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Abstract

We present the microbalance including the microforces, the first- and second-order microstresses for the
Swift–Hohenberg equation concomitantly with their constitutive equations, which are consistent with the
free-energy imbalance. We provide an explicit form for the microstress structure for a free-energy functional
endowed with second-order spatial derivatives. Additionally, we generalize the Swift–Hohenberg theory via a
proper constitutive process. Finally, we present one highly-resolved three-dimensional numerical simulation
to demonstrate the particular form of the resulting microstresses and their interactions in the evolution of
the Swift–Hohenberg equation.
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1. Introduction

The work of J. Swift and P. C. Hohenberg sought to explain the Rayleigh–Benard instabilities and their
patterns (cf. Swift and Hohenberg (1977)). These well-ordered structures resemble crystalline structures
found in material sciences. In their work, entitled “Hydrodynamic fluctuations at the convective instability”
in 1977, Swift and Hohenberg proposed a new free-energy (cf. equation (21) therein) and a governing
equation (cf. equation (19) therein) that motivate our study on the thermodynamics and the microbalance
between the microforces and microstresses for this phenomenon as described by the Swift–Hohenberg theory.

Phase-field theories based on first-order gradients were formalized throughout a balance of microforces
by Fried and Gurtin (1993, 1994); Fried (1996); Gurtin (1996). They sought to segregate the constitutive
equations from the balance laws. This dissociation is natural since the balance laws are related to different
phenomena whereas the constitutive equations are concerned with particular material behaviors.

Another way to tackle the problem is throughout the virtual power machinery. Some authors investigated
its use in other contexts, particularly in solid mechanics, such as Fried and Gurtin (2006) (cf. equations
(2-3) therein) and Dell’Isola et al. (2011), (cf. equations (55-57) therein). The virtual power machinery was
originally proposed by Toupin (1962, 1964) to develop a second-order gradient theory.

The Swift–Hohenberg equation can be interpreted as a second-order gradient phase-field model, which
broadens its applicability. In the context of solid mechanics, Miehe et al. (2016) used a phase-field crystal
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model of ductile fracture in elasto-plastic solids under large strains, where the phase-field approximates
sharp cracks. Whereas in the context of fluid mechanics, Praetorius and Voigt (2015) coupled phase-field
crystal with Navier–Stokes to model colloidal suspensions.

In this work, we present a phase-field theory based on second-order gradients. Particularly, we present
the thermodynamics and the derivation of the Swift–Hohenberg theory based on a microbalance between the
microforce and the first- and second-order microstresses. Moreover, we build a constitutive process for the
generalization of the Swift–Hohenberg theory. Finally, to study the interplay between the first- and second-
order microstresses, we use highly-resolved simulation and focus on the relevant details of the microstress
interactions.

2. Governing Equation

Consider the following evolutionary partial differential equation

φ̇ = −κη, (1)

where φ = φ(x, t) is the order-parameter with x and t being, respectively, the spatial and temporal coordi-
nates, κ > 0 is the mass growth coefficient (a constitutive modulus), and η is the chemical potential.

Notation: the differential operators grad (·), div (·), and lap (·) represent the gradient, divergence,
and Laplacian, respectively. Also, grad2(·) = grad grad (·), div2(·) = div div (·), and lap2(·) = lap lap (·).
The symbol ⊗ denotes the tensor (dyadic) product. The number of underlines indicates the order of the
tensor. The material (or total) time derivative is denoted by ()̇. Finally, ∂ma is ∂m

∂am .

3. Free-Energy Functional

Consider the following class of free-energy functionals

Ψ[φ,gradφ,grad2φ] =
∫

Ω
ψ[φ,gradφ,grad2φ] dΩ

=
∫

Ω

[∑
a

ςaφ
a + γ gradφ · gradφ+ β(1 : grad2φ)2

]
dΩ,

(2)

where ςa, β, and γ are coefficients which control the relative contribution of each term to the energy granting
these terms physical meaning. Ω is a body that occupies a fixed region in a three-dimensional Euclidean space
and Γ its boundary. Here, grad2φ = grad gradφ is the Hessian of the order-parameter φ and 1 = ei ⊗ ej
is the second-order identity tensor, where the set ei (with i = 1, 2, and 3) forms an orthonormal Cartesian
basis.

The equations that define the free energy (2) together with (1) yield the classical Swift–Hohenberg
equation (cf. Swift and Hohenberg (1977)).

Remark 1 (Functional derivative). Consider the functional in the form (2), i.e., Ψ[φ,gradφ,grad2φ]. Thus,
its first variation is

δΨ =
∫

Ω
[∂φψδφ+ ∂gradφψ · δgradφ+ ∂grad2φψ : δgrad2φ] dΩ. (3)

Taking into account that the differential and variational operators are commutative, thus, the following
identities hold

div (∂gradφψδφ) = div (∂gradφψ)δφ+ ∂gradφψ · δgradφ, (4a)
div (∂grad2φψ · δgradφ) = div ∂grad2φψ · δgradφ+ ∂grad2φψ : δgrad2φ, (4b)
div (div (∂grad2φψ)δφ) = div (div ∂grad2φψ)δφ+ div ∂grad2φψ · δgradφ, (4c)
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from (3), we obtain

δΨ =
∫

Ω

[
∂φψ − div ∂gradφψ + div2∂grad2φψ

]
δφdΩ

+
∫

Γ

[
(∂gradφψ − div ∂grad2φψ)δφ+ ∂grad2φψ · δgradφ

]
· n dΓ,

(5)

where n is the unit, outward normal to the domain Ω.

Finally, the chemical potential η is

η = δΨ
δφ

= ∂φψ − div ∂gradφψ + div2∂grad2φψ. (6)

We use different expressions of this identity lapφ = tr grad2φ = 1 : grad2φ according to what simplifies
the derivations most.

Remark 2 (Chemical potential for the free energy (2)). The components of the functional derivative are

∂φψ =
∑
aaςφ

(a−1), (7a)
div ∂gradφψ = div [2γ1 · gradφ] = 2γlapφ, (7b)

div2∂grad2φψ = div2[2β(1 : grad2φ)1] = 2βlap2φ. (7c)

Then, the chemical potential reads

η =
∑
a

aςφ(a−1) − 2γlapφ+ 2βlap2φ. (8)

4. Microbalance and Free-Energy Imbalance

To start, we account for the rate of work done by external agencies on each kinematic process – i.e.,
external agencies × kinematic processes – to build the free-energy imbalance since there exist energies in this
physical law governed by the Swift–Hohenberg equation. In phase-field theories, the kinematic processes are
related to the order-parameter φ. We thus must account for rate of work stated on the temporal changes in
the order-parameter and its gradients. Finally, considering that the free-energy (2) is endowed with up to
second-order gradients, the external chemical power expenditure ẇextc has the following form

ẇextc = div
[
φ̇(ξ − div Ξ) + grad φ̇ ·Ξ

]
+ φ̇$, (9)

being ξ and Ξ the first- and second-order microstresses – stresses-like objects – respectively, and $ a scalar
body microforce that represents the external force. The choice of an external chemical power expenditure in
the form of (9) is supported by an internal chemical power expenditure – detailed in remark 3, cf. (12) – as
expected in second-order theories. Additionally, to obtain a proper set of conjugate pairs stated on remark
3, the local microbalance assumes the following new form

div (ξ − div Ξ) + π +$ = 0, (10)

where π is scalar body microforce that represents the internal microforce.

Remark 3 (Conjugate Pairs). Consider the external chemical power expenditure (9) in its integral form∫
Ω
φ̇$ dΩ +

∫
Γ
[φ̇(ξ − div Ξ)] · n dΓ +

∫
Γ
[grad φ̇ ·Ξ] · n dΓ, (11)
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which states that there are two traction-like objects, a zeroth-order effective microtraction (ξ − div Ξ) · n
and first-order microtraction Ξ · n. Although φ̇ and grad φ̇ are not independent kinematic processes – i.e., φ̇
and grad φ̇ cannot be prescribed independently – the external power may be rewritten, which is rigorously
equivalent to (11), as two new zeroth-order microtractions that are power-conjugate to two independent
kinematic processes, φ̇ and ∂nφ̇ (cf. Fried and Gurtin (2006)).

Now, using the divergence theorem in (11) and the microbalance equation (10), we obtain the internal
chemical power expenditure in its integral form,

−
∫

Ω
φ̇π dΩ +

∫
Ω

grad φ̇ · ξ dΩ +
∫

Ω
grad2φ̇ : Ξ dΩ, (12)

depicting three power-conjugate pairs: (φ̇,−π), (grad φ̇, ξ), and (grad2φ̇,Ξ).

Since grad2φ̇ is symmetric, we assume that Ξ is as well, without loss of generality.
The free-energy imbalance states that the rate at which the free-energy changes in time has an upper

bound given by the external rate of work, i.e.,

ψ̇ 6 div
[
φ̇(ξ − div Ξ) + grad φ̇ ·Ξ

]
+ φ̇$. (13)

Here, we apply the Coleman–Noll procedure (cf. Coleman and Noll (1963)) considering the following list
of variables and their dependencies

{ψ, ξ,Ξ, π} = f(φ,gradφ,grad2φ). (14)

The set of functions {ψ, ξ,Ξ, π} is called thermodynamic or constitutive process if the conservation laws,
microbalance and energy balance in our case, are satisfied (cf. §2, Coleman and Noll (1963)). This process is
called admissible if it obeys the local free-energy imbalance (or Clausius–Duhem inequality) and is endowed
with a positive-definite finite absolute temperature.

Now, considering the explicit dependencies listed in (14) and substituting them into the free-energy
imbalance (13), we obtain

∂φψφ̇+ ∂gradφψ · (gradφ)̇ + ∂grad2φψ : (grad2φ)̇ 6grad φ̇ · ξ + φ̇div ξ − grad φ̇ · div Ξ
− φ̇div2Ξ + grad2φ̇ : Ξ + grad φ̇ · div Ξ + φ̇$.

(15)

Without constraints, the constitutive relations (14) might violate the free-energy imbalance (15). Rearrang-
ing equation (15) and considering that there is no advection, the spatial and temporal derivatives commute.
We thus build a constitutive process for ψ, π, ξ, and Ξ which implies that

(∂φψ−$ − div ξ + div2Ξ︸                          ︷︷                          ︸
π

)φ̇+ (∂gradφψ − ξ) · grad φ̇+ (∂grad2φψ −Ξ) : grad2φ̇ 6 0. (16)

At some chosen point (x, t) we can set a field φ such that φ̇, gradφ, grad φ̇, grad2φ, and grad2φ̇ have
arbitrary values. Thus, one has to find the proper constitutive relations for {ψ, ξ,Ξ, π} to guarantee the
inequality direction. Thus, taking into account that (16) is linear on φ̇, grad φ̇, and grad2φ̇, only the trivial
solutions exist. Therefore, the constitutive relations for ξ, Ξ, and π are

π = − ∂φψ = −
∑
aaςφ

(a−1), (17a)
ξ = ∂gradφψ = 2γ gradφ, (17b)
Ξ = ∂grad2φψ = 2βlapφ1, (17c)

where the identities listed in (7) where used to express these relations explicitly. Here, we observe that
our microbalance (10) with its constitutive relations (17) recovers the steady state of the Swift–Hohenberg
equation, i.e., δΨ

δφ = 0.
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To recover the Swift–Hohenberg equation as it was conceived, we have to include φ̇ in the list of variables.
Thus, the new list is

{ψ, ξ,Ξ, π} = f(φ,gradφ,grad2φ, φ̇), (18)

and its free-energy imbalance

(∂φψ + π)φ̇+ (∂gradφψ − ξ) · grad φ̇+ (∂grad2φψ −Ξ) : grad2φ̇+ ∂
φ̇
ψφ̈ 6 0. (19)

Now, the inequality (19) is no longer linear on φ̇, admitting nontrivial solutions in its first term. Thus, we
define πdis = π + ∂φψ. The last terms admit only trivial solutions, therefore ∂

φ̇
ψ = 0.

The thermodynamic constraints yield the consistent constitutive relations

πdisφ̇ = (π + ∂φψ)φ̇ 6 0, (20a)
ξ = ∂gradφψ, (20b)
Ξ = ∂grad2φψ. (20c)

From (20a), one has several choices; however, to recover the Swift–Hohenberg equation we choose πdis = − φ̇κ ,
being κ > 0 the constitutive modulus of this equation, and set $ = 0.

5. First and Second Laws of Thermodynamics

Here, we detail the derivation of the first and second laws of thermodynamics in the usual manner, i.e.,
directly from the governing equation and the free-energy (cf. Gurtin et al. (2010)), to further validate our
model for the microbalance.

First Law
The product between the material derivative of the phase-field and the chemical potential (φ̇η) yields

the balance between the external and internal chemical rate of work.
Consider the free energy in the form (2). In the general case,

ψ̇ = ∂φψ φ̇+ ∂gradφψ · (gradφ)̇ + ∂grad2φψ : (grad2φ)̇ + ∂θψ θ̇, (21)

where θ is the absolute temperature, whereas an isothermal process implies

ψ̇ = ∂φψ φ̇+ ∂gradφψ · (gradφ)̇ + ∂grad2φψ : (grad2φ)̇. (22)

Remark 4 (Identities). The identities used in this section are

div (φ̇ ∂gradφψ) = grad φ̇ · ∂gradφψ + φ̇div ∂gradφψ, (23a)
div (φ̇div ∂grad2φψ) = grad φ̇ · div ∂grad2φψ + φ̇div2∂grad2φψ, (23b)

div (grad φ̇ · ∂grad2φψ) = grad2φ̇ : ∂grad2φψ + grad φ̇ · div ∂grad2φψ. (23c)

Here, we analyze the chemical powers using φ̇η, i.e.,

φ̇η = φ̇(∂φψ − div ∂gradφψ + div2∂grad2φψ). (24)

Rewriting equation (24) using the identities (23), we obtain

φ̇η = ∂φψ φ̇+ ∂gradφψ · grad φ̇+ ∂grad2φψ : grad2φ̇

− div
(
φ̇ ∂gradφψ − φ̇div ∂grad2φψ + grad φ̇ · ∂grad2φψ

)
.

(25)
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Considering that there is no advection, the spatial and temporal derivatives commute, and using equa-
tions (1) and (25), we obtain

∂φψ φ̇+ ∂gradφψ · (gradφ)̇ + ∂grad2φψ : (grad2φ)̇ + κη2 =
div

(
φ̇ ∂gradφψ − φ̇div ∂grad2φψ + grad φ̇ · ∂grad2φψ

)
, (26)

alternatively, if no external power is spent across the boundaries

ψ̇ = −κη2. (27)

The internal and external powers are

ẇintc =κη2 + ∂φψ φ̇+ ∂gradφψ · (gradφ)̇ + ∂grad2φψ : (grad2φ)̇, (28a)
ẇextc = div

(
φ̇ ∂gradφψ − φ̇div ∂grad2φψ + grad φ̇ · ∂grad2φψ

)
. (28b)

Note that κη2 + ∂φψ φ̇ = −φ̇π.
The first law of thermodynamics represents the energy balance in the system and states explicitly the

interplay between the kinetic energy ek, the internal energy ei, the rate at which (mechanical and chemical)
power is spent, and the rate at which energy in the form of heat is transferred, i.e.,

˙eT = ėk + ėi = ẇextm + ẇextc − div q + q, (29)

where q is the heat flux, and q may either be a heat sink or source.
Finally, we obtain the first law of thermodynamics

ėi = ∂φψ φ̇+ ∂gradφψ · (gradφ)̇ + ∂grad2φψ : (grad2φ)̇ + κη2 − div q + q, (30)

In the absence of heat transfer, the first law of thermodynamics (i.e., the balance of energy) reads

ėi = ψ̇ + κη2, (31)

where we used equation (28).

Second Law
The second law of thermodynamics (in the form of the Clausius–Duhem inequality or entropy imbalance)

states that the entropy s should grow at least at the rate given by the entropy flux q/θ added to the entropy
supply q/θ, i.e.,

ṡ > −div
(q
θ

)
+ q

θ
= 1
θ

(
−div q + 1

θ
grad θ · q + q

)
. (32)

By definition, the free energy is
ψ = ei − θs. (33)

Taking the material time derivative, we obtain

ψ̇ = ėi − θ̇s− θṡ. (34)

Substituting the first law (30) and equation (34) into equation (32), and using standard arguments
of Coleman and Noll (cf. Coleman and Noll (1963)) the entropy is s = −∂θψ, and the second law of
thermodynamics is obtained in the form of the entropy imbalance, i.e.,

ṡ = 1
θ

(
κη2 − 1

θ
grad θ · q

)
> 0, (35)

In the absence of heat transfer, the entropy imbalance yields

κη2 > 0. (36)

Finally, we conclude from (36) and (27) that ψ̇ 6 0 if no external power is spent across the boundaries.
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6. A Constitutive Process for the Generalization of the Swift–Hohenberg Theory

Here, we generalize the dependencies in the list of variables (14) and define

{ψ, ξ,Ξ, π} = f(φ,gradφ,grad2φ, φ̇,grad φ̇,grad2φ̇). (37)

The free-energy imbalance is now given by

(∂φψ + π)φ̇+ (∂gradφψ − ξ) · grad φ̇+ (∂grad2φψ −Ξ) : grad2φ̇

+ ∂
φ̇
ψφ̈+ ∂grad φ̇ψ · grad φ̈+ ∂grad2φ̇

ψ : grad2φ̈ 6 0. (38)

While the inequality is no longer linear on φ̇, grad φ̇, and grad2φ̇, admitting nontrivial solutions for its first
three terms, the last three terms admit only trivial solutions, i.e., ∂

φ̇
ψ = ∂grad φ̇ψ = ∂grad2φ̇

ψ = 0. Thus,
we define

πdis =π + ∂φψ, (39a)
ξdis = ξ − ∂gradφψ, (39b)
Ξdis = Ξ− ∂grad2φψ. (39c)

Now, the inequality to be enforced is

πdisφ̇− ξdis · grad φ̇−Ξdis : grad2φ̇ 6 0. (40)

For simplicity, we assume that πdis, grad φ̇, and Ξdis are defined as a linear combination of φ̇, grad φ̇,
and grad2φ̇. Thus,

πdis = − αφ̇− a · grad φ̇−A : grad2φ̇, (41a)
ξdis = σφ̇+ S · grad φ̇+ Σ : grad2φ̇, (41b)

Ξdis = Uφ̇+ grad φ̇ ·Υ + G : grad2φ̇. (41c)

Rearranging (40) and considering (41), we obtain

− αφ̇2 − S : grad φ̇⊗ grad φ̇−G :: grad2φ̇⊗ grad2φ̇

− (a + σ) · (φ̇grad φ̇)− (A + U) : (φ̇grad2φ̇)− (Υ + Σ) ... grad2φ̇⊗ grad φ̇ 6 0. (42)

We assume that we cannot assert the direction of the inequality (42) for all terms, but we can state that
α, S, and G must be positive definite. Additionally, assuming that {α,a,A,σ,S,Σ,U,Υ,G} are constant
coefficients, we can look for the trivial solution for the remaining terms. Thus, assuming that a + σ = 0,
A + U = 0, and Υ + Σ = 0, we obtain

π = − ∂φψ − αφ̇− a · grad φ̇−A : grad2φ̇, (43a)
ξ = ∂gradφψ − φ̇a + S · grad φ̇+ Σ : grad2φ̇, (43b)

Ξ = ∂grad2φψ −Aφ̇− grad φ̇ ·Σ + G : grad2φ̇. (43c)

Finally, using the constitutive relations (43) in the new form of the microbalance (10), we obtain the
generalized Swift–Hohenberg equation

div
[
∂gradφψ − φ̇a + S · grad φ̇+ Σ : grad2φ̇− div

(
∂grad2φψ −Aφ̇− grad φ̇ ·Σ + G : grad2φ̇

)]
− ∂φψ − αφ̇− a · grad φ̇−A : grad2φ̇+$ = 0, (44)
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and considering the free-energy (2), we obtain

−
∑
aaςφ

(a−1) + 2γ lapφ− 2β lap2φ

− αφ̇− 2 a · grad φ̇+ S : grad2φ̇+ 2 Σ ... grad3φ̇−G :: grad4φ̇+$ = 0. (45)

7. Numerical Experiment

Here, we present a highly-resolved three-dimensional simulation to depict the interplay between the first-
and second-order microstresses. We use a high-order NURBS-based finite element solver, PetIGA: Dalcin
et al. (2016), which has been used extensibly in the modeling of multiphyscis processes including phase-field
applications, Thiele et al. (2013); Sagiyama et al. (2015); Vignal et al. (2015b,a, 2016); Sarmiento et al.
(2016). We solve the resulting equation in its weak primal version, the regular version Swift–Hohenberg
equation, composed by equations (1) and (6). We employ a tensor-product B-spline approximation with 643

elements of polynomial degree 4 with C3 continuity at element interfaces.
The free-energy coefficients in equation (2) are given by

ς1 = 0; ς2 = −1
2 ; ς3 = 0; ς4 = 1

4; ςa>4 = 0; γ = −1; β = 1
2 , (46)

while the constitutive modulus is κ = 1 in (1) and the initial condition is defined as

φ(x, 0) = tanh


(
x1 − 20− re cos

(
8x3π

[

L

))2

+
(
x2 − 20− re sin

(
10x3π

[

L

))2

− r2
c

th

 , (47)

where π[ = 3.14159 . . ., L = 40, re = 0.02L, rc = 0.075L, and th = 0.0625L. The domain is a cube with
dimensions (Lx1 , Lx2 , Lx3 = L), with periodic boundary conditions.

The term
∑
a ςaφ

a in the free-energy (2) is a double-well potential function with the coefficients listed in
(46). This function is defined in [−

√
2,
√

2] with minima at −1 and +1. These definitions guarantee phase
segregation.

Figure 1 depicts the isosurfaces of φ, ξ, and Ξ at t = 10. Here, one can observe the different structures
of ξ and Ξ at early stages, represented by isosurfaces. While ξ captures the effects along a lattice near
the interface, Ξ accounts for nonlocal effects in the neighborhood of the lattice. Roughly speaking, −div Ξ
provides, in an averaged sense, the interaction among neighboring lattices.

Figure 2 shows the evolution of φ colored by its Laplacian from t = 1 to t = 145. Here, we identify
some symmetries in the structure of the phase-field that are preserved in time. For instance, at x3 = 10
and x3 = 30, both ξ and div Ξ do not have an out-of-plane component, meaning that the wavelength in x3

Figure 1: (Color online) From left to right: order-parameter, first-order microstress, and second-order
microstress (colored by the order-parameter) at t = 10.
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(a) t = 1 (b) t = 10 (c) t = 20

(d) t = 30 (e) t = 50 (f) t = 145

Figure 2: (Color online) Evolution of the order-parameter φ colored by its Laplacian.

t = 11

t = 15

t = 7

Figure 3: (Color online) Detail of the microstresses evolution in the plane x1 = 10

direction is 20. There is also a π rad rotational symmetry around x1. Additionally, the simulation is free
of numerical oscillations (as shown by Vignal (2016) numerical oscilations can yield nonphysical solutions)
and no numerical dissipation is used.

Figure 3 depicts a slice at x3 = 10 at early stages to show first- and second-order microstresses over the
isovalue surface of φ = −1.2. As shown by Espath et al. (2016), ξ and −div Ξ have a positive inner product
on their overall behavior if the coefficients γ and β have the same sign, and they are parallel if the isosurfaces
of φ have a constant curvature. In the detail of this figure, we show the microstresses evolution from t = 7
to t = 15; there is a deviation of −div Ξ from −ξ, where the larger the curvature changes the larger the
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(a) Plane x1x3 (b) Plane x1x2

Figure 4: (Color online) On the left a slice x2 = 20. On the right a slice x3 = 10 at t = 50.

deviation from one another.
Figure 4 shows two slices of the domain. On the left, a slice at x2 = 20 depicts several smaller ordered

structures, whereas on the right, a slice at x3 = 10 depicts two large structures at t = 50.

8. Conclusions

We analyze the thermodynamics of the Swift–Hohenberg theory. Our derivation is based on a microbal-
ance between the microforce and the first- and second-order microstresses. In the Swift–Hohenberg theory,
we obtain an effective microstress ξ − div Ξ depending on a first- (ξ) and second-order (Ξ) microstresses.
After explicitly stating the first and second laws of thermodynamics for this model, we generalize the model
and detail some simple parameter choices. Finally, a highly-resolved simulation shows the interplay between
the first- and second-order microstresses.
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