

During the system development process, a bug is found in a Car class by

Alex. Before he enters a report into the issue-tracking system, he sends a query

through his user agent to request information about any existing related problems.

The ontology agent provides him with a list of previously reported bugs to a Car

class as presented in Figure 6-35.

175

Figure 6-35: Existing bug reported to the Car class

Bug reports and other software artefacts such as source code or components

are annotated and linked explicitly based on the Software Engineering Ontology

concepts and its relation. Thus, individual issues can be raised along with other

related issues. In this case, before filing a bug report, the ontology agent can help

Alex to locate related problems in the issue-tracking system according to their

associated class defined in the ontology and its instances. Alex can look at a list of

associated problem reports and determine whether or not his issue is a duplicate one.

In this way, duplicated bug reports could be avoided. This helps to dramatically

reduce confusion and unnecessary information overload in the software project.

Scenario 2 – Provide information with respect to potential fixer or expert

Once the bug is filed, the recommender agent identifies the person who is

more likely to be able to resolve the bug problem and recommends this person to

Alex. This is done by retrieving a full record of mappings of previously reported

bugs to the ‘Car’ class and the names of developers who fixed those bugs. Then they

are processed to find the person who most frequently resolved bugs reported to the

Car class and who is therefore more likely to be an expert in this area. In Figure 6-36,

176

the recommender agent sends a message to Alex to recommend Vishay at the

Bangalore site as an expert or a potential bug fixer for his report on the Car class.

Figure 6-36: Recommend an expert or a potential fixer for a new bug report

 Additionally, the recommender agent attaches Vishay at the Bangalore site

who is suggested as a potential fixer or consultant for the new bug report. Therefore,

when other developers try to fix the bug (in case of a company’s policy that allows

only authorised people to change the code), they can directly ask Vishay for advice

and help.

Figure 6-37: The potential fixer’s name attached in the bug report

In order to attract the attention of the person who is more likely to be a

potential fixer or an expert in this matter, the recommender agent also sends a

message to notify Vishay at Bangalore site that there is a new bug report that might

be related to his expertise, as presented in Figure 6-38. This makes him aware of the

new report and he can take appropriate action such as inspecting the bug or giving

suggestions to other developers.

Figure 6-38: A message to notify a potential bug fixer or an expert about a new bug

177

 In the above scenarios, the agents can utilise the captured knowledge in the

Software Engineering Ontology to identify an expert or a potential bug fixer for a

new issue based on the previous bug report history. This information is also attached

in the bug report for sharing among development team members. Thus, when the bug

is picked up by another developer, he can ask the expert for advice. In this case, the

responsibility for resolving the reported bug issue is shared between the bug fixer

and a domain expert, which can help to increase the accuracy of a bug resolution and

decrease the fixing time. In addition, the SEOMAS approach can improve the

awareness of remote teams by providing a timely message sent to relevant project

members. For example, a message is directly sent to notify the expert about a new

bug report that might correspond with his expertise.

Scenario 3 – Provide information for bug diagnosing

While a developer is diagnosing and fixing the bug, the ontology agent can

provide information about the ‘Car’ class which includes author name and his

information (e.g., site, time zone), version, class access modifier, fields, constructors,

methods, and other properties such as its related software components (interfaces

and/or super classes). Furthermore, the ontology agent can provide a history of all

previous bugs reported to the ‘Car’ class and how they were fixed.

178

Figure 6-39: Related information about the Car class

Figure 6-39 shows the information about the Car class and its related bugs.

This information is useful for diagnosing and fixing the bug. The information about

dependencies among the class and other components is important for realising the

impact of a change. It helps to prevent the unintended side effects which could lead

to faults or future bugs. Moreover, the information about existing related bugs may

assist a developer to identify the possible cause of the current bug as it may be a

result of the fixes from previous bugs and/or the consequences of those fixes.

179

Scenario 4 – Monitor bug report status and notify the bug reporter when the

bug issue is resolved

 When the bug has been fixed and its status has been changed to “resolved”,

the recommender agent sends a timely message to notify Alex, the bug reporter

(Figure 6-40). Alex then can be aware of his report and verify the bug resolution. If

he is satisfied with it, he can close the bug issue. In this case, the SEOMAS agents

can help the developer become aware of the status of his report and alert him to

investigate the resolution when it has been fixed. He does not need to keep track of

the report by himself.

Figure 6-40: A message to the bug reporter giving a notice of the bug status

 Discussion

Based on the use case scenarios given in the previous section, the benefit of

the SEOMAS approach for automated knowledge capture of software project

information is discussed as follows.

First, the SEOMAS approach requires very minimum effort from team

members to transform software project information into a conceptually organised

structure for common understanding. It is also transparently integrated into daily

software development activities (e.g., integrated with the process for importing

software artefacts into version control repositories). Hence, time-consuming, tedious,

laborious, and prone-to-error tasks used to capture software development knowledge

could be avoided. As a result, it could encourage project team members to share their

knowledge, thereby improving the productivity of the software development process.

Second, once this software project information is captured and is well-

organised, relevant concepts such as the semantic links between communication

180

threads (e.g., emails, mailing lists, discussion forums, documents, etc.), reports in the

issue tracking system, and the software development artefacts, can be interlinked

together. Therefore, relevant software project information will not appear isolated,

but will be in a large group of related information for ready and easy access. The

captured and interlinked knowledge can assist software teams to clarify any

ambiguity during the communication and will facilitate team coordination. This

knowledge is also in machine-readable and processable format. The software agents

are able to understand and access this published knowledge with the guidance of the

Software Engineering Ontology to provide useful and precise situational knowledge

to project team members. For example, in the case study of a bug resolution issue,

before filing a new bug report, the ontology agent can assist a developer to locate the

related bugs in order to help to avoid duplicated report. It also can provide relevant

information about the problem class and its previous issues to a bug fixer. The

recommender agent can retrieve a full record of mappings of the previously reported

bugs to the problem class and the information about the developer who fixed those

bugs so that it can identify a potential fixer or a consultant and send a message to

notify him/her to be aware of a new bug that might need his/her expertise to resolve.

In this case, the coordination among team members can be improved because the

agents can access and process the knowledge captured to proactively inform them of

what is going on and when the coordination is needed.

Last, the SEOMAS approach uses the Software Engineering Ontology which

is a comprehensive ontology covering all the aspect of software engineering to

provide domain concepts during the annotation process. It also utilises other well-

known ontologies and controlled vocabularies to enrich the semantic description of

the annotated software project information wherever possible to enable reusability

and to facilitate interoperability between different applications. Additionally, during

the annotation process, the annotated source code elements are interlinked with the

corresponding DBpedia concepts. The benefit of these links is that additional

information about the annotated project information can be obtained from DBpedia

which is a crowd-sourced community effort to extract structured information from

Wikipedia website. Thus, the team members can extend their views of the captured

knowledge by looking for additional information from DBpedia and its provided

links.

181

 Conclusion

In this chapter, the SEOMAS approach for automated knowledge capture of

software project information is proposed. The agents utilise the Software

Engineering Ontology to capture knowledge from software development artefacts

during the daily software development activity. The captured knowledge is

populated as new instances in the Software Engineering Ontology repository to allow

project team members and software agents to access it. It has been demonstrated that

the captured knowledge can be put to practical use to clarify any ambiguity in remote

communication and to facilitate effective and efficient coordination and knowledge

sharing within a software development project. In the next chapter, the design and

development of the SEOMAS framework to manage the Software Engineering

Ontology instantiations will be discussed.

 References

Aart, Chris van. 2007. Ontology Bean Generator. Accessed December 5, 2014,

http://protegewiki.stanford.edu/wiki/OntologyBeanGenerator.

Ashraf, Jamshaid, Omar Khadeer Hussain, and Farookh Khadeer Hussain. 2012. "A

framework for measuring ontology usage on the Web." The Computer

Journal. doi: 10.1093/comjnl/bxs134.

Auer, Sören, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. 2007. "DBpedia: A nucleus for a Web of open data." In The

Semantic Web: 6th International Semantic Web Conference, 2nd Asian

Semantic Web Conference, ISWC 2007 and ASWC 2007, Busan, Korea,

November 11-15, 2007. Proceedings, 722-735. Berlin, Heidelberg: Springer

Berlin Heidelberg.

Bauer, Bernhard. 2002. "UML Class Diagrams Revisited in the Context of Agent-

Based Systems." In Agent-Oriented Software Engineering II: Second

International Workshop, AOSE 2001 Montreal, Canada, May 29, 2001

Revised Papers and Invited Contributions, eds Michael J. Wooldridge,

http://protegewiki.stanford.edu/wiki/OntologyBeanGenerator

182

Gerhard Weiß and Paolo Ciancarini, 101-118. Berlin, Heidelberg: Springer

Berlin Heidelberg.

Beckett, Dave, and Brian McBride. 2004. "RDF/XML syntax specification

(revised)." W3C recommendation 10.

Bellifemine, Fabio Luigi, Giovanni Caire, and Dominic Greenwood. 2007.

Developing multi-agent systems with JADE: John Wiley & Sons.

Bizer, Christian, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,

Richard Cyganiak, and Sebastian Hellmann. 2009. "DBpedia - A

crystallization point for the Web of data." Web Semantics: Science, Services

and Agents on the World Wide Web 7 (3): 154-165. doi:

http://dx.doi.org/10.1016/j.websem.2009.07.002.

Breslin, John G., Stefan Decker, Andreas Harth, and Uldis Bojars. 2006. "SIOC: an

approach to connect web-based communities." International Journal of Web

Based Communities 2 (2): 133-142. doi: 10.1504/ijwbc.2006.010305.

Brickley, Dan, and Libby Miller. 2014. FOAF vocabulary specification 0.99.

Accessed November 20, 2015, http://xmlns.com/foaf/spec/.

Caire, Giovanni, and David Cabanillas. 2010. Jade tutorial application – Defined

content languages and ontologies. Accessed 12 July 2016,

http://jade.tilab.com/doc/tutorials/CLOntoSupport.pdf.

FIPA. 2002. Foundation for intelligent physical agents: FIPA request interaction

protocol specification. Accessed November 23, 2015,

http://www.fipa.org/specs/fipa00026/SC00026H.pdf.

Huget, Marc-Philippe. 2003. "Agent UML class diagrams revisited." In Agent

Technologies, Infrastructures, Tools, and Applications for E-Services, 49-60.

Springer.

Liao, Y., M. Lezoche, H. Panetto, and N. Boudjlida. 2011. "Semantic annotation

model definition for systems interoperability." On the Move to Meaningful

Internet Systems: OTM 2011 Workshops: 61-70.

http://dx.doi.org/10.1016/j.websem.2009.07.002
http://xmlns.com/foaf/spec/
http://jade.tilab.com/doc/tutorials/CLOntoSupport.pdf
http://www.fipa.org/specs/fipa00026/SC00026H.pdf

183

Miles, Alistair, Brian Matthews, Michael Wilson, and Dan Brickley. 2005. "SKOS

Core: Simple knowledge organisation for the Web." In Proceedings of the

International Conference on Dublin Core and Metadata Applications, 3-10.

http://dcpapers.dublincore.org/pubs/article/view/798.

Nardi, Daniele, and Ronald J. Brachman. 2003. "An introduction to description

logics." In The description logic handbook, eds Baader Franz, Calvanese

Diego, L. McGuinness Deborah, Nardi Daniele and F. Patel-Schneider Peter,

1-40. Cambridge University Press.

QDox. 2015. Accessed October 11, 2014, http://qdox.codehaus.org.

Robillard, M., R. Walker, and T. Zimmermann. 2010. "Recommendation systems for

software engineering." Software, IEEE 27 (4): 80-86. doi:

10.1109/ms.2009.161.

Weibel, Stuart, John Kunze, Carl Lagoze, and Misha Wolf. IETF RFC 2413, 1998.

Dublin core metadata for resource discovery. IETF RFC 2413.

Wongthongtham, P., T. Dillon, and E. Chang. 2011. "State of the art of community-

driven software engineering ontology evolution" Dependable, Autonomic and

Secure Computing (DASC), 2011 IEEE Ninth International Conference on,

doi: 10.1109/DASC.2011.170.

Zimmermann, Roland. 2006. Agent-based Supply Network Event Management,

Whitestein Series in Software Agent Technologies. Switzerland: Birkhäuser

Verlag.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

http://dcpapers.dublincore.org/pubs/article/view/798
http://qdox.codehaus.org/

184

 Ontology-based Multi-agent
Approach for Software
Engineering Ontology
Instantiations Management

 Introduction

The previous chapter explored the design and development of the SEOMAS

approach to automatically capture knowledge of software project information. The

Software Engineering Ontology is used to provide domain knowledge to software

development artefacts during the annotation process. Once the knowledge has been

captured and populated in the ontology repository, it can be subsequently used by

project team members or software agents to clarify any ambiguity or to address

major software development issues.

This chapter focuses on the design and development of the SEOMAS

approach to manage the instance knowledge after it has been captured into the

ontology repository. It starts with the design of internal models of collaborative

agents, namely, a user agent, the ontology agent, and the recommender agent. Then

the prototype is used as a proof-of-concept experiment to demonstrate the practical

uses of the framework which focuses on supporting requirement changes and

software traceability tasks. Finally, the results from the prototype demonstration are

discussed and compared with other related work.

185

 Ontology-based Multi-agent Approach for Software
Engineering Ontology Instantiations Management

Once software engineering knowledge has been captured and populated in

the Software Engineering Ontology, it is in a machine-accessible format that allows

software agents to read and process it with the guidance of the ontology. In order to

manage Software Engineering Ontology instantiations, three agent types are

involved, namely, a user agent, the ontology agent, and the recommender agent. This

approach enables the functionalities to support software development teams through

multi-agent collaboration as follows.

• Knowledge query

The SEOMAS agents assist project teams to access software engineering

knowledge shared in the Software Engineering Ontology and to query the semantic

linked software project information.

• Instance knowledge manipulation

The manipulation of Software Engineering Ontology instance knowledge has

three basic operations, namely, add, modify, and delete. For the add operation, the

agent inserts new instantiations into the ontology knowledge base. It should be noted

that this operation is similar to the ontology population process; however, it is more

suitable for the insertion of a small number of instantiations. For the modify

operation, the agent changes the value of a particular property of some instantiations

in the ontology. For the delete operation, the agent removes some instantiations from

the ontology knowledge base. It is to be noted that the agent does not remove only an

instantiation explicitly requested by a user. It also removes its associated properties

referred to in other instantiations in order to maintain the consistency of

instantiations in the ontology repository. Furthermore, the agents provide useful

recommendation regarding the impact of a change made to the instantiation and

notify relevant team members to be aware of the change and its impact in a timely

manner. These features are intended to improve the team’s awareness with respect to

software evolution to maintain consistency among software development artefacts.

186

• Instance knowledge monitoring

The monitoring of Software Engineering Ontology instance knowledge is

intended to provide proactive monitoring of particular software project information

and notification service in order to actively inform team members about relevant

information or alert them to any event that is more likely to disrupt the project’s pre-

planned schedule or to affect the project’s performance. The appropriate team

member will be notified to be aware of such event before an actual issue arises.

In the next section, details of each agent type (i.e., a user agent, the ontology

agent, and the recommender agent) involved in the management of Software

Engineering Ontology instantiations are given within the micro-perspective of

AOSE. These details describe resources, agent behaviours and related agent

interactions with AUML models as proposed in Figure 6-1 of Chapter 6.

 User Agent

As mentioned in Chapter 6, a user agent acts as a representative of each user

and a mediator between a user and the system. Some of its design details have

already been mentioned in Chapter 6 in section 6.3, but it is mainly focused on the

knowledge capturing process. In this chapter, the focus will be on the management of

Software Engineering Ontology instantiations; therefore, only those design details

that are different from those given in Chapter 6 will be described.

7.3.1 Structure

An overview of the structural features of a user agent is illustrated with the

AUML class diagram at implementation level in Figure 7-1. The details of the

structural features that are different from those given in Chapter 6 are in bold italic.

In order to assist its user to manage the Software Engineering Ontology instance

knowledge, a user agent needs to collaborate with the ontology agent and the

recommender agent. Perceptions of a user agent are based on a request from its user

(i.e., userRequest) and from the ACL messages received from the ontology agent

187

(i.e., retrievedResult, confirmation, failure) and the recommender agent (i.e.,

changeImpactRecommendation, changeImpactNotification, Notification). A user

agent employs an ACL message with a FIPA-request protocol to request the

ontology agent to query knowledge or manipulate the ontology instantiations.

<<Agent>>
User Agent

Role
- ACLMessageGenerator
- OutputGenerator

Knowledge Asset
Software Engineering Ontology

Collaborator
- Ontology agent
- Recommender agent

Behaviour
<<Reactive>>
 - Reac [userRequest] GenerateACLMessage [messageGenerated]
 - Reac [messageReceived] GenerateOutput [outputGenerated]
 - Reac [newUserInput] ReceiveUserInput [userInputProcessed]
- Reac [newMessage] ReceiveMessage [messageReceived]

<<Internal>>
 - Int [isCalled] SendMessage [messageSent]

Perception
- userRequest
- ACL_Messages(retrievedResult|changeImpactRecommendation|
confirmation|failure|changeImpactNotification|notification)

Protocol
- Initiates FIPA-request protocol with the ontology agent

Figure 7-1: AUML class diagram at implementation level of a user agent

7.3.2 Behaviours

In this section, an overview of behaviours associated with the roles of a user

agent and interdependencies between these behaviours is similar to the one presented

in section 6.3.2. Therefore, only the details of a user agent’s behaviours which are

GenerateACLMessage and GenerateOutput are discussed.

188

 ACL message generation behaviour

When a new request from a user is received, the GenerateACLMessage

behaviour becomes active. It generates an ACL request message based on the request

type (i.e., queryRequest or manipulation request). Then this message is sent to the

ontology agent through the SendMessage behaviour (Figure 7-2).

[userRequest] GenerateACLMessage [messageGenerated]

Identify user request
service type

Define the ACL message
communicative act

Send ACL message to
receiver agent

UserRequest

ACL_MessageOA

ACL (QueryRequest/
ManipulationRequest/
ComfirmManipulation-

Request)
to OA

SE Ontology

UserRequest

Input/Output/
External Resource

Control flow

Set interaction protocol

[messageGenerated]

Flow description

Specify the sender and receiver
agent

Register shared ontology

Create content message

Set content language

Figure 7-2: The GenerateACLMessage behaviour detail

 Output Generation Behaviour

When a user agent detects a message received from other agent types that are

involved in the Software Engineering Ontology instantiations management (i.e., the

ontology agent or the recommender agent), the reactive behaviour GenerateOutput is

activated (Figure 6-5). It first identifies the received ACL message content and the

communicative act to analyse the type of the message (e.g. inform, confirm, failure).

The message content is extracted and displayed to the user.

189

[messageReceived] GenerateOutput [outputGenerated]

Identify received message and the ACL
message communicative act

Generate output based on the
communicative act type

ACL_MessageOA,RA

Input/Output/
External Resource

Control flow[outputGenerated]

Flow description

Display output to a user

ACL
(ReceivedMessage)

from OA,RA

SE Ontology

Display to user

Figure 7-3: The GenerateACLMessage behaviour detail

7.3.3 Interactions

The AUML sequence diagram is used to describe the interactions between a

user agent, the ontology agent, and the recommender agent according to its

behaviours. As soon as a user agent receives a request from its user to query or

manipulate the instance knowledge, the behaviour GenerateACLMessage is initiated.

It generates the ACL message based on the request type. The request message is then

sent to the ontology agent to process. The behaviour GenerateOutput receives and

generates the output received from the ontology agent or the recommender agent as

shown in Figure 7-4.

190

User agent Ontology agent Recommender agent

x

Generate output

INFORM
(ChangeImpactNotification)

Generate ACL message

GenerateACLMessage

GenerateOutput

REQUEST (QueryRequest)

REQUEST (AddInstanceRequest)

REQUEST (DeleteInstanceRequest)

REQUEST (ModifyInstanceRequest)

x

INFORM (QueryResult)

CONFIRM
(InstanceKnowledgeManipulation)

FAILURE

INFORM
(MonitoringNotification)

INFORM
(ChangeImpactRecommendation)

REQUEST
(ConfirmModificationRequest)

REQUEST (ConfirmDeletionRequest)

Figure 7-4: Agent interactions of a user agent

191

 Ontology Agent

The ontology agent serves as an interface to manage the connection to the

Software Engineering Ontology. It performs a crucial role in accessing and

manipulating the Software Engineering Ontology instantiations. It also provides a

proactive feature to monitor software project information captured as instance

knowledge. These responsibilities are specifically reflected in the structure and

behaviours of the ontology agent as follows.

7.4.1 Structure

The above responsibilities of the ontology agent are inherited by the role

InstanceKnowledgeManager. An overview of the structural features of the ontology

agent, including its resources, is illustrated with the AUML class diagram at

implementation level in Figure 7-5. Its main resource is the Software Engineering

Ontology. The Software Engineering Ontology domain knowledge is used to create

agent messages and to translate the content for consistent communication, while its

instance knowledge is used to retrieve semantically-linked software project

information.

The ontology agents’ roles include several main behaviours, namely,

QueryKnowledge, AddInstanceKnowledge, ModifyInstanceKnowledge, and

DeleteInstanceKnowledge. These behaviours are discussed in detail in the next

section. The ontology agent depends on the perceptions of its sensors that provide

information about the environment. Two agent message types from user agents are

received by the agent, namely, query request (queryRequest), add instance

knowledge request (addInstanceRequest), modify instance knowledge request

(modifyInstanceRequest), delete instance knowledge request

(deleteInstanceRequest), confirm modification request

(confirmModificationRequest), and confirm deletion request

(confirmDeletionRequest). The ontology agent’s interaction that responds to a user

agent and the recommender agent are performed by means of the agent

communication language message with the FIPA-request protocol.

192

<<Agent>>
Ontology Agent

Role
- InstanceKnowledgeManager

Knowledge Asset
Software Engineering Ontology

Behaviour
<<Reactive>>
 - Reac [queryRequest] QueryKnowledge [requestProcessed]
 - Reac [addInstanceRequest] AddInstanceKnowledge
[instanceKnowledgeManipulated]
 - Reac [modifyInstanceRequest] ModifyInstanceKnowledge
[instanceKnowledgeNotManipulated|instanceKnowledgeManipulated]
 - Reac [deleteInstanceRequest] DeleteInstanceKnowledge
[instanceKnowledgeNotManipulated|instanceKnowledgeManipulated]
- Reac [newMessage] ReceiveMessage [messageReceived]

<<Internal>>
 - Int [isCalled] SendMessage [messageSent]

Perception
ACL_Messages(queryRequest|addInstanceRequest|modifyInstanceRequest|
deleteInstanceRequest|confirmModificationRequest|confirmDeletionRequest)

Protocol
- Responds to the FIPA-request protocol with user agents for knowledge query
and instance knowledge manipulation
- Initiates the FIPA-request protocol with the recommender agent to request
recommendation and notification

Collaborator
- User agent
- Recommender agent

Figure 7-5: AUML class diagram at implementation level of the ontology agent

7.4.2 Behaviours

 Overview

A behaviour overview diagram of the ontology agent is presented in Figure

7-6. The ontology agent has a role, InstanceKnowledgeManager that has four

reactive behaviours activated in response to user agents’ requests, namely,

QueryKnowledge, AddInstanceKnowledge, ModifyInstanceKnowledge, and

DeleteInstanceKnowledge. The behaviour QueryKnowledge reacts to a perceived

agent message with the perception type queryRequest as specified in the pre-

condition of this behaviour. It queries the instance knowledge of the Software

Engineering Ontology and provides the retrieved results to a user agent. The

193

behaviour AddInstanceKnowledge is responsible for inserting new instance

knowledge into the Software Engineering Ontology according to a user request. The

behaviour ModifyInstanceKnowledge and DeleteInstanceKnowledge modifies and

deletes the requested instance knowledge respectively.

Figure 7-6: Behaviour overview diagram of the ontology agent

 Instance Knowledge Management Behaviours

The InstanceKnowledgeManager role deals with the management of the

Software Engineering Ontology instantiations. Four main behaviours are associated

with this role, namely, QueryKnowledge, AddInstanceKnowledge,

ModifyInstanceKnowledge, and DeleteInstanceKnowledge.

194

7.4.2.2.1 QueryKnowledge behaviour

In the case where a new query request from a user agent is perceived by

the behaviour ReceiveMessage, the behaviour QueryKnowledge becomes active

(Figure 7-7). It identifies the query request by utilising the Software Engineering

Ontology to define the context of the system and to facilitate the agent’s

communication. It retrieves the instance knowledge in the Software Engineering

Ontology according to the request. The retrieved result is sent directly back to a user

agent. If no result is retrieved, a failure message is sent to the user agent. It should be

noted that the ontology agent exploits existing reasoning mechanisms of the OWL

ontology to derive the knowledge that is most relevant to the query. These reasoning

mechanisms include TransitiveProperty, subClassOf, subPropertyOf,

equivalentClass, and equivalentProperty.

Reac [queryRequest]QueryKnowledge [requestProcessed]

Identify query instance knowledge
request

Send confirmation
message to UA

ACL
(queryRequest)

from UA

Input/Output/
External Resource

Control flow

Flow description

ACL_MessageUA

ACL_MessageUA

Retrieve knowledge from the SE
Ontology

Send failure message to UA

[success][not success]

[requestProcessed] [requestProcessed]

SE Ontology

ACL (queryResult/
Failure) to UA

Figure 7-7: Activities of QueryKnowledge behaviour

195

7.4.2.2.2 AddInstanceKnowledge behaviour

In order to modify the instance knowledge in the Software Engineering

Ontology knowledge base, the reactive behaviour AddInstanceKnowledge is

activated after the agent perceives a request from the behaviour ReceiveMessage. It

adds a new instantiation according to the request. If it is successful, a message to

confirm the addition is generated. However, if it is not successful (e.g., not accepted

by software engineering domain knowledge asserted in the ontology), a failure

message is created. The message is then sent out by the behaviour SendMessage to a

user agent who requests the addition of a new instantiation (Figure 7-8).

Reac [addInstanceRequest] AddInstanceKnowledge [instanceKnowledgeManipulated]

Identify add instance knowledge
request

Send confirmation
message to UA

ACL
(addInstanceRequest)

from UA

Input/Output/
External Resource

Control flow

Flow description

ACL_MessageUA

ACL_MessageUA

Add new instance knowledge

Send failure message to UA

[success][not success]

[instanceKnowledge
Manipulated]

[instanceKnowledge
Manipulated]

SE Ontology

ACL (Confirmation/
Failure) to UA

Figure 7-8: Activities of AddInstanceKnowledge behaviour

7.4.2.2.3 ModifyInstanceKnowledge behaviour

In order to modify the instance knowledge in the Software Engineering

Ontology, the reactive behaviour ModifyInstanceKnowledge is activated after the

ontology agent receives a manipulation request from the behaviour ReceiveMessage

(Figure 7-9). The Software Engineering Ontology is also used to define the context

of the system and to facilitate agents’ communication. The behaviour

196

ModifyInstanceKnowledge identifies a request and then sends a message to the

recommender agent to request the recommendation about the change impact analysis

in order to make a user aware of any unintended side effect. Then it will wait for the

confirmation of the modification from a user. If a user confirms the modification, it

modifies the instantiation according to the request. It then sends a message back to a

user agent to confirm the modification, and requests that the recommender agent

notify relevant user agents who potentially may be affected by the modification

made.

Reac [modifyInstanceRequest] ModifyInstanceKnowledge [instanceKnowledgeNotManipulated |
instanceKnowledgeManipulated]

Identify modification request

Identify the confirmation to modify the
requested instance knowledge

ACL
(ModifyInstance

Request)
 from UA

ACL (Confirmation/
Failure) to UA

Send request to RA for change impact
recommendation

SE Ontology

ACL
(ChangeImpactNotification

Request) to RA

Input/Output/
External Resource

Control flow

ACL
(ChangeImpactRecom
mendationRequest) to

RA

ACL_MessageUA

Flow description

Wait the confirmation from UA to modify
the requested instance knowledge

[instanceKnowledge
NotManipulated]

SE Ontology

ACL_MessageRA

Modify the requested instance
knowledge

[modify] [not modify]

Send message to UA to
notify failure

[success][not success]

Send message to UA to confirm
modification

Send message to RA for change
impact notification request

[instanceKnowledge
Manipulated]

[instanceKnowledge
Manipulated]

ACL_MessageUA

ACL_MessageRA

Figure 7-9: Activities of ModifyInstanceKnowledge behaviour

7.4.2.2.4 DeleteInstanceKnowledge behaviour

The reactive behaviour DeleteInstanceKnowledge is triggered when the

ontology agent receives a request to delete an instantiation from the behaviour

ReceiveMessage (Figure 7-10). It identifies a request and then sends a message to the

recommender agent to request the recommendation about the change impact analysis

197

from the deletion and wait for the confirmation from a user. If a user confirms that

the instantiation can be deleted, the behaviour DeleteInstanceKnowledge removes it

from the ontology knowledge base. Furthermore, this behaviour does not remove

only the instantiation explicitly requested by a user. It also removes the properties

associated with other instantiations in order to maintain the consistency of

instantiations in the ontology repository. It then sends a message back to a user

agent to confirm the deletion and asks the recommender agent to notify relevant

users who own the artefacts that potentially may be affected by the deletion of the

instantiation.

Reac [deleteInstanceRequest] DeleteInstanceKnowledge [instanceKnowledgeNotManipulated
|instanceKnowledgeManipulated]

Identify deletion request

Identify the confirmation to delete the
requested instance knowledge

ACL
(DeleteInstance

Request)
 from UA

ACL (Confirmation/
Failure) to UA

Send request to RA for change impact
recommendation

SE Ontology

ACL
(ChangeImpactNotification

Request) to RA

Input/Output/
External Resource

Control flow

ACL
(ChangeImpactRecom
mendationRequest) to

RA

ACL_MessageUA

Flow description

Wait the confirmation from UA to delete the
requested instance knowledge

[instanceKnowledge
NotManipulated]

SE Ontology

ACL_MessageRA

Delete the requested instance
knowledge from the SE Ontology

[delete] [not delete]

Send message to UA to
notify failure

[success][not success]

Send message to UA to confirm
deletion

Send message to RA for change
impact notification request

[instanceKnowledge
Manipulated]

[instanceKnowledge
Manipulated]

ACL_MessageUA

ACL_MessageRA

Delete the associated properties
referred in other instantiations

Figure 7-10: Activities of DeleteInstanceKnowledge behaviour

198

7.4.3 Interactions

The interactions between agent types that result from the behaviours of the

ontology agent QueryKnowledge, AddInstanceKnowledge, ModifyInstance-

Knowledge, and DeleteInstanceKnowledge are depicted in Figure 7-11.

In the case of the QueryKnowledge behaviour, a user agent sends a query

request to the ontology agent. The ontology agent retrieves the results from the

Software Engineering Ontology. If the retrieved results are not available, it responds

to a user agent with a message to notify the failure. If the results are available, they

are sent back to the user agent.

 If the ontology agent perceives a request to add new instantiation, it responds

to the request by adding a new requested instantiation to the Software Engineering

Ontology repository. If the addition is success, a message is sent to confirm a user

agent. If it is not successful, a message is sent to notify the user agent of a failure. In

order to modify or delete instance knowledge, the behaviours

ModifyInstanceKnowledge or DeleteInstanceKnowledge are activated. When, the

ontology agent perceives a request from a user agent, it sends a request to the

recommender agent for a recommendation regarding the impact of the change. If a

user makes a decision to modify or delete such instance knowledge, a user agent

sends a confirmation message to the ontology agent. When the instance knowledge is

modified or deleted successfully, the ontology agent sends a message to the user

agent to confirm the change made so that the user can validate and verify the logical

consistency of the ontology instances. The ontology agent also sends a request to the

recommender agent to send notifications to inform other user agents that potentially

may be affected by the proposed change.

199

User agent Ontology agent Recommender agent

REQUEST (QueryRequest)

FAILURE

x

[not success]

[success]
INFORM

(QueryResult)

FAILURE

x

[not success]

[success]CONFIRMATION

Generate change impact
recommendation

INFORM
(changeImpactRecommendation)

Generate change
impact notificationINFORM

(changeImpactNotification)

Manipulate instances

Query instances

QueryInstance
Knowledge

Modify/Delete Instance
Knowledge

REQUEST
 (modifyInstanceRequest/
deleteInstanceRequest)

REQUEST
(confirmModificationRequest|

confirmDeletionRequest)

REQUEST
 (changeImpactNotificationRequest)

REQUEST(changeImpact
RecommendationRequest)

REQUEST (AddInstanceRequest)

FAILURE

x

[not success]

[success]CONFIRM

Add new instance

AddInstanceKnowledge

Figure 7-11: Interactions among agent types of the ontology agent

200

 Recommender Agent

The recommender agent is responsible for accessing Software Engineering

Ontology instance knowledge and processing it to generate useful recommendations

and notifications (e.g, chage impact analysis, potential bug fixer, potential deviation

or disruptive event). These responsibilities are reflected in the structure and

behaviours of the recommender agent as follows.

7.5.1 Structure

The responsibilities of the recommender agent are inherited by the role

Recommender. An overview of the structural features of the recommender agent,

including its resources, is illustrated with the AUML class diagram at

implementation level in Figure 7-5. Its main resources comprise two main

knowledge assets, namely, Software Engineering Ontology repository, and rules or

formulas. The Software Engineering Ontology domain knowledge is used to create

agent messages and to translate the content for consistent communication while its

instance knowledge is used to retrieve semantically-linked software project

information. Rules or formulas are applied to the results retrieved from the Software

Engineering Ontology repository to generate a recommendation. It should be noted

that the rules or formulas are pre-defined according to specific tasks. For example,

when processing recommendations about the change impact analysis, the rules as

described in section 7.6.1 in Table 7-2 are applied to the retrieved result.

The recommender agent collaborates with the ontology agent and user

agents. It has three main behaviours, namely, ManageMonitoring,

GenerateChangeImpact-Recommendation, and GenerateChangeImpactNotification.

Details of these behaviours are explained in the next section. The recommender agent

depends on the perceptions of its sensors that provide information about the

environment which are the change impact analysis request

(changeImpactRecommendationRequest) and the change impact notification request

(changeImpactNotificationRequest) from the ontology agent. The recommender

agent’s interactions that respond to the ontology agent are performed by means of the

agent communication language message with the FIPA-request protocol.

201

<<Agent>>
Recommender Agent

Role
- Recommender

Knowledge Asset
Software Engineering Ontology, Rules or Formulas

Behaviour
<<Proactive>>
 - Pro [cyclic|instanceKnowledgeManipulated] ManageMonitoring
[monitoringStatusInitiated]
<<Reactive>>
- Reac [newMessage] ReceiveMessage [messageReceived]

 - Reac [changeImpactRecommendationRequest]
GenerateChangeImpactRecommendation
[changeImpactRecommendationGenerated]
 - Reac [changeImpactNotificationRequest]
GenerateChangeImpactNotification [changeImpactNotificationGenerated]
<<Internal>>
 - Int [isCalled] SendMessage [messageSent]

Perception
ACL_Messages (changeImpactRecommendationRequest|
changeImpactNotificationRequest)

Protocol
- Responds to the FIPA-request protocol with the ontology agent for generating
recommendations

Collaborator
- Ontology agent
- User agent

Figure 7-12: AUML class diagram at implementation level of
the recommender agent

7.5.2 Behaviours

 Overview

A behaviour overview diagram of the recommender agent is presented in

Figure 7-13. The recommender agent has only the Recommender role. As a

Recommender role, a reactive behaviour GenerateChangeImpactRecommendation is

activated in response to the ontology agent’s request received by the ReceiveMessage

behaviour. It reacts to the perceived message with the perception type

changeImpactRecommendationRequest as specified in the pre-condition. It generates

a recommendation regarding the impact of the requested change and then sends it to

the user agent who requested the change to make him/her aware of any unintended

202

side effects. If the user agent confirms that a change can be made and the ontology

agent has manipulated the instance knowledge, a reactive behaviour

GenerateChangeImpactNotification is initiated to generate messages to propagate a

change to relevant user agents who are potentially affected by the change made.

Furthermore, the recommender agent provides a proactive behaviour

ManageMonitoring that controls its decisions regarding particular software project

information that needs to be monitored proactively. This behaviour is triggered

cyclically or when the instance knowledge is manipulated. If the pre-defined

condition is met, a message is sent to notify the relevant user agent.

Figure 7-13: Behaviour overview diagram of the recommender agent

 Recommendation Management Behaviours

The Recommender role is responsible for generating recommendations and

notifications. Three main behaviours are associated with this role of the

recommender agent, namely, GenerateChangeImpactRecommendation,

203

GenerateChangeImpact-Notification, and ManageMonitoring.

7.5.2.2.1 GenerateChangeImpactRecommendation behaviour

The GenerateChangeImpactRecommendation behaviour acts upon a request

from the ontology agent. It identifies the software artefacts that may potentially be

affected by the change request based on associated relations defined in the Software

Engineering Ontology. Then, pre-defined rules/formulas are applied to them

according to the type of those artefacts (e.g., requirement change impact rules in

section 7.6.1 in Table 7-2) to generate a recommendation about the potential impact

of a change. The change impact recommendation is sent to the user who requested a

change in order to make him/her aware of the change impact so that s/he can decide

whether or not to make the change (Figure 7-14).

[changeImpactRecommendationRequest] GenerateChangeImpactRecommendation
[changeImpactRecommendationGenerated]

Identify change impact
recommendation request from OA

Identify related artefacts based on
associated relations defined in the

SE Ontology

ACL (ChangeImpact
Recommendation
Request) from OA

Input/Output/
External Resource

Control flow

Flow description

ACL_MessageUA

ACL_MessageOA

SE Ontology

ACL (changeImpact
Recommendation)

to UA
Send recommendation about the

change impact to a user agent

Apply the retrieved result with
corresponding pre-defined rules/

formulas

Generate recommendation about
the change impact

Rules/Formulas

[changeImpactRecommendationGenerated]

Figure 7-14: Activities of GenerateChangeImpactRecommendation behaviour

204

7.5.2.2.2 GenerateChangeImpactNotification behaviour

Once the instance knowledge has been manipulated according to a change

request, the GenerateChangeImpactNotification is initiated. It identifies the owners

of those artefacts that may be potentially affected based on associated relations

defined in the Software Engineering Ontology. Then the notifications are forwarded

to them so that they can be aware of the change and its impact (Figure 7-15).

Reac [changeImpactNotificationRequest] GenerateChangeImpactNotification
[changeImpactNotificationGenerated]

Identify change impact notification
request from OA

Identify the owners of the affected
artefacts based on associated

relations defined in the SE Ontology

ACL (ChangeImpact
NotificationRequest)

from OA

Input/Output/
External Resource

Control flow

Flow description

ACL_MessageUA

ACL_MessageOA

SE Ontology

ACL (changeImpact
Notification) to UA

Send messages to notify the
affected artefacts owners’ user

agents

[changeImpactNotificationGenerated]

Figure 7-15: Activities of GenerateChangeImpactNotification behaviour

7.5.2.2.3 ManageMonitoring behaviour

In addition to the aforementioned reactive behaviours, the recommender

agent offers a proactive behaviour, ManageMonitoring, which controls its decisions

regarding the identification of events that are more likely to deviate or disrupt the

project from the pre-planned schedule or to affect the project performance. It is

initiated cyclically or when the recommender agent perceives that the instance

knowledge has been manipulated (Figure 7-16). It monitors the specific instance

knowledge and notifies the person in charge about the event or the deviation when

one of the following conditions is met: a threshold is reached, a specific condition

occurs, and every appointed period of time is met (e.g., every day, every week, and

every month).

205

In case that a threshold is reached, particular instance knowledge is retrieved

and counted for the summation. If the summation reaches a pre-defined threshold, a

notification is generated and sent to the corresponding team member. For example, if

the behaviour ManageMonitoring can identify that the number of bugs reported to a

particular class is above a threshold (e.g. greater than 20 reports), a class author is

asked to investigate the issue. In case that a specific condition is met, once the

instance knowledge is manipulated and then its property matches the pre-defined

condition, a notification is generated and sent to the corresponding team member.

For instance, once the bug report status has been changed to ‘resolved’, a bug

reporter is notified to validate the solution. Finally, at every appointed period of time

(e.g. every day, every week, the end of the month, etc.), particular instance

knowledge is checked or processed and if the pre-defined condition is met, a

notification is generated and sent to the corresponding team member. For example, a

message is sent to notify the project manager about the issues which have remained

unassigned to the fixers for a week.

Pro [cyclic|instanceKnowledgeManipulated] ManageMonitoring [monitoringStatusInitiated]

Cyclic initialisation|Identify instance
knowledge manipulated

Input/Output/
External Resource

Control flow

Flow description

ACL_MessageUA

SE Ontology

ACL (Notification)
to UA

Retrieve the instance
knowledge and count

the summation

[threshold reached] [specific condition met] [every appointed time]

Compare with the
condition

Condition met
[condition
 not met]

Identify the
notification receiver

Send message to UA

[monitoringStatusInitiated]

[Condition met] [condition not met]

Identify the
notification receiver

Send message to UA

[monitoringStatus
Detected]

[monitoringStatus
Initiated]

[monitoringStatusInitiated]

Compare the
manipulated instance

with the condition

[Condition met] [condition not met]

Retrieve the instance
knowledge according to
pre-defined condition

[monitoringStatusDetected]

Compare time
condition

[Condition met]

Identify the
notification receiver

Send message to UA

[monitoringStatusInitiated]

[condition not met]

SE Ontology

[monitoringStatusInitiated]

Figure 7-16: Activities of ManageMonitoring behaviour

206

7.5.3 Interactions

The AUML sequence diagram is used to demonstrate the interactions

between agent types for the recommender agent. Figure 7-17 illustrates the main

interactions between the recommender agent, the ontology agent and user agents

which result from the behaviours GenerateChangeImpactRecommendation,

GenerateChangeImpact-Notification, and ManageMonitoring.

In the case of the GenerateChangeImpactRecommendation behaviour, the

recommender agent receives a message from the ontology agent to request

recommendations about the impact of a change (e.g., modify or delete) made to

particular instance knowledge. The recommendations are sent back to the user agent

who requested the change. When the instance knowledge is modified or deleted, the

recommender agent sends notifications about the change and its impacts to relevant

user agents. This is done by the behaviour GenerateChangeImpactNotification.

Concerning the behaviour ManageMonitoring, when the recommender agent

monitors some particular instance knowledge and identifies any potential deviation

or any event that meets the condition set, the notification is generated and sent to the

relevant user agents.

207

User agent Ontology agent Recommender agent

Generate change impact
recommendation

Generate change
impact notification

INFORM
(changeImpactNotification)

Manipulate instances

GenerateChangeImpact
Recommendation

REQUEST
(confirmModificationRequest|

confirmDeletionRequest)

REQUEST(changeImpact-
RecommendationRequest)

ManageMonitoring

Monitoring instance
knowledge

INFORM (Notification)

xx

[condition met]

[condition not met]

INFORM (changeImpact-
Recommendation)

REQUEST(changeImpact
NotificationRequest)

GenerateChangeImpact
Notification

Figure 7-17: Interactions among agent types of the recommender agent

208

 Practical Uses of the SEOMAS approach to Support
Requirement Traceability

This section discusses how to apply the SEOMAS approach for the

management of Software Engineering Ontology instantiations to support automated

requirements traceability tasks. Requirements traceability is one of the essential

activities of requirement management. It refers to “the ability to describe and follow

the life of a requirement in both forward and backward direction” (Gotel and

Finkelstein 1994). The manual performance of this task takes a great deal of effort

and is time-consuming, laborious, and prone to error. Requirements traceability is

challenging in centralised software development and even more so in a multi-site

environment where software teams are located across several sites. An effective and

proactive approach is needed to enable software teams to manage and be aware of

changes in requirements. The SEOMAS agents work cooperatively to trace and

identify potentially affected software artefacts and notify the relevant team members

about any change to requirements in order to provide them with timely awareness. In

the following sub-sections, details of the interdependency of requirements and the

rules regarding the impact of changes to requirements are presented to illustrate how

requirements are related to and affect each other. A case study of online shopping

system development is used to demonstrate how the SEOMAS approach can assist

software development teams to manage requirement change, particularly in terms of

requirement traceability.

7.6.1 Requirements Interdependencies Modelling

 Requirements interdependencies refers to the way that requirements relate

to and affect each other. A number of researches such as (Pohl 1996; Dahlstedt and

Persson 2005) have proposed various classifications of interdependency. In

(Dahlstedt and Persson 2003), the authors have compiled different views of

requirements’ interdependencies and have developed a neutral classification of

fundamental interdependencies grouped into two main categories which are

structural and cost/value interdependencies as shown in Table 7-1.

209

Table 7-1: Dahlstedt’s Interdependency model

Categories Description Type

Structural Concerns the structures of
requirements

Requires,Explains
Similar_to, Influences
Conflicts_with

Cost/Value Concerns the cost and value
involved in implementing
requirements

Increase/Decrease_cost_of
Increase/Decrease_value_of

The above requirement interdependencies are used to define the semantic

relations among requirements captured in the Software Engineering Ontology. This

research focuses mainly on identifying the impact of changes made to requirements

by recommending direct and indirect software artefacts which include other affected

requirements, use cases, classes, and test cases. Changes to requirements may include

additions, deletions and modifications. It is noted that the requirement update in this

research mainly concerns any change to the description of a requirement. The focus

here is particularly on the structural interdependency types which are Requires,

Explains, and Conflicts_with. In this work, they are used to represent the

relationships of requirements. However, to facilitate better understanding in our

context, the word Refines is used instead of Explains.

A Requires relation means that the fulfilment of one requirement depends on

the fulfilment of another requirement. For example, for Requirement R1- the system

allows the user to place an order and for Requirement R2– the user has to log in

successfully before placing an order. This demonstrates that R1 requires R2.

Refines means that a requirement is derived from another requirement and

adds more specific details. For instance, for Requirement R1- the system can manage

the payment via credit card and PayPal and for Requirement R2 – the system allows

the user to pay online. The interdependency is that R1 refines R2.

Conflicts_with describes the contradictory relationship among requirements.

A requirement conflicts with another requirement if they cannot exist

simultaneously. For instance, for Requirement R1- only the system administrator can

manage user passwords and for Requirement R2 – the users can change their

passwords online. This demonstrates that R1 conflicts with R2.

210

In (Göknil, Kurtev and van den Berg 2008), the authors define the change

impact rules for requirement changes. These rules are adopted and modified for this

work as presented in Table 7-2. For example, if requirement R1 has interdependency

‘requires’ with requirement R2, if R2 is deleted then R1 is considered as an actual

affected requirement.

Table 7-2: Change impact rules adapted from (Göknil, Kurtev and van den Berg
2008)

Interdependency Type R1 Requires

R2
R1 Refines
R2

R1 Conflicts with
R2

R1 is modified R2 is not affected R2 is not affected R2 is not affected
R2 is modified R1 is candidate

affected
R1 is candidate
affected

R1 is not affected

R1 is deleted R2 is not affected R2 is not affected R2 is not affected
R2 is deleted R1 is affected R1 is candidate

affected
R1 is not affected

New R is
added to R1

R1 is affected
R2 is not affected

R1 is affected
R2 is not affected

R1 is affected
R2 is not affected

New R is
added to R2

R1 is candidate
affected
R2 is affected

R1 is candidate
affected
R2 is affected

R1 is not affected
R2 is affected

7.6.2 Agent Capabilities

Software systems continue to develop over time. Changes occur frequently in

software development. They may result from modifications to users’ original

requirements, modifications to the environment in which the software operates, and

bug fixing (Naslavsky et al. 2005). The SEOMAS approach can assist software teams

to manage requirements information captured in the Software Engineering Ontology

as instantiations and to facilitate automated requirements traceability tasks as

follows.

211

7.6.2.1 Manipulating a requirement captured in the Software Engineering
Ontology

When a team member requests a change to a requirement (add/modify/delete)

through his user agent, a user agent translates the request into an ACL message and

sends it to the ontology agent. The ontology agent requests the recommender agent

sends a recommendation regarding the impact of a change to other relevant software

artefacts (e.g., other requirements, use cases, source codes, test cases). If a team

member confirms that a change can be made, the ontology agent manipulates the

requirement captured as instance knowledge in the Software Engineering Ontology

as requested.

7.6.2.2 Recommend change impact on related requirements

When the recommender agent receives a request to manipulate a requirement,

it retrieves the requirements that are related to the proposed change and identifies

them as the affected requirements or the candidate-affected requirements. In Figure

7-18, if the retrieved requirement has an interdependency type with the changed

requirement, the recommender agent needs to process it against a change impact rule

to identify the type of impact. However, if the retrieved requirement has no

interdependency type but shares the same use case with the changed requirement, the

recommender agent considers it as a candidate-affected requirement.

The retrieved
requirements

Have interdependency type with
the changed requirement Process against change

impact rule

Share use case with the
changed requirement

Identified as ‘candidate
affected’ requirement

Identified as ‘affected’ or
‘candidate affected’ requirement

Figure 7-18: Types of potentially affected requirements

In the case where a new requirement is added to the existing requirement, for

instance, the system currently accepts payment by credit card and a new requirement

is added to allow the user to pay by PayPal. The recommender agent will consider

this case similar to modify the existing requirement. It determines the type of

212

interdependency that exists between the existing requirements and then it applies the

change impact rules shown in Table 7-2 to identify the impact of adding a new

requirement. For example, in Figure 7-19, a new requirement R is added to R2;

therefore, R2 is changed and regarded as an affected requirement. Because R1

requires R2, so R1 is considered as a candidate-affected requirement.

Figure 7-19: New R is added to existing requirement R2

 Recommend change impact on other related software artefacts

The Software Engineering Ontology stores software project development

information as instance knowledge. Information about software artefacts such as

requirements, use cases, classes, and test cases is semantically linked and can be used

for traceability recovery. For example, Requirement A requires Requirement B,

Requirement B implements use case C relating to class D and deriving test case E.

The recommender agent retrieves traceability information to identify the directly-,

indirectly-, or candidate-affected software artefacts, namely, use cases, classes and

test cases as well as the authors of those artefacts (Figure 7-20).

• If they are related to the changed requirement, the recommender agent

identifies them as directly-affected artefacts.

• If they are related to the requirement affected by the proposed change, the

recommender agent identifies them as indirectly-affected artefacts.

• If they are related to the candidate-affected requirement of the changed

requirement, the recommender agent identifies them as candidate-affected

artefacts.

213

The retrieved
artifacts

Related to the changed requirement Identified as ‘directly’affected artifacts

Related to the affected requirement

Related to the candidate affected requirement

Identified as ‘indirectly’affected artifacts

Identified as ‘candidate’affected artifacts

Figure 7-20: Types of potential affected artefacts

 Notify relevant team members about the impact of the requirement
change.

To enable other software teams to become aware of the change made to a

requirement, the recommender agent sends messages to notify those artefacts’

owners about a change in requirements that may affect their own artefacts as soon as

the Software Engineering Ontology instance knowledge is manipulated. They can

become aware of the change to requirements in a timely manner and then undertake

further investigation regarding the effect on their artefacts if it is needed.

7.6.2.5 Generate traceability matrix

The ontology agent is capable of generating a dynamic traceability matrix to

represent the links between the requirement and the other software artefacts by

retrieving the related instance knowledge based on its associated concepts defined in

the Software Engineering Ontology. These artefacts include use cases, classes and

test cases. The ontology agent also allows its user to specify the requirement ID to

filter the output of the traceability matrix or leave it blank to present all information.

7.6.3 Case Study

The implemented prototype has been demonstrated through the case study of

an online shopping software development (Gupta 2013). Additional information

(e.g., requirement dependencies, test cases, new requirements) is added for the

purpose of evaluating the SEOMAS approach as presented in Appendix A. The

SEOMAS approach for the Software Engineering Ontology instantiations

management is utilised in this project to assist software development teams to

214

manage changes in requirements. Figure 7-21 shows all agents in the SEOMAS

platform. Each user agent lives in the container according to its software

development site.

Figure 7-21: Agents in the SEOMAS platform

 Scenario 1 - Querying instance knowledge

This scenario demonstrates the ability of the SEOMAS approach to query the

instance knowledge in the Software Engineering Ontology. The analyst, Mike in

Australia, wants to establish a trace from requirements to test cases in order to verify

whether all the requirements have been taken into account in the developed system.

Thus, he asks his user agent for requirement traceability information through the

query platform. His user agent then sends a query to the ontology agent to retrieve all

related traceability information from the Software Engineering Ontology knowledge

base.

The ontology agent sends all information back to Mike’s user agent to

215

generate the output in the form of a requirement traceability matrix as presented in

Figure 7-22

Figure 7-22: Excerpt of a traceability matrix

 Scenario 2 - Modifying instance knowledge

This scenario demonstrates the ability of the SEOMAS approach to modify

the requirements information captured in the Software Engineering Ontology as

instance knowledge. The analyst, Mike at the Australia site, requests a modification

to the requirement FR01 by changing its description to “The users shall not be able

to view the categories on the applications home page” through his user agent. The

agent constructs and sends an ACL message to the ontology agent to modify the

FR01’s requirement description as requested (Figure 7-23).

216

Message: (REQUEST

 :sender (agent-identifier :name "Mike Agent@MASPlatform" :addresses

(sequence http://C-A0012783.staff.ad.curtin.edu.au:7778/acc))

 :receiver (set (agent-identifier :name OntologyAgent@MASPlatform))

 :content "((action (agent-identifier :name \"Mike Agent@MASPlatform\"

:addresses (sequence http://C-A0012783.staff.ad.curtin.edu.au:7778/acc))

(UpdateRequirement :reqContent \"The users shall not be able to view the

categories on the applications home page.\" :name FR01)))"

 :language fipa-sl

 :ontology SEOntology

 :protocol FIPA-Request

)

Figure 7-23: An ACL message requesting to modify the Requirement FR01

The ontology agent extracts the content of the ACL message and evaluates

the requested action. It sends a request to the recommender agent to recommend

about the impact of the modification of the requirement FR01 to Mike as shown in

Figure 7-24. It recommends requirement FR02 as a candidate-affected requirement

because its interdependency with FR01 is ‘FR02 Requires FR01’ and the request is

the ‘modify’ type. Use case UC1 is also recommended as a directly affected use case

because it is realised from FR01. Use case UC2 is considered as a candidate-affected

use case because it is realised from the candidate-affected requirement FR02. Class

DBController is considered as a directly-affected class because it relates to use case

UC1, a directly affected use case. Class Items is regarded as a candidate-affected

class because it relates to use case UC2, a candidate-affected use case. Test case

TC1.1 is a directly affected test case because it is derived from use case UC1, a

directly affected use case. Test case TC2.1 and TC4.1 are candidate-affected test

cases because they are derived from the candidate-affected use case UC2. If Mike

confirms the modification, the ontology modifies the requirement FR01 as requested

and sends a message to Mike’s user agent to confirm the modification in the

Software Engineering Ontology (Figure 7-25). The recommender agent then sends

messages to notify the relevant user agents of the authors of those affected artefacts

217

as shown in Figure 7-26. For instance, John’s user agent receives a message to notify

that FR01 is modified and it is a directly affected UC1 (Home page) use case. John

can then be aware of the requirement change and take appropriate action in response

to the change.

Figure 7-24: Recommendation of potentially affected artefacts

Figure 7-25: A message to confirm the modification of the requirement FR01

218

Figure 7-26: Messages to notify the authors of potentially affected artefacts

From this scenario, it can be seen that the SEOMAS approach not only assists

the distributed teams to manage a change in requirement captured in the Software

Engineering Ontology, but also has the ability to recommend the impact of a change

and to notify relevant team members to be aware of a change made from the remote

sites in a timely manner. The updated requirement information is also instantly

available for sharing among other team members across multiple sites.

 Scenario 3 - Adding new instance knowledge

This scenario demonstrates the ability of the SEOMAS approach to extend

the existing instantiations of the Software Engineering Ontology with new

219

instantiations. The analyst, Sam at the Australia site, requests the addition of a new

requirement FR21 “The user shall complete the captcha when logging in for the

purpose of differentiating a human being from the computer program”. Sam’s user

agent creates and sends an ACL request message to add a new requirement FR21

together with its information to the ontology agent.

Message: (REQUEST

 :sender (agent-identifier :name "Sam Agent@MASPlatform" :addresses (sequence

http://C-A0012783.staff.ad.curtin.edu.au:7778/acc))

 :receiver (set (agent-identifier :name RecommenderAgent@MASPlatform))

 :content "((action (agent-identifier :name \"Sam Agent@MASPlatform\" :addresses

(sequence http://C-A0012783.staff.ad.curtin.edu.au:7778/acc)) (AddRequirement

:reqContent \"The user shall complete the captcha when log in for the purpose of

differentiating a human being from the computer program.\" :priority Desirable

:status Stability :useCase UC14 :newfrname FR21)))"

 :language fipa-sl

 :ontology SEOntology

 :protocol FIPA-Request

)

The ontology agent extracts the content of the ACL message and evaluates

the requested action. In this case, the action is the addition of a requirement. A

message content slot consists of information about a new requirement, namely the

requirement’s content, requirement’s changed status, requirement’s priority, and its

realised use case. The ontology agent creates a new instance of a Requirement class

and inserts the information from a massage content slot into its data properties and

object properties. A new requirement instance FR21 instantiation is inserted into the

ontology repository as shown in Figure 7-27.

220

Figure 7-27: A new added instantiation of a Requirements class

 Discussion

In this section, results from the case study using the SEOMAS approach to

support the requirement change management focusing on requirements traceability

tasks are discussed and compared with other related work.

Requirements traceability, considered as a sub-part of requirements

management, is challenging in centralised software development and even more so in

a multi-site environment where software teams are located across several sites.

Software development projects need to deal with a variety of changes including

changes made to requirements during the whole software development life cycle. A

single change can impact on other artefacts because of their interdependencies. An

effective and proactive approach is needed to establish and maintain consistency

between these software artefacts and alert remote team members to any changes in

requirements. In the case study, it has been proven that the SEOMAS approach

enables effective and efficient coordination of software teams by improving real-time

awareness of the teams when a requirement is changed. Additionally, it provides

efficient and effective communication through timely notification directed to the

relevant team members.

There are extensive research works on topics related to traceability when

there is a change in requirements. In (Assawamekin, Sunetnanta and

Pluempitiwiriyawej 2009; Hayes, Dekhtyar and Sundaram 2006), the authors focus

only on vertical traceability of requirement artefacts. This may result in a limited

view of the artefacts potentially affected by a change request. The development of

large and complex software systems generates various artefacts with different levels

221

of abstraction throughout the life cycle. Therefore, both vertical and horizontal

traceability approaches are required to manage the links between related artefacts at

these different levels of abstraction. In (Goknil et al. 2011), the authors proposed a

requirement meta-model with formal relation types together with a tool named Tool

for Requirements Inferencing and Consistency checking (TRIC). The purpose is to

manage requirements and to support automatic inferencing and consistency change

management. Their approach focuses only on tracing between requirements and

requirements, as well as between requirements and architectural components, but not

on other software artefacts. The authors of (de Almeida Falbo, Braga and Machado

2014) propose IMSD-Req, an extension of the work in (de Oliveira Arantes and de

Almeida Falbo 2010) by introducing new requirements-specific features including

analysing the impact of changes to requirements, evaluating consistency of

requirement prioritisation, generating a requirement traceability matrix, and verifying

requirements using checklists. This approach is similar in concept to our own, but it

mainly provides traceability support to co-located teams. It does not have enough

capability to ensure team awareness of changes to requirements in a multi-site

software development project. Team members at different sites may be unaware of

the effect of the change. This can create inconsistencies between development

artefacts.

Of the commercial tools available for the management of requirements, IBM

Rational RequisitePro (RequisitePro® 2015) is one of the well-known products that

helps project teams to manage and maintain their requirements. It allows software

developers to manage traceability among requirements and other related artefacts

such as classes, and test cases. However, it offers only two general relation types

expressing the direction of dependency between requirements: traceFrom and

traceTo. Therefore, if one requirement is changed, then all requirements traced from

the changed requirement are considered to be affected and need to be investigated for

the change. This can produce many false positives.

However, the SEOMAS approach can address the shortcomings of these

works in the following ways.

1) To enable software artefacts to be traced by means of both vertical and

horizontal traceability, the Software Engineering Ontology, which is an ontology that

222

defines common shareable software engineering knowledge and represents the

concepts in the software engineering domain, is used to establish and maintain the

traceability information. It can provide the support needed to unify and relate these

artefacts to trace between requirements and other requirements, and to trace across

related artefacts produced throughout the phases of the project’s software life cycle.

2) The semantics of requirements relations are defined and they are

integrated with the proposed change impact rules to determine which related

software artefacts are required to change. This approach can help to create more

valid impacts and reduce the number of false positives. Moreover, the SEOMAS

approach differentiates the type of impact on the artefacts whether it is direct or

indirect, or an actual or just candidate artefact.

3) In multi-site software development environments, software teams are

dispersed across various sites. Team members at one site may be unaware of what is

going on at other sites. The SEOMAS framework is based on agent-based technology

so it has advantages over the traditional software systems for software traceability in

terms of supporting autonomous, reactive and proactive features in a distributed

working environment. For instance, it can provide automated support for the

traceability recovery and change impact analysis on an autonomous basis.

Notifications are sent to inform the relevant team members who are the owners of the

affected artefacts of a change in real-time once software project information captured

in the ontology is manipulated. These features can help to improve the software

team’s awareness of software evolution and to maintain consistency among project

artefacts.

7.8 Conclusion

This chapter has focused on the design and development of the ontology-

based multi-agent system for Software Engineering Ontology instantiations

management. The specifications of the involved agents (i.e. user agent, the ontology

agent, and the recommender agent) are refined in regard to three aspects, namely,

resources, behaviours, and interactions. The SEOMAS approach is evaluated through

223

a case study of an online shopping software development by focusing on supporting

requirement traceability tasks.

The chapter concludes with a comparison of the results obtained from the

SEOMAS approach with those of the other approaches for supporting requirement

traceability tasks. It also presents a discussion regarding how the approach can

improve team awareness of software evolution and can help to maintain consistency

among project artefacts in a proactive manner. The next chapter provides an analysis

and discussion of the SEOMAS framework for active platforms for multi-site

software development environments.

 References

Assawamekin, N., T. Sunetnanta, and C. Pluempitiwiriyawej. 2009. "MUPRET: An

ontology-driven traceability tool for multiperspective requirements artifacts."

In Computer and Information Science, 2009. ICIS 2009. Eighth IEEE/ACIS

International Conference on, June 1-3, 2009. 943-948. doi:

10.1109/ICIS.2009.55.

Dahlstedt, Asa G, and Anne Persson. 2003. "Requirements interdependencies-

moulding the state of research into a research agenda." In 9th International

Workshop on Requirements Engineering–Foundation for Software Quality

(RefsQ’03), Klagenfurt/Velden, Austria, June 16 -17, 2003. 55-64.

Dahlstedt, ÅsaG, and Anne Persson. 2005. "Requirements interdependencies: State

of the art and future challenges." In Engineering and Managing Software

Requirements, eds Aybüke Aurum and Claes Wohlin, 95-116. Springer Berlin

Heidelberg.

de Almeida Falbo, Ricardo, Carlos Eduardo C Braga, and Bruno Nandolpho

Machado. 2014. "Semantic documentation in requirements engineering." In

17th Workshop on Requirements Engineering (WER 2014), Pucón, Chile,

April 23-25, 2014.

224

de Oliveira Arantes, Lucas, and Ricardo de Almeida Falbo. 2010. "An infrastructure

for managing semantic documents." In Enterprise Distributed Object

Computing Conference Workshops (EDOCW), 2010 14th IEEE International,

October 25-29, 2010. 235-244. IEEE.

Göknil, Arda, Ivan Kurtev, and KG van den Berg. 2008. "Change impact analysis

based on formalization of trace relations for requirements." In Traceability

Workshop - European Conference on Model Driven Architecture Foundations

and Applications (ECMDA-TW 2008), Berlin, Germany, June 9-12, 2008

Goknil, Arda, Ivan Kurtev, Klaas van den Berg, and Jan-Willem Veldhuis. 2011.

"Semantics of trace relations in requirements models for consistency checking

and inferencing." Software & Systems Modeling 10 (1): 31-54.

Gotel, Orlena CZ, and Anthony CW Finkelstein. 1994. "An analysis of the

requirements traceability problem." In 1st International Conference on

Requirements Engineering., Colorado Springs, CO, April 18-22,. 94-101.

IEEE.

Gupta, Swati. 2013. "Online Shopping Cart Application." Dissertation, Agriculture

and Applied Science, North Dakota State University, USA.

http://library.ndsu.edu/tools/dspace/load/?file=/repository/bitstream/handle/10

365/23054/Swati_Online%20Shopping%20Cart%20Application.pdf?sequence

=1.

Hayes, J. H., A. Dekhtyar, and S. K. Sundaram. 2006. "Advancing candidate link

generation for requirements tracing: the study of methods." IEEE Transactions

on Software Engineering 32 (1): 4-19. doi: 10.1109/TSE.2006.3.

Naslavsky, Leila, Thomas A Alspaugh, Debra J Richardson, and Hadar Ziv. 2005.

"Using scenarios to support traceability" Proceedings of the 3rd International

Workshop on Traceability in Emerging Forms of Software Engineering: ACM.

Pohl, Klaus. 1996. Process-Centered Requirements Engineering. New York, USA:

John Wiley & Sons.

http://library.ndsu.edu/tools/dspace/load/?file=/repository/bitstream/handle/10365/23054/Swati_Online%20Shopping%20Cart%20Application.pdf?sequence=1
http://library.ndsu.edu/tools/dspace/load/?file=/repository/bitstream/handle/10365/23054/Swati_Online%20Shopping%20Cart%20Application.pdf?sequence=1
http://library.ndsu.edu/tools/dspace/load/?file=/repository/bitstream/handle/10365/23054/Swati_Online%20Shopping%20Cart%20Application.pdf?sequence=1

225

RequisitePro®, IBM Rational. 2015. http://www-01.ibm.com/software/in/awdtools/-

reqpro/.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

226

 Active Platforms for Multi-site
Software Development
Environments

 Introduction

This chapter discusses the four active platforms for multi-site software

development environments. In the framework for active Software Engineering

Ontology through a multi-agent system (SEOMAS), the Software Engineering

Ontology is a main component capturing software engineering domain knowledge

together with software development project information. The platforms are equipped

with active support to facilitate the management of software development project

information and enable knowledge sharing through collaborative software agents

situated in the foreground of the ontology. They interact and mediate between the

ontology and software project team members. The platforms define standards

pertaining to the framework to support collaborative software development with

software engineering knowledge throughout various activities of the software life

cycle. They provide project team members with relevant and useful information that

can assist them to carry out software development activities. Furthermore, the

platforms can enable team members to be more productive by automating certain

time-consuming and tedious tasks such as knowledge capturing or searching.

The chapter begins by presenting the platforms framework, followed by

details of each platform. Then the practical uses of the platforms are discussed to

demonstrate their capabilities to actively assist software development teams to

manage and share knowledge. The chapter concludes with an enumeration of the

benefits of using the platforms.

227

 Platforms Framework

In this section, the SEOMAS platforms are discussed in terms of how they

can assist software project team members to access and manage software engineering

knowledge captured in the Software Engineering Ontology. The SEOMAS

framework consists of four platforms: knowledge capture platform, knowledge query

platform, knowledge monitoring platform, and knowledge manipulation platform.

These platforms support knowledge process activities including knowledge capture,

knowledge search, knowledge dissemination, and knowledge maintenance (Natali

and Falbo 2002). The Software Engineering Ontology is located at the core of the

knowledge infrastructure to support knowledge management, knowledge sharing and

reuse (Figure 8-1).

Figure 8-1: Software Engineering knowledge management and sharing infrastructure

Knowledge Capture

Large amounts of software project information are produced during a

software project. The task of manually capturing of domain specific knowledge in a

formal conceptual model of this project information is laborious, costly, and error-

prone. The automated capturing of software project information and populating it in

the Software Engineering Ontology repository are done through the knowledge

capture platform.

228

Knowledge Search

Team members query or search for software engineering domain

knowledge or software project information captured in the Software Engineering

Ontology to satisfy their particular information need. This search is considered as a

user-initiated search which means that a user has to specify the information that s/he

requires in order to formulate the query. Team members can access required

knowledge by querying or searching through the knowledge query platform.

Knowledge Dissemination

Knowledge dissemination is different from knowledge search in the

sense that it is initiated by the system and does not require a user to explicitly request

it. In other words, the knowledge that is potentially useful to the users is transferred

to them in a proactive manner without them having to explicitly request it. The

platforms can recommend relevant knowledge for particular situational tasks (e.g. a

match between bug and expert) or proactively monitor software project information

and notify appropriate team members when there is any potential deviation. This

proactive assistance for knowledge dissemination is provided through the knowledge

manipulation platform and the knowledge monitoring platform.

Knowledge Maintenance

Software project information often evolves as a result of changes made to

requirements or to design processes. One of the main challenges related to software

evolution is to maintain the consistency among related software development

artefacts. In this thesis, the maintenance of software project information captured in

the Software Engineering Ontology is done through the knowledge manipulation

platform. The platform also provides active support for automated traceability

recovery to maintain consistency among software artefacts and to facilitate team’s

awareness in real time during software evolution.

These activities are conducted through the Software Engineering Ontology-

based multi-agent system for knowledge management and knowledge sharing

platforms, or the SEOMAS platforms for short. These platform levels are depicted in

Figure 8-2.

229

Figure 8-2: Four levels of Software Engineering Ontology-based multi-agent system
knowledge management and knowledge sharing platforms

The knowledge capture platform assists team members to automatically

capture software engineering knowledge from software project information by means

of the semantic annotation and the ontology population process. The Software

Engineering Ontology is a main component that provides domain knowledge

throughout the semantic annotation process. Software project information is captured

and transformed into a conceptually organised form and can be semantically

interlinked with other relevant information sources. In this thesis, the knowledge

capture platform focuses on capturing software engineering knowledge from source

code artefacts. This is because they are centrally located and critical in software

development.

The knowledge query platform, or the query platform for short, assists

project team members to query or search for software engineering domain

knowledge and semantically-linked software project information captured in the

Software Engineering Ontology. The platform has the ability to exploit existing

reasoning mechanisms of the ontology (e.g., class subsumption, instance checking)

to derive knowledge that is more relevant to the search.

The knowledge monitoring platform, or monitoring platform for short, is

Software Engineering Ontology-based
Multi-agent System for Knowledge Management

and Knowledge Sharing Platforms

Knowledge Capture Platform

Knowledge Query Platform

Knowledge Monitoring Platform

Knowledge Manipulation Platform

230

proactively monitors the software project information, i.e., instance knowledge that

is more likely to encounter deviations or disruptive events which may lead to poor

quality of the final software product, project delay, and budget overrun. This

information is used to support effective decision making by the software teams in

response to these deviations or disruptive events.

The knowledge manipulation platform, or manipulation platform for short,

enables all team members to make any change (i.e., add, modify, and delete) to the

software project information captured in the ontology. In order to do so, a team

member interacts with the platform to make a request to manipulate the instance

knowledge. The platform also provides a recommendation regarding the impact that

the change may have on related software artefacts, and notifies relevant team

members of any change made by others. The recommendation and notification are

offered to project members on an information push-based basis.

Figure 8-3 presents a flow chart of the processes when utilising the platforms

to access, manage, and share software project information captured in the ontology.

Basically, the platforms offer many usage possibilities depending on a user’s

particular requirement. For example, software project information is semantically

annotated and populated in the Software Engineering Ontology knowledge base.

Then team members can query for particular information and/or manipulate the

knowledge according to their particular tasks. Another example is that once the

knowledge has been captured, the platforms proactively monitor it and notify

relevant members when a deviation is identified. The team leader can query to

inspect the situation and/or manipulate the knowledge if it is needed.

231

<K
no

w
le

dg
e

C
ap

tu
re

Pl

at
fo

rm
>

 <K
now

ledge
C

apture
Platform

>
<Q

ue
ry

Pl
at

fo
rm

>

 <M
onitoring

Platform
>

<M
an

ip
ul

at
io

n

Pl
at

fo
rm

>

 <M
anipulation

Platform
>

Figure 8-3: A flow of the processes when utilising the platforms

The SEOMAS platforms are intended to actively assist software development

teams to access, manage, and share software project information throughout the

various phases of the software life cycle. They are also intended to facilitate effective

and efficient communication and coordination among team members. In the next

sections, details of each platform are discussed.

 Knowledge Capture Platform

The knowledge capture platform involves the process of capturing software

engineering knowledge from the software project information during a daily software

development activity. A team member interacts with this platform by making a

request to import a source code file into the version control repository. When the file

is imported, it is also semantically annotated with the appropriate concepts and

relations defined in the Software Engineering Ontology in order to identify new

instances of the ontological concepts. They are also enriched with other controlled

vocabularies (e.g. FOAF, DC, DBpedia) to encourage ontology reuse and

information interoperability. Additionally, they are interlinked with similar entities in

the DBpedia dataset in order to provide additional information in regard to the

concepts or entities represented by the concept. The annotated and enriched source

Manipulating

Querying Monitoring

Knowledge Capturing

232

code elements are populated into the Software Engineering Ontology as new

instantiations. Once populated, they are available for use to facilitate remote

communication and coordination among project team members, among the

SEOMAS agents, and between members and the agents. Figure 8-4 demonstrates a

request to import source code through the platform. A developer requests to import

the source code “Employee.java” to the project version control repository. The

source code used as an example here is derived from the book “Java™ for

Programmers” (Deitel and Deitel 2011, 268-269).

Figure 8-4: Alex user agent requests to import a Java source code file into
the version control repository

Once the source code has been imported, it is semantically annotated with the

Software Engineering domain concepts. The result of the annotation from the

Employee Java source code is shown in Figure 8-5.

233

=============Semantic Annotation START =============================

File Name >> Employee.java

File Creation data >> 1463544962841

 INFO [OntologyAgent] (Config.java:27) - Trying to initiate config

Java Classes --> Employee

Class has following field(s):

Field Name: firstName AccessModifier: private DataType: java.lang.String

Field Name: lastName AccessModifier: private DataType: java.lang.String

Field Name: socialSecurityNumber AccessModifier: private DataType: java.lang.String

Class has AccessModifier: public

Implemented Interfaces: Payable

Constructor: Employee

Class has following method(s):

Employee

setFirstName

getFirstName

setLastName

getLastName

setSocialSecurityNumber

getSocialSecurityNumber

toString

Method name: Employee

Modifier: public

Parameters:

Name: first DataType: java.lang.String

Name: last DataType: java.lang.String

Name: ssn DataType: java.lang.String

Method name: setFirstName

Method return type: void

Modifier: public

Parameters:

234

Name: first DataType: java.lang.String

Method name: getFirstName

Method return type: java.lang.String

Modifier: public

Method name: setLastName

Method return type: void

Modifier: public

Parameters:

Name: last DataType: java.lang.String

Method name: getLastName

Method return type: java.lang.String

Modifier: public

Method name: setSocialSecurityNumber

Method return type: void

Modifier: public

Parameters:

Name: ssn DataType: java.lang.String

Method name: getSocialSecurityNumber

Method return type: java.lang.String

Modifier: public

Method name: toString

Method return type: java.lang.String

Modifier: public

================ Semantic Annotation END ===========================

Figure 8-5: Result of annotation from the Employee Java source code

The annotated source codes are then populated in the Software Engineering

Ontology as instance knowledge. They are subsequently used in other platforms to

clarify any ambiguity in remote communication and facilitate effective and efficient

235

coordination among project development teams. With assistance from the knowledge

capture platform, the tedious and time-consuming process of manually capturing the

software project information becomes automated and requires only minimum effort

from the team members.

 Query Platform

The query platform is where team members can query the semantic linked

software project information to facilitate their work. A team member sends a request

to query software project information through the query platform. The request is

processed to retrieve the query result from the Software Engineering Ontology and it

is sent back to a team member. Figure 8-6 shows an example of querying test results

of a particular requirement (i.e., FR03) from the query platform.

Figure 8-6: Excerpt of querying test report of the requirement FR03

It is to be noted that in this platform, the existing reasoning mechanisms of

the ontology are exploited to derive the knowledge that is more relevant to the

search. The next example demonstrates the platform’s ability to utilise the concept

of reasoning over the Software Engineering Ontology. According to a case study of

the online shopping system development in Chapter 6, a Tester, Amy at the USA

site, is implementing a test plan. She consults her user agent to provide information

about all use cases and test cases associated with the use case UC9 (Place order). The

relationships between use case UC9 and other use cases are shown in Figure 8-7. Her

user agent sends a query to the ontology agent and receives a result as depicted in

Figure 8-8.

When a use case UC9 is tested, UC10 (Login), UC11(Register), and UC14

(Verify Captcha) also need to be tested. The reason is that a use case UC9 includes

236

use case UC10. Use case UC10 also includes use case UC14. Therefore, from the

reasoning capability over the Software Engineering Ontology (transitive closure), if

Amy wants to test a use case UC9, the ontology agent also includes use case UC10

and UC14 in the test plan. Use case UC11 extends use case UC10; thus, it is

suggested that UC11 should be tested as well. Consequently, the platform suggests

that all the test cases of a use case UC9 (i.e., test cases TC12.1, TC12.2, TC12.3),

UC10 (i.e., test cases TC13.1, TC13.2, TC13.3), UC11 (i.e., test cases TC13.4 and

TC13.5) and UC14 (i.e., TC14.1 and TC14.2) should be included in the test plan

when user UC 9 is tested.

 Figure 8-7: Use cases related to a use case UC9

 Figure 8-8: Result of use cases and test cases required to be tested with

a use case UC9

From this scenario, it is evident that the platform can utilise the Software

Engineering Ontology for reasoning purposes. This is the capability that extends the

237

traditional keyword-based search in order to increase the relevancy of the search and

query retrieval result.

 Monitoring Platform

The monitoring platform is concerned with proactively monitoring the

particular software project information that might potentially encounter deviations or

disruptive events. This information could be useful to avoid problems before they

actually occur. The appropriate team member is notified in a timely manner so that

s/he can be aware of the situation and respond with appropriate actions.

Mainly, the monitoring platform involves proactively tracking particular

instance knowledge and responding to the event that may occur. Proactivity means

that the platform can assist team members to identify a potential problem before it

actually arises. The recommender agent is able to read and process the instance

knowledge captured in the Software Engineering Ontology according to pre-defined

conditions and engages in dialogue with user agents. A message to notify the person

in charge about the deviations or disruptive events is sent in real time when one of

the following conditions exists.

 A threshold is reached. For instance, the platform sends a message to

notify the class owner that the number of bugs reported to the class is

above a certain threshold. The purpose is to alert him/her to the need to

investigate the cause(s) of the problem so that s/he can allocate resources

to solving and testing efficiently.

 A specific condition occurs. For example, the platform tracks the

reported bug and notifies the reporter when the bug issue has been

resolved and is closed.

 Every appointed period of time (day, week, month, etc.). For instance,

a message is sent to notify the project manager about the issues which

have remained unassigned to the fixers for a certain period. Another

238

example is when a requirement has no linked use case or does not have a

test case established for a certain period. This may indicate that it might

not have been properly implemented or has gone untested.

In the following example, the platforms demonstrate their ability to

proactively monitor the requirement test coverage. Basically, each requirement is

mapped to one or more test cases that are used to validate whether the functionality

works as expected. Since the test cases cover a requirement, if the test cases

associated with a particular requirement cannot be executed successfully, then the

requirement is not completely validated. Typically, if a requirement has low priority

(e.g., optional), even though the requirement is not completely validated, this could

be ignored or postponed for a later fix (Srinivasan and Gopalaswamy 2006).

However, if a requirement has high priority (e.g., highly desirable, desirable,

mandatory) and is not successfully validated, it should be inspected and the defects

should be fixed; otherwise, it may prevent a product release.

In Figure 8-9, the monitoring platform identifies two requirements (i.e., FR03

and FR13) with the ‘Mandatory’ requirement priority. Once all test cases associated

with these two requirements have been executed, the percentage of their test cases

passed is not 100%. Therefore, the platform sends a message to notify the

appropriate project member analyst, John, regarding the requirement test coverage

report, the mapping between requirements and test cases, and the information about

the test cases that have passed and those that have failed. Then he can look at the full

test report or consult with the tester to check whether the defects corresponding to

these requirements need to be fixed. Subsequently, the failed test cases are re-

executed.

239

Figure 8-9: Message to give notice of requirement testing coverage

 Manipulation Platform

The manipulation platform is where the instance knowledge is manipulated

and includes modification, addition, and deletion. A team member makes a request to

manipulate the instance knowledge through the platform. His/her user agent

translates the request and passes it to the ontology agent to process the manipulation

request. The platform can not only manipulate the instance knowledge, but it is also

able to recommend the impact of a change to a team member to make him/her be

aware of any unintended side effects from the change requested. Furthermore, once

the manipulation is committed, timely notifications are sent to inform relevant team

members to be aware of the proposed change. They can then investigate and perform

certain actions to respond to the change. In this platform, the Software Engineering

Ontology is used as a means of semantic tracing to derive dependencies among

software development artefacts. The recommender agent consults the Software

Engineering Ontology and applies a defined change impact rule to determine

potentially affected software artefacts in order to generate recommendations and

notifications.

For example, according to the case study presented in section 6.9, when Alex

requests a change to the method getMakeYear of the Vehicle interface by modifying

240

a method return type through the manipulation platform, the recommender agent can

make him aware of the potential impact to other software components. In object-

oriented system development, a subclass is dependent on the super class that it

inherits or the interface that it implements; therefore, a change in the super class or

the interface will impact on its subclass (Khatri and Chillar 2011). Figure 8-10

presents the recommendation of potentially affected artefacts sent to Alex.

MotorBike and Car class are suggested as affected classes when the getMakeYear

method is modified because they implement the Vehicle interface.

VehicleRegistration is also suggested as the affected class because it is the main call

which invokes either Car or MotorBike class. Figure 8-11 illustrates messages sent to

notify the authors of those potentially affected artefacts to be aware of the change in

the Vehicle interface. In this example, the manipulation platform does not only assist

team members to manage the software project information captured in the Software

Engineering Ontology, but it also provides useful and precise situational knowledge

regarding the change impact analysis to improve team members’ awareness and alert

them to the need for coordination.

Figure 8-10: Recommendation of potentially affected artefacts

Figure 8-11: Messages to notify the authors of potentially affected artefacts

241

 Practical Uses

In this section, the practical uses of the SEOMAS platforms are demonstrated

through examples of a case study. It begins with the analysis of problems

encountered in the software development project. Then it demonstrates how the

SEOMAS platforms are able to assist software teams to proactively identify potential

problems or deviations before an actual issue arises, and to manage and share

software project information captured in the Software Engineering Ontology.

8.7.1 Problem Analysis

During a software development project, use cases are important for eliciting

and documenting functional requirements. They contain useful information that is

appropriate for corresponding processes and requirements. Because they are input to

various activities in the project, their quality reflects the quality of the whole

development project. If a use case is missing, it may result in some necessary

functionalities not being implemented (Anda, Hansen and Sand 2009). During the

validation of the user requirements, the identification of missing use cases may be

necessary (Mefteh, Bouassida and Ben-Abdallah 2014).

In some projects, missing use cases might not be identified until the system is

validated at the testing phase. An appropriate example is the case study of the Home

Lighting Automation System (HOLIS) project as described in the book “Managing

Software Requirements: A Unified Approach” (Leffingwell and Widrig 2000, 354-

356). The testing team was validating the system in order to confirm that the

implemented system conformed to the requirements established for it. However, the

team found that some requirements that had no associated use case and some

requirements were not linked to any test case. If this missing information is not

discovered or it is identified too late, it could result in a final software product that

does not meet customer needs. The use case and test case fragment of traceability in

the HOLIS project are depicted in Figure 8-12.

242

Figure 8-12: Use case and test case fragment of traceability (Leffingwell and Widrig

2000, 354)

The situation described above indicates that only a manual project review

would cause the unintentional error. In the next section, the SEOMAS platforms are

demonstrated to provide active support software teams to proactively monitor

software project information. The purpose is to identify a deviation or disruptive

event that could result in an issue during the software project. In addition, when such

an event is identified, the change made to related software project information can be

done through the SEOMAS platforms to enable real-time knowledge sharing among

project team members.

8.7.2 Platform Uses

Examples of the practical uses of the SEOMAS platforms are given

throughout this section. A case study of an online shopping system development used

in section 7.6.3 is also used here to demonstrate the SEOMAS platforms’

capabilities. After software project information has been transformed and populated

into the Software Engineering Ontology, the monitoring platform can monitor it in

order to verify the status of the software project. In this example, it proactively

monitors and identifies incomplete requirement information such as a requirement

that is not linked to any use case or test case. When this missing information is

identified, a notification is sent to notify the appropriate team member to investigate

243

this issue instead of going around to irrelevant people.

Figure 8-13 presents a notification sent to Benjamin, a requirement engineer

at a site in Australia to notify him about requirements FR06 and FR17 that have no

linked use cases. This can indicate that they might not have been properly considered

or implemented. FR10 does not have an established test case so this implies that it

might have missed out on being tested. The absence of this important information

might cause software functionalities to not work as expected.

Figure 8-13: Notification about missing requirement information

After receiving the notification, Benjamin investigates the reported missing

use cases and test cases for those requirements through the traceability matrix by

utilising the query platform as shown in Figure 8-14. He then uses the manipulation

platform to modify requirements FR06, FR17, and FR10 by adding the associated

use cases and test cases. In order to resolve missing use case information of

requirement FR06 and FR17, he connects FR06 to use case UC2 and connects FR17

to use case UC13. For the missing test case that is related to requirement FR10, he

links test case TC8.1 to use case UC8. Figure 8-15 presents the traceability matrix

after the missing information has been included in the ontology repository.

244

Figure 8-14: Excerpt of querying traceability matrix with missing use cases

and test cases

Figure 8-15: Excerpt of querying traceability matrix after adding missing use cases

and test cases

245

Because FR06 is modified by adding associated use case UC2, which links to

test cases TC2.1 and TC4.1, the platform sends a message to notify the tester team at

the USA site to be aware of this change (Figure 8-16). Amy, a tester who is

responsible for these test cases is notified so that she can take appropriate actions

such as updating the test cases’ details to align them with requirement FR06.

Figure 8-16: Message to notify a tester regarding FR06 is updated

 Discussion

In the aforementioned section, the functionality of the SEOMAS platforms is

demonstrated, specifically in assisting distributed project teams to effectively

manage and share software engineering knowledge when they are working on

various software development activities throughout the software life cycle. In this

section, the active platforms are discussed in relation to the issues defined in Chapter

3 which are:

• Software engineering knowledge management

• Knowledge sharing and reuse

• Communication

• Coordination

• Timely awareness

246

8.8.1 Software Engineering Knowledge Management

The SEOMAS platforms actively assist project development teams to access

and manage software engineering knowledge captured in the Software Engineering

Ontology ranging through a series of stages from its creation to its use. In other

words, they can provide active support for various knowledge management activities,

namely, knowledge capture, knowledge search, knowledge dissemination, and

knowledge maintenance.

 Knowledge Capture

Conventional knowledge capturing approaches require their users to

manually extract knowledge from software artefacts, and then formalise the

knowledge at the conceptual level. However, a large amount of information is

produced during a software development project. Therefore, the manual

transformation or mapping of this information into semantically rich form is time-

consuming, laborious, tedious, and prone to error. The knowledge capture platform

assists team members by providing an automated knowledge capturing approach

which is seamlessly integrated into daily software development activities. In other

words, with active support from the knowledge capture platform, pertinent software

engineering knowledge contained within the software project information is

automatically captured in the Software Engineering Ontology knowledge base with

minimum need for human intervention. Thus, it could encourage project team

members to share their knowledge, thereby improving the software productivity.

Once software project information has been captured and populated in the

Software Engineering Ontology, it is available to be used for communicating and

sharing among team members, among software agents, and between team members

and software agents. This information can be linked to other related information to

create the dependencies among them in order to support semantic query or semantic

search facilities.

 Knowledge Search

The query platform is mainly responsible for assisting with the retrieval of

software project information captured in the ontology. Project team members can

247

query or search the semantically-linked software project information to facilitate

their work. They can have some knowledge of an issue, rather than precise

knowledge about the concepts and relationships defined in the ontology. Put

differently, a user specifies the information that he/she needs and then the query

platform will formulate the query, retrieve knowledge from the ontology and deliver

the result to the user. For instance, when a developer wants to search for the bugs

reported to a particular class, he then specifies the class name. The query platform

can actively assist him to formulate the query and retrieve information regarding the

problem class and its related bugs as well as deliver the result to a developer.

Additionally, the query platform utilises the reasoning capability of the ontology to

increase the relevance of the search and query results.

 Knowledge Dissemination

During software a development project, particularly in a multi-site distributed

setting, software team members might not be aware of the existence of certain

knowledge or might not be able to find it effectively (e.g., a new member who has

just joined a project). The SEOMAS platforms, i.e., the monitoring platform and the

manipulation platform, support knowledge dissemination in a proactive manner. The

platforms can provide project members with useful information without requiring

them to explicitly express their needs. Relevant and timely information, associated

with their working context, is delivered to software teams. For instance, they can

alert a requirement engineer in regard to a requirement that has missed some

information for a certain period or when a bug report is filed, the platforms can

suggest a match between the bug and expert. Accordingly, even though team

members may not be aware of the existence of certain knowledge or may not be able

to find it effectively, the useful and relevant knowledge is still provided to them on a

push-based delivery basis.

 Knowledge Maintenance

Software development is a knowledge-intensive activity. Once the software

systems have been developed and deployed, they are subject to ongoing maintenance

to correct failures, adapt to changes in the system’s environment, or adapt to changes

in users’ requirements. The manipulation platform can assist team members to

248

manage the evolution of software project information captured in the Software

Engineering Ontology to reflect the project’s development. It offers proactive

features to propagate changes of project information to relevant team members

including recommendations about the impact of the change, and timely notifications

to inform relevant development team members about the change and its impact. The

benefits of these features are to help to avoid unintended side effects arising from the

change made, and they improve team members’ awareness of software evolution in

real time; moreover, they can help to maintain consistency among software

development artefacts.

8.8.2 Knowledge Sharing and Reuse

As mentioned earlier, software development is knowledge-intensive where

knowledge sharing plays an important role in team collaboration. However, in the

real working environment, project team members may not have the time or incentive

to share their knowledge with others. Accordingly, the active support provided by the

SEOMAS platforms can become a key enabler to encourage team members to share

their knowledge. The knowledge capture platform provides the automated support to

capture knowledge of software project information into semantically rich form that

can be subsequently shared and reused by software teams. The query platform can

enable project teams to reuse existing knowledge and past experience to resolve

software development issues (e.g. knowledge about particular bugs and how they are

fixed). This information can help them save time spent on resolving the issue and can

bring about software productivity benefits. The manipulation platform assists with

the updating of software project information captured in the Software Engineering

Ontology, and also provides real-time knowledge sharing regarding the update to

relevant team members.

8.8.3 Communication

The SEOMAS platforms are intended to enable effective and efficient

communication which is critical in a collaborative software development

environment. Software project information is captured according to the software

249

engineering domain knowledge through the knowledge capture platform. Thus, the

semantics of the project information are made to be more explicit so that it enables a

meaningful communication which eliminates misinterpretations, misunderstandings,

and miscommunications among team members. Furthermore, the platforms facilitate

efficient communication that is targeted and timely to keep team members well-

informed of the project progress. In other words, relevant and useful information is

directed to the team members who need to know about it early enough for them to

drive their decision making or to perform appropriate actions within the time

constraint. For example, software change propagation and its impact that are sent to

relevant team members to be aware of a change made by others, or the notification

sent to corresponding members when a deviation or a disruptive event is identified.

The effective and efficient communication provided by the SEOMAS platforms can

assist team members to reduce traditional communication efforts (e.g., phone calls,

emails, online chats, etc.) which are not very conducive to semantic understanding.

8.8.4 Coordination

Software development projects involve various work dependencies and

linkages which need information about others’ activities and their coordination.

Coordination become more complex as the degree of distribution of the team

increases, and the lack of team awareness is a critical factor. The SEOMAS

platforms can provide active assistance to improve effective and efficient

coordination among project team members. The platforms proactively inform them

of other team members’ actions in order to maintain real-time team awareness and

make them aware of coordination needs to manage work dependencies. For example,

when a bug is filed, the platforms can match a bug and a potential expert and then

notify him/her about a bug that needs his/her expertise to fix. If several bug reports

referring to the same class are filed until their number is above a certain threshold,

the platforms proactively inform the class author in order to bring his attention to the

need to diagnose the issue. Another example is that the platform notifies the project

manager about the issues which have remained unassigned to the fixers for a certain

period. In the above examples, it can be seen that the SEOMAS platforms help to

250

promote effective and efficient coordination within project teams which can bring

about a decrease in task resolution time, eliminate redundant tasks, and prevent

software defects that compromise the quality of a software system.

 Conclusion

This chapter has focused on the active platforms for multi-site software

development environments, namely, knowledge capture platform, query platform,

monitoring platform, and manipulation platform. These platforms are intended to

provide active support to remote project team members to manage and share

knowledge effectively throughout the various software development activities in the

software life cycle. The practical uses of the platforms are demonstrated through the

case study of the development of an online shopping system. The chapter concluded

with a discussion about the benefits of using the platforms in accordance with the

key issues identified in Chapter 3. In the next chapter, the framework for active

Software Engineering Ontology will be evaluated.

 References

Anda, Bente, Kai Hansen, and Gunhild Sand. 2009. "An investigation of use case

quality in a large safety-critical software development project." Information

and Software Technology 51 (12): 1699-1711. doi:

http://dx.doi.org/10.1016/j.infsof.2009.04.005.

Deitel, Paul, and Harvey M Deitel. 2011. Java™ for Programmers. second ed:

Prentice Hall Professional.

Khatri, Sujata, and RS Chillar. 2011. "Analysis of features affecting testing in object

oriented systems." Analysis 3 (2): 17-21.

Leffingwell, Dean, and Don Widrig. 2000. Managing Software Requirements: A

Unified Approach: Addison-Wesley Professional.

http://dx.doi.org/10.1016/j.infsof.2009.04.005

251

Mefteh, Mariem, Nadia Bouassida, and Hanêne Ben-Abdallah. 2014. "Feature model

extraction from documented UML use case diagrams." Ada User 35 (2): 107.

Natali, Ana Candida Cruz, and RA Falbo. 2002. "Knowledge management in

software engineering environments" Proceedings of the XVI Brazilian

Symposium on Software Engineering (SBES'2002),

Srinivasan, D, and R Gopalaswamy. 2006. "Software testing: Principles and

practices." Pearson Education, New Delhi India.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

252

 Evaluation of the Framework
for Active Software
Engineering Ontology

 Introduction

In Chapter 5, a conceptual framework for the active Software Engineering

Ontology through a Multi-Agent System (SEOMAS) was discussed. In Chapter 6

and Chapter 7, the development of the ontology-based multi-agent approach for

capturing knowledge from software project information and the development of the

ontology-based multi-agent approach for the Software Engineering Ontology

instantiations management were discussed respectively. In Chapter 8, the active

platforms for multi-site software development environments were developed as a

working prototype to demonstrate the feasibility of using the SEOMAS platforms to

assist collaborative team members to manage and share software engineering

knowledge effectively throughout various activities in a software development life

cycle.

In this chapter, the prototype system is used as proof-of-concept experiments

to evaluate the framework for active Software Engineering Ontology. The evaluation

is carried out in accordance with a framework for evaluation in design science

research addressed by Venable, Pries-Heje, and Baskerville (2012). The chapter

starts with the framework solution requirements for active Software Engineering

Ontology. The proposed framework will be observed and measured to determine

how well it can provide solutions for the research issues. This activity involves

comparing the framework requirements and observing results from the use of the

prototypes in the demonstration. The quantitative parameters including the time to

complete the task, the number of team members involving, and the required number

of team members’ actions, are used to measure the efficiency of deploying the

SEOMAS framework and platforms to assist software development activities. The

chapter concludes with a discussion of results, taking an integrated view that is

253

appropriate for the framework solution requirements.

 Framework Requirements

In Chapter 3, three main research issues were identified and led to the active

Software Engineering Ontology framework requirements. The prototype system was

developed according to these requirements and these are evaluated in the next

section. The framework requirements are:

• Automated Knowledge Capture of Software Project Information

• Software Engineering Ontology Instantiations Management

• Active Platforms for Multi-site Software Development Environments

9.2.1 Automated Knowledge Capture of Software Project Information

The first requirement of the framework for active Software Engineering

Ontology is automated knowledge capture of software project information. A

software development project produces a large volume of software artefacts.

However, these are in syntactic form so their structures are not conducive to an

understanding of the semantics, and therefore may create ambiguities. The Software

Engineering Ontology was developed to define common sharable software

engineering knowledge and to enable knowledge integration in a multi-site software

development environment. Software project information can be captured according

to the concepts defined in the ontology and subsequently used to clarify any

ambiguity in communication and to enable knowledge sharing among software

project development teams. Nevertheless, manually capturing knowledge of software

project information into conceptualised form according to the concepts defined in the

Software Engineering Ontology is a time-consuming, labour-intensive, tedious and

prone-to-error task. Therefore, the framework requires automated knowledge capture

of software project information that is seamlessly integrated in a software

development process in order to help project team members capture software

254

engineering knowledge with very minimum effort. It is found that the ontology-

based multi-agent approach is an appropriate means of achieving the aforementioned

requirement. Nonetheless, it is important to prove through the prototypes that the

approach conforms to its claims.

9.2.2 Software Engineering Ontology Instantiations Management

Once software development knowledge has been captured in the Software

Engineering Ontology, the next requirement is to manage the knowledge which

includes accessing and manipulating the information (i.e., add, modify, delete) to

reflect software evolution. In order to obtain or manipulate the knowledge captured

in the Software Engineering Ontology, project team members need to know exactly

the concepts and relationships to which they are referring. However, quite often a

person who utilise the ontology may try to resolve an issue but s/he cannot translate

it into the exact concepts and relations formed in the ontology. In addition, due to the

considerable amount of knowledge captured, it could be possible that software teams

are not aware of the existence of certain knowledge in the ontology, so this

potentially useful knowledge may be overlooked. Therefore, the framework needs to

assist software development teams to obtain the most relevant and precise situational

knowledge and project information.

Moreover, software project information is always evolving as a result of

modifications to changes in users’ requirements, adaptation to changes in the

system’s environment, and ongoing maintenance to correct failures. Making a single

change may affect other software artefacts. Thus, the framework requires effective

management of software project information captured in the Software Engineering

Ontology by enhancing a software team’s real-time awareness regarding software

evolution and maintaining consistency among software development artefacts. It is

found that the ontology-based multi-agent system is a solution for effective

instantiations management. The prototypes demonstrate Software Engineering

Ontology instantiations management capacities.

255

9.2.3 Active Platforms for Multi-site Software Development Environments

The last requirement of the framework for active Software Engineering

Ontology is to put the framework into practice to illustrate the benefits of the

platforms. The platforms are intended to actively assist multi-site software

development teams to effectively manage and share software engineering knowledge

throughout the software development life cycle. Project team members connect

through the platforms via their user agents. The collaborative agents interact and

mediate between the Software Engineering Ontology and team members to enable

effective and efficient communication and coordination. Because software

development activities are interconnected, the platforms play significant roles in

supporting software development activities throughout the software development life

cycle.

 Prototype Systems Evaluation

Hevner et al. (2004) consider the evaluation of the designed artefact as an

important component of a design science research process. According to a design

science research framework process model proposed by Peffers et al. (2007),

evaluation is a crucial activity that indicates how effectively and efficiently the

artefact provides a solution to the problem. The process of evaluation involves

comparing the objectives of a solution with the results obtained from using the

designed artefact in the demonstration. In this research, the conceptual framework

and the research framework are evaluated in accordance with a framework for

evaluation in design science research addressed by Venable, Pries-Heje, and

Baskerville (2012) through the prototype system as proof-of-concept experiments.

Several scenario experiments based on real case studies in the literature are

conducted to evaluate the effectiveness and efficiency of the proposed framework

through the implemented prototypes.

It is to be noted that because of the time constraint, the artificial evaluation

technique (Venable, Pries-Heje and Baskerville 2012) is chosen to evaluate the

proposed framework. The artificial data based on the case studies in the literature is

256

executed on the real system (prototype system) but the users are not real. Case study

is mentioned in (Peffers et al. 2007) as one of the research evaluation methods that

can be used to demonstrate the use of the design artefact to solve one or more

instances of the problems. The use of the case study is common for evaluating the

multi-agent based systems in several researches such as those of (Ossowski et al.

2004; Pomar, López and Pomar 2011; Calyam et al. 2014; Mahesh, Ong and Nee

2007). Therefore, it is selected as the best case to address the four problems

articulated in this thesis.

The evaluation engages various use case scenarios to assess the effectiveness

and efficiency of the framework through the prototype system. It focuses on

evaluating the prototypes according to the following three aspects of the framework

requirements:

• Evaluation of Automated Knowledge Capture of Software Project

Information

• Evaluation of Software Engineering Ontology Instantiations Management

• Evaluation of Active Platforms for Multi-site Software Development

Environments

9.3.1 Evaluation of Automated Knowledge Capture of Software Project
Information

In this section, the evaluation of automated knowledge capture of software

project information is demonstrated through the case study derived from

(Wongthongtham, Dillon and Chang 2011). It is also used to demonstrate the

practical use of the SEOMAS framework and the output screenshots are presented in

Chapter 6, section 6.9. Table 9-1 describes the bug resolution process mentioned in

the case study when the SEOMAS framework is not utilised.

257

Table 9-1: Bug resolution process described in (Wongthongtham, Dillon and Chang
2011)

No. Date Actor Actions
1. 3 Aug 2009 Richard@

Perth
Richard filed a bug report in the project issue tracking
system with high priority.

2. 4 Aug 2009 Richard@
Perth

R i c h a r d filed another bug report with an urgent request
hoping to increase its priority and draw greater attention
from developers.

3. 4 Aug 2009 Vishay@
Bangalore

Vishay came up with a quick fix and added a comment at the
end of the report, putting the report into the status of "re-
evaluation pending".

4. 11 Aug 2009 Arleno@
Shanghai

Arleno filed a duplicate bug which was soon recognized as a
repeated report two days later.

5. 15 Aug 2009 Arleno@
Shanghai

Arleno discussed with his team members and supervisor,
who added comments to the report and directed their
concerns back to the Bangalore Lab

6. 17 Aug 2009 Larry@
Bangalore

Larry provided another bug fix solution

7. 17 Aug 2009 Michael@
Dublin

Michael picked up the fix and pointed out that Larry’s fix
might produce deadlocks in another related component and
suggested reverting back to the first fix.

8. 18 Aug 2009 Larry@
Bangalore

Larry fixed the bug based on Michael's instruction

9. 24 Aug 2009 Michael@
Dublin

Michael checked the fix and marked the bug report status as
"resolved" and closed the bug.

10. 24 Aug 2009 Lisa@
Shanghai

Lisa suggested that the latest fix resulted in a connection
timeout.

11. 25 Aug 2009 Larry@
Bangalore

Larry asked Lisa to explain the affected component

12. 25 Aug 2009 Michael@
Dublin

Michael fixed the bug, and explained his fix.

13. 29 Aug 2009 Richard@Perth Richard closed the bug as “resolved”.
Total 27 days 6 actors 13 actions

From Table 9-1, it can be seen that even though the bug was not too

complicated and needed only a simple modification to fix the problem, it took 27

days to finalise the resolution which might cause a project delay. Difficulties arose

from the lack of common semantics. First, the information related to the bug was

dispersed among several software repositories with no links to indicate that they

were related to each other. Therefore, the same bug report was filed repeatedly.

Second, the bug was initially fixed by developers who had no expertise in this area,

resulting in several iterations of invalid fixes. Without the knowledge support to

match the bug with the expert, the bug-fixing time could be prolonged. Finally, the

inadequate sharing of project information and knowledge, such as the dependencies

among software components, can delay the bug fixing. As discussed above, Larry did

not know what the affected component was, so he needed someone to clarify this

information because there was no available and explicit reference that he could

258

access.

In order to address the abovementioned issues, software project information

(e.g., source code, bug reports, communication threads) should be captured so that

software development knowledge becomes conceptualised, organised, and can be

semantically linked among related knowledge. The SEOMAS framework can help to

automate knowledge capture process by means of the semantic annotation and the

ontology population tasks which are seamlessly integrated into the software

development process (e.g., version control). Once this software project information

has been captured and integrated, it is available for sharing among software project

teams to facilitate software development activities or to address project issues by, for

example, assisting with a bug resolution process as described in Table 9-2.

Table 9-2: Bug resolution process with supporting from the SEOMAS approach
No. Date Actor Actor Actions Agent Agent Actions
1. VersionControl

agent

Annotation
agent

Ontology
agent

1. The versioncontrol
agent imported a new
software project
information file into the
version control
repository.

2. The annotation agent
annotated software
development artefacts to
identify new instances.

3. The ontology agent
populated the Software
Engineering Ontology
with new instances.

2. 3 Aug 2009 Richard@
Perth

B efo re filin g a bu g
r e p o r t , R i c h a r d
checked whether the
bug had been reported
th r o u g h th e q u e r y
platform

Richard’s user
agent

Richard’s user agent sent
a query request to the
ontology agent

3. 3 Aug 2009 Ontology
agent

The ontology agent
retrieved existing bug
reports related to the
problem class and sent
them back to the user
agent.

4. 3 Aug 2009 Richard@
Perth

Richard filed a new
bug report with high
priority.

5. 3 Aug 2009 Recommender
agent

The recommender agent
1. identified Michael@

259

No. Date Actor Actor Actions Agent Agent Actions
 Dublin as the most likely

person to be able to solve
the new filed bug report;

2. attached Michael@
Dublin as the potential
fixer into the bug report;

3. sent a message to notify
Michael@Dublin to draw
his attention to the new
bug report that may need
his expertise to resolve.

6. 3 Aug 2009 Michael@
Dublin

Michael received a
message to notify him of
a new bug report.

Michael’s user
agent

Michael’s u s e r a g e n t
tr a n sla tes a m essa g e
from the recommender
a g en t a n d d isp la y to
Michael

7. 3 Aug 2009 Ontology
agent

The ontology agent
provided Michael with:
1. information about the
problem class and its
related software compo-
nents; and

2. history of all previous
bugs reported to the
problem class and how
they were fixed.

8. 4 Aug 2009 Michael@
Dublin

1. Michael fixed the
bug based on informa-
tion provided by the
ontology agent.
2. Michael marked the
bug report status as
"resolved".

9. 4 Aug 2009 Recommender
agent

The recommender agent
sent a message to notify
Richard that the status of
the bug had been
changed to "resolved".

10. 5 Aug 2009 Richard@
Perth

Richard read the
message, verified the
resolution, and then
closed the bug.

Total 3 days 2 actors 6 actions by real user 6 agents 12 actions by agents

Total number of actions 18 actions

In Chapter 6, it can be seen that the SEOMAS framework can automatically

and transparently assist software teams with the knowledge capture process because

it is integrated into the software development activities. Therefore, team members do

not have to expend any time or effort on this task. Once the software project

260

information has been captured, it is accessible and processable by the software

agents. They can use this knowledge to facilitate effective and efficient

communication and coordination, and to enable knowledge sharing among project

team members.

As demonstrated in Table 9-2, the bug resolution process involves bug

understanding, bug triage, and bug fixing as well as additional steps to avoid the

recurrence of similar bugs in the future. It is considered as one of the most complex

activities particularly in a multi-site distributed software development project

because it requires significant collaboration of information from various sources (e.g.

bug reports, software components, forum discussions) and various stakeholders.

From the comparison provided in Table 9-1 and Table 9-2, it is evident that the

SEOMAS framework can help multi-site distributed software development teams to

resolve the bug issues by improving the effectiveness and the efficiency of

communication and coordination as well as enabling knowledge sharing as follows.

1. Before filing a bug report, the ontology agent can help a software

developer to locate related bug reports based on their associated concepts defined in

the Software Engineering Ontology and its instances. Then s/he can view a list of

existing bugs reported to a particular class and determine whether the current bug is a

duplicate. In this case, duplicated bug reports could be identified early and avoided.

This can reduce the unnecessary information overload and considerably reduce

confusion as well as help to prevent tedious conflict.

2. After a bug has been filed, the recommender agent can recommend a

person who is most likely able to resolve the bug issue, and sends a message to alert

him about the new bug report that potentially needs his expertise to resolve. This can

help to match a bug to a potential fixer or consultant in order to avoid the inadequate

fixes from someone without expertise with this particular bug. In addition, the

recommender agent attaches the potential bug fixer’s name to the bug report so that

when other developers try to fix the bug (in case of a company’s policy that allows

only authorised people to change the code), they can directly ask the expert for

advice and help.

3. When the bug is being fixed, the ontology agent can provide relevant

261

information that is necessary for fixing the bug such as the history of bugs reported

to the problem class and their resolution, or related software components and their

owners. Then the developer can know what dependencies exist and check with

relevant people before making a change in order to prevent unintended side effects

from a change made.

4. When a developer makes a change to the source code, he is also

proactively informed about the components that potentially may be affected by a

change. This can reduce unintended side effects from the impact of the bug fixing,

and avoid future problems.

5. The recommender agent sends a message to notify the bug reporter as soon

as the bug status is changed to “resolved”. The reporter then knows that the issue that

he reported has been resolved, so he can verify the solution. Once he is satisfied with

the solution, the bug report can be closed. The SEOMAS agents can improve real-

time awareness of team members and enable efficient coordination without

overloading them.

Parameters for Efficiency Measurement

In the above scenarios, the efficiency of bug resolution by utilising the

SEOMAS framework is measured by three parameters, namely, time to complete the

task, the number of team members involving in the bug resolution, and the number of

team members’ actions.

1. Time to complete the task

Without the support of SEOMAS, the estimated time that would be taken

to resolve a single bug issue is 27 days. However, when SEOMAS is utilised, it takes

only three days to fix the same bug. This significant reduction in time is due to the

fact that source code artefacts and other software-related project information (e.g.,

bug reports, archived communications, project documents, etc.) are all captured and

can be integrated to generate interconnections among them. The ontology agent and

the recommender agent can utilise this interlinked knowledge space to deliver useful

and timely information to development teams. The delivered information is also

262

based on previous historical data in the software project. Information such as a match

between a bug and expert, related software components and related bugs, can assist

developers to diagnose and fix the bug more effectively and efficiently. Therefore,

the response time required to correct failures in order to complete the bug resolution

task is reduced.

2. The number of team members involving in the bug resolution

 As seen in Table 9-1, six team members are involved in the bug

resolution process. Even though the bug is not a complicated one and may require

only a simple modification by an expert, without utilising the SEOMAS platform, it

goes around across multiple sites which leads to several iterations of inappropriate

fixes from someone without expertise in fixing this kind of bug; moreover it

unnecessarily prolongs the bug resolution process. With the support from the

SEOMAS framework, fewer team members are involved in the bug resolution

process because the number of people reporting duplicate bugs can be reduced and

the bug can be directly assigned to the appropriate team member who has the

expertise required to resolve the issue instead of going around to several people.

3. The number of team members’ actions

 In the bug resolution scenario without support from the SEOMAS

framework, it can be seen that there are a number of unnecessary actions from the

team members. For example, personnel are filing duplicated bugs or iteratively fixing

the same bug. This is because the information and interactions which relate to the

bug are stored in various software artefacts without links between them. When the

SEOMAS platform is utilised, the source code is annotated using meta-data that is

semantically rich to enable it to be interlinked with other relevant information.

Hence, the development artefacts are all related, not independent. Therefore, the

ontology agent can help to locate related problems and deliver them to the team

members to prevent the same bugs from being reported multiple times. Additionally,

it can provide necessary context-relevant information of a problem class to assist the

developer to fix the bug. Therefore, the number of team members’ actions is

decreased from thirteen actions to six actions.

263

From Table 9-2, it can be seen that the total number of actions with

SEOMAS support is higher than without the SEOMAS support in Table 9-1. This is

because several additional actions are performed by the SEOMAS agents in order to

achieve their goal and to enable team members to perform their tasks more

efficiently. These actions include, for instance, the translation between team

members and their user agents, identifying expert and recommending useful

information about related software components, sending messages sent to relevant

team members. However, these actions are autonomously performed by the agents

and do not impact on team members’ performance.

9.3.2 Evaluation of Software Engineering Ontology Instantiations
Management

In this section, the evaluation of Software Engineering Ontology

Instantiations Management is demonstrated by using the following scenario derived

from a case study in (Lai and Ali 2013, 46-51).

The software organization ALPHA designs, defines and delivers a broad

range of IT solutions. The main site (headquarters) of ALPHA is located in Australia,

and the offshore sites are located in India and China. Client XYZ contacted ALPHA

for the development of an online shopping system. Based on conversations with the

client, the analysts and requirements engineer of ALPHA extracted and analysed

details about prospective system requirements. As a result, they identified that there

would be two modules in the project: one related to services (that is, purchases, order

tracking, seller information) and one related to payment (that is, basic payment and

authentication mechanisms). Thereafter, members from these teams established a

repository to record details of the online shopping system, generated a requirements

traceability matrix, sent project requirements to two offshore locations for global

software development, and communicated and discussed changes in requirements

with other development teams. The client, requirements engineer and project analysts

of ALPHA are located in Australia; however, the offshore teams are located in China

and India. The Chinese and Indian teams are responsible for the development of the

payment and service modules, respectively.

As things become clearer to the client with the passage of time, the client

264

wants to make a few changes to the payment module of the project. In the initial set

of requirements, end users can only use their credit cards for payment purposes in the

shopping system. To provide flexibility to end users in making online payments, the

client wants to make changes to the payment module by adding the “PayPal” facility

so that the end users can have different options available for online payments. For

this purpose, the managers of the client’s organization contacted members of the

analyst team and discussed the required changes. Mike, the requirements engineer

working at the Australian site is responsible for this requirement change. Table 9-3

describes the process of a requirement change.

Table 9-3: Requirement change process described in (Lai and Ali 2013, 46-51)
No. Date Actor Actions

1. 1 February
2013

Mike@Australia 1. Mike extracted details from the project repository
about the requirements relating to the payment module
and the team responsible for its development.

2. He examined the change impact from the requirement
traceability matrix and he found that to make change to
the Requirement ID 15 by adding payment with PayPal
would directly affect Use case 15 and related codes
responsible by China team. In addition, other
requirements i.e., Requirement ID 3, Requirement ID 6,
Use Case 3, Use Case 6, and related codes responsible
by India team would be affected too.

2. 2 February
2013

Mike@Australia Mike made the real change to the Requirement ID 15 by
adding additional payment method ‘PayPal’.

3. 2 February
2013

Mike@Australia M ik e discussed with the development team managers
Mr. JKL@China site and Mr. ABC@India site about
potential impact of the changes via Skype.

4. 3 February
2013

Mr. JKL
Developer@China

Mr. JKL looked at the project repository and inspected
the change in Requirement ID 15 whether it was actually
affected Use case 15 and which source code module
might be affected.
If so, he discussed the need to update those artefacts
with his development teams in order to reflect the
change.

5. 3 February
2013

Mr. ABC
Developer@India

Mr. ABC looked at the project repository and inspected
the change in Requirement ID 15 whether it was actually
affected Use case 3, Use case 6 and which source code
module might be affected.
If so, he discussed the need to update those artefacts
with his development teams in order to reflect the
change.

6. 5 February
2013

Mike@Australia
Developer@China
Developer @India

Mike, Chinese and Indian developers manually updated
the requirement traceability matrix according to the
project repository to make the matrix up-to-date.

Total 5 days 5 actors 9 actions

mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese

265

From Table 9-3, it can be seen that when a change needed to be made to a

requirement, the requirements engineer had to inspect the potential impacts of the

change and discuss these himself with the relevant team members. He began by

manually extracting details from the project repository about the requirements

relating to the payment module and the team responsible for its development. He

discovered that the development teams at the Chinese and Indian sites would

potentially be affected by this change. Unfortunately, this method is prone to error

because he might unintentionally overlook some portion of the traceability

information. Therefore, some related artefacts might not be traced and adjusted to

conform to the change. Furthermore, in the above example, Mike himself had to

inform other team members at different sites to make them aware of the change.

Lastly, when such changes occurred, team members had to manually update the

traceability matrix to reflect these changes which could be costly in terms of time

and effort if the changes were enormous. Even though there are some commercial

tools that aim at supporting the identification of affected artefacts when there are

changes in requirements, they usually do not provide support to ensure that the links

and impacted artefacts are properly maintained in a timely fashion (Kannenberg and

Saiedian 2009). This is particularly challenging in distributed settings. Changes can

be expected throughout the life cycle of software projects, so maintaining traceability

throughout changes to the system is significant important. Table 9-4 presents a

possible alternative way to manage the change in a requirement through the

SEOMAS framework by utilising its capability to manage software project

information captured in the Software Engineering Ontology.

Table 9-4: Requirement change process with support from the SEOMAS approach

No. Date Actor Actor Actions Agent Agent Actions
1. 1 February

2013
Mike@
Australia

Mike requests to
modify
Requirement ID 15
by adding
additional
requirement about
PayPal payment
through his user
agent.

2. 1 February
2013

 Mike’s user
agent

Mike’s user agent
translated his request
and sent it to the
ontology agent.

266

No. Date Actor Actor Actions Agent Agent Actions
3. 1 February

2013
 Ontology agent The ontology agent

sent a request for
recommendation about
the change impact to
the recommender
agent.

4. 1 February
2013

 Recommender
agent

The recommender
agent:
1. identified potentially
impacted requirements
by applying the defined
change impact rule;

2. identified other
potentially impacted
software artefacts;

3. sent the
recommendations
about the change
impact to Mike’s user
agent

5. 1 February
2013

Mike@
Australia

Mike examined the
change impact
recommendation
and decided to
commit the change.

6. 1 February
2013

 Ontology
agent

The ontology agent
modified the
Requirement ID 15 in
the ontology
repository.

 Recommender
agent

The recommender
agent sent messages to
notify the developer at
China and the
developer at India sites
to be aware about the
change in Requirement
ID 15 and its impact to
their artefacts.

4. 2 February
2013

-Developer@
China

-Developer
@India

The China and
Indian developers
examined the
change and its
impact to their
artefacts.

In case that the
change really
affected their
artefacts, they
request to update
their artefacts

User agents of :
- developer@
China
- developer
@India

1. The user agents of
developers at China
and India sites
translated the messages
received from the
recommender agent
and displayed to their
users.

2. They sent requests to
the ontology agent to
update their artefacts.

mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese
mailto:Mr.JKL@Chinese

267

No. Date Actor Actor Actions Agent Agent Actions
5. 2 February

2013
 Ontology agent

The ontology agent
updated the instance
knowledge according
to the change made.

Total 2 days 3 actors 4 actions by real
users 5 agents 10 actions by agents

Total number of actions 15 actions

The above scenarios evaluate the effectiveness of using the SEOMAS

framework to manage software project information captured in the Software

Engineering Ontology. As shown by comparing Table 9-3 and Table 9-4, the

SEOMAS framework can be utilised to improve the effectiveness and efficiency of

communicating and coordination as well as enable knowledge sharing in a multi-site

software development setting regarding a change in requirements as follows.

1. When a team member requests a change in requirements, the SEOMAS

agents collaboratively work to respond to the request. A user agent translates a

requirement change request from concepts and relationships defined in the Software

Engineering Ontology, and sends it to the ontology agent. The ontology agent then

collaborates with the recommender agent to identify the change impact

recommendation on other requirements and other artefact types. The

recommendation is sent back to the team member for consideration. This can help to

prevent unintended side effects from any change made to the instantiations.

2. If a team member decides to make the change, the ontology agent modifies

the software project information captured in the Software Engineering Ontology

according to the request. Once the change is has been made, the software project

information is updated and instantaneously available for sharing among the remote

members.

 3. The recommender agent proactively sends messages to notify other

relevant team members who are potentially impacted, about the change. Then they

can be aware of the change made by others at different remote sites and respond in

order to coordinate appropriately. In this case, the SEOMAS framework can maintain

timely awareness of the geographically dispersed teams effectively and efficiently

through proactive and real-time messages.

268

Parameters for Efficiency Measurement

 From the abovementioned efficiency measurement of using the

SEOMAS framework to manage a requirement change process, it can be seen that

the framework can actively assist team members to complete their software

development activities more efficiently by shortening task completion time, reducing

the number of team members involved in the tasks and reducing the number of team

members’ actions that need to be performed in order to complete the tasks.

1. Time to complete the task

Without the SEOMAS framework, the estimated time required to

complete the task, including the management of a change in requirements takes five

days until all information is updated in the project repository. However, with the

support from the SEOMAS framework, it takes only two days which indicates that

the SEOMAS framework can reduce the completion time. The main reason is that

the recommender agent can proactively assist team members to identify the impact of

a requirement change based on the semantic relationship captured in the Software

Engineering Ontology. Therefore, they do not have to spend time trying to discover

this information manually. Additionally, once the change has been made, the

recommender agent proactively sends messages about the change to relevant team

members at different remote sites in real-time. Dispersed project members are

therefore made aware of the change in a timely manner and can take further action in

response to the change within the appropriate time constraint.

2. The number of team members involving

As can be seen in Table 9-3, without utilising the SEOMAS framework,

there are five team members involved in the requirement change process. When a

requirement ID 15 is changed, Mike, a requirement engineers, must manually inspect

the potential impact of the change and spend time to discuss the potential affects with

the development team managers at the remote sites (i.e., Mr.JKL at China and

Mr.ABC at India sites). The development team managers also need to discuss the

need to update those artefacts with their development teams in response to the

change. Therefore, even for a single change, several project team members need to

be involved, particularly on the change propagation and change impact identification

269

tasks.

 However, with the support from the SEOMAS framework, the number of

team members involved in the process can be reduced from five actors to three

actors. The main reason is that the software agents can autonomously manage the

change propagation and change impact identification task instead of this being done

manually by project team members. The recommender agent consults the Software

Engineering Ontology to identify which artefacts or modules potentially will be

affected and who should be notified about this issue. It can assist Mike to be aware of

the impact of the change in order to prevent any unintended side effects. In addition,

once the requirement update has been done, the recommender agent proactively

propagates the change and its impact to other relevant team members in a timely

manner so that they can be aware of the change and coordinate with appropriate

actions.

3. The number of team members’ actions

In Table 9-3, there are several actions that team members must perform

manually in order to manage a change in requirements appropriately. For example,

Mike must examine the change impact of the requested requirement change from the

requirement traceability matrix. Manual traceability is prone to error and some

artefacts might not be identified as potentially being affected by a change. In

addition, the change has to be manually propagated to relevant team members.

Furthermore, when a team member makes the change, the traceability matrix needs

to be updated and this is manually performed by project team members.

 However, with support from the SEOMAS framework, the number of

team members’ actions can be reduced from nine actions to only four actions.

Several tedious, laborious and error-prone tasks such as tracing the changed

requirements to other artefacts are carried out by the software agents utilising

semantic representation and semantic relationship defined in the ontology. In Table

9-4, it is to be noted that the total number of actions is more than those without the

SEOMAS framework in Table 9-3. The reason is that there are some additional

actions that need to be taken by the SEOMAS agents in order to achieve the goals.

For example, the translation between team members and their user agents, messages

270

sent to relevant team members, etc. However, these actions are autonomously

performed by the agents and do not affect team member performance.

9.3.3 Evaluation of Active Platforms for Multi-site Software Development
Environments

In this section, the evaluation of active platforms for multi-site software

development environments through a case study from (Leffingwell and Widrig 2000)

is discussed. The use case and test case fragment of traceability are depicted in

Figure 9-1.

Figure 9-1: Use case and test case fragment of traceability

A testing team was validating the Home Lighting Automation System

(HOLIS) project in order to confirm that the implemented system conformed to the

requirements established for it. All actions are described in Table 9-5.

Table 9-5: Scenarios for investigating missing project information (adapted from
Leffingwell and Widrig 2000, 354-356)

No. Date Actor Actions
1. 1 November

2013
QA leader@
USA

The QA leader found that there were some test cases (i.e.,
TC1, TC3) that remained unexecuted for a certain period.

2. 1 November
2013

QA leader@
USA

The QA leader asked the tester team to check this issue.

3. 2 November
2013

Tester@USA The tester in spected the issue from the requirem en t
traceability matrix and he also found that there were some
requirements that were not linked to any test case (i.e.SR1,
SR2, SR5). So he reported this issue to the team leader.

271

No. Date Actor Actions
4. 3 November

2013
Team leader@
Australia

The team leader checked the traceability matrix and found
that these requirements had no associated use case.

5. 3 November
2013

Team leader@
Australia

T h e tea m lea d er contacted the requirement engineer to
inspect this issue.

6. 4 November
2013

Requirement
engineer@
Australia

The requirement engineer checked the problem and added
the missing use cases and test cases for those requirements.

7. 4 November
2013

Requirement
engineer@
Australia

The requirement engineer informed the tester about the
update of associated use cases and test cases to those
requirements.

8. 5 November
2013

Tester@USA The tester checked the update from requirement traceability
matrix and prepared for the further test plans.

Total 5 days 4 actors 8 actions

From Table 9-5, it can be seen that during the testing phase, the testing team

at USA site coincidentally discovered missing project information, namely, several

requirements that were not linked to any test case. It also led to the discovery that

some requirements also did not have an associated use case. If this missing

information is not discovered early, it might result in an unsuccessful final software

product which does not meet customer needs. This type of situation indicates that

only a manual project review might have caused the unintentional error.

Furthermore, when the tester found the requirements without test case established, he

was not sure about whom to contact regarding this issue. Thus, he directed his issue

to the team leader at Australia site. The team leader then directed this issue to the

requirement engineering who was responsible for those requirements. Finally, when

missing use cases and test cases were added, the requirement engineer himself had to

manually inform relevant team members of this change.

The same situation occurs when the SEOMAS platform is utilised to

proactively monitor software project information in Table 9-6.

Table 9-6: Proactively monitoring of project information by the SEOMAS platforms
No. Date Actor Actor Actions Agent Agent Actions
1. 1 November

2013
 Recommender

agent

The recommender
agent proactively
monitored software
project information
and found that the
requirements SR1,
SR2, and SR5 had no
use case and test case
established.

272

No. Date Actor Actor Actions Agent Agent Actions
2. 1 November

2013
 Recommender

agent

The recommender
agent sent a message
to notify the
requirement engineer
regarding this issue

3. 1 November
2013

 Requirement
engineer’s
user agent

The requirement
engineer’s user agent
delivered the message
to the requirement
engineer.

4. 2 November
2013

Require-
ment
engineer@
Australia

The requirement
engineer checked the
problem and sent a
request through his user
agent to update
associated use cases and
test cases to those
requirements.

5. 2 November
2013

 Requirement
e n g i n e e r ’s
user agent

The requirement
engineer’s user agent
sent a requirement
update request to the
ontology agent to add
associated test cases
to those
requirements.

6. 2 November
2013

 Ontology
agent

1) The ontology
agent modified the
requirement as
requested.

2) The recommender
agent sent a message
to notify the tester
about the update.

7. 2 November
2013

 Tester’s user
agent

The tester’s user
agent delivered the
message to the tester.

8. 2 November
2013

Tester@
USA

The tester could realise
about a set of new test
cases that were just
linked to those
requirements and
prepared for the further
test plans.

Total 2 days 2 actors 2 actions by real users 4 agents 7 actions by agents

Total number of actions 9 actions

In this section, the SEOMAS platforms are evaluated in terms of their

effectiveness in providing active support to access and manage software project

information and to enable knowledge sharing among multi-site distributed software

development teams. As seen in Table 9-6, the monitoring platform can proactively

monitor software development project information captured in the Software

273

Engineering Ontology. When it identifies a deviation or disruptive event that is likely

to affect the desired project outcome, it sends a message to notify the person in

charge that s/he should investigate and take appropriate action before the actual

problem arises. In this example, the requirement engineer is proactively informed

about the requirements that are not associated with a use case and test case. He

investigates the issue and decides to update the requirements with associated use

cases and test cases through the manipulation platform. The platform modifies the

instantiations of requirements SR1, SR2, and SR5 as requested and sends messages

to notify relevant team members (e.g., tester) to be aware of the changes. Finally, all

updated knowledge is promptly made available for sharing among project team

members.

Parameters for Efficiency Measurement

In the above scenarios, the efficiency of platforms in assisting software team

members to manage and share software engineering knowledge is measured by three

parameters, namely, time to complete the task, the number of team members

involved in the process, and the number of actions that team members need to

perform.

 Time to complete the task

 Without the SEOMAS support, the estimated time required to complete

the task which involves investigating and finding missing project information, takes

five days until the test cases added to validate those requirements are realised by the

tester team. However, with the support from the SEOMAS, it takes only two days to

complete the process which indicates that the SEOMAS platforms can reduce the

lengthy process. The reason is that the monitoring platform can proactively monitor

software project information and, when it identifies the requirements that have no

associated use case and test case for a certain period, it sends a message to notify the

requirement engineer about this missing information. Furthermore, when use cases

and test cases are updated to the associated requirements, relevant team members at

different development sites (e.g., tester) are notified in real time so they can be aware

of the update and use this information to continue their work as soon as the

information is updated.

274

 The number of team members involving

As seen in Table 9-5, there are four team members involving to the

process of investigating missing project information which are a QA leader who

found remained unexecuted test cases, a tester who found some requirements with no

links to test cases, a team leader who discovered that these requirements had no

associated use case, and a requirement engineer who updated these missing

information. However, with support from the SEOMAS framework, the number of

team members involved in this whole process is less because the collaborative agents

can perform some actions on behalf of the real users. For instance, the recommender

agent can proactively monitor project information by itself; therefore, this action

does not need a manual effort from any team member. Furthermore, with the ability

of the agents to access the semantic knowledge captured in the Software Engineering

Ontology, it is possible to infer the knowledge that is suitable for a given team

member or to whom that specific information should be disseminated. When the

recommender agent identifies the requirements without associated use cases and test

cases, it directly sends a message to notify the requirement engineer who is

responsible for those requirements to investigate and update the missing information.

In this case, there is no need for the team leader to be involved in this issue. Thus, the

number of team members involved can be reduced from four actors to only two

actors.

 The number of team members’ actions

 In the scenario of investigating missing project information without

support from the SEOMAS platform, it can be seen that a number of actions are

performed manually by the team members. For example, a tester, a team leader, and

a requirement engineer have to trace the missing information using a requirement

traceability matrix. If this issue is dismissed or not identified early, more actions may

need to be performed in order to fix the defects in the final software product. When

missing use cases and test cases are added to the requirements, the requirement

engineer himself also has to notify relevant team member. However, with the active

support from the SEOMAS platforms, most of the abovementioned actions are

performed autonomously by the agents. For instance, software project information is

proactively monitored and missing information is automatically identified by the

275

recommender agent. It also manages the tasks of notifying the update of the

requirements to other relevant team members. As a result, the actions that need to be

performed by the real users can be reduced from eight actions to only two actions.

 Discussion of Results

In this section, results from the previous section are discussed in an integrated

view. The discussion is categorised into three sections corresponding to the

framework requirements as follows:

• Automated Knowledge Capture of Software Project Information

• Effective Software Engineering Ontology Instantiations Management

• Active Platforms for Multi-site Software Development Environments

9.4.1 Automated Knowledge Capture of Software Project Information

Software project information is produced throughout the software

development life cycle. In particular, source code is considered critical and is central

to software development. The software maintenance is usually made at the source

code level and it can be prone to ambiguity in communication. The SEOMAS

framework has the capacity to annotate semantic source code for automatic

knowledge acquisition and management. With the support of the SEOMAS

framework, the manual process of capturing knowledge from source code which is

tedious, laborious, and prone to error can be replaced and performed automatically

by the software agents. The time spent on this process is also considerably decreased.

In addition, the capturing process is transparent to project teams as it is integrated

into daily software development activities. Once the software project information has

been captured according to the software engineering domain knowledge defined in

the ontology, it eventually becomes meaningful so that project team members can

use it to facilitate shared understanding and to clarify any ambiguity in

communication. Moreover, software development knowledge captured in the

276

ontology is well-organised and relevant concepts are interlinked. Related software

project information will not appear isolated, but will be in a large group of related

information that can be readily and easily accessed. This captured knowledge is also

in machine-understandable form. Consequently, the software agents can read and

process them with the guidance of the Software Engineering Ontology in order to

assist team members to address software development issues. For example, when a

new bug report is filed, the agent can autonomously retrieve a full record of

mappings of the previously reported bugs to the problem class and the information

about the developer who fixed those bugs. It then processes this information to

identify the potential bug fixer and proactively informed him/her to have awareness

of the new bug that needs his/her expertise to fix. In this case, the framework can

enable relevant team members to be notified of others’ actions and be aware of the

coordination needed so that they can coordinate while the development is still

underway.

In section 9.3.1, the prototypes are evaluated to observe and measure how

effective and efficient the SEOMAS framework is in supporting project software

teams to address software development issues, namely, bug resolution activity. It can

be seen that the real power of the automated knowledge capture is realised when the

knowledge is used to assist collaborative team members to communicate and

coordinate effectively and efficiently. As a consequence, software development

activities are performed more efficiently as bug issues can be resolved more quickly,

fewer team members are needed for the tasks, and there is a reduction in the number

of team members’ actions that need to be performed in order to complete the tasks.

9.4.2 Effective Management of Software Engineering Ontology Instantiations

 Once the software project information has been captured in the ontology

repository, it is important that this knowledge be managed effectively so that it can

be easily accessed and manipulated. As mentioned earlier, in order to obtain the

knowledge captured, software teams need to explicitly request and know exactly

which concepts and relations that they are referring to; otherwise, they may not be

able to obtain the required knowledge. Furthermore, software systems are subject to

maintenance and evolution, so changes are inevitable in all stages of a software

277

development project. One of the main challenges of software evolution is the

management of dependencies that exist between software development artefacts.

In section 9.3.2, the prototypes are evaluated to observe and measure how

effective and efficient the SEOMAS framework for Software Engineering Ontology

instantiations management is in assisting project team members to manage software

evolution in regard to a change in requirements. It can be seen that the agents can

help to manipulate instance knowledge in order to reflect the change and manage

dependencies among related artefacts. The collaborative agents can make use of the

software engineering knowledge captured in the ontology to provide

recommendations about the impacts of the change and deliver them to relevant team

members in a proactive manner without an explicit request from them. In this case,

group awareness and timely awareness are well-maintained to avoid the conflicts or

inconsistencies of software artefacts resulting from the change made. Thus, the

results have shown that it is efficient to improve software team’s productivity by

shortening time spent to manage a change in requirements, reducing the number of

team members involved in the task, and reducing the number of team members’

actions that need to perform in order to complete the task.

9.4.3 Active Platforms for Multi-site Software Development Environments

Software development comprises various knowledge-intensive tasks that

require collaborative project teams to manage and share software development

knowledge effectively. This is particularly so in multi-site software development

environments where team members are geographically dispersed, and inadequate

communication and coordination are the main factors that can hinder the success of a

software project. The SEOMAS framework provides active support to software

teams that collaborate and interact with each other to manage and share knowledge

through the SEOMAS platforms, namely, knowledge capture platform, query

platform, monitoring platform, and manipulation platform that cover various

development activities in the software life cycle. They support the management and

sharing of software engineering knowledge throughout a series of stages including

knowledge capture, knowledge search, knowledge dissemination, and knowledge

maintenance.

278

In section 9.3.3, the prototype results demonstrate the potential and the

advantages of the platforms. Once the software project information has been

captured in the ontology through the knowledge capture platform, it can be

proactively monitored by the monitoring platform to identify any potential deviation

or disruptive event which may lead to scenarios such as poor quality of the final

software product, project delay and budget overrun. When the unusual event is

identified, the notification is sent to the corresponding person to diagnose the issue

before an unexpected event occurs. The query platform can be used to assist team

members to investigate the issue. If the software project information needs to be

modified, the platforms also facilitate the manipulation of instantiations to reflect the

change. It can be seen that the platforms play an important role in enabling active

knowledge sharing by providing relevant and situational knowledge without

requiring team members to explicitly express their needs. In addition, because the

Software Engineering Ontology is a comprehensive ontology covering all aspects of

software engineering, the platforms can utilise this knowledge to facilitate remote

team members throughout the various phases in the software life cycle. The results

have shown that the SEOMAS platforms help to promote effective and efficient

communication and coordination and to enable effective knowledge sharing within

remote project teams. Accordingly, it results in a decrease in task resolution time,

eliminate redundant tasks, and help to avoid software defects that compromise the

quality of a software system.

 Conclusion

In this chapter, the active Software Engineering Ontology framework

requirements are presented. They consist of: i) automated knowledge capture of

software project information; ii) Software Engineering Ontology instantiations

management; and iii) active platforms for multi-site software development

environment. The prototypes are used as proof-of-concept experiments to evaluate

the proposed framework. The evaluation is carried out in accordance with the

evaluation framework for design science research. The proposed framework is

examined and evaluated in terms of how well it can provide solutions for the

279

research issues. Three quantitative parameters - time to complete the task, number of

team members involved, and number of team members’ actions - are used to measure

the efficiency of the framework in facilitating software development activities and to

address software development issues. The chapter is then concluded with the

discussion in an integrated perspective according to the framework requirements.

 References

Calyam, Prasad, Lakshmi Kumarasamy, Chang-Gun Lee, and Fusun Ozguner. 2014.

"Ontology-based semantic priority scheduling for multi-domain active

measurements." Journal of Network and Systems Management 22 (3): 331-

365.

Hevner, Alan R., Salvatore T. March, Jinsoo Park, and Sudha Ram. 2004. "Design

science in Information Systems research." MIS Quarterly 28 (1): 75-105.

Kannenberg, Andrew, and Hossein Saiedian. 2009. "Why software requirements

traceability remains a challenge." CrossTalk The Journal of Defense Software

Engineering 22 (5): 14-19.

Lai, Richard, and Naveed Ali. 2013. "A requirements management method for global

software development." Advances in Information Sciences (AIS) 1 (1): 38-58.

Leffingwell, Dean, and Don Widrig. 2000. Managing Software Requirements: A

Unified Approach: Addison-Wesley Professional.

Mahesh, M., S. K. Ong, and A. Y. C. Nee. 2007. "A web-based multi-agent system

for distributed digital manufacturing." International Journal of Computer

Integrated Manufacturing 20 (1): 11-27. doi: 10.1080/09511920600710927.

Ossowski, Sascha, Josefa Z Hernandez, María Victoria Belmonte, Jose Maseda,

Alberto Fernández, Ana García-Serrano, Francisco Triguero, Juan Manuel

Serrano, and José Luis Pérez-De-La-Cruz. 2004. "Multi-agent systems for

280

decision support: A case study in the transportation management domain."

Applied Artificial Intelligence 18 (9-10): 779-795.

Peffers, Ken, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. 2007.

"A design science research methodology for Information systems research."

Journal of Management Information Systems 24 (3): 45-77.

Pomar, J, V López, and C Pomar. 2011. "Agent-based simulation framework for

virtual prototyping of advanced livestock precision feeding systems."

Computers and electronics in agriculture 78 (1): 88-97.

Venable, John, Jan Pries-Heje, and Richard Baskerville. 2012. "A comprehensive

framework for evaluation in design science research." In Design Science

Research in Information Systems. Advances in Theory and Practice, 423-438.

Springer.

Wongthongtham, P., T. Dillon, and E. Chang. 2011. "State of the art of community-

driven software engineering ontology evolution" Dependable, Autonomic and

Secure Computing (DASC), 2011 IEEE Ninth International Conference on,

doi: 10.1109/DASC.2011.170.

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

281

 Recapitulation and Future
Work

 Introduction

Multi-site distributed software development projects take place in an

environment where development teams are dispersed throughout various remote

sites. The drivers of this multi-site setting are the advantage of economic factors and

the availability of global talent pools. The main purpose is to optimise human

resources in order to develop higher quality products at a lower cost. Nonetheless,

besides the benefits, this remote environment has created several additional

challenges in terms of communication, coordination, group awareness, etc. These

challenges can have great impact on the budget and project schedule as well as the

quality of the final product. To maintain collaborative work through effective

communication and coordination, the Software Engineering Ontology was developed

to clarify the software engineering concepts and project information and to enable

knowledge sharing among the dispersed teams. However, the nature of the Software

Engineering Ontology is still passive being similar to that of existing ontologies in

the Web, some challenges regarding knowledge assimilation and knowledge

dissemination arise. As a consequence, it is important to have a mechanism to make

the Software Engineering Ontology active so that it can provide effective support to

facilitate and assist software development team members with software engineering

knowledge when they are working on software development projects. In this thesis,

SEOMAS, the comprehensive framework for active Software Engineering Ontology

is presented. The framework consists of multiple components and approaches. Each

of them were explained and developed in the previous chapters.

In the next section, the issues that have been addressed in this thesis are

recapitulated. In section 10.3, the contributions made by this thesis are discussed. In

section 10.4, areas for future work are identified, and section 10.5 concludes the

chapter.

282

 Recapitulation

The Software Engineering Ontology (Wongthongtham et al. 2009;

Wongthongtham et al. 2005) was proposed to facilitate effective communication and

coordination among project team members within a multi-site distributed software

development environment. It provides shared understanding and consistent

communication to remote team members by allowing them to navigate shared

software engineering knowledge and to query the semantically-linked project

information. Nevertheless, with its passive structure being similar to that of existing

ontologies in the Web, some challenges regarding knowledge assimilation and

knowledge dissemination arise.

The main objective of this thesis is to develop a comprehensive framework to

make the Software Engineering Ontology active. This will enable it to effectively

facilitate various tasks and assist its users to manage and share software engineering

knowledge when they are working in software development projects particularly in

multi-site distributed software development environments that require a high degree

of collaboration and knowledge sharing. The issues addressed in this thesis are as

follows.

1) Propose the framework of active Software Engineering Ontology

The passive structure of Software Engineering Ontology produces

challenges associated with effectively obtaining or manipulating software

engineering knowledge captured in the ontology. Therefore, the framework

of an active Software Engineering Ontology is proposed in this thesis.

Active Software Engineering Ontology refers to the Software Engineering

Ontology which is equipped with the active support that can be used to

proactively facilitate and assist its users with software engineering

knowledge when they are working on software development projects. This

active support is aimed at covering both phases/stages associated with the

ontology deployment stage, namely, knowledge assimilation and knowledge

dissemination.

283

2) Propose an approach to automate semantic annotation and ontology

population in order to capture semantics of software project information into

the Software Engineering Ontology.

Given the huge volume of software project information associated

with a software project, the manual approach that relies primarily on

software teams’ processing to map software project information to the

concepts defined in the Software Engineering Ontology, is not practical. An

extensive manual capture of large software project information can be an

extremely time-consuming, laborious, tedious, and error-prone task.

Therefore, there is a need to have a specific area of research regarding

knowledge assimilation to automate semantic capturing of software project

information. The proposed approach automates the semantic annotation and

ontology population process in order to identify software engineering

knowledge from software project information and then populates the

captured knowledge in the ontology knowledge base.

3) Propose an approach to effectively access and manage software engineering

knowledge captured in the Software Engineering Ontology

Software engineering knowledge and software project information are

captured and organised according to concepts and relations specified by the

Software Engineering Ontology. However, due to the large amount of

knowledge captured, it could be possible that software teams are not aware

of the existence of certain knowledge in the ontology or even if they are,

they might not be able to obtain or manipulate it effectively. Therefore,

certain useful knowledge might be dismissed. The proposed approach can

assist team members by making it quicker and easier for them to perform

several time-consuming tasks such as searching for relevant information to

address project development issues, locating an expert, analysing the impact

of a change in software artefacts as well as propagating the change and its

impact to relevant team members, and proactively monitoring particular

software project information to identify potential deviation. Therefore, even

though software teams may not be aware of the existence of the knowledge,

the proposed approach can help them to locate and deliver the knowledge

284

required. The proactive knowledge delivery can reduce the laborious task of

having to search for explicit, useful knowledge. Put succinctly, it can enable

the right knowledge to be delivered to the right people who need to have it

at the right time.

4) Propose the active platforms for multi-site software development

environments

Software development is a knowledge and collaborative-intensive

process where its success depends on the effectiveness and efficiency to

manage and share software engineering knowledge among project team

members. This is particularly critical in a multi-site distributed software

development context where the collaboration and knowledge sharing are

affected by physical and temporal distances. The passive structure of

software Engineering Ontology results in some limitations to promote

effective knowledge management for knowledge sharing such as manual

knowledge capture and passive knowledge distribution. Therefore, there is a

need for active platforms that can proactively support software team

members to manage and share software engineering knowledge effectively

in order to facilitate remote collaborative work. In addition, because

software development is a knowledge-intensive and complex activity, the

quality of a software product depends mainly on the quality of the software

process which is the result of activities carried out during the software

development process. Therefore, the proposed active platforms that can

provide support to multi-site software project teams to work on various

development activities throughout the software life cycle are valuable.

5) Evaluate the proposed framework

The aim of this thesis is to develop a comprehensive framework for

active Software Engineering Ontology. There are currently no effective

frameworks that can be successfully adopted to make the Software

Engineering Ontology active so that software team members can gain useful

support from deploying it particularly within a multi-site software

development project. Therefore, in this thesis, the prototype system, a

285

realisation of the proposed framework, is used as a proof-of-concept and is

evaluated based on several existing case studies found in the literature.

In the next section, the contributions made by this thesis are

summarised.

 Contribution of the Thesis

The state-of-the-art survey on the existing literature presented in Chapter 2 is

one of the contributions of this research. The comprehensive, extensive, and recent

survey is conducted specifically to provide the necessary background and context, to

discover the shortcomings of current approaches, and to determine the issues to be

investigated in this research. The literature has been reviewed and classified

according to the following groups:

The contributions of this thesis to the existing body of knowledge are as

follows.

10.3.1 Contribution 1: Current State-of-the-art Research

The state-of-the-art survey on the existing literature presented in Chapter 2 is

one of the contributions of this research. The comprehensive, extensive, and recent

survey is particularly conducted to provide necessary background and context and to

discover the shortcomings of current approaches and to determine the issues to be

investigated in this research. The literatures have been reviewed and classified into

the following groups:

• Ontology-based semantic annotation

• Ontology-based multi-agent systems

• Assistive systems for software engineering

286

10.3.2 Contribution 2: Conceptual Framework

In Chapter 5, the SEOMAS framework has been proposed to provide active

support to assist software development team members with software engineering

knowledge when they are working on software development projects. The main

components of the proposed framework are the Software Engineering Ontology and

the multi-agent system. The Software Engineering Ontology is an underlying

knowledge representation of software engineering knowledge that enables all team

members working in a multi-site environment to have a common understanding of

the software development project. However, it does not possess a degree of

autonomy or the capacity for dynamic adaptation to any changes to the situation such

as the capturing of new software project information, proactively delivering useful

information without the user’s explicit request, or alerting team members to an

unusual event that might change the project plan. In other words, it still heavily relies

on the user’s effort to manage such situations although the Software Engineering

Ontology is in use. The agent-based technology can be integrated with the ontology

to provide the autonomous and flexible features. The basic software engineering

processes such as analysis, design, implementation, evaluation are used and

integrated with the Agent Unified Modelling Language (AUML) in order to provide

the complete development processes for the framework of active Software

Engineering Ontology.

In recent literature, several ontology-based multi-agent systems have been

proposed as presented in Chapter 2. To the best of our knowledge, the existing

literature does not propose any effective framework that incorporates a multi-agent

approach with the ontology designed for multi-site software development to assist

distributed software project teams to manage and share software engineering

knowledge when they carry out software development activities throughout the

software development life cycle.

10.3.3 Contribution 3: A Systematic Approach to Capture Semantics of
Software Project Information

The third contribution of this thesis is the development of a systematic

approach to capture the semantics of software project information which is

287

seamlessly integrated into the daily software development process in order to avoid

extra effort from project team members. The approach is presented in Chapter 6. It

consists of two main processes, namely, semantic annotation and ontology

population. The semantic annotation process focuses on extracting software

engineering knowledge from software project information in order to identify new

instances of the ontological concepts according to the Software Engineering

Ontology. The ontology population process focuses on instantiating the ontology

knowledge base with new instances resulting from the semantic annotation process.

Once the software project information has been captured, it is in machine-

readable form so that software agents are able to autonomously understand this

knowledge. Therefore, the agents can use this knowledge to provide useful

information to distributed project teams in order to clarify any ambiguity resulting

from remote communication, to address major software development issues, and to

facilitate effective and efficient coordination.

Several research studies regarding ontology-based semantic annotation have

been introduced in the literature presented in Chapter 2. To the best of our

knowledge, the existing literature does not propose any effective approach to

automate the semantic annotation of software project information and populate it into

the ontology knowledge base during the software development process.

In brief, the salient features of this approach are highlighted as follows:

• It proposes the semantic annotation process utilising the Software

Engineering Ontology to provide software engineering knowledge to software

development artefacts. The Software Engineering Ontology has been

developed to facilitate common understanding among project team members

within a multi-site distributed software development environment. It is a

comprehensive ontology covering all aspects of the software engineering

domain.

• It proposes the ontology population process to extend the ontology

knowledge base with new instances identified during the semantic annotation

process. The advantage is that the ontology has been expressed in Web

Ontology Language (OWL). OWL is very expressive and the relations

288

between classes can be formally defined based on description logics.

Accordingly, knowledge can be captured by utilising logic reasoning. In other

words, hidden knowledge can be inferred by formulating logic expressions

even though it is not explicitly defined in the ontology.

• The proposed approaches to capture semantic of software project information

including semantic annotation and ontology population are automated and

seamlessly integrated into the software development process (i.e., version

control) in order to avoid extra effort from project team members.

10.3.4 Contribution 4: A Systematic Approach to Manage Software
Engineering Ontology Instantiations.

The fourth contribution of this thesis is the development of the approach to

manage Software Engineering Ontology instantiations presented in Chapter 7. The

set of Software Engineering Ontology management instantiations includes

knowledge retrieval and instance knowledge manipulation. The knowledge retrieval

operation includes query, search, and proactive monitoring of software project

information in order to identify the possibility of a deviation before an issue actually

occurs. A proactive notification is provided to corresponding team member on a

push-based delivery mode. On the other hand, the instance knowledge manipulation

operation includes adding, modifying, and deleting instance knowledge as well as

identifying the potential impact of the change made to the instantiations based on the

relationship defined in the Software Engineering Ontology. Notifications are

propagated to relevant team members to make them aware of the change. In a multi-

site software development environment, communication and coordination are critical

challenges because of physical and temporal distances. Team awareness with respect

to any change made by other members at different sites is important. Therefore,

proactive and timely knowledge delivery to avoid any confusion and integration risks

can help to reduce the challenge presented by distance.

To the best of our knowledge, the existing literature does not propose any

effective approach for the management of Software Engineering Ontology

instantiations.

289

In brief, the salient features of this approach are highlighted as follows.

• It helps software development teams to obtain useful and situational

knowledge that they may not be aware of or cannot find effectively.

• It provides a proactive software project information monitoring service in

order to identify any possibility of encountering deviation before an actual

issue occurs.

• It proposes a proactive notification feature to alert the corresponding team

member in a push-based delivery mode.

• It not only manipulates the ontology instantiations, but also identifies the

potential impact of the change made to the instantiations based on the

associated relationship defined in the Software Engineering Ontology.

Notifications are propagated in a timely manner to relevant team members to

make them aware of the change that has been made.

10.3.5 Contribution 5: Active Platforms for Multi-site Software Development
Environments

The fifth contribution of this thesis is that it proposes the development of

active platforms for multi-site software development environments aimed at assisting

multi-site distributed software development teams to manage and share software

engineering knowledge throughout the software development life cycle. Details of

these platforms are presented in Chapter 8. Software development activities and their

artefacts are interconnected. The work or a change in one activity may have an effect

on the work in other activities. Therefore, software development team members need

support across various development activities or phases.

To the best of our knowledge, the existing literature does not propose any

effective platforms that provide active assistance to project team members, who are

geographically distributed, to manage and share software engineering knowledge

required for various software development activities in a software development life

cycle.

290

In brief, the salient features of the proposed active platforms for multi-site

software development environments are highlighted as follows.

• They provide assistance to manage and share software project information

captured in the Software Engineering Ontology throughout a series of stages

in knowledge management including knowledge capture, knowledge search,

knowledge dissemination, and knowledge maintenance.

• They provide an integrated collection of services that can proactively

facilitate software engineering activities during the various phases of the

software life development cycle by applying knowledge management

practice.

• They provide a mechanism for maintaining timely group awareness in order

to manage work dependencies in a multi-site distributed software

development environment by means of instant message notification. This

addresses the major challenges regarding remote communication and

coordination imposed by physical and temporal distances.

• They play an important role in enabling effective knowledge sharing by

providing relevant and situational knowledge without requiring team

members to explicitly express their needs. Relevant and timely information,

associated with their working context, is delivered to software teams.

10.3.6 Contribution 6: Prototype Implementation and Evaluation

The prototype system that realises the SEOMAS conceptual framework is

implemented and presented in Chapters 6-8. Software agents are the main

components that provide active support by interacting with and mediating between

the Software Engineering Ontology and its users. The Java Agent Development

Framework (JADE) is employed as the main development tools/environments for the

SEOMAS prototype.

According to the framework evaluation presented in Chapter 9, several

experiments based on real case study scenarios in the literature are simulated to

evaluate the effectiveness and efficiency of the proposed approach through the

291

implemented prototype system. Three aspects of the framework solution

requirements are evaluated. These are:

• Automated Knowledge Capture of Software Project Information

• Software Engineering Ontology Instantiations Management

• Active Platforms for Multi-site Software Development Environments

The experiment findings show that the SEOMAS prototype system is a

realised software platform that can assist software development teams to acquire

useful software engineering knowledge in order to manage software development

activities or issues throughout the software development life cycle. It can help to

shorten task completion time, to reduce the number of team members involved in the

tasks, and to reduce the number of team members’ actions that need to be performed

in order to complete the tasks. It contributes to the literature by providing a reference

for the implementation of the SEOMAS conceptual framework.

 Future work

In this thesis, the SEOMAS framework is introduced as an important area of

work for making the Software Engineering Ontology active so that it can be used to

facilitate and assist software team members with relevant software engineering

knowledge when they are working on software development projects. Nonetheless,

due to resource restrictions on this research, there are some limitations and potential

enhancements that can be addressed and marked as future work in order to improve

and extend the functionality of the proposed framework. In the following, the

challenges or areas of improvement of the current work are discussed as the future

work.

10.4.1 Future Work Focusing on the Framework Enhancement

The scalability of the SEOMAS framework has not been fully examined

hence it can be enhanced particularly focusing on the number of team members and

292

system complexity. Other framework enhancement for future work are presented as

follows.

• In this thesis, the SEOMAS framework focuses only on the utilisation of the

Software Engineering Ontology as a domain ontology. However, in the future

work, application ontologies, which are ontologies engineered for a specific

use or a particular application (Malone and Parkinson 2010) can be integrated

into the current framework. The benefit of using application ontologies is to

model concepts that are required to support software applications being

developed in order to facilitate domain crossing. For example, if the aim of a

software project is to develop an accounting information system, an ontology

pertaining to the accounting domain can be integrated into the SEOMAS

framework for better quality of semantic annotation or knowledge retrieval.

• The SEOMAS framework can be extended to capture the semantics of other

types of software artefacts. The extension can cover the semantic annotation

of both structured information (e.g., UML diagrams, issue tracking, commit

data) and unstructured information (e.g., requirement documents, bug reports,

forum discussion).

• The Enrichment and interlinking tasks of semantic annotation process can be

extended to include additional ontologies such as Meaning of a Tag (MOAT)

(Passant and Laublet 2008), Bug and Enhancement Tracking Language

(BAETLE)1, vCard (Iannella 2001), etc. The purpose is to enrich the

semantic description of software project information elements by reusing

standard and well-known shared vocabularies wherever possible. The

adoption of these ontologies can enable reusability and facilitates

interoperability between different applications (Ashraf, Hussain and Hussain

2012).

• In this thesis, during the semantic annotation process, the owl:sameAs

relationships are created by manually linking the terms of the annotated

project information resources with their corresponding entry in DBpedia.

However, this interlinking task can be improved by utilising duplicate

1 https://code.google.com/archive/p/baetle

293

detection algorithms and frameworks such as Silk (Volz et al. 2009). Silk

allows a developer to specify the types of RDF links that should be identified

between data sources and the conditions that have to be met in order to

establish the interlinking. Besides Silk, Swoosh (Benjelloun et al. 2009), or

Duke2 can also be considered for facilitating the interlinking task with other

relevant datasets.

10.4.2 Future Work on the Intelligent System Enhancement

The area of further study and development to extend the functionality of the

SEOMAS framework towards an intelligent system are as follows.

• The recommender agent’s capability can be enhanced by means of

incorporating with various recommendation algorithms such as:

- The collaborative filtering approaches which produce a

recommendation based on the similarity between users (Deng et al.

2011).

- The content-based filtering techniques which deliver a

recommendation that resembles the ones that a specific user formerly

preferred (Adomavicius and Tuzhilin 2005).

- Hybrid recommender systems that combine the aforementioned

approaches in order to improve performance and resolve the problems

associated with certain approaches (Burke 2007).

- Semantic-based recommendation systems that integrate the semantic

knowledge in their processes and their performances are based on a

knowledge base (Gao, Yan and Liu 2008).

The integration of the abovementioned recommendation techniques

can help to enhance the quality of the recommendations generated by the

recommender agent and will provide a more comprehensive personalised

service.

2 https://github.com/larsga/Duke

294

• Intelligence mechanisms can be applied to the SEOMAS agents in order to

incorporate rational behaviour and enhance the performance of each

individual agent. They can help to increase the ability to learn from and adapt

to the new environment and other agents. Therefore, the integration of these

mechanisms into SEOMAS will offer a truly autonomous and more adaptable

framework. Examples of the intelligence mechanisms are:

- Machine learning methods such as supervised learning, unsupervised

learning, and reinforcement learning, can be embedded in the

SEOMAS agents to increase the ability to discover a problem solution

on their own. They can enable the agents to act more proactively in a

dynamic environment.

- Data mining techniques (e.g., case-based reasoning, decision trees,

and Bayesian networks) can be applied in the SEOMAS agents to

enhance the performance of the decision making.

• The reasoning mechanism of the SEOMAS framework proposed in this thesis

is based on the existing reasoning mechanism via the ontology inference.

However, the reasoning capability of the agents can be enhanced by

integrating other types of reasoning techniques such as rule-based knowledge.

For example, Semantic Web Rule Language (SWRL) can be applied to the

framework as a rule-based inference engine to determine how to deduce

knowledge based on the semantics defined in the ontology and the domain-

heuristic rules.

• The SEOMAS framework can be enhanced by increasing the ability of the

user agents to monitor users’ activities in order to obtain working context

information. This information can then be analysed and processed to identify

context similarity. As a consequence, the recommendations can be generated

based on reusing related experiences that other team members have had in the

past in a similar context.

295

 Conclusion

In this chapter, the work that has been carried out in this thesis to address the

identified research issues is recapitulated. The contributions made to the literature

through this thesis are outlined. This is followed by a brief description of several

research directions for future work to extend the proposed framework developed in

this thesis.

The work that has been undertaken in this thesis has been published

extensively as a part of proceedings in peer-reviewed international journals and

conferences. A complete list of the publications arising from this thesis is given at

the beginning of the thesis and some selected publications are included in the

Appendix B at the end of the thesis.

 References

Adomavicius, G., and A. Tuzhilin. 2005. "Toward the next generation of

recommender systems: a survey of the state-of-the-art and possible

extensions." Knowledge and Data Engineering, IEEE Transactions on 17 (6):

734-749. doi: 10.1109/tkde.2005.99.

Ashraf, Jamshaid, Omar Khadeer Hussain, and Farookh Khadeer Hussain. 2012. "A

framework for measuring ontology usage on the Web." The Computer

Journal. doi: 10.1093/comjnl/bxs134.

Benjelloun, Omar, Hector Garcia-Molina, David Menestrina, Qi Su, Steven Euijong

Whang, and Jennifer Widom. 2009. "Swoosh: a generic approach to entity

resolution." The VLDB Journal 18 (1): 255-276. doi: 10.1007/s00778-008-

0098-x.

Burke, Robin. 2007. "Hybrid Web Recommender Systems." eds Peter Brusilovsky,

Alfred Kobsa and Wolfgang Nejdl, 377-408. Springer Berlin / Heidelberg.

296

Deng, Yong, Zhonghai Wu, Huayou Si, Hu Xiong, and Zhong Chen. 2011. "A

collaborative filtering approach to making recommendations based on

ontology in the movie domain." Energy Procedia 13: 228-236. doi:

10.1016/j.egypro.2011.11.036.

Gao, Q., J. Yan, and M. Liu. 2008. "A semantic approach to recommendation system

based on user ontology and spreading activation model" 2008 IFIP

International Conference on Network and Parallel Computing, doi:

10.1109/NPC.2008.74.

Iannella, R. 2001. Representing vCard objects in RDF/XML. W3C Note. Accessed

October 11, 2016, https://www.w3.org/TR/vcard-rdf.

Malone, James, and Helen Parkinson. 2010. Reference and application ontologies.

Accessed November 3, 2016, http://ontogenesis.knowledgeblog.org/295.

Passant, Alexandre, and Philippe Laublet. 2008. "Meaning Of A Tag: A

collaborative approach to bridge the gap between tagging and Linked Data." In

The WWW 2008 Workshop Linked Data on the Web (LDOW 2008), Beijing,

China.

Volz, Julius, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. 2009. "Silk-A

link discovery framework for the Web of data." In The 2nd Workshop about

Linked Data on the Web (LDOW2009), Madrid, Spain, 20 April 2009.

Wongthongtham, P., E. Chang, T.S. Dillon, and I. Sommerville. 2009. "Development

of a software engineering ontology for multi-site software development."

IEEE Transactions on Knowledge and Data Engineering 21 (8): 1205-1217.

doi: 10.1109/TKDE.2008.209.

Wongthongtham, Pornpit, Elizabeth Chang, Chan Cheah, and Tharam S Dillon.

2005. "Software engineering sub-ontology for specific software development."

In Software Engineering Workshop, 2005. 29th Annual IEEE/NASA,

Maryland, USA, April 7, 2005. 27-33. IEEE. doi: doi: 10.1109/SEW.2005.4.

https://www.w3.org/TR/vcard-rdf
http://ontogenesis.knowledgeblog.org/295

297

Every reasonable effort has been made to acknowledge the owners of copyright

material. I would be pleased to hear from any copyright owner who has been omitted

or incorrectly acknowledged.

298

Appendix A Additional Information of
the Case Study of an Online
Shopping Software
Development

The case study of an online shopping software development presented in

Chapter 7 and Chapter 8 is taken from (Gupta 2013). However, some additional

information (e.g., requirement dependencies, test cases, new requirements) is added

for the purpose of evaluating the SEOMAS framework as presented in this appendix.

Requ-
ireme
nt ID

Description Depen-
dencies

Use Cases Classes Test Cases

FR01 The users shall be able to
view the categories on
the application’s home
page.

 UC1 Home
Page

DBCon-
troller

TC1.1 Test view the
categories on the
application’s home
page.

FR02 The users shall be able to
view items in different
categories.

Requires
FR01

UC2 View
items

Items TC2.1 Test view
items in different
categories.

FR03 The users shall be able to
add items to the cart.

Requires
FR02

UC3 Add
Items to Cart

Cart TC3.1Test valid
item information
TC3.2 Test number
of items is invalid
TC3.3 Test not
enough item
TC3.4 Test out of
stock item

FR04 The users shall be able to
view more information
about an item before
adding it to the cart.

Refines
FR03

UC2 View
items

 TC4.1 Test view
item information

FR05 The users shall be able to
view the shopping cart.

 UC4 View
Cart

 TC5.1 Test view
shopping cart
successfully
TC5.2 Test no items
in the cart

FR06 The users shall be able to
browse through the
available items.

Requires
FR05

Leave blank
for testing
missing use
case.

FR07 The users shall be able to
view the items added to
the cart.

Requires
FR03

UC4 View
Cart

 TC7.1 Test view
items added to the
cart succesfully

FR08 The users shall be able to
check out with the
current items in the cart.

 UC 6Check
Out

 TC8.1 Test check
out with the current
items in the cart

299

Requ-
ireme
nt ID

Description Depen-
dencies

Use Cases Classes Test Cases

FR09 The users shall be able to
continue shopping after
adding items in the cart.

Requires
FR03

UC7
Continue
Shopping

 TC9.1Test continue
shopping

FR10 The users shall be able to
delete items from the
cart.

Requires
FR06

UC8 Delete
items

 Leave blank for
testing missing test
case.

FR11 The users shall be able to
check out items only
when there are items in
the shopping cart.

UC6 Check
Out

Check-
Out
Cart

TC11.1 Test check
out successfully
TC11.2 Cart is
empty

FR12 The users shall login or
register using the user
authentication form
before placing order.

 UC9 Place
Order
(include
UC10)

Place-
Order

DBCon-
troller

TC12.1 Test valid
user authentication
TC12.2 Test user
has not login
TC12.3 Test user
has not registered

FR13 The users shall not be
able to login or register if
the information is
incomplete or invalid.

Refines
FR12

UC10 Log in
UC11
Registration

UserAu
-thenti-
cation

TC13.1Test valid
username and
password
TC13.2 Test valid
user name but
invalid password
TC13.3 Test invalid
username
TC13.4 Test
complete user
registration
TC13.5 Test
incomplete user
registration
information

FR14 The users shall place an
order by completing the
information in the order
form.

Requires
FR12

UC9 Place
Order

Place-
Order
DBCon-
troller

TC14.1 Test
complete order
form
TC14.2 Test
incomplete order
form

FR15 The administrator shall
be able to view all the
users’ information that
completes the order form
and the checkout
process.

Requires
FR14

UC12 View
Database

 TC15.1 Test view
users’ information

FR16 The administrator shall
be able to add new items
to the list of shopping
items.

 UC13
Manage Items

Items TC16.1 Test
manage item
successfully
TC16.2 Test invalid
item

FR17 The administrator shall
be able to modify/update
an item’s price and
description.

 Leave blank
for testing
missing use
case.

FR18 The administrator shall
be able to delete items
from the main page of
the shopping-cart

 UC13
Manage Items

Items TC16.1 Test
manage item
successfully
TC16.2 Test invalid

300

Requ-
ireme
nt ID

Description Depen-
dencies

Use Cases Classes Test Cases

application. item
FR19 The administrator shall

be able to view the entire
history of the checked-
out items.

Requires
FR14

UC12 View
Database

 TC19.1 Test view
the entire history of
checked-out items

FR20 The administrator shall
be able to view the entire
history for the users who
successfully complete
the checkout process.

Requires
FR14

UC12 View
Database

 TC20.1 Test view
the entire history of
users who
successfully
complete the
checkout process.

FR21 The user shall complete
the captcha when log in
for the purpose of
differentiating a human
being from the computer
program.

Requires
FR12

UC14 Verify
captcha

UserAu
-thenti-
cation

TC25.1 Test verify
captcha
successfully
TC25.2 Test invalid
captcha

Note FR21 is added to verify the reasoning capability over the Software Engineering

Ontology as described in Chapter 8.

	Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Background and Signification of the Research Problem
	1.2.1 Software Engineering Ontology and Its Passive Structure Problem
	1.2.2 Problem in Multi-site Software Development Environment

	1.3 Motivations of Research
	1.3.1 Time Consuming and Expensive Approaches of Capturing Knowledge
	1.3.2 Ineffectiveness to Obtain Knowledge Captured in the Ontology
	1.3.3 Inefficient Communication
	1.3.4 Lack of Real-time Awareness for Coordination Needed to Manage Work Dependencies

	1.4 The Concerns that Need to be Addressed by a Framework for Active Software Engineering Ontology
	1.4.1 Automated Knowledge Capture of Software Project Information
	1.4.2 Effective Management of Knowledge Captured in the Software Engineering Ontology
	1.4.3 Active Platforms for Multi-site Software Development Environments

	1.5 Objectives of the Thesis
	1.6 Thesis Structure
	1.7 Conclusion
	1.8 References

	Chapter 2 Literature Review
	2.1 Introduction
	2.2 Ontology-based semantic annotation
	2.2.1 Evaluation of Semantic Annotation of Software Project Information

	2.3 Ontology-based Multi-agent Systems
	2.3.1 Evaluation of Ontology-based Multi-agent Systems

	2.4 Assistive Systems for Software Engineering
	2.4.1 Requirement Gathering and Analysis
	2.4.2 Software design
	2.4.3 Software Implementation and Maintenance
	2.4.4 Software Testing
	2.4.5 Evaluation of Assistive Platforms in Software Engineering

	2.5 Critical Evaluation of Existing Approaches: an Integrated View
	2.5.1 Lack of effective approach to automate knowledge capture of software project information
	2.5.2 Lack of Effective Management of Knowledge Captured in the Ontology
	2.5.3 Lack of Active Platforms Available for Multi-site Software Development Environments

	2.6 Conclusion
	2.7 References

	Chapter 3 Problem Definition
	3.1 Introduction
	3.2 Preliminary Concepts for Active Software Engineering Ontology
	3.3 Passive Software Engineering Ontology Problems
	3.3.1 Manually Capturing Software Project Information
	3.3.2 Lack of Effective Management of the Software Engineering Ontology Instantiations
	3.3.2.1 Knowledge Access and manipulation
	3.3.2.2 Timely Awareness

	3.3.3 Availability of Active Platforms for Multi-site Software Development Environments
	3.3.3.1 Knowledge Management
	3.3.3.2 Communication
	3.3.3.3 Coordination

	3.4 Underlying Research Issues
	3.4.1 Research Issue 1: Automated Knowledge Capture of Software Project Information
	3.4.2 Research Issue 2: Software Engineering Ontology Instantiations Management
	3.4.3 Research Issue 3: Active Platforms for Multi-site Software Development Environments

	3.5 Research Methodology
	3.5.1 Overview of Design Science Research Paradigm
	3.5.2 Choice of Design Science Research Framework

	3.6 Conclusion
	3.7 References

	Chapter 4 Ontology-based Multi-agent Approach Solution Proposal
	4.1 Introduction
	4.2 Solution Requirements
	4.2.1 Requirement 1: Requirement of Automated Knowledge Capture of Software Project Information
	4.2.2 Requirement 2: Requirement of Software Engineering Ontology Instantiations Management
	4.2.3 Requirement 3: Requirement of Active Platforms for Multi-site Software Development Environments
	4.2.4 Requirement 4: Requirement of Framework Evaluation

	4.3 Agent-Based Technology
	4.3.1 Software Agent
	4.3.2 Multi-Agent System
	4.3.3 The integration of ontology and multi-agent systems

	4.4 Ontology-Based Multi-Agent Systems Solution Proposal for a Framework for Active Software Engineering Ontology
	4.4.1 Ontology-Based Multi-Agent Systems as a Solution for Automated Knowledge Capture of Software Project Information
	4.4.2 Ontology-Based Multi-Agent System as a Solution for Software Engineering Ontology Instantiations Management
	4.4.3 Ontology-based Multi-agent Systems as a Solution for Active Platforms for Multi-site Software Development Environments

	4.5 Conclusion
	4.6 References

	Chapter 5 Conceptual Framework
	5.1 Introduction
	5.2 Overview of Existing Agent-Oriented Software Engineering Methodologies
	5.2.1 GAIA
	5.2.2 Agent Unified Modelling Language (AUML)
	5.2.3 Multi-agent Systems Engineering (MaSE) and Organisation-based Multi-agent System Engineering (O-MaSE)
	5.2.4 MAS-CommonKADS
	5.2.5 MESSAGE
	5.2.6 Process for Agent Societies Specification and Implementation (PASSI)
	5.2.7 PROMETHEUS
	5.2.8 The Agent-Oriented Development Methodology (ADEM)

	5.3 Development Approaches
	5.3.1 Macro-perspective
	5.3.2 Micro-perspective

	5.4 Active Software Engineering Ontology through a Multi-Agent System Engineering
	5.4.1 System Requirements
	5.4.2 Roles and Agent Types
	5.4.3 Architecture Modelling
	5.4.4 Structural design of the agent society
	5.4.5 Agent Interoperations

	5.5 Conclusion
	5.6 References

	Chapter 6 Ontology-based Multi-agent Approach for Capturing Software Project Information
	6.1 Introduction
	6.2 Ontology-based Multi-agent System to Capture Software Project Information
	6.3 User Agent
	6.3.1 Structure
	6.3.2 Behaviours
	6.3.2.1 Overview
	6.3.2.2 ACL message generation behaviour
	6.3.2.3 Output generation behaviour

	6.3.3 Interactions

	6.4 VersionControl Agent
	6.4.1 Structure
	6.4.2 Behaviours
	6.4.2.1 Overview
	6.4.2.2 VersionControlManager Behaviour

	6.4.3 Interactions

	6.5 Annotation Agent
	6.5.1 Structure
	6.5.2 Behaviours
	6.5.2.1 Overview
	6.5.2.2 Semantic Annotation behaviours
	6.5.2.2.1 IdentifySourceCodeKeyConcepts behaviours
	6.5.2.2.2 AnnotateSourceCode behaviours

	6.5.3 Interactions

	6.6 Ontology Agent
	6.6.1 Structure
	6.6.2 Behaviours
	6.6.2.1 Overview
	6.6.2.2 Ontology Population behaviour

	6.6.3 Interactions

	6.7 Implementation
	6.8 Results
	6.9 Practical uses
	6.10 Discussion
	6.11 Conclusion
	6.12 References

	Chapter 7 Ontology-based Multi-agent Approach for Software Engineering Ontology Instantiations Management
	7.1 Introduction
	7.2 Ontology-based Multi-agent Approach for Software Engineering Ontology Instantiations Management
	7.3 User Agent
	7.3.1 Structure
	7.3.2 Behaviours
	7.3.2.1 ACL message generation behaviour
	7.3.2.2 Output Generation Behaviour

	7.3.3 Interactions

	7.4 Ontology Agent
	7.4.1 Structure
	7.4.2 Behaviours
	7.4.2.1 Overview
	7.4.2.2 Instance Knowledge Management Behaviours
	7.4.2.2.1 QueryKnowledge behaviour
	7.4.2.2.2 AddInstanceKnowledge behaviour
	7.4.2.2.3 ModifyInstanceKnowledge behaviour
	7.4.2.2.4 DeleteInstanceKnowledge behaviour

	7.4.3 Interactions

	7.5 Recommender Agent
	7.5.1 Structure
	7.5.2 Behaviours
	7.5.2.1 Overview
	7.5.2.2 Recommendation Management Behaviours
	7.5.2.2.1 GenerateChangeImpactRecommendation behaviour
	7.5.2.2.2 GenerateChangeImpactNotification behaviour
	7.5.2.2.3 ManageMonitoring behaviour

	7.5.3 Interactions

	7.6 Practical Uses of the SEOMAS approach to Support Requirement Traceability
	7.6.1 Requirements Interdependencies Modelling
	7.6.2 Agent Capabilities
	7.6.2.1 Manipulating a requirement captured in the Software Engineering Ontology
	7.6.2.2 Recommend change impact on related requirements
	7.6.2.3 Recommend change impact on other related software artefacts
	7.6.2.4 Notify relevant team members about the impact of the requirement change.
	7.6.2.5 Generate traceability matrix

	7.6.3 Case Study
	7.6.3.1 Scenario 1 - Querying instance knowledge
	7.6.3.2 Scenario 2 - Modifying instance knowledge
	7.6.3.3 Scenario 3 - Adding new instance knowledge

	7.7 Discussion
	7.8 Conclusion
	7.9 References

	Chapter 8 Active Platforms for Multi-site Software Development Environments
	8.1 Introduction
	8.2 Platforms Framework
	8.3 Knowledge Capture Platform
	8.4 Query Platform
	8.5 Monitoring Platform
	8.6 Manipulation Platform
	8.7 Practical Uses
	8.7.1 Problem Analysis
	8.7.2 Platform Uses

	8.8 Discussion
	8.8.1 Software Engineering Knowledge Management
	8.8.1.1 Knowledge Capture
	8.8.1.2 Knowledge Search
	8.8.1.3 Knowledge Dissemination
	8.8.1.4 Knowledge Maintenance

	8.8.2 Knowledge Sharing and Reuse
	8.8.3 Communication
	8.8.4 Coordination

	8.9 Conclusion
	8.10 References

	Chapter 9 Evaluation of the Framework for Active Software Engineering Ontology
	9.1 Introduction
	9.2 Framework Requirements
	9.2.1 Automated Knowledge Capture of Software Project Information
	9.2.2 Software Engineering Ontology Instantiations Management
	9.2.3 Active Platforms for Multi-site Software Development Environments

	9.3 Prototype Systems Evaluation
	9.3.1 Evaluation of Automated Knowledge Capture of Software Project Information
	9.3.2 Evaluation of Software Engineering Ontology Instantiations Management
	9.3.3 Evaluation of Active Platforms for Multi-site Software Development Environments

	9.4 Discussion of Results
	9.4.1 Automated Knowledge Capture of Software Project Information
	9.4.2 Effective Management of Software Engineering Ontology Instantiations
	9.4.3 Active Platforms for Multi-site Software Development Environments

	9.5 Conclusion
	9.6 References

	Chapter 10 Recapitulation and Future Work
	10.1 Introduction
	10.2 Recapitulation
	10.3 Contribution of the Thesis
	10.3.1 Contribution 1: Current State-of-the-art Research
	10.3.2 Contribution 2: Conceptual Framework
	10.3.3 Contribution 3: A Systematic Approach to Capture Semantics of Software Project Information
	10.3.4 Contribution 4: A Systematic Approach to Manage Software Engineering Ontology Instantiations.
	10.3.5 Contribution 5: Active Platforms for Multi-site Software Development Environments
	10.3.6 Contribution 6: Prototype Implementation and Evaluation

	10.4 Future work
	10.4.1 Future Work Focusing on the Framework Enhancement
	10.4.2 Future Work on the Intelligent System Enhancement

	10.5 Conclusion
	10.6 References
	Appendix A Additional Information of the Case Study of an Online Shopping Software Development

