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“Never cut a tree down in the wintertime. Never make a negative decision in

the low time. Never make your most important decisions when you are in your

worst moods. Wait. Be patient. The storm will pass. The spring will come.”

- Robert H. Schuller



Abstract

Motivated by energy security, sustainable economic growth and greenhouse gas

emission reduction goals, biofuels, such as bioethanol, have emerged as a potential

renewable alternative to fossil fuels. Over the past few decades, there has been

a tremendous growth in the use of the fermentation process to achieve efficiency

with biofuels. Among several different types of fermentation techniques available,

the fed-batch fermentation process has gained increasing popularity due to its

ability in avoiding the presence of large surplus nutrients in the broth, which can

act as kinetic inhibitors leading to low yields and productivity. While this problem

can be overcome by using the fed-batch fermentation technique, one of the key

challenges in the system operation lies in its difficult control design problem,

which arises from the time-varying nature of the system. Hence, to alleviate

this problem, the modeling and control of the fed-batch fermentation process has

been a subject of great interest in order to realize high productivity and yields

from the fermentation technique. In fed-batch modeling, the development of a

microbial kinetics model, will in part demonstrate the complexity of the overall

system dynamics, which in turn will affect the controllability of the system.

A part of the present study was to investigate how pH, aeration rate and

stirrer speed affect ethanol production by Bakers yeast using combined cassava

and fruit waste (rejected mango and durian seeds) as feedstock. The usage of

fruit waste (e.g. damaged fruit, peels and seeds) helped to reduce the heavy re-

liance on agricultural crops and avoid expensive pretreatment as in the case of

lignocellulosic materials with complex structure. One of the findings showed that

a simple Monods model was unable to describe the fermentation kinetics, sug-

gesting that complex carbohydrate sources can lead to a more complex microbial

kinetics behavior. A modified model based on the combined Herbert-Haldane

microbial kinetics model was developed, which seemed to fit the experimental

data better. Also, this modified Herbert-Haldane microbial kinetics model can

be further altered to incorporate the direct effects of pH, aeration rate (AR) and
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stirrer speed (SS) into the microbial kinetics. The proposed microbial model

should be sufficiently reliable especially in describing the death phase in biomass

concentration towards the end of fermentation. Although simple in structure,

the proposed model has been shown to be accurate enough for applications in

simulation, design and control studies of alcoholic fermentation processes.

Another part of this study, which constitutes the major component of the

dissertation, was to investigate the complex dynamic behaviors that can arise

from the fed-batch fermentation process and the stability implications imposed

by these complex dynamics on a standard single-loop PID controller. As the

fed-batch complex dynamics can evolve throughout the fermentation process, it

is important to identify several typical dynamic forms at different points along

some possible operating trajectories. Many of these complex dynamics can be

adequately represented by fourth-order integrating/unstable model with multiple

RHP zeros. Detailed understanding of such a point-wise, complex dynamic be-

haviors should provide us with hints on how to tune or design a given controller

with guaranteed stability from the linear system point of view. In turn, sufficient

understanding of all the possible forms of the complex dynamics, which can occur

during the fed-batch operation, will help to better design an effective nonlinear

control system for the fed-batch fermentation process, thus guaranteeing closed-

loop stability as well as providing improvements in productivity. It is important

to focus on addressing these complex dynamics separately (point-wise) by using

a conventional PID controller before trying to address the fed-batch nonlinearity

problem by developing some advanced control strategies.

From this study, two new theorems (i.e. necessary and sufficient criteria for

stability) have been developed based on the Routh-Hurwitz stability analysis.

These theorems enable effective determination of all stabilizing PID parameter

regions for a single-loop feedback structure applied to a given form of complex

dynamics in the fed-batch process. One of the findings in this study showed that

a low-order PID controller could assure the stability for some of the complex

dynamics that may occur in the fed-batch system. Fortunately, for these com-

plex dynamics there is no need to use advanced high-order controllers. However,

in some cases where the fed-batch dynamics are too complex, which would pre-

clude the application of a single-loop PID controller, two novel advanced control

schemes unifying both the direct and indirect multi-scale control (MSC) princi-

ples have been proposed, namely double-loop MSC and triple-loop MSC control

schemes. Extensive simulation studies have demonstrated that both schemes can

provide effective control of high-order unstable/unstable-integrating systems with
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multiple RHP zeros, which could not otherwise be stabilized using a single-loop

feedback control structure.

One possible future research topic is to apply the proposed advanced MSC

schemes in developing a novel nonlinear control strategy. This novel control strat-

egy should be able to handle both nonlinearity and complex dynamics problems

encountered in a typical fed-batch fermentation process.
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Chapter 1

Introduction

1.1 Background

A wide variety of fermentation products, such as foods, chemicals (solvents, en-

zymes, acids and others), biofuels and pharmaceuticals can be produced from the

fermentation process. The operational mode of the fermentation process can be

classified into three types: batch, fed-batch and continuous culture. Fed-batch

culture is widely employed in the fermentation industry as it can reduce inhibi-

tion by high substrate concentration and thereby achieve high productivity and

yields.

In recent years, the development of alternative energy sources has been a

subject of great interest due to climate change, rapid growth in world energy

demand and fast depletion of fossil fuels reserves [1, 2]. Bioethanol has been

recognized as one of the promising alternative renewable fuels, which can improve

energy security and reduce greenhouse gas emissions [1–4]. There are two ways to

produce bioethanol: (1) the petrochemical route from the hydration of ethylene

and (2) the most frequent biotechnological route, via microbial fermentation of

agricultural biomass [5]. Conventionally, bioethanol is produced based on the

latter from the fermentation of carbohydrate sources, i.e. agricultural crops and

lignocellulosic waste. The conventional ethanol fermentation production process

has primarily utilized sugar-based and starch-based food crops, which will over

the long-term; compete with humans’ need for food. Meanwhile, the use of

lignocellulosic waste avoids such competition, but requires costly pretreatment

to break down the tough lignin structure which often leads to low productivity,

hence preventing commercialization [6–8].

In fact, the control design for the fed-batch fermentation processes was in-
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tended to improve the operational stability and productivity. Over the past three

decades, most research has mainly focused on addressing the nonlinearity prob-

lem of fed-batch fermentation by using advanced control strategies, i.e., optimal

control [9, 10], robust control [11–13] and adaptive control [14–16]. It should be

noted, fed-batch dynamics not only vary nonlinearly with operating conditions,

but are also known to be high-order with the presence of complex dynamics.

In order to have a more integrated control system for the fed-batch fermenta-

tion process, more emphasis should be made in dealing with those challenging

complex dynamics arising from a typical fed-batch fermentation process. The

traditional proportional-integral-derivative (PID) controllers are still commonly

used in industries due to their simplicity and effectiveness. For this reason, it

is extremely important to design the PID controllers to deal with those complex

dynamics effectively before the implementation of advanced control strategies.

The goal of this dissertation is to gain insights into how the complex dy-

namic behaviors exhibited in fed-batch fermentation systems affect the stability

of standard single-loop as well as non-standard feedback control structures.

1.2 Motivation and Objectives

Fed-batch systems are challenging to control due to process variability and com-

plexity of biological systems, which result in complex and strong nonlinear dy-

namics. Until now, there has been a limited number of studies on the mathemat-

ical forms of complex dynamics in fed-batch processes. The complex high-order

dynamic behaviors in a fed-batch system vary depending on the nature of fer-

mentation conditions (concentration, temperature and pH), substrate types, and

microorganisms used. Some mathematical models known as microbial kinetics

models commonly represent microbial behavior. In fed-batch modeling, the type

of microbial kinetics model used will in part determine the complexity of the sys-

tem dynamics and affect the controllability of the system. The following research

gaps that have been identified are as follows:

i. Kinetics modeling of alcoholic fermentation using fruit waste.

ii. Detailed point-wise analysis on the dynamics behavior of the fed-batch fer-

mentation process.

iii. The stabilization and control of some complex dynamics in fed-batch fermen-

tation in the context of the linear system approach.
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The first gap requires a fundamental study via experiment in order to develop

fermentation kinetics modeling using fruit waste. A reliable kinetics model for

the bioprocess modeling is a prerequisite in order to obtain satisfactory results

in any optimization and control study. The following hypotheses were posed as

a guide in carrying out the experimental study on fermentation kinetics using

mixed fruit waste and cassava:

i. The standard well-known Monod and Haldane kinetics models are not suit-

able to represent fermentation kinetics because the cell death rate is ignored,

which is not realistic.

ii. pH has the largest influence on fermentation kinetics of mixed fruit waste

and cassava because substantial deviation of the extracellular pH from the

intracellular pH will cause greater stress on yeast cells in order to maintain

the intracellular pH within the optimal range.

iii. Under micro-aerobic fermentation, the effect of mixing intensity (aeration

rate and stirrer speed) is critical to maintain metabolite production.

In this work, the notion on Complex Dynamics is given as follows:

“A nonlinear system is said to have complex dynamics if the linearized process

behaviors at any given operating point are given by a high-order system (model)

having at least one unstable or integrating pole and with at least one right-

half plane (RHP) zero. This high-order model cannot simply be reduced to a

low (first- or second-order) model without losing the main information on the

process behaviors at the given operating point. These complex dynamics are

often very difficult or even impossible to stabilize using a standard single-loop

PID controller.”

It has been found that, a nonlinear fed-batch process model with four state

variables can yield several forms of complex dynamics along an operating tra-

jectory where most of the dynamics are representable by fourth-order integrat-

ing/unstable models with multiple RHP zeros.

The work described in this dissertation is aimed to fill these research gaps

where the issues of control structure in fed-batch fermentation are addressed.

The main objectives of this dissertation are as follows:

i. To study the effect of pH, aeration rate and stirrer speed on the bioreactor

performance (i.e. yield and productivity) of ethanol from mixed fruit waste

and cassava.
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ii. To develop a new kinetic model, which is simple to use and reliable for a fed-

batch fermentation process using fruit waste by Saccharomyces cerevisiae

Type II.

iii. To determine the stability of a standard single closed-loop PID control for

some complex dynamic behaviors exhibited in the fed-batch fermentation

process based on the Routh-Hurwitz stability criteria.

iv. To develop new control strategies based on the multi-scale control (MSC)

theory - double-loop MSC and triple-loop MSC control schemes.

1.3 Novelty, Contribution and Significance

The fed-batch processes is widely used in fermentation industries. However, mod-

eling and controlling the processes are still considered unaddressed problems,

which are subject to on-going research with the goals to maximize the product

yield and quality. In regards to the bioprocess control aspect, most of the re-

search has focused on the controller design algorithms over the past few decades;

the closed-loop stabilization by conventional PID controllers has received less at-

tention from researchers. The notable feature of this research study is that, an

advanced PID-type-control structure, which unifies the multi-scale control (MSC)

schemes is proposed to address the current knowledge gap in dealing with some

specific complex dynamic behaviors inherent in some fed-batch bioprocesses.

The novelty of this research can be summarized as follows:

i. Development of kinetic models which incorporate mixing conditions (due to

aeration rate and stirrer speed) and pH for the fed-batch system using fruit

waste as a feedstock for fermentation.

ii. Development of two new theorems based on Routh-Hurwitz stability criteria,

i.e., necessary and sufficient conditions, in order to determine the closed-loop

stability of a PID-type controller.

iii. Development of two new advanced multi-scale control schemes which use a

combination of 2 to 3 conventional PID controllers. The proposed double-

loop multi-scale control scheme adopts two conventional PID controllers while

the triple-loop multi-scale control scheme uses three PID controllers.
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The major contributions of this research can be viewed in two aspects, the-

oretical (academic) contributions and contributions to industry. The theoretical

contributions of this research study are:

i. A new unstructured kinetic model was developed, which is simple to use and

reliable for describing the microbial growth during ethanolic fermentation.

ii. Two new PID closed-loop stabilization theorems were developed, i.e. only 3

or 5 steps are required to establish the stabilizing PID regions for second-

order unstable processes and fourth-order integrating-unstable processes re-

spectively.

iii. A new framework for unifying multi-scale control (MSC) for fed-batch fer-

mentation processes was proposed. The double-loop MSC and triple-loop

MSC schemes aim to first decompose the complex dynamics into two or

three simpler sub-systems, which are then separately addressed in a multi-

scale structure.

As for the practical contribution, this research provides a new set of knowl-

edge and methods in fed-batch control system and fed-batch fermentation system

modeling.

This study is significant for four reasons. First, this study proposes a fer-

mentable feedstock that is cheap and readily available, i.e. fruit waste, such as

rejected mango fruit. The fruit waste is high in sugar content and nutrients,

which can be used readily as a glucose source without any hydrolysis or pretreat-

ment processing. Thus, the cost of using rejected fruit should be low compared

to starch-based and lignocellulosic materials. Second, the modular design based

on the fed-batch mode can be implemented in small-scale ethanol production in

distributed locations. Small-scale production is more attractive to rural commu-

nities compared to the conventional large-scale continuous systems, due to lower

construction and logistic costs (e.g. transportation and storage). Moreover, rural

communities can reduce dependence on expensive gasoline via bioethanol pro-

duction utilizing this modular system. Third, the performance of the ethanol

fermentation process can be improved by employing a systematic approach to

control system design. The key significance in this study is the development of

an effective control system design of the fed-batch fermentation processes, which

can overcome the complex dynamic behaviors encountered. The outcome will be

determined in the longer term with evidence of increased productivity and overall

cost efficiency of the entire system design.
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Another key significance of this study is that the new PID closed-loop sta-

bilization theorems can be effectively used to establish stability regions of PID

parameters for any given process whose dynamics is representable by a linear

model. This is useful as in process industry, many processes are represented by

some linear models, which are used to design or tune PID controllers. Thus, these

theorems shall facilitate the tuning or design of PID controllers in industries.

1.4 Dissertation Structure

Figure 1.1 shows the overview of the dissertation structure. This dissertation is

outlined as follows:

Chapter 1 defines the background, motivation and objectives of this re-

search and is followed by the significance and contributions, whereby the issues

and knowledge gaps relevant to this study are highlighted. The structure of this

dissertation is summarized in this chapter.

Chapter 2 covers the literature review on the background relevant to this re-

search study. The first part covers the overview of the fermentation process.

The second part includes a review of the mathematical model (i.e., dynamics of

bioreactor and microbial kinetics model) of the fermentation process. Lastly, the

existing advanced control techniques in the bioprocess and the key challenges of

the control design problem of the fed-batch fermentation process are reviewed.

As a result, this review aims to identify the existing achievements and also the

research gaps relevant to this study.

Chapter 3 concentrates on the experimental and analytical techniques required

in this study. The experiments using mixed mango waste and cassava as feed-

stock were conducted as a case study for ethanolic fermentation. Meanwhile, the

dynamics and microbial kinetics were studied with respect to the pH and mix-

ing intensity (i.e., aeration rate and stirrer speed) within a batch mode bioreactor.

Chapter 4 presents the examination of the stabilization by PID controller of

second-order unstable processes, which can be represented as a second-order

deadtime with an unstable pole (SODUP) and a second-order deadtime with

two unstable poles (SODTUP), based on necessary and sufficient criteria of the

Routh-Hurwitz stability analysis. In doing so, the stabilization of some complex
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dynamics, such as time delay and unstable poles are discussed.

Chapter 5 discusses the different forms of complex dynamics inherent in the

fed-batch fermentation process. The limitations of a standard single-loop PID

controller in providing stabilization to such high-order and complex dynamics

process are discussed.

Chapter 6 presents the applications of the multi-scale control (MSC) scheme,

which are applicable to multi-inputs and multi-outputs (MIMO) and integrating

processes by using a decentralized control and a double-loop control structure

respectively.

Chapter 7 extends the basic idea of the MSC scheme. A double-loop MSC (DL-

MSC) scheme was developed which unifies the direct and indirect MSC schemes

via a double-loop control structure for controlling highly nonminimum-phase in-

tegrating processes.

Chapter 8 provides a new triple-loop MSC (TL-MSC) scheme to deal with the

stabilization of fourth-order integrating-unstable systems.

Chapter 9 draws conclusions from this research study and suggests future di-

rections for extending its application into different areas.
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Chapter 2

Literature Review

A fed-batch fermentation process is commonly used in biotechnological industries

to overcome substrate inhibition. The development of mathematical model (i.e.,

dynamics of bioreactor and kinetics modeling of microorganisms) of the fed-batch

fermentation process is important for optimization and control study. Even when

based on simple models, a fed-batch fermentation process can demonstrate high-

order systems (at least fourth-order) with complex dynamic behaviors throughout

the course of its operation. Most research has mainly focused on addressing the

nonlinearity problem by using advanced control strategies, i.e., nonlinear PID.

However, can a single-loop PID controller provides stabilization for such complex

forms of dynamic behaviors? A high-order non-PID controller might be used

instead, but it might be too complicated to be applied in a practical environment.

To demonstrate the theoretical basis for this research, a concise literature review

is presented in this chapter. The key points of the presentation are as follows:

� Overview of the alcoholic fermentation process.

� Modeling of fermentation process, i.e., kinetics modeling and bioreactor

modeling.

� Key challenges in controller design of fed-batch fermentation process.

� Advanced control techniques in bioprocess.

2.1 Fermentation Process - Overview

Fermentation process is widely used within the food, pharmaceutical and bio-

chemical industries. In recent years, a great interest in the production of some
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commodity chemicals, such as ethanol, butanol, acetic acid, citric acid and etc,

by fermentation processes has been observed.

Fermentation is a result of a complex reaction network characterizing certain

metabolic activities carried out by yeast or bacterias that converts carbohydrate

such as starch or sugar to acids, gases, and/or alcohol. When the medium is

inoculated with microorganisms, there are four distinct phases of cell growth

which have been observed as shown in Figure 2.1. Initially, the lag phase is a

period without significant cell growth due to adaptation of the cells to new en-

vironment during which period enzymes are synthesized to employ nutrients in

medium. Subsequently, it is followed by a log (exponential) phase, a period of

rapid increase in the cell population in the presence of nutrients in excess. The

growth is rapid and the cells multiply in an exponential order and most of the

kinetic growth parameters are described in relation to this phase. In the next

stationary phase, the cell growth becomes stagnant due to nutrient exhaustion.

The microorganisms are still maintaining a certain metabolic activities by con-

verting nutrients into secondary metabolites. Finally, the shortage of nutrient

causes the decay of microorganisms, called death phase [17–19]. Acquiring basic

understanding of the phases of cell growth is important in kinetics modeling.

Figure 2.1: Phases of cell growth in a batch culture

A fermentation process is made up of bioreactor. Generally, there are three

different types of mode of operation for bioreactor: (1) batch (2) fed-batch and

(3) continuous culture. Batch and fed-batch are two modes of operation which

are commonly used in fermentation industry. Over the past few decades, a fed-

batch culture has been preferable as it can avoid the surplus nutrients which may

inhibit microorganism growth, e.g., the concentration of glucose above 150 g/L

would reduce the activity and growth of microorganisms in conventional alcoholic

10



fermentation [20, 21]. Moreover, the exponential phase can be extended and leads

to high cell densities [22]. In so doing, the reaction can reach high yield and high

production rate compared to batch fermentation [21, 23–26]. Thus, most studies

in modeling and control in fermentation processes are now focused on fed-batch

culture rather than batch and continuous culture.

2.1.1 Production of Bioethanol

Although many microbes, such as Escherichia coli and Zymomonas mobilis, have

been used in ethanol production, Saccharomyces cerevisiae is the main yeast

species used in ethanol production due to its active glucose transport system

[4, 27–29]. Glycolysis (Embden-Meyerhof-Parnas or EMP pathway) is the main

metabolic pathway in the ethanol fermentation process, whereby glucose is metab-

olized and convert into two molecules of pyruvate, two high-energy compounds

ATP (adenosine triphosphate) and two NADH (reduced nicotinamide adenine

dinucleotide) [4, 17, 27].

Figure 2.2: Pyruvate metabolism in Saccharomyces cerevisiae. Pyc: pyruvate

carboxylase; Pdh: pyruvate-dehydrogenase complex; Pdc: pyruvate decarboxy-

lase; Adh: alcohol dehydrogenase; Ald: acetaldehyde dehydrogenase; Acs: acetyl-

coenzyme A synthetase

In Figure 2.2, the pyruvate formed in glycolysis pathway can be reduced into

acetaldehyde or acetyl-CoA [30]. The acetaldehyde can be converted to ethanol
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while the acetyle-CoA can be used for Tricarboxylic acid (TCA or Kreb’s cycle)

for cell respiration [17]. On the other hand, yeast cell growth requires two ATPs

produced from glycolysis to drive the bio-synthesis, thus, ethanol production is

tightly coupled with yeast cell growth [4]. Theoretically, 1g of glucose is able

to produce 0.511g of ethanol and 0.489g of CO2 base on mass basis. A yield

of 90-93% of ethanol theoretical yield can be produced by Saccharomyces cere-

visiae based on total sugar feeding [4]. Moreover, it is recognized as safe (GRAS)

microorganism that can produce up to 20% (v/v) ethanol from mainly C6 car-

bon sources (e.g. glucose) by fermentation process [4, 29, 31]. In the current

research project, Saccharomyces cerevisiae is used as a case study for bioethanol

production in the experiments.

2.1.1.1 Bioethanol Feedstocks

In general, bioethanol can be extracted from the fermentation of various sorts of

carbohydrate sources. The first generation feedstocks for bioethanol production

refer to food crops, mainly from sugar-based and starch-based biomass. The sec-

ond generation raw materials refer to non-food biomass sources, such as lignocel-

lulosic biomass. The third generation feedstocks are focused on the fermentation

from algae. The examples of each categorized feedstock are shown in Table 2.1.

Table 2.1: Bioethanol feedstocks

First Generation Feedstocks Second Generation

Feedstocks

Third Generation

Feedstocks

Sugar-based

Biomass

Starch-based

Biomass

Lignocellulosic

Biomass

Algae

Sugarcane Cassava Agricultural

residues

Microalgae

Molasses Corn (straw, stover,

baggase)

Macroalgae

(seaweed)

Sugar beet Potato Forestry residues

(wood)

Fruits Grains Waste paper,

paper pulp

Sweet

sorghum

Municipal solid

waste
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The conventional ethanol production processes primarily refer to first gener-

ation feedstocks, which utilize easily fermentable biomass feedstocks to produce

bioethanol [32]. Sugar-based crops represent a readily fermentable sugar source

(mainly sucrose, fructose and glucose), whilst starch-based materials have to be

undergoing simple pre-hydrolysis to break down the chains of carbohydrate for ob-

taining fermentable sugars (mainly glucose) [6, 33, 34]. However, one of the major

concerns with the usage of first generation feedstocks exclusively for bioethanol

production is potential competition with livestock and human food consumptions

in the long term [1, 2, 35].

This dilemma has motivated extensive studies on the usage of lignocellulosic

materials, mainly from agricultural residues, which have been categorized as sec-

ond generation feedstocks. Second generation feedstocks are attractive as they

are sufficiently abundant, renewable and low cost [7, 8, 35]. The bioethanol pro-

duction from lignocellulosic materials helps to reduce pressure on the demand

for food crops. Lignocellulosic biomass is a complex material composed of three

main constituents, namely cellulose, hemicellulose and lignin. However, the costly

and complicated pretreatment processes (e.g. physical, chemical, or biological)

required to break down the complex structure of lignin often lead to low produc-

tivity, which has so far prevented commercialization [6–8]. An overview of the

processes for various bioethanol feedstocks is shown in Figure 2.3.

Figure 2.3: Overview process for bioethanol feedstocks

Fruit waste (e.g. damaged fruit and peels) has also been proposed as cheap

fermentation feedstock. Fruit waste is often in the form of readily fermentable

sugars. Thus, the hydrolysis pretreatment process can be exempted. For such

fruit waste, mangoes are abundant in tropical countries, e.g., Malaysia, the re-
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jected mangoes can be considered as a cheap source for the fermentation process

compared to traditional lignocellulosic waste. In this study, the experimental

study of batch fermentation of ethanol production using combined cassava and

mango waste as feedstocks is studied.

In Malaysia, the tropical climate creates a luxuriant plant life and produces a

wide diversity of edible and succulent fruit. Most of tropical fruits are available

all year around (e.g., mangoes), but some are seasonal (e.g., durian). Moreover,

cassava is widely harvested in most parts of Asia. Malaysia harvests about 400,000

t year−1 of cassava from an area of about 39,000 ha and most of the cassava is

for starch production [36].

2.1.2 Fermentation Operating Conditions

The rate of fermentation depends on operating conditions, such as medium pH,

temperature, agitation rate (stirrer speed) and aeration rate, which affect the

specific rate of growth and ethanol yield [37, 38].

2.1.2.1 Temperature

Fermentation processes are highly sensitive to changes in temperature. At a

higher temperature, the rate of yeast activity is higher because the collisions be-

tween the substrate and the enzymes active site are more frequent [39]. Thus, an

increase of temperature often leads to higher fermentation rate [38, 40]. However,

because of several other biological limitations, the increment of yeast activity is

only up to a point where the cells are at the maximum efficiency. Beyond this

optimum temperature, yeast cells begin to denature due to excessive kinetic en-

ergy which breaks the bonds eventually alters the active sites shape. This results

in the rapid decrease or even complete halt of the enzymatic reactions involved.

It is reported that the inhibition of cell growth could occur at 50� [38]. The

inhibition of cell growth due to high temperature changes the transport activity

or saturation level of soluble compounds and solvents in yeast cells, e.g. ethanol,

which might cause a reduction of cell growth [38]. On the other hand, at lower

temperatures the cells specific growth rate is lower which is due to their low

ethanol tolerance at lower temperatures [41]. The influence of temperature in

fermentation process has been studied extensively [37–43]. According to [38, 43],

the optimum temperature of saccharifying enzymes for fermentation and micro-

bial growth is 25-35�.
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2.1.2.2 pH

It has been widely recognized that the cultivation pH plays an important role in

ethanol production [44]. S. cerevisiae is an acidophilic organism where a medium

pH in the range of 4 to 6 has been known to be the optimal pH for yeast growth

during fermentation. pH has a significant impact on microbial activities [45–47],

where the chemical pathways of the biological reactions can be modified by pH

parameter as well as their kinetics [45]. The specific growth rate of microorganism

was reported to be related to the pH of the growth medium in [48–51]. A constant

yeast intracellular pH has to be maintained during fermentation process [52].

When the difference between extracellular pH and intracellular pH becomes wider,

greater stress is imposed on yeast cells and more energy is transformed to either

pump in or pump out hydrogen ions in order to maintain the intracellular pH

within the optimal range [53], which permits growth and survival of the yeast

[52, 54], which in turn affect the efficiency of ethanol production.

2.1.2.3 Anaerobic and Aerobic Fermentation Process

Fermentation processes can be carried out in anaerobic process or aerobic pro-

cess. Aeration rate and stirrer speed are important factors in the fermentation

processes, as both of the parameters will affect the mixing mechanisms between

the culture medium and microorganism [31, 55]. Aeration is an important fac-

tor for growth and ethanol production by S. cerevisiae. In practice, most of the

fermentation process for ethanol production is carried out under anaerobic condi-

tion. The S. cerevisiae yeast has the ability to grow under anaerobic conditions,

however, it is interesting to point out that a certain amount of delivery of oxy-

gen to culture broth is important to maintain metabolite production and growth

of microorganisms [56]. Under anaerobic conditions, small amount of oxygen is

required to favor the synthesis of sterols and unsaturated fatty acids, which are

necessary for plasma membrane coherence [57–60]. Additionally, the synthesis of

unsaturated fatty acids counteracts ethanol inhibition by increasing the fluidity

of plasma membrane [4]. Thus, the increasing of aeration rates from very low

value leads to improved cell viability and enhancing the formation of ethanol by

yeast [31, 61, 62]. A fermentation where limited amount of oxygen is supplied is

called micro-aerobic fermentation.
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2.1.2.4 Stirrer Speed

In fermentation process, the stirrer speed is an important factor to induce turbu-

lence and shear, which favors homogeneity of yeasts and substrates in broth [63]

and prevents the sedimentation of yeasts [64]. Under micro-anaerobic condition

with small amount of oxygen delivered to culture broth, stirring breaks up the

bubbles [56] while the oxygen transfer is enhanced [65]. Moreover, mixing in-

duces better coupling between catabolism and anabolism [66]. Thus, higher mass

transfer rate within the bioreactor is achieved by higher stirrer speed, thereby

resulting in higher ethanol yield [31, 64].

2.2 Modeling of Fermentation Process

The mathematical model is defined as a representation in mathematical terms of

the behavior of a real process, which is important and useful for design, optimiza-

tion, control, safety and etc. There are five key reasons why models are required

in process engineering [67]:

� To organize disparate information into a coherent whole.

� To think and calculate logically about what components and interactions

are important in a complex system (i.e. from DNA sequence to phenotype).

� To discover new strategies.

� To make important corrections in the conventional wisdom.

� To understand the essential, qualitative features.

The basic idea of making models is to be able to bring a measure of order

to our experience and observations, as well as to make specific predictions about

certain aspects of the world we experience [68]. In Figure 2.4, three stages: ob-

servation, modeling and prediction, can be observed in the conceptual world [69].

In observation stage, what is happening in the real world is measured. Modeling

stage is to analyze the observations. Validation of a model is integral to the mod-

eling process, i.e., graphical presentations of experimental results are the most

convenient and informative method. In fact, modeling or model development for

a given process is an iterative procedure: data fitting to a specific model structure

and followed by validation. If the validation is not satisfactory, then the model
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Figure 2.4: Basic idea of making models

structure will be revised and then followed by data fitting and re-validation. The

iterative process will go on until satisfactory validation result is obtained. Lastly,

the models are exercised and what will happen in a yet-to-be conducted exper-

iment will be revealed on prediction stage. Therefore, mathematical modeling

does not make sense without defining, before making the model, what its use is

and what problem it is intended to help to solve [68].

Figure 2.5: Mathematical (and other) representation of cell populations

The models of cell populations can be divided into structured/unstructured

and segregated/unsegregated [67]. Figure 2.5 shows the classification of mathe-
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matical and other representation of cell populations introduced by A. G. Fredrick-

son [67]. The ‘segregated’ term represents explicit accounting for the presence

of heterogeneous individuals in a population of cells, whereby the ‘structured’

term represents a formulation in which a cell material is composed of multiple

chemical components. In modeling of bioprocesses, the majority of the kinetic

models of cell populations is described by using unsegregated and unstructured

model, which consider the cell population as one component solute.

There are two component models involved in the modeling of a bioreactor,

which are: (1) dynamics (mass and energy balances) of bioreactor, and (2) kinetics

modeling of microorganisms involved. Generally, the macro-scale (black box)

approach is used for bioreactor modeling. The black box models are frequently

used in process optimization and control, which provide the functionality relations

between input factors and output responses. The schematic diagram of macro-

scale bioreactor modeling is shown in Figure 2.6, where Umac and Ymac represent

the input and output variables of the process respectively.

Figure 2.6: Schematic diagram of macro-scale bioreactor modeling

Kinetics model is critical in the mathematical modeling of a whole bioprocess

of interest, where the bioreactor model can be used for optimization and control

study. In the modeling of the fermentation process, the behaviors of cell pop-

ulation are the main idea of the complex kinetic description. An unstructured

kinetic model is often used in bioreactor modeling, which represent a simple

overview of the metabolism of cell over the course of time [18]. Nevertheless,

the kinetics modeling also incorporate with cell growth, substrates consumption,

products synthesis and sometimes with the cell death [18]. The majority of ki-

netic models describing microbial growth during alcoholic fermentation follows

a formal unstructured (macro) approach to bioprocessing. Various studies have

been dedicated to the modeling of the key parameters affecting alcoholic fermen-

tation. Table 2.2 summarizes some of the modeling of key behaviors in alcoholic

fermentation obtained from open literature.
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Table 2.2: Summaries on modeling of key parameters in alcoholic fermentation

Key Parameters Remarks References

High substrate or

product or biomass

concentration

Inhibition effects due to

high substrate, product or

biomass concentrations and

lead to low yield.

[70–75]

Temperature High temperature changes

the transport activity or

saturation level of soluble

compounds and solvents in

cell.

[46, 47, 76, 77]

pH Different yeast has its

optimal pH for yeast

growth. Significant

deviation of extracellular

pH from the optimal

intracellular pH leads to

low yield.

[45–47, 76, 78]

Oxygen supply Small amount of oxygen

supply could increase cell

viability. Mirco-aerobic

improves cell viability

under stress conditions.

[79–81]

2.2.1 Bioreactor Modeling

In general, the macro-scale model of a bioreactor can be represented by a set of

mass balance differential equations. A set of differential equations of a bioreactor

with respect to state variables and output variables can be described as:

Żmac(t) = f(Zmac(t), Umac(t), β) (2.1)

Ẏmac(t) = g(Zmac(t), Umac(t)) (2.2)

where Zmac(t) ∈ Rnx , Umac(t) ∈ Rnu , Ymac(t) ∈ Rny are vectors of state variables,

input variables and output variables respectively. The β is kinetic parameters

which being constant values (real parameters) and t is time. Notice that, the

f = [f1, f2, . . . fn]ᵀ and g = [g1, g2, . . . gn]ᵀ are nonlinear vector functions.
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2.2.2 Unstructured Fermentation Kinetics Modeling

Unstructured (macro) models have widely been used for modeling of microbial

kinetics to describe the microbial growth during ethanol fermentation. The mod-

els are empirical and provide the most fundamental observations concerning mi-

crobial metabolic processes [78, 82, 83]. A functional relationship between the

specific growth rate and an essential substrate concentration is often expressed

by Monod’s equation [72, 84].

µ =
µmS

ks + S
(2.3)

where µm is the maximum specific growth rate of the microorganisms, ks is the

value of S when µ/µm = 0.5 (referred as saturation constant), S is the concen-

tration of the limiting substrate for growth.

However, some limitations arise from the Monod’s equation due to: (1) sub-

strate and product inhibition are excluded, (2) cell death rate is ignored, and (3)

well-mixed conditions are assumed in bioreactor [72, 84]. These limitations of

Monod’s equation often make it not suitable to fit in real bioprocess behaviours.

In general, there are three types of inhibitory effects which are frequently encoun-

tered in a fermentation process, which are substrate inhibition, product inhibition

and biomass inhibition.

Numerous modifications based on Monod’s equation have been developed

which take into account the inhibition of microbial growth under a high concen-

tration of substrate and/or product [78]. The inhibition by high concentration of

substrate result in lag time increment in a batch fermentation culture whereby

it may result in process instability in continuous fermentation culture [85]. The

kinetics of substrate inhibition usually described by general mechanism of com-

petitive, e.g. hyperbolic [47, 85–89] and non-competitive based on exponential

relation, i.e., Aiba [90].

Hyperbolic form: µi = µm
S

ks + S + kssS2
(2.4)

Exponential form: µi = µm exp (−ksS) (2.5)

where S is the substrate concentration while Ks and Kss are parameters

Most of the kinetics under product inhibition often described by non-competitive

approach such as linear form, i.e., Hinshelwood [91, 92], exponential, i.e., Aiba
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[90], hyperbolic, i.e., Jerusalimsky [71, 93] and parabolic, i.e., Levenspiel [86, 94].

Linear form: µi = µm

(
1− E

Em

)
(2.6)

Exponential form: µi = µm exp (−keE) (2.7)

Hyperbolic form: µi = µm
1

1 + E/ke
(2.8)

Parabolic form: µi = µm

(
1− E

Em

)n
(2.9)

where E is the product concentration, Em is the maximum concentration of

product and ke denotes as a parameter.

Moreover, the specific growth rate of cells is expressed by Monod type kinet-

ics extended to allow the inhibition effect due to biomass concentration(X) on

the kinetics. A modified model which incorporates both product and biomass

inhibition is proposed by [75] as follows:

µi = µm

[
1−

( E

Em

)m][
1−

( X
Xm

)n]
(2.10)

where m and n are parameters of cellular and product inhibitions respectively.

Furthermore, [77, 95] proposed the combined inhibition effects on substrate, prod-

uct and biomass as follows:

µi = µm
S

ks + S
exp (−kiS)

(
1− X

Xm

)m(
1− E

Em

)n
(2.11)

The rate of substrate consumption can be modified following the Pirt equation

[96].

rs = − rx
Yx/s

−msX (2.12)

where Yx/s and ms denote the biomass yield referred to substrate consumed and

maintenance parameter respectively.

Meanwhile, the rate of product formation can be defined as Luedeking-Piret

equation [96].

rp = rxYe/x +meX (2.13)

where, Ye/x is the product yield based on biomass growth and me denotes coeffi-

cient for the ethanol production associated with the microbial growth.
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2.3 Bioprocess Systems

Generally, there are three different types of fermentation process: (1) Batch fer-

mentation process (2) Fed batch fermentation process and (3) Continuous fer-

mentation process, which are shown in Figure 2.7 [19].

Figure 2.7: Batch, fed-batch and continuous fermentation process; X:biomass,

S:substrate, P :product, t:time

In Figure 2.7, the notations F0, S0 and X0 represent the feed flow rate, sub-

strate concentration in the feed and biomass concentration in the feed. Batch

fermentation system is a closed system. The basic idea of batch fermentation

is that all substrate components and inoculum are added at the beginning of

fermentation and nothing is added throughout until the end of the process, ex-

cept oxygen (for aerobic and micro-aerobic fermentation), antifoam agent, acid or

base to control pH. The composition of the medium, the biomass concentration

and the metabolite concentration generally change constantly as a result of the

metabolism of the cells [19]. Continuous fermentation system is an open system,

which the substrates are fed continuously while the effluent stream containing the

cells, products and residual is withdrawn at the same flow rate of inlet flow, which

establish a steady state condition. By maintaining a constant volume of culture,

the continuous fermentation can be monitored in either constant substrate con-

centration or constant cell growth. Continuous system is frequently used in large

scale production. Fed-batch fermentation system is a technique in between batch

and continuous process, in which the nutrients are fed intermittently or continu-

ously while the culture broth is collected at the end of the process. The fed-batch

system is a dynamic operation. An advantage of fed-batch fermentation is that

it can avoid the surplus nutrients (due to overfeeding in batch culture) which

may inhibit microorganism growth. In so doing, the reaction can reach high yield
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and high production rate, maintain sterile culture and assure operational flexi-

bility in keeping pace with the changing market requirements [97, 98]. In view of

an increase in productivity, fed-batch system is widely employed in bioprocesses

industry. Apart from bioethanol production, fed-batch culture is used for pro-

duction of various products such as penicillin [99–101], spirulina [102–105], amino

acids [106], antibiotics [107, 108], lovastatin [109, 110], recombinant proteins [111],

etc. In fact fed-batch culture does not require special amendment to the existing

equipment required by batch culture [112], whereas it is beneficial in increasing

yield and productivity of the fermentation process. Table 2.3 shows some pros

and cons of these three fermentation system [17–19, 21, 23–26, 113, 114].

Table 2.3: Batch, fed-batch and continuous fermentation

Fermentation System Advantages Disadvantages

Batch Simple process. Reduced

risk of contamination.

Complete substrate

conversion.

Low productivity.

Labour intensive. Low

cell concentration.

Fed-batch Reduced inhibition by

the substrate. Extension

of the exponential

growth phase. Higher

biomass concentration

and yield (compared to

batch system).

Labour intensive.

Risk of

contamination.

Continuous Steady-state system. No

dead-times. High

productivity. Cost

efficient (low labour

cost). Less sensitive to

human error.

Interruptions due to

contamination and

mutation of yeasts.

Difficulty in control.

Risk of

contamination.

2.3.1 Key Challenges in Controller Design for Fed-batch

Fermentation Process

Fed-batch processes are technically challenging to control due to process vari-

ability and complexity of biological systems [115], which resulted in complex and
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strong nonlinear dynamics. On the other hand, the process variables are time-

varying and difficult to measure on-line. Thus, the development and application

of advanced control strategies for fed-batch fermentation system are mainly fo-

cused on addressing the nonlinear dynamics. Most of the manipulated variables

reported in the open literature are substrate feed rate and aeration rate (for

micro-aerobic fermentation) for fed-batch fermentation system in order to max-

imize the production of the microorganisms (biomass) and/or formation of the

product. Table 2.4 shows the review of advanced control strategies for fed-batch

fermentation system.

Table 2.4: Fed-batch control strategies review

Methods Remarks References

Model reference

adaptive control

(MRAC)

Control DO variable using

closed-loop approach by manipulating

F to obtain maximum oxygen

transfer capacity.

[116, 117]

Closed-loop adaptive PI controller

was designed to control the specific

growth rate by manipulating F.

[118]

In this 2× 2 system, manipulated

variables are substrate feed rate and

the airflow rate; control variables are

DO and substrate concentration.

[119]

Nonlinear model

predictive control

(MPC)

Regulate the acetate concentration,

constraining the feed rate to follow an

optimal reference profile which

maximizes the biomass growth.

[120]

Obtain high concentration of product

using open-loop approach by

regulating temperature and pH.

[121]

Control the glucose concentration

using closed-loop approach by

manipulating F.

[122]
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Table 2.4: continued

Methods Remarks References

Fuzzy logic

controller

Linguistic variables: the error in the

product concentration and the feed

flow rate, F was manipulated to

control product concentration.

[123]

Control the difference between the

specific carbon dioxide evolution rate

(Qc) and specific oxygen uptake rate

(Qo) using closed-loop approach by

manipulating F.

[124]

Neural network Fermentation time, pH, dissolved

oxygen level, temperature and

turbidity were used to identify the

nonlinear relationship between

fermentation parameters (input

vector) and bacterial inhibition

diameter (output vector).

[125]

To date, in spite of the availability of several advanced control laws for pro-

cess control applications, the fixed structure low-order Proportional-Integral-

Derivative (PID) controllers are still widely used in industries due to the sim-

plicity, reliability and robustness of the controllers [126, 127]. More than 95% of

the controllers in process control applications are of PID type. Because of the

industrial importance of PID control, numerous methods of PID controller syn-

thesis and tuning have been developed over the past few decades, such as Ziegler-

Nicholas based tuning methods [128, 129], IMC design methods [127, 130, 131],

frequency-domain method [132] and decomposition method based on multi-scale

control (MSC) scheme [133]. A vast collection of existing PID tuning rules can

be found in a PID controller handbook [134].

It should be noted that for some complex processes, higher order controllers

can provide better performance than the low-order PID controllers [135]. Unfor-

tunately, a higher order controller is more difficult to design than a PID controller

where the methods available for the higher order controller design are often lim-
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ited and some of them might be too complicated to be applied in practice. The

PID controller design for a fed-batch fermentation process can be very challenging

due to the presence of a variety of dynamics such as

1. Time-varying dynamics.

2. Higher order, i.e., to capture delicate dynamic behaviors of the process with

higher accuracy [136].

3. Unstable dynamics.

4. Integrating dynamics.

5. Time delay (deadtime).

Table 2.5 summarizes the key challenges in controller design for fed-batch

fermentation process,

Table 2.5: Key challenges in controller design for fed-batch fermentation process

Key Challenges Remarks

Time-varying Process variables are time-varying as nutrients are fed

intermittently or continuously.

Higher order Model reduction technique leads to the loss of some

information on the system dynamics [137, 138].

Imposes more upper limits on control aggressiveness

[139].

Unstable pole Imposes a minimum limit on control performance (could

lead to an excessive overshoot and long settling time).

Unstable pole moves further away from the imaginary

axis to the right-hand side in the complex plane (i.e.,

faster unstable pole), the maximum lower limit on

controller aggressiveness is increased.

Integrating Inverse-response behaviors. Never settles to a steady

state when a step input change is made.

Time delay

(deadtime)

Imposes an upper limit on the controller aggressiveness.

Deadtime grows larger, the minimum upper limit on

controller aggressiveness is reduced.

The difficulty in stabilizing such a process will no doubt require sufficient

knowledge on the process of interest, i.e., a process model is useful to controller
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design. As a result of this limitation on closed-loop stability, it is a crucial

first step in PID controller design to establish the stabilizing PID parameter

regions for the given unstable process. Therefore, fed-batch bioprocesses require

advanced regulatory procedures to ensure acceptable bioprocesses performances

and efficiency.

2.3.2 PID Closed-loop Stabilization

The output feedback stabilization of a linear time invariant (LTI) system is one

of the most important open questions in control engineering [140, 141]. Compu-

tational methods of the set of stabilizing PID parameters have been reported in

several literature. One of the well-known approaches to computing the stabiliz-

ing PID controller region is based on a generalization of Hermite-Biehler theorem

[142, 143]. However, this approach requires sweeping over the proportional gain

as to find all stabilizing regions of PID parameters [144, 145]. The Hermite-

Biehler theorem has become the basis of extended theorem used to find the PID

stabilizing parameter regions, e.g., in [146] and [147] where the complete stabiliz-

ing set of the classical PI and PID controller parameter regions for the first-order

time-delay plants were derived.

In addition to the methods based on the Hermite-Biehler theorem, the use

of Nyquist plot has also been adopted by several researchers. For examples, the

graphical approach to compute the set of all stabilizing PID parameters [148].

The Nyquist plot approach was adopted in [149] to compute the stabilizing PID

parameter regions for high-order unstable time-delay processes with one unstable

pole. In [145], the design of PI and PID controllers has been developed based

on a stability boundary locus approach where the regions are expressed in the

proportional, integral gain, i.e., (kp, ki)-plane. However, it was noted that one of

the difficulties of this approach is related to the constraint for frequency gridding

[145]. Another interesting graphical approach is based on the so-called dual-

locus diagram, which was adopted in [150] to construct robust stability regions

of optimization-based PID controllers.

Another well-known approach to constructing the stabilizing PID parameter

regions is based on the Gain-Phase Margin (GPM) specification, e.g., in [151] the

GPM approach was used to determine the feasible range of GPM for the first-order

unstable time-delay processes. Also, in [152] the GPM specification approach was

used to establish the set of PI/PID parameters, which meets desired closed-loop

time response measured in term of the dominant pole placement - the method

27



was applied to first- and second-order stable time-delay processes. A review on

the PID controller design based on GPM specifications can be found in [153].

Remark 1. Root locus and pole placement method are often applicable to simple

P-only controller analysis applied to simple systems, i.e., those systems which are

representable by low-order models. For a high-order complex system using PID

controller, these methods are not convenient because of the existence of more than

one dominant poles (both real and complex); thus, one cannot simply adjust one

dominant pole without affecting the others. For this reason, the root locus and

pole placement methods can lead to tedious PID tuning procedures for complex

high-order systems.

2.3.3 Multi-scale Control Scheme

Due to the widely industrial application of PID control, PID controller synthesis

and tuning have been developed over the past few decades. The multi-scale

control (MSC) scheme has been reported in [154–157], which offers a systematic

approach to designing multi-loop PID controllers (sometimes augmented with

filters). Figure 2.8 shows the realization block diagram for a two-layer multi-

scale control (MSC) scheme [154].

Figure 2.8: MSC scheme: (a) 2-layer and (b) reduced single-loop feedback
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The basic idea of multi-scale control (MSC) scheme is to decompose a given

plant P via partial fraction expansion into a sum of basic modes as follows:

P (s) = m0(s) +m1(s) + · · ·+mn(s) (2.14)

where mi, ∀i ∈ 0, 1, 2, ..., n is the plant factor, which can be first or second

order system with real coefficients. m0 is the outermost (slowest) factor while

mi, ∀i ∈ 0, 1, 2, ..., n is the inner-layer factor, where the response of mj is slower

that mj+1, ∀j ∈ 0, 1, 2, ..., n− 1. A set of individual sub-controllers is designed

based on the basic modes, which are then combined in such a way to enhance

cooperation among these different modes.

The unifying MSC scheme has been reported in [154, 155] to controlling the

first- and second-order plus time-delay processes, which is applicable to both

stable and unstable integrating processes.

2.4 Bioprocess Control

Due to the rapid growth of the biotechnology industry, the development of a

cost-effective production of bioproducts has been a subject of great interest with

a shift in focus towards the production with high productivity and yields. Three

reasons why process control is required in bioprocesses [115].

� To reduce process variability.

� To improve the productivity.

� To increase monitoring and troubleshooting capability.

From the control engineer’s viewpoint, the control of fed-batch fermentation

system is challenging as the optimization of the substrate feed rate is a dynamic

problem [158], which causes the nonlinearity in bioprocesses. The nonlinearity

problem has been considered as one of the key challenges to control performance.

To overcome this limitation, various types of advanced control techniques have

received a widespread research attention in the area of bioprocess control such as

(a) adaptive control, (b) fuzzy control, (c) robust control, and (d) nonlinear PID.

It can be noticed that, some of the advanced control techniques are adopted with

the implementation of PID controller.

29



2.4.1 Adaptive Control

There are two dilemmas motivate the application of adaptive control technique in

fermentation processes, i.e., (1) complex and nonlinear dynamics of the processes,

and (2) lack of reliable sensors for real-time monitoring of the process parameters

[159]. The application of adaptive control can deal with the dynamic systems

which have constant or slowly-varying uncertain parameters. The basic idea of

adaptive controller is parameter estimation, i.e., estimate the uncertain process

parameters on-line and used it in the control input computation, which is able to

maintain the control performance of uncertain or time-varying systems [160].

Recently, much effort has been placed in adaptive control in both theory

and applications. The model-reference adaptive PI controller has an outstanding

performance in controlling the specific growth rate in the production of vaccine

[118]. There are various control techniques have been proposed to be combined

with basic adaptive control techniques for fermentation process, such as robust

[161], optimal [159], fuzzy [162] and neural network [163] control techniques.

2.4.2 Fuzzy Control

Fuzzy control is designed to deal with uncertainties and non-quantitative knowl-

edge in complex bioprocess systems, which control a system based on human’s

heuristic knowledge on a real plant. It is suitable to be applied in the nonlinear

bioprocesses with poor measurements of process parameters. Moreover, fuzzy

control technique can be used to improve the closed-loop control performance for

linear or nonlinear processes when the simple process model is available [164].

Some implementations of fuzzy control technique to fed-batch bioreactor are

presented by [123, 124]. An improved fuzzy control system with feedforward/

feedback structure was used in glutathione production to indirectly control spe-

cific growth rate by manipulating the glucose feed rate [165].

2.4.3 Robust Control

Robust control has advantages in dealing with disturbances, quickly varying pa-

rameters, and unmodeled dynamics, which requires a prior information about the

bounds on these uncertain or time-varying parameters.

The H∞ robust multivariate control achieved a promising results in maintain-

ing both closed-loop stability and specific performance over a range of operating

conditions [13]. A robust controller can be employed in fed-batch fermentation
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cultures with minimal process knowledge and minimal measurement information

[11].

2.4.4 Nonlinear PID

PID controllers are conventionally preferred in bioprocess industry. However, the

highly nonlinear and time varying bioprocesses pose a great challenge to the PID

controller design. Many model-based strategies adopted in bioprocesses are still

relying on non-mechanistic model such as fuzzy system, neural network and etc.

The fuzzy self-tuning PID control of the operating temperatures in a two-

staged membrane separation process was studied in [166], which the PID pa-

rameters can be tuned on-line to solve nonlinear problems in the process. The

self-tuning PID controller with genetic algorithm was proposed in [167] to obtain

optimal tuning parameters. In [168], the concepts of invariant control and sys-

tem immersion are combined to design nonlinear PI controllers. The predictive

approach was proposed and the auto-tuned PID controller was used to control a

fed-batch culture penicillin production [121].

2.5 Summary

� Alcoholic fermentation plays significant roles in developing alternative re-

newable energy sources, especially, where they are used as additive for gaso-

line. A fed-batch culture is commonly used to overcome substrate inhibi-

tion, which can be applied to developing modular distributed system for

bioethanol production. This modular system can adopt in across rural

areas, where bioethanol can be produced from fermentation agricultural

waste.

� Mathematical model of fed-batch fermentation process includes (1) dynam-

ics of bioreactor, and (2) kinetics modeling of microorganisms, which can

be used for optimization and control study. Numerous modified Monod’s

equations which have been developed to express the specific growth rate

based on substrate, product and biomass inhibitions.

� Fed-batch system is a dynamic system, which causes the nonlinearity and it

may exhibit complex form of dynamics at some points of its operation. Over

the past few decades, various types of advanced control techniques have been

reported to address the nonlinearity problem, however, the performance of
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the practical applications of these advanced control strategies is limited by

inappropriate PID controller settings. The conventional single-loop PID

controller has its limitation on providing stabilization to such a complex

dynamic process.

� The multi-scale control (MSC) scheme can be used to address complex forms

of fed-batch dynamics, which could not be solved using the single-loop PID

control methods. The two advanced MSC schemes will be presented in

Section 7-8.
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Chapter 3

Kinetics Modeling of Batch

Bioreactor

In the modeling of a fed-batch fermentation process, there are two component

models which must be included: (1) dynamics of bioreactor, and (2) kinetics

model of microorganisms. In this chapter, we have focused on addressing the mi-

crobial kinetics developed in a batch mode bioreactor based on modified Monod’s

equation, which can provide better fitting to experimental data. In this work, a

batch mode experimental study was conducted on ethanol production using com-

bined cassava and mango waste as feedstock. The usage of fruit waste is proposed

to avoid long-term competition with food consumption and costly pretreatment

process by using conventional feedstock, i.e., agricultural crops and lignocellulosic

materials. The development of microbial kinetics of the ethanolic fermentation

process is useful and can be used as a basis for the control study.

3.1 Factorial Design

In general, factorial design can be considered as one of the most efficient and

suitable methods in the screening of experiments involving several factors. It

is beneficial to investigate the joint effect of the factors in the early stages of

experimental work. 2k factorial design provides the smallest number of runs with

k factors at only two levels (high and low) each. The effects of each factor on

the response variable, as well as the effects of interactions between factors on the

response variable, are studied in the experiments.

In this section, a 23 factorial design is shown as an example. There are three

factors, pH (A), stirrer speed (B), and aeration rate (C) of the experiment with
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only two levels (high or low) to be investigated. The pH of the medium has a

significant impact on microorganism activities. The changes of pH in the medium

will modify the chemical pathways of the biological reactions as well as their

kinetics [45]. In a micro-aerobic fermentation, the aeration rate and stirrer speed

are important factors, as both of the parameters will affect the mixing intensity

of a bioreactor.

It is assumed that the observed response is approximately linear over the

range of factor level chosen. There are eight treatment combinations and it can

be displayed geometrically as a cube, as shown in Figure 3.1. The “+” and “-”

notation represent the high and low levels of the factors. The design matrix of

23 factorial design is shown in Table 3.1 and the standard order of treatment

combinations is given as (1), a, b, ab, c, ac, ab, and abc.

Figure 3.1: Geometric view of 23 factorial design

There are seven degrees of freedom for eight treatment combinations in 23

factorial design. There are three degrees of freedom which are associated with

main effects: A, B and C; four degrees of freedom are associated with interactions:

AB, AC, BC and ABC. Figure 3.2 shows the geometric presentation of contrasts

to main effects (A, B and C) and interactions (AB, AC, BC and ABC) in 23

factorial design.

First, consider estimating the main effects. For example, the average effect

of A can be calculated with the average of four runs where A is at the high

level (ȳA+) minus the average of the four runs where A is at the low level (ȳA−).
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Table 3.1: Design matrix of 23 factorial design

Run A B C Labels A B C

1 - - - (1) 0 0 0

2 + - - a 1 0 0

3 - + - b 0 1 0

4 + + - ab 1 1 0

5 - - + c 0 0 1

6 + - + ac 1 0 1

7 - + + bc 0 1 1

8 + + + abc 1 1 1

Figure 3.2: Geometric presentation of contrasts to main effects and interactions

in 23 factorial design

The average effect of B and C can be estimated in similar way. The equation of
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average effect of A is shown as follows:

A = ȳA+ − ȳA−

=
a+ ab+ ac+ abc

4n
− (1) + b+ c+ bc

4n

=
1

4n
[a+ ab+ ac+ abc− (1)− b− c− bc]

(3.1)

The two factor interaction effect between A and B can be calculated with one

half of the difference between the average A effects at the two levels of B. The

AC and BC interactions can be estimated in the similar method. The equation

of AB interaction is denoted as follows:

AB =
1

2

[ab+ abc− b− bc
2n

− ac+ a− (1)− c
2n

]
=
abc+ ab+ c+ (1)− a− ac− bc− b

4n

(3.2)

The three-factor interaction effect between A, B and C is defined as the average

difference between the AB interaction for the two different levels of C, which is

given by

ABC =
[(abc− bc)− (ac− c)

4n
− (ab− b)− (a− (1))

4n

]
=
abc+ a+ b+ c− ab− ac− bc− (1)

4n

(3.3)

Each effect has a corresponding single-degree-of-freedom contrast. The sums

of squares associated with each effect in 23 factorial design with n replicated is

defined as

SS =
(Contrast)2

8n
(3.4)

It is usually interesting to build a model to relate the response to process

variables for prediction, process optimization, and process control. A regression

model is a mathematical model which fits to a set of sample data to approximate

the exact appropriate relation. In general, the response variable y may be fitted to

k factor variables and factor interaction terms by a linear (first order) regression

model, and the k factors in the experiment are quantitative [169].

Since there are three manipulated variables taken into account in this research

study, i.e. pH, stirrer speed (SS) and aeration rate (AR), as a 23 design, the first

order regression model with interaction terms are added to a main effects can be

written as follows:

y = β0 + β1X1 + β2X2 + β3X3 + β12X1X2

+ β13X1X3 + β23X2X3 + β123X1X2X3 + ε (3.5)
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where y is the response, the β’s are the parameters whose values are to be de-

termined, X1, X2 and X3 are the variable that represents factor A, B and C

respectively, ε is a random error term.

3.2 Experimental Setup

A set of experiments was executed in batch mode by using a BIOSTAT A-plus

2 L, MO-Assembly bioreactor. In this study, a 23 factorial design experiment is

implemented in order to study the effect of pH (X1), stirrer speed (SS = X2, rpm)

and aeration rate (AR = X3, v/v.min) on fermentation kinetics and performance

in bioreactor corresponding to lower (-1), middle (0) and higher (+1) levels. pH

(X1) value is in between 4.5 to 5.5, stirrer speed (SS, X2) varied between 160 rpm

and 240 rpm and aeration rate (AR, X3) ranged between 0.033 v/v.min and 0.1

v/v.min. The values of input variables are shown in Table 3.2.

Table 3.2: Input variables and levels in 23 factorial design

Factor Variable Units
Low level

(-)

Middle level

(0)

High level

(+)

X1 pH - 4.5 5.0 5.5

X2

Stirrer speed

(SS)
rpm 160 200 240

X3

Aeration rate

(AR)
v/v.min 0.033 0.067 0.1

A total of nine experiments (including the baseline) are conducted based on 23

factorial design. Table 3.3 shows the experimental runs corresponding to different

combinations of pH, aeration rate and stirrer speed, where run 0 denotes the

baseline run.

The glucose, ethanol and biomass concentration are recorded throughout the

experiments. The impact of pH, aeration rate and stirrer speed on micro-aerobic

batch fermentation by using wasted mango fruit are investigated via the analysis

of the experimental data, i.e. rate of substrate consumption, rate of ethanol

production and rate of biomass growth. The research materials and methods can

be referred to Appendix A.1-A.3. The experimental procedures are available in

Appendix A.
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Table 3.3: Experimental run

Experimental Run X1: pH X2: Stirrer Speed X3: Aeration Rate

Baseline (0) 0 0 0

1 - - -

2 - + -

3 - - +

4 - + +

5 + - -

6 + + -

7 + - +

8 + + +

3.3 Experimental Study on Bioreactor Perfor-

mance

Generally, the decrease in glucose concentrations and the increase in ethanol con-

centrations is expected due to the consumption of glucose as substrate with oxy-

gen consumption to produce ethanol throughout the fermentation process. It was

observed that the microorganism growth increased throughout the experiment,

but dropped towards the end of the experiment. The decrease in cell viability

could be due to the exhaustion of substrate and this led to the inhibition of ATP

synthesis, or it could be because of the yeast cells were metabolically inactive due

to the higher rate of ethanol formation and this led to the leakage of intracellular

metabolites into the growth medium [29]. Both of these situations led to the loss

of plasma membrane integrity and a reduction in the ethanol tolerance of yeast

cells which in turn caused increased cell death [29, 170].

3.3.1 Effects of pH, Aeration Rate and Stirrer Speed on

Glucose Concentration

Figure 3.3 shows the substrate concentration profiles under various experimen-

tal conditions. Under low pH 4.5 medium, the substrate (glucose) was almost

completely consumed, leaving only 2 kg/m3 left at the end of the experiment for

about 50 hours, whereas the substrate remaining at the end of the experiment

was around 8-19 kg/m3 for fermentation process with high pH 5.5. Also, some of
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the ethanol that was produced started to oxidize and used as substrate before the

glucose finished up. It was observed that the glucose concentrations were fairly

comparable under different conditions of aeration rate and stirrer speed either in

pH 4.5 or pH 5.5. The results of the experiments showed that the effect of pH on

glucose concentration profiles was significant.

Figure 3.3: Substrate concentration profiles under various experimental condi-

tions

3.3.2 Effects of pH, Aeration Rate and Stirrer Speed on

Biomass Concentration

Figure 3.4 shows the biomass concentration profiles under various experimental

conditions. In Figure 3.4, the fermentation process under low pH 4.5 gave a

higher maximum biomass concentration towards the end of the fermentation,

with a range of 5.9 kg/m3 to 6.8 kg/m3. Note that, the biomass concentrations

were relatively lower under high pH 5.5, ranging from around 1.8 kg/m3 to 2.4

kg/m3 compared to the fermentation process at low pH 4.5. It was observed

that the medium condition under pH 4.5 was more optimum for the growth of S.

cerevisiae instead of high pH 5.5. It should be noted that, the increase in biomass

concentration also resulted in higher ethanol production.

On the other hand, the effect of aeration rate has the significant effect on

biomass concentration profiles. At low pH 4.5 and high pH 5.5, an increase
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Figure 3.4: Biomass concentration profiles under various experimental conditions

in AR from 0.033 v/v.min to 0.1 v/v.min led to a reduction in the biomass

concentration, i.e., from 6.6-6.8 kg/m3 at run 1 and run 2 to 5.9-6 kg/m3 at run

3 and run 4; and 2.4 kg/m3 at run 3 to 1.8 kg/m3 at run 4 respectively. At

high pH 5.5 and SS = 240 rpm, the reduction in biomass concentration was not

observed with the increase of AR might due to analytical error. It is observed

that under different conditions of stirrer speed either in pH 4.5 or pH 5.5, the

biomass concentrations were quite similar. The pH and aeration rate have most

influence on biomass concentration profiles rather than stirrer speed.

3.3.3 Effects of pH, Aeration Rate and Stirrer Speed on

Ethanol Concentration

The ethanol production is always followed with interest in the fermentation pro-

cess. Figure 3.5 shows the ethanol concentration profiles under various experi-

mental conditions.

In Figure 3.5, the ethanol production can reach up to 17.5 kg/m3 at run 3 to

24.5 kg/m3 at run 1 under pH 4.5 while the higher pH 5.5 gave a lower ethanol

production, i.e., 12 kg/m3 at run 7 to 15.5 kg/m3 at run 5. A reduction range

from 31% to 35% was observed with the increase of pH from 4.5 to pH 5.5. It

was observed that a higher ethanol production can be achieved under the pH 4.5

medium than under the pH 5.5.

Note that, the ethanol concentration profiles were affected more significantly
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Figure 3.5: Ethanol concentration profiles under various experimental conditions

than that of the substrate and biomass concentration profiles by the changes in

aeration rate (AR). At pH 4.5 and SS = 160 rpm, an increase in AR from 0.033

v/v.min to 0.1 v/v.min led to a significant reduction in the maximum ethanol

concentration, i.e., from about 24.5 kg/m3 to 17.5 kg/m3 (27% reduction). At

pH 4.5 and SS = 240 rpm, the maximum ethanol concentration dropped from

23 kg/m3 to 19.5 kg/m3 (15% reduction) with an increase of AR from 0.033

v/v.min to 0.1 v/v.min. There was a similar trend observed with the reduction

in the maximum ethanol condition that occurred at high pH 5.5 as well. At pH

5.5 and SS = 160 rpm, the maximum ethanol concentration dropped from 15.5

kg/m3 to 12 kg/m3 (23% reduction) with an increase of AR from 0.033 v/v.min

to 0.1 v/v.min; at pH 5.5 and SS = 160 rpm, the maximum ethanol concentration

dropped from 14.5 kg/m3 to 12.5 kg/m3 (14% reduction) with an increase of AR

from 0.033 v/v.min to 0.1 v/v.min.

Moreover, at pH 4.5 and AR = 0.033 v/v.min, the ethanol concentration

reached the maximum in a shorter experiment time of about 36 hours. While at

pH 4.5 and AR = 0.1 v/v.min, a maximum ethanol concentration was reached

between 47-49 hours. At high pH 5.5, the effect of the aeration rate on the exper-

iment time to reach a maximum ethanol concentration was not that significant

compared to that at low pH 4.5. It was observed that the ethanol concentration

dropped towards the end of the fermentation, i.e., as the substrate concentration

reached exhaustion - some of the ethanol produced was oxidized at high aera-
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tion rate. Moreover, it was observed that the ethanol concentrations are fairly

comparable under different conditions of stirrer speed.

The experiment showed that the impact of stirrer speed on ethanol production

can be as significant as that of pH and aeration rate. Note that, stirrer speed is

important in the fermentation process because it provides a homogenous medium

broth [63] and induces better coupling between catabolism and anabolism [66].

3.4 Modeling and Identification

3.4.1 Batch Bioreactor Model

A batch bioreactor can be modeled dynamically as follows [86]:

dXv

dt
= rx (3.6)

dS

dt
= −rs (3.7)

dE

dt
= rp (3.8)

The microbial kinetics include 3 components, i.e. rate of biomass formation

rx, rate of substrate consumption rs and rate of product formation rp, where

the state variables consist of the concentrations of substrate (glucose) S, product

(ethanol) E and viable cell (biomass) Xv. It was assumed that the rate of sub-

strate consumption rs and rate of product formation rp are proportional to the

rate of biomass formation rx.

3.4.2 Microbial Kinetics Model

In this work, the kinetic parameters were estimated using the experimental data

of substrate, product and biomass concentrations based on the batch fermentation

by S. cerevisiae of ethanol production from mixed cassava and fruit waste. Three

kinetic models were compared. Firstly, the Herbert’s concept was proposed which

assumed that the observed rate of biomass formation rx comprised the growth

rate (rx)growth and the death rate of biomass via catabolism, which represents

the rate of endogenous metabolism (rx)end [171]. The rate of growth based on

Herbert’s concept is as follows:

rx = (rx)growth + (rx)end (3.9)
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where, the growth rate comprised the effects of the inhibition imposed by high

substrate concentration, i.e. Haldane model [86–88], during ethanol fermentation.

(rx)growth = k1Xv
S

k2 + S + k5S2
(3.10)

The rates of substrate consumption and product formation were assumed to

be proportional to the biomass growth rate:

rs = −k3(rx)growth (3.11)

rp = k4(rx)growth (3.12)

The rate of endogenous metabolism (rx)end by linear dependence is shown as

follows:

(rx)end = −k6Xv (3.13)

In order to justify the proposed microbial kinetic model, two popular models

were adopted, i.e. Andrade [77, 95] and Phisalaphong [86] for comparison. In

Andrade model, the growth rate is given by (3.14) and considers the substrate (S)

as limiting yeast growth, and ethanol (E), substrate (S) and cell concentrations

(Xv) as inhibitors:

rx = µmaxXv
S

ks + S
exp−kiS

(
1− Xv

Xvmax

)m(
1− E

Emax

)n
(3.14)

where, µmax is the maximum specific growth rate (h-1), ks the substrate saturation

parameter (kg/m3), ki is the substrate inhibition parameter (m3/kg), Xvmax is

the biomass concentration when cell growth ceases (kg/m3), Emax is the product

concentration when cell growth ceases (kg/m3), and m and n are parameters of

cellular and product inhibitions, respectively. The rates of substrate consumption

and ethanol formation is given by (3.15) and (3.16).

rs = − rx
Yx
−msXv (3.15)

rp = rxYp/x +mpXv (3.16)

In (3.15), Yx (kg/kg) and ms (kg/kg h) denote the limit cellular yield and

maintenance parameter respectively whilst In (3.16), Yp/x (kg/kg) is the product

yield based on cell growth and mp denotes the ethanol production associated with

growth (kg/kg h).
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The Phisalaphong model proposed by [86], the growth rate considers the sub-

strate (S) as limiting yeast growth, and ethanol (E) as inhibitors, is given by

(3.17):

rx = µmaxXv
S

ks + S + kssS2

(
1− E

Emax

)
(3.17)

where, µmax is the maximum specific growth rate (h-1), ks the substrate saturation

parameter (kg/m3), kss is the substrate inhibition term (kg/m3), Emax is the

product inhibition parameter (kg/m3). The rates of substrate consumption and

ethanol formation is shown as follows:

rs = − rx
Yx

+msXv (3.18)

rp = rxYp/x +mpXv (3.19)

where, Yx (kg/kg) and ms (kg/kg h) represent the limit cellular yield and main-

tenance parameter respectively whilst Yp/x (kg/kg) is the product yield based

on cell growth and mp denotes the ethanol production associated with growth

(kg/kg h).

3.4.3 Kinetic Model Parameter Identification

The kinetic model parameter identification can be determined by Sum of Square

Error (SSE), given by (3.20). The proposed SSE method is used to obtain op-

timum values for the parameters, which corresponds to the best model fitting

between the experimental observations and model predictions [172].

E(θ) =

np∑
n=1

[
(Xvn −Xven)2

X2
vemax

+
(Sn − Sen)2

S2
emax

+
(En − Een)2

E2
emax

]
(3.20)

where θ is the vector of kinetic model parameters, which is constrained by bounds

within a realistic range, θ = [k1, k2...kn]T . Xven , Sen and Een are the experimental

value of concentrations of cell, substrate and ethanol at the sampling time n, while

Xvn , Sn and En are the concentration of cell, substrate and ethanol computed by

the model 1-6 at the sampling time n. Xvemax , Semax and Eemax are the maximum

measured concentration; np is the number of samples [172].

3.4.4 Results and Discussion

The proposed model and another two models were fitted to the experimental

data for runs 0 to run 8 (see Table 3.3). Table 3.4 shows the proposed model

(Herbert-Haldane) parameters obtained from this study.

44



Table 3.4: Herbert-Haldane kinetic parameters for each run

Experimental

Run
k1 k2 k3 k4 k5 k6

Run 0 1.4162 800.0 11.7442 3.0156 0.0388 0.0174

Run 1 2.1111 800.0 15.0760 4.4871 0.4002 0.0010

Run 2 1.1869 800.0 12.5627 3.4196 0.0010 0.0010

Run 3 1.9369 800.0 17.5728 4.0315 0.1871 0.0010

Run 4 3.0117 800.0 12.7786 2.7784 0.3385 0.0071

Run 5 22.6987 10000.0 7.7269 1.7466 0.0010 0.0938

Run 6 5.6469 1300.0 6.7017 1.6351 0.0631 0.1602

Run 7 2.3389 1300.0 15.4493 2.8930 0.0184 0.0508

Run 8 22.6401 10000.0 17.2943 3.0020 0.0010 0.0502

Table 3.5 shows the Andrade model parameters obtained from this study. Note

that, the remaining parameters were fixed in the previous values determined by

[77, 95], where ks = 4.1 kg/m3, mp = 0.1 kg/kg h, ms = 0.2 kg/kg h, ki = 0.004

m3/kg, m = 1.0 and n = 1.5 respectively. Table 3.6 shows the Phisalaphong

model parameters obtained from this study.

Table 3.5: Andrade kinetic parameters for each run

Experimental Run µmax Xvmax Prmax Yx Yp/x

Run 0 0.1549 4.5064 40676.6996 0.0836 1.7873

Run 1 0.0824 15.3151 76.5619 0.0910 2.2803

Run 2 0.1702 6.5746 75.1453 0.1170 1.2145

Run 3 0.1349 5.9583 99.9951 0.0690 2.3568

Run 4 0.1270 10.1555 88.2144 0.0965 1.0180

Run 5 0.1515 2.3789 13.1715 0.0346 4.8366

Run 6 0.1388 1.6694 15.4118 0.0214 9.7121

Run 7 0.1064 1.6133 99.9866 0.0242 5.5415

Run 8 0.2617 1.9081 14.4644 0.0332 4.1605

According to Table 3.4, six parameters were optimized using Herbert-Haldane

model at each experimental run, which is considered a simpler model than the

Andrade and Phisalaphong models, which have 11 (include the fixed parameters)

and eight parameters, respectively (refer to Table 3.5 and Table 3.6). For illus-

tration, the fitting of the models for run 1, run 3, run 5 and run 7 are provided.
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Table 3.6: Phisalaphong kinetic parameters for each run

Experi-

mental

Run

µmax ks kss Prmax Yp/x mp Yx ms

Run 0 4.865 1001.6 0.618 22.006 4.410 0.001 0.058 0.001

Run 1 3.461 1000.0 0.715 99.943 4.557 0.001 0.041 0.385

Run 2 1.421 976.9 0.001 10000 3.477 0.001 0.078 0.001

Run 3 14.582 993.4 2.174 21.659 4.083 0.001 0.051 0.082

Run 4 1000 992.6 151.753 17.895 3.213 0.001 0.071 0.001

Run 5 1.123 1003.2 0.001 17.215 8.484 0.010 0.026 0.001

Run 6 1.002 1003.3 0.001 20.875 14.303 0.001 0.017 0.001

Run 7 0.836 1003.3 0.001 30.708 9.126 0.001 0.021 0.001

Run 8 20.818 10000.0 0.001 15.020 6.408 0.001 0.028 0.001

Figure 3.6 and Figure 3.7 show the fitting of the models for run 1 (pH 4.5 and

AR = 0.033 v/v.min) and run 3 (pH 4.5 and AR = 0.1 v/v.min), whilst Figure

3.8 and Figure 3.9 show the fitting of the models for run 5 (pH 5.5 and AR =

0.033 v/v.min) and run 7 (pH 5.5 and AR = 0.1 v/v.min), respectively.

In Figure 3.6 and Figure 3.7, the three models, i.e. Herbert-Haldane, Andrade

and Phisalaphong, provided a good fitting for run 1 and run 3 to the experimental

data of biomass, substrate and ethanol. The results showed that the three models

were capable of predicting the fermentation kinetics under conditions of low pH

4.5 either at high or low aeration rate.

From Figure 3.8 and Figure 3.9, it was observed that the Andrade and Phisala-

phong models were not capable of predicting the cell death phase at the end of

the experiment under condition of high pH 5.5, thereby resulting in a bad fitting

of the experimental data especially in biomass growth. The reason for poor fitting

might be due to the neglect of endogenous metabolic behavior in these two models,

which tend to give a straight curve in the kinetics of biomass growth. On the

other hand, the Herbert-Haldane model was observed to give a smooth curve in

biomass growth, especially in describing the endogenous metabolism behavior at

the end of the experiment. In addition, the three models provided a similar trend

on substrate and ethanol concentration profiles.

Based on Table 3.4, Herbert-Haldane can be considered as a simple kinetic

model with the least number of parameters where it provided a better fitting

among the three models. On the other hand, it showed that the variations of
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Figure 3.6: Comparison of kinetic models and experimental data on the concen-

trations of biomass (X), glucose (S) and ethanol (P ) for run 1

these six parameters were very significant over the experimental ranges of pH

and aeration rate. It was observed that k1, k2, k3, k4, k5 and k6 were heavily

influenced by the changes in pH, stirrer speed and aeration rate while k6 was

directly related to endogenous metabolism.
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Figure 3.7: Comparison of kinetic models and experimental data on the concen-

trations of biomass (X), glucose (S) and ethanol (P ) for run 3

Based on the discussion above, the result supports that the proposed Herbert-

Haldane model fits well into the experimental data for run 0 to run 8 within the

given experimental ranges for pH, stirrer speed and aeration rate by using the

combined cassava and mango waste as carbon sources. Furthermore, it is worth
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Figure 3.8: Comparison of kinetic models and experimental data on the concen-

trations of biomass (X), glucose (S) and ethanol (P ) for run 5

highlighting that the Herbert-Haldane model was capable of capturing the death

phase in the viable biomass concentration towards the end of the batch process

and this is important for long batch process where cell death cannot be ignored.
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Figure 3.9: Comparison of kinetic models and experimental data on the concen-

trations of biomass (X), glucose (S) and ethanol (P ) for run 7

3.5 Discussion

It can be noticed that, the modified Herbert-Haldane model (incorporating pH

and aeration rate) was used to construct an advanced expanded microbial kinetics
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(EMK) model, which has been presented to predict the kinetic parameters of a

highly nonlinear dynamic fermentation process [173]. The model provides a higher

accuracy in estimating the kinetic parameter value in a case when it is highly

nonlinear function of certain input parameters. It is worth highlighting that, the

advanced EMK model is easy and inexpensive to construct (in comparison with a

neural network model), thus it can be used in bioreactor simulation, optimization

and control studies. The detailed modeling approach can be referred to [173].

The experiment to evaluate product inhibition was not conducted in this re-

search study. The kinetics of ethanol inhibition in alcoholic fermentation process

have been reported in many literature [70, 78, 83]. The conventional alcoholic

fermentation is typically inhibited by high ethanol concentration. The concentra-

tion of ethanol above 112 kg/m3 (about 12% v/v) would reduce the activity and

growth of microorganisms [20, 21, 70]. In general, for S. cerevisiae, the ethanol

inhibition is small or negligible when the ethanol concentration is below 40 kg/m3.

3.6 Summary

� The hypothesis has been supported by the results of experiments. The

modified Herbert-Haldane model can fit the experimental data well as the

model is capable of capturing the death phase in biomass concentration

towards the end of fermentation.

� The development of a microbial kinetics model, will in part demonstrate

the complexity of the overall system dynamics (e.g., in fed-batch modeling)

and affect the controllability of the system.

� The fermentation was affected more significantly by the changes in pH and

aeration rate compared to stirrer speed. The experimental results suggested

that ethanol production was highest at pH 4.5, SS = 160 rpm and AR =

0.033 v/v.min with 24.5 kg/m3 final ethanol concentration.

� The works described in this chapter have been published in Asia Pacific Con-

federation of Chemical Engineering Congress 20151, Procedia Engineering2

1Qiu Han Seer and Jobrun Nandong. Experimental study of the impacts of pH and aeration

on kinetics of ethanol fermentation using cassava and fruit waste. Asia Pacific Confederation of

Chemical Engineering Congress 2015: APCChE 2015, incorporating CHEMECA 2015, 1905-

1915, 2015.
2Qiu Han Seer and Jobrun Nandong. Advanced Expanded Microbial Kinetics (EMK) Model
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and IOP Conference Series: Materials Science and Engineering3. The mod-

ified Herbert-Haldane model was used to construct an advanced expanded

microbial kinetics (EMK) model. The proposed EMK model can be used

to predict the kinetic parameters of a highly nonlinear dynamic fermenta-

tion process using much less experimental data compared to neural network

model.

� The fruit waste (e.g., rejected mango) appear to be a promising alternative

to agricultural crops and lignocellulosic materials for alcoholic fermentation

process. The bioethanol production from fruit waste helps to reduce the

competition with food consumption and avoids costly pretreatment process.

for Ethanol Production from Mixed Cassava and Fruit Wastes. Procedia Engineering, 148: 417-

425, 2016.
3Qiu Han Seer, Jobrun Nandong and Thomas Shanon. Experimental Study of Bioethanol

Production using Mixed Cassava and Durian Seed. 29th Symposium of Malaysian Chemical

Engineers (SOMChE 2016).
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Chapter 4

Closed-loop Stability of PID

Controller

In some common cases of fermentation, the process involved can be simplified to

a second- or even first-order system with delay. The nature of fermentation dy-

namics depends on the types of applications and microorganisms involved. In the

process industry, open-loop unstable systems with time delays are often encoun-

tered which pose a relatively challenging problem to controller design compared

to that of stable open-loop systems. In this chapter, the stabilization by a PID

controller of second-order unstable processes, which can be represented as second-

order deadtime with an unstable pole (SODUP) and second-order deadtime with

two unstable poles (SODTUP), is performed via the necessary and sufficient cri-

teria of the Routh-Hurwitz stability analysis. Two novel theorems are proposed

which can be applied to the closed-loop characteristic equation in order to an-

alyze the existence of stabilizing regions of each PID parameter based on the

Routh-Hurwitz stability criteria.

4.1 Preliminaries

4.1.1 Feedback Control

Figure 4.1 shows a single-loop feedback control structure. Here, P , Gc and Fr

denote the plant, controller and setpoint pre-filter transfer functions; R, Di, Do

and Y represent setpoint, input disturbance, output disturbance and controlled

variable signals respectively.
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Figure 4.1: Block diagram of a feedback control structure

The closed-loop feedback transfer function from R to Y is written as

Pa(s) =
Y

R
=

FrGcP

1 +GcP
(4.1)

With regard to Figure 4.1, the closed-loop characteristic equation is written

as 1 +GcP = 0, which can be rearranged in a polynomial form as

aqs
q + aq−1s

q−1 + . . . a1s+ a0 = 0 (4.2)

where ai, i = 0, 1, 2, . . . q are the coefficients of the closed-loop characteristic

polynomial. For closed-loop stability, the necessary criterion of Routh stability

states that all of the coefficients in the characteristic equation must be positive,

i.e., ai > 0, i = 0, 1, 2, . . . q. Furthermore, the sufficient condition can be inferred

from the Routh array RA, which has q + 1 rows. The first two rows are the

coefficients of the characteristic polynomial (4.2). The Routh array for (4.2) is

written as

RA =

∣∣∣∣∣∣∣∣∣∣∣∣

aq aq−2 aq−4 . . .

aq−1 aq−3 aq−5 . . .

b1 b2 . . .

c1 . . .
...

∣∣∣∣∣∣∣∣∣∣∣∣
(4.3)

where the elements bi and ci can be computed as follows:

bi =
aq−1aq−2i − aqaq−2i−1

aq−1

(4.4)

ci =
b1aq−2i−1 − aq−1bi+1

bi+1

(4.5)

The necessary and sufficient conditions for closed-loop stability are that all of

the elements in the left column of the Routh array (4.3) are positive [174]. In pro-

cess industry, several forms of proportional-integral-derivative (PID) controllers

are adopted. One of the common forms is the ideal PID controller given by

Gc(s) = Kc(1 +
1

τIs
+ τDs) (4.6)
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where Kc, τI and τD are the tuning parameters known as the controller gain,

integral or reset time and derivative time respectively.

4.1.2 Unstable Processes

In the present work, we consider two types of models commonly used to represent

second-order unstable processes. The first one is called the second-order deadtime

unstable pole (SODUP) model given by

P (s) =
Kpe

−θs

(τus− 1)(τas+ 1)
(4.7)

Here, Kp, θ and τj, j = u, a are called the process gain, deadtime and time

constants, respectively. It is assumed that θ > 0, τu > 0 and τa > 0.

Another type is the second-order deadtime two-unstable pole (SODTUP)

model

P (s) =
Kpe

−θs

(τ1s− 1)(τ2s− 1)
(4.8)

where both time constants take positive values, i.e., τ1 > 0 and τ2 > 0. This

process has two poles which are on the right-hand side of complex plane.

4.2 Theorem

Theorem 4.2.1. For a given open-loop process there exists a set of ranges of

Kc, τI and τD forming a region Ωnc within which the necessary criterion of Routh

stability can be fulfilled, otherwise, the PID controller cannot stabilize the process.

A region based on the necessary criterion exists if and only if

Ωnc :=


τncD,min < τD < τncD,max

τncI,min < τI < τncI,max

Knc
min < K < Knc

max

where τncD,min = max[Dnc
1 , D

nc
2 , . . . D

nc
m ] denotes the maximum lower limit on the

derivative time, τncD,max = min[D
nc

1 , D
nc

2 , . . . D
nc

m ] the minimum upper limit on

the derivative time, τncI,min = max[Inc1 , I
nc
2 , . . . I

nc
m ] the maximum lower limit on

the integral time, τncI,max = min[I
nc

1 , I
nc

2 , . . . I
nc

m ] the minimum upper limit on the

integral time, Knc
min = max[Knc

1 , K
nc
2 , . . . K

nc
m ] the maximum lower limit on the

loop gain, and Knc
max = min[K

nc

1 , K
nc

2 , . . . K
nc

m ] the minimum upper limit on the
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loop gain all of which are established from the coefficients of the closed-loop

characteristic polynomial equation (4.2). Thus, the superscript “nc” indicates

the limit is established from the necessary criterion.

Proof. Consider a given process P (s) = N(s)/D(s) where N(s) = αms
m +

α(m−1)s
m−1+. . . α1s+α0 and D(s) = βns

n+βn−1s
n−1+. . . β1s+β0 are polynomial

equations with real coefficients of αi, i = 0, 1, . . .m and βj, j = 0, 1, . . . n. The

system is assumed to be a proper transfer function, i.e., m ≤ n. Let us assume

that the closed-loop characteristic equation with an ideal PID controller (4.6) can

be written in the following form

E(s,Φ) = (fq + hqK)︸ ︷︷ ︸
aq

sq + (fq−1 + hq−1K)︸ ︷︷ ︸
aq−1

sq−1

+ . . . (f1 + h1K)︸ ︷︷ ︸
a1

s1 + (f0 + h0K)︸ ︷︷ ︸
a0

= 0 (4.9)

Further assume that fi = Fi(τI , τD,Θ) and hi = Hi(τI , τD,Θ) are functions

of the integral time τI , derivative time τD and model parameters only. hi, i =

1, 2, . . . q are the coefficients of loop gain in the closed-loop characteristic equation.

Note that, K = KcKp, Φ = {Kc, τI , τD} and Θ denote the loop gain, a set of

PID controller parameters and a set of model parameters respectively. The set

of lower limits on the loop gain ΨK
lm = {Knc

1 , K
nc
2 , . . . K

nc
k } and the set of upper

limits on the loop gain ΨK
ul = {Knc

1 , K
nc

2 , . . . K
nc

k } depend on the values selected

for τD and τI which can either cause hi > 0 or hi < 0.

Thus for a given coefficient ai in the characteristic polynomial (4.9), a lower

limit on the loop gain will be given by Knc
i = −fi/hi if hi > 0. Otherwise, an

upper limit on the loop gain will be obtained instead as K
nc

i = fi/|hi| if hi < 0.

As different ranges of τD and τI lead to either hi > 0 or hi < 0, we can divide

the entire stabilization problem into a number of finite cases, e.g., z number of

cases: C.1, C.2,...C.z.

Consider a particular case C.j where j ∈ {1, 2, . . . z}. First to establish either

a lower limit or an upper limit on the loop gain, we need to determine the upper

and lower limit on the integral time as functions of derivative time and process

model parameters, e.g., for a given h1 > 0 or h1 < 0 the integral time is bounded

as

Inc1 < τI < I
nc

1

s.t.:

Dnc
1 = max[Da, D

∗] < τD < D
nc

1 = min[Da, D
∗
]
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Here, Inc1 = glm,1(τD,Θ) and I
nc

1 = gul,1(τD,Θ) are both functions of τD and a

set of model parameters Θ. Note that, Da and Da represent the lower and upper

limits on the derivative time respectively, where any value of τD ∈ (Da, Da) will

lead to the above given range of the integral time. Meanwhile, D∗ and D
∗

denote

the lower and upper limits on the derivative time where any value of τD ∈ (D∗, D
∗
)

will ensure that the upper limit of the integral time is always larger than its lower

limit, i.e., I
nc

1 > Inc1 . Hence, the derivative time must be within the range given

above, otherwise, the range of integral time is not valid leading to a negative

coefficient of the characteristic polynomial. All of the limits on the derivative

time are assumed as functions of model parameters only, e.g., Da = flm,a(Θ), etc.

If the ranges of τD and τI are met, then the loop gain will be either bounded

from below or above

K > Knc
1 = −f1/h1 if h1 > 0

or

K < K
nc

1 = f1/|h1| if h1 < 0

The same procedure is repeated for h0, h2, . . . hq under the given case C.j,

which upon collections of all the limits leads to sets of lower and upper limits on

the integral time (ΨI
lm,Ψ

I
ul), derivative time (ΨD

lm,Ψ
D
ul) and loop gain (ΨK

lm,Ψ
K
ul).

Next, we need to check whether there is a violation of any limit in the deriva-

tive time set (ΨD
lm,Ψ

D
ul). The basic requirement for fulfilling the necessary criterion

of Routh stability is that the derivative time must be bounded by the following

range

τncD,min < τD < τncD,max

where τncD,min = max{ΨD
lm} and τncD,max = min{ΨD

ul} are the maximum lower

limit and minimum upper limit on the derivative time respectively. Note that, if

τncD,max < τncD,min, then this indicates that at least one of the lower limits of integral

time will switch to an upper limit, which in turn will lead to at least one of the

lower limit on the loop gain to become an upper limit. This shall cause at least

one of the coefficients of closed-loop characteristic polynomial (4.9) to become

negative, hence leading to the non-existence of a stabilizing PID controller under

the given case C.j. On the other hand, if τncD,max > τncD,min, then this will ensure

that τncI,max > τncI,min which in turn will lead to Knc
max > Knc

min. If this happens,

then all of the coefficients in the characteristic polynomial (4.9) are guaranteed

to be positive (necessary criterion of Routh stability is achieved) if and only if

the derivative time, integral time and loop gain are respectively bounded in the
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ranges of τncD,min < τD < τncD,max, τ
nc
I,min < τI < τncI,max and Knc

min < K < Knc
max.

This completes the proof of Theorem 4.2.1.

Theorem 4.2.2. For the given values of τD and K such that τD ∈ (τncD,min, τ
nc
D,max)

and K ∈ (Knc
min, K

nc
max), the closed-loop characteristic polynomial is Hurwitz if and

only if a value of τI is within

Ωsc :=

{
for K, τD ∈ Ωnc

max[τncI,min, τ
sc
I,min] < τI < min[τncI,max, τ

sc
I,max]

where τ scI,min = max[Isc1 , I
sc
2 , . . . I

sc
m] denotes the maximum lower limit on the in-

tegral time and τ scI,max = min[I
sc

1 , I
sc

2 , . . . I
sc

m] the minimum upper limit on the

integral time all of which are obtained based on the elements in the left column

of Routh array (4.3). Here, the superscript “sc” indicates the limit is based on

the sufficient criterion.

Proof. Suppose that the conditions given by the Theorem 4.2.1 are completely

fulfilled, and then all of the coefficients of the closed-loop characteristic polyno-

mial (4.9) are positive, i.e., the necessary (but not sufficient) criterion of Routh

stability is met. However, this does not guarantee that the sufficient criterion

for closed-loop stability is met because some of the elements in the left column

of Routh array might be negative. Note that, the elements in the Routh array

are functions of K, τD and τI but we can fix the values of the K and τD first

to be within the ranges established in the Theorem 4.2.1. Hence, based on each

element in the left column of Routh array excluding those in the first two rows,

we can express the limit on τI as a function of K, τD and Θ whose values already

fixed. It follows that, we may establish a minimum upper limit τ scI,max and max-

imum lower limit τ scI,min based on the elements of Routh array. Finally, to fulfill

the sufficient criterion of Routh stability, we have to set a value for the integral

time within max[τncI,min, τ
sc
I,min] < τI < min[τncI,max, τ

sc
I,max] so as to achieve both

necessary and sufficient criteria of Routh stability. This completes the proof of

Theorem 4.2.2.

The application of the Theorems 4.2.1 and 4.2.2 to establishing the stabilizing

regions of PID tuning parameters for a class of second-order unstable processes

will be demonstrated in the following sections.
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4.3 Stability Analysis of SODUP

Upon the approximation of the deadtime in the process (4.7) by using the first-

order Taylor series

P (s) ∼=
Kp(−θs+ 1)

(τus− 1)(τas+ 1)
(4.10)

Then, by using the ideal PID controller (4.6), the closed-loop characteristic

polynomial becomes

τI(τuτa −KθτD)︸ ︷︷ ︸
a3

s3 + τI [τu − τa +K(τD − θ)]︸ ︷︷ ︸
a2

s2+

[−τI +K(τI − θ)]︸ ︷︷ ︸
a1

s+ K︸︷︷︸
a0

= 0 (4.11)

4.3.1 Necessary Stability Conditions for SODUP

Theorem 4.2.1 is applied in order to establish the ranges or limits on the loop

gain, derivative time and integral time which render all the coefficients in the

characteristic equation (4.11) positive. From the characteristic equation (4.11)

and based on the coefficient of s0, we can readily establish one of the lower limits

on the loop gain K = KcKp as follows

K > Knc
o = 0

and an upper limit based on the coefficient of s3

K < K
nc

o =
τuτa
θτD

The notations Knc
o and K

nc

o indicate the lower and upper limits on the loop

gain based on the necessary criterion of Routh stability, respectively. It is im-

portant to point out that for a PID controller, a few extra conditions have to be

fulfilled so that the necessary criterion of Routh stability is obeyed.

Remark 2. As the Theorem 4.2.1 states, the maximum lower limit of the loop

gain must always be smaller than the upper limit to ensure that the necessary

criterion of the Routh stability is obeyed, otherwise, the PID controller is deemed

unstable.
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4.3.1.1 Case 1: τu > τa

Case 1.1: τD > θ, τI > θ

For this case 1.1, in addition to Knc
o there are two extra lower limits on the K

which are obtained from the coefficients of s2 and s in the characteristic equation

(4.11):

K > Knc
1.1a =

τa − τu
τD − θ

< 0

K > Knc
1.1b =

τI
τI − θ

> 0

Remark 3. For this case 1.1, the maximum lower limit is always given by Knc
1.1b

since another lower limit Knc
1.1a is always less than zero, i.e., since τu > τa. Based

on Theorem 4.2.1, we must ensure that the only upper limit on the loop gain

(K
nc

o ) must always be larger than its maximum lower limit, i.e., K
nc

o > Knc
1.1b.

In view of the remark 3, let K
nc

o > Knc
1.1b so that we have the following in-

equality
τuτa
θτD

>
τI

τI − θ
For the inequality above to hold, it can be easily shown that the integral time

must be bounded by a lower limit

τI > Inc1.1 =
θτuτa

τuτa − θτD
(4.12)

It should be pointed out that for the lower limit on the integral time (4.12)

to be valid, the derivative time must be bounded from above and as a result the

denominator of (4.12) must be positive. Otherwise, the inequality leads to a lower

limit on the derivative time while the integral time will then be bounded from

above - such a switch is not allowed by the Theorem 4.2.1. Hence, by assuming

that the denominator of (4.12) is always positive, i.e., τuτa − θτD > 0, the upper

bound on the derivative time is obtained

τD < D
nc

1.1 =
τuτa
θ

(4.13)

In view of the fact that the case 1.1 requires τD > θ, the upper limit on the

derivative time must be larger than the deadtime θ, that is

D
nc

1.1 > θ ⇒ θ < θ1.1 =
√
τuτa

Hence, if the process deadtime is larger than the upper limit θ1.1, then there

is no PID controller that can stabilize the SODUP (4.7) under the case 1.1.
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Assuming that the limit on integral time (4.12) and the limit on derivative time

(4.13) are obeyed, then the loop gain is guaranteed to be bounded between its

maximum lower and upper limits as

τI
τI − θ

< K <
τuτa
θτD

(4.14)

In other words, the necessary criterion for stability can only be fulfilled for

the case 1.1, if and only if all the limits or ranges for τI , τD and K are met, i.e.,

in (4.12) - (4.14).

Case 1.2: τD < θ, τI > θ

Under the case 1.2, the following additional limits (in addition to Knc
o and

K
nc

o ) are established:

K < K
nc

1.2 =
τu − τa
θ − τD

> 0

K > Knc
1.2 = Knc

1.1b

Since we have two upper limits on the loop gain (K
nc

o and K
nc

1.2), to fulfill the

necessary criterion of Routh stability, the minimum upper limit must be larger

than the maximum lower limit (Theorem 4.2.1). First, consider that the minimum

upper limit is K
nc

o , so that we get the following inequality

τuτa
θτD︸︷︷︸
K

nc
o

<
τu − τa
θ − τD︸ ︷︷ ︸
K

nc
1.2

For the inequality above to hold, the derivative time must be bounded from

below

τD > Dnc
1.2 =

θτuτa
τuτa + θ(τu − τa)

(4.15)

Based on the Theorem 4.2.1, the minimum upper limit on the loop gain K
nc

o

must always be larger than its maximum lower limit (same as case 1.1), i.e.

τuτa
θτD︸︷︷︸
K

nc
o

>
τI

τI − θ︸ ︷︷ ︸
Knc

1.2

From the inequality above, it can be readily shown that the integral time is

bounded from below:

τI > Inc1.2 = Inc1.1 =
θτuτa

τuτa − θτD
(4.16)

Note that, the denominator of (4.16) must be positive, otherwise, the integral

time is bounded from above instead leading to a condition where there is no stable
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PID controller exits for stabilizing the SODUP (violation of the Theorem 4.2.1).

For the denominator to be positive, the derivative time must be limited by an

upper limit

τD < D
nc

1.2 = D
nc

1.1 =
τuτa
θ

(4.17)

In view of case 1.2, τD < θ, the upper limit on derivative time under the case

1.2 (4.17) must lie in the range between the deadtime θ and the lower limit on

derivative time under the case 1.2 (4.15). Since the upper limit on derivative

time (4.17) must be less than the deadtime θ, the lower limit on deadtime θ >

θ1.2 =
√
τuτa is given. Meanwhile, a maximum value of deadtime θ < θ1.2 = τu is

obtained since the upper limit on derivative time (4.17) must be larger than the

lower limit on derivative time (4.15). We can show that the value of deadtime

beyond which there is no stable PID exists for stabilizing SODUP is

√
τuτa = θ1.2 < θ < θ1.2 = τu (4.18)

Hence, the range of deadtime is given in (4.18) associated with the unstable

pole, beyond this value there is no stabilizing PID controller exists under the case

1.2.

If all the ranges or limits of τI , τD and θ given in (4.15) - (4.18) respectively

are obeyed, then the loop gain is bounded as follows

τI
τI − θ

< K <
τuτa
θτD

(4.19)

Remark 4. If the minimum upper limit on the loop gain is given by K
nc

1.2, then

the range of τI and τD are given by

τI > Inc1.2b =
θ(τu − τa)

τu + τD − (θ + τa)

τD < D
nc

1.2b =
θτuτa

τuτa + θ(τu − τa)
Since the denominator of the lower limit of integral time is always positive,

the lower bound on the derivative time is given by

τD > Dnc
1.2b = θ + τa − τu

Note that, the upper limit of τD must be greater than its lower limit, thus the

upper limit of deadtime is established, i.e.,

θ < θ1.2b = τu
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Thus under this case, there is only an upper limit on deadtime given by θ1.2b

in order for K
nc

1.2 < K
nc

o , this implies that for 0 < θ <
√
τuτa, the minimum upper

limit is always K
nc

1.2. However, above the lower limit on deadtime θ1.2 (4.18) which

leads to K
nc

o < K
nc

1.2, the minimum upper limit is always K
nc

o . It should be noted

that, above the lower limit of deadtime θ1.2 a stable PID controller can be obtained

under the case 1.2; below this lower limit, a stable PID controller can be obtained

under both cases 1.1 and 1.2.

Remark 5. If τI < θ while τD > θ or τD < θ , then there is no stable PID

controller exists for the SODUP. The reason is that, when τI < θ we have an

upper limit on the loop gain based on the coefficient of s in the characteristic

equation as follows

K < K
nc

1 = − τI
θ − τI

< 0

Since the maximum lower limit on the loop gain based on the necessary con-

dition is always greater than zero, i.e., Knc
o > 0, so this means that the minimum

upper limit of the loop gain is always less than its maximum lower limit lead-

ing to the violation of the Theorem 4.2.1, which means the necessary criterion of

Routh stability is impossible to fulfill. Therefore, for τI < θ there is no stable PID

controller exists to stabilize the SODUP (4.7) for all values of model parameters.

4.3.1.2 Case 2: τu < τa, τD > θ, τI > θ

For this case 2, in addition to the previously given upper limit K
nc

o and lower

limit Knc
o , there are two extra positive lower limits

K > Knc
2a = Knc

1.1a > 0

K > Knc
2b = Knc

1.1b > 0

The first step is to examine which one of these positive lower limits is the

maximum and under what condition it occurs. Hence, for the case 2 we further

divide it into two sub cases as described below.

Remark 6. For case 2, there is no stable PID controller exists for the SODUP

when τD < θ or τI < θ. When τD < θ, an upper limit on the loop gain is given

based on the coefficient of s2 in the characteristic equation as follows

K < K
nc

2 =
τu − τa
θ − τD

< 0
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On the other hand, if τI < θ, an upper limit on the loop gain based on the

coefficient of s is given by

K < K
nc

3 = − τI
θ − τI

< 0

Both of the minimum upper limits is always less than zero, this means that

the minimum upper limit of the loop gain is always less than its maximum lower

limit based on the necessary condition, i.e., Knc
o > 0, which leads to the violation

of the Theorem 4.2.1.

Case 2.1: Knc
2a > Knc

2b

For this case 2.1 to occur, the maximum lower limit on the loop gain is given

by Knc
2a, i.e.:

τa − τu
τD − θ︸ ︷︷ ︸
Knc

2a

>
τI

τI − θ︸ ︷︷ ︸
Knc

2b

It is required that the integral time must be bounded from below

τI > Inc2.1 =
θ(τa − τu)

τa + θ − (τu + τD)
(4.20)

But to ensure this lower limit on integral time (4.20) holds, the denominator

must be positive, which means that the derivative time has to be restricted by

an upper limit given by

τD < D
nc

2.1 = τa − τu + θ (4.21)

The second step is to meet the Theorem 4.2.1, which stipulates that the upper

limit of the loop gain must always be larger than its maximum lower limit, so

τa − τu
τD − θ︸ ︷︷ ︸
Knc

2a

<
τuτa
θτD︸︷︷︸
K

nc
o

For the inequality above to hold, the derivative time must be imposed by a

lower limit as

τD > Dnc
2.1 =

θτuτa
τuτa − θ(τa − τu)

(4.22)

Since the denominator of the inequality in (4.22) must be positive, this sug-

gests that the deadtime must have an upper limit beyond which the Theorem

4.2.1 cannot be fulfilled. By setting the denominator in (4.22) greater than zero,

this upper limit is established as follows

θ < θ2.1a =
τuτa
τa − τu
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Additionally, because the upper limit of derivative time must be larger than

its lower limit, another upper limit on the deadtime can be further established

by first noting that
θτuτa

τuτa − θ(τa − τu)︸ ︷︷ ︸
Dnc

2.1

< τa − τu + θ︸ ︷︷ ︸
D

nc
2.1

By rearranging the inequality above, we establish another upper limit on the

deadtime:

θ < θ2.1b = τu

To fulfill the Theorem 4.2.1, one of the conditions is that the minimum upper

limit on the deadtime is not violated where in the case of τu < τa, this minimum

upper limit can be shown as

θ
min

2.1 < min(θ2.1a, θ2.1b) = τu, τu < τa (4.23)

In summary, for a closed-loop stability to occur, the lower limit on the integral

time in (4.20) must not be violated in addition to the derivative time and loop

gain must be bounded as follows

Dnc
2.1 < τD < D

nc

2.1 (4.24)

Knc
2a < K < K

nc

o (4.25)

Case 2.2: Knc
2a < Knc

2b

The case 2.2 leads to the following inequality

τa − τu
τD − θ︸ ︷︷ ︸
Knc

2a

<
τI

τI − θ︸ ︷︷ ︸
Knc

2b

There are two possible sets of conditions that can lead to Knc
2a < Knc

2b . One of

the sets of conditions (C.2.2.I) is given by

τI > Inc2.2a =
−θ(τa − τu)

τu + τD − (τa + θ)
(4.26)

τD > Dnc
2.2 = τa − τu + θ (4.27)

Another set of conditions (C.2.2.II) is given as follows

τI < I
nc

2.2.II =
θ(τa − τu)

(τa − τu) + (θ − τD)
(4.28)

τD < D
nc

2.2.II = τa − τu + θ (4.29)
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It should be noted that, the second set of conditions (C.2.2.II) often leads to

unstable or marginally stable PID controller for the SODUP under the case 2.2

because of the existence of an upper limit on the integral time. The reason for

this is that, the upper limit on the integral time I
nc

2.2.II can often be lower than

the lower limit on the integral time imposed by the sufficient condition Isc (to be

described in the next section).

Assuming the condition C.2.2.I is met, then to ensure that the necessary

criterion of Routh stability is fulfilled, the following extra limits must be applied.

According to the Theorem 4.2.1, the upper limit on the loop gain must be smaller

than its maximum lower limit leading to an inequality

τI
τI − θ︸ ︷︷ ︸
Knc

2b

<
τuτa
θτD︸︷︷︸
K

nc
o

which stipulates the integral time must be bounded from below, hence

τI > Inc2.2b =
θτuτa

τuτa − θτD
(4.30)

τD < D
nc

2.2 =
τuτa
θ

(4.31)

Note that, Inc2.2b > 0 > Inc2.2a provided that Dnc
2.2 < τD < D

nc

2.2. Furthermore, it

is necessary to ensure that D
nc

2.2 > Dnc
2.2 a requirement that leads to another upper

limit on the deadtime, i.e.:

θ < θ2.2 = τu

Hence, the loop gain is bounded between its maximum lower and minimum

upper limit as
τI

τI − θ
< K <

τuτa
θτD

4.3.2 Sufficient Stability Criterion for SODUP

Remark 7. All the coefficients of the closed-loop characteristic polynomial are

positive when the conditions given by the Theorem 4.2.1 are fulfilled. However,

the sufficient criterion for closed-loop stability are not guaranteed, i.e., some of

the elements in the left column of Routh array might still in negative value. Thus,

the Theorem 4.2.2 is applied in order to establish the limit on integral time which

render the closed-loop characteristic polynomial Hurwitz (sufficient criterion for

closed-loop stability).
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From the characteristic equation (4.11), we have only a single element in the

left column of the Routh array:

b = a1 −
a3a0

a2

> 0

From the above inequality, it can be readily shown that a lower limit on the

integral time is given by

τI > Isc =

(
K

K − 1

)
︸ ︷︷ ︸

g1

(
θ +

τuτa −KθτD
τu − τa +K(τD − θ)

)
︸ ︷︷ ︸

g2

(4.32)

Remark 8. Form the g1 term, when K < 1 we have an upper limit on the integral

time

τI < I
sc

= −
(

K

1−K

)(
θ +

τuτa −KθτD
τu − τa +K(τD − θ)

)
< 0 (4.33)

Because the upper limit now becomes negative, this suggest that for K < 1, a

PID controller cannot provide closed-loop stability for SODUP (4.7). Based on

the sufficient condition of Routh stability, the loop gain must be bounded from

below by a lower limit Ksc
1 > 1. From the g2 term, if the denominator becomes

negative for K > 1, then the negative value of upper limit on the integral time

will also be present. Thus, this leads to another lower limit on the loop gain based

on the sufficient condition, which is K > (τa − τu)/(τD − θ) = Knc
2a, i.e., similar

to one of the lower limits in the case 2 obtained based on the necessary criterion.

Remark 9. The lower limit on the integral time (4.32) represents a necessary and

sufficient condition for closed-loop stability to occur given that both loop gain and

derivative time are set in such a way to fulfilling the necessary conditions from

Theorem 4.2.1. This is because the maximum lower limit on the loop gain arises

from the necessary condition (Theorem 4.2.1) where the sufficient condition does

not impose any new upper limit in addition to those obtained via the necessary

criterion.

The results of stabilizing regions of PID parameters for SODUP processes

obtained through the Theorems 4.2.1 and 4.2.2 are summarized in the Table 4.1.
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4.4 Stability Analysis of SODTUP

After approximating the deadtime in (4.8) using the first-order Taylor series

P (s) =
Kp(1− θs)

(τ1s− 1)(τ2s− 1)
(4.34)

Assuming the PID controller (4.6) is used, the characteristic equation can be

expressed as

(τIτ1τ2 −KθτIτD)︸ ︷︷ ︸
a3

s3 + [KτI(τD − θ)− τI(τ1 + τ2)]︸ ︷︷ ︸
a2

s2+

[τI +K(τI − θ)]︸ ︷︷ ︸
a1

s+ K︸︷︷︸
a0

= 0 (4.35)

where K = KcKp denotes the loop gain.

4.4.1 Necessary Stability Conditions for SODTUP

From the characteristic equation (4.35), we can directly identify the upper and

lower limits on the loop gain from the coefficients of s3 and s0 respectively:

K < K
nc

o =
τ1τ2

θτD

K > Knc
o = 0

Based on the coefficients of s2 and s, we can further obtain either upper or

lower limits on the loop gain depending on the values of τD and τI with respect

to the value of θ.

4.4.1.1 Case 1: τD > θ and τI > θ

For this case 1, we can get two extra lower limits on the loop gain given as follows

K > Knc
1a =

τ1 + τ2

τD − θ

K > Knc
1b = − τI

τI − θ

It is obvious that the maximum lower limit on the loop gain is given by Knc
1a

when τD > θ and τI > θ.
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Remark 10. If τD < θ, then from the coefficient of s2 in the characteristic

equation (4.35) we will get an upper limit given by

K < K
nc

1c = −τ1 + τ2

θ − τD

Since τD < θ leads to a minimum upper limit on the loop gain (K
nc

1c) which is

always lower than the lower limit of the loop gain, i.e., Knc
o = 0, this means that

there is no stable PID controller exists for stabilizing the SODTUP process under

the conditions of case 1.

Following the remark 2, for the closed-loop stability to occur the upper limit of

the loop gain must always be larger than its maximum lower limit, thus Knc
1a > 0.

In order for K
nc

o > Knc
1a, the derivative time must be bounded from below

τD > Dnc
1 =

θτ1τ2

τ1τ2 − θ(τ1 + τ2)
(4.36)

For the limit (4.36) to be valid, the process deadtime has to be less than a

certain value given by

θ < θ1 =
τ1τ2

τ1 + τ2

(4.37)

If the lower limit on the derivative time (4.36) and upper limit on the deadtime

(4.37) are not violated, then the loop gain will be bounded as follows

τ1 + τ2

τD − θ
< K <

τ1τ2

θτD
(4.38)

4.4.1.2 Case 2: τD > θ and τI < θ

Under the conditions of case 2, in addition to the previous K
nc

o and Knc
o there

are two more limits given as follows

K > Knc
2 =

τ1 + τ2

τD − θ

K < K
nc

2 =
τI

θ − τI
Assuming that K

nc

2 > K
nc

o > 0, the integral time must take a lower limit given

by

τI > Inc2 =
θτ1τ2

θτD + τ1τ2

(4.39)

Furthermore, if the derivative time takes a lower limit as follows

τD > Dnc
1 =

θτ1τ2

τ1τ2 − θ(τ1 + τ2)
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then, the loop gain must be bounded within a range of

τ1 + τ2

τD − θ
< K <

τ1τ2

θτD

Remark 11. Notice that in both cases 1 and 2, similar ranges for τD and K

are applied, but for the case 2 there exists a lower limit on the integral time

(4.39) based on the necessary condition of Routh stability. It should be noted that,

another lower limit on the integral time which is applied to both cases can also be

established based on the sufficient condition of Routh stability as will be shown in

the next section. Hence, cases 1 and 2 can be merged together in the sense that

the integral time can be greater or less than the deadtime, so long its maximum

lower limit is not violated.

4.4.2 Sufficient Stability Conditions for SODTUP

In view of remark 7, the sufficient criterion of Routh stability stipulates that

b > 0 in the Routh matrix, which leads to the minimum limit on integral time

τI > Isc =

(
K

1 +K

)(
θ +

τ1τ2 −KθτD
K(τD − θ)− (τ1 + τ2)

)
(4.40)

From (4.40), we can deduce two lower limits on the loop gain: Ksc
1 = −1 and

Ksc
2 = (τ1 + τ2)/(τD− θ) and obviously the second one is similar to the maximum

lower limit on the loop gain based on the necessary criterion of Routh stability.

Thus, for τI > θ (i.e., case 1), it is sufficient for closed-loop stability to occur, we

require that the minimum limit on the integral time (4.40) must not be violated

in addition to fulfilling the limits on the derivative time and loop gain obtained

based on necessary criterion of stability. However, when τI < θ (i.e., case 2) there

are two lower limits on the integral time, one imposed by the necessary criterion of

stability (4.39) and the one imposed by the sufficient condition (4.40). Sufficient

conditions for closed-loop stability are attained if the maximum lower limit of the

integral time is not violated in addition to fulfilling the limits on the derivative

time and loop gain imposed by the necessary criterion of Routh stability. Table

4.2 shows the ranges of K, τI and τD within which one can find the values of PID

parameters leading to closed-loop stability of a given SODTUP process.
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4.5 PID Tuning Algorithms

As a prerequisite for the proposed tuning algorithms, we introduce 3 new tuning

or scaling parameters, namely rc, rd and ri which are used to calculate for the

values of conventional PID parameters, Kc, τD and τI respectively. The manners

of using these new tuning parameters will be described alongside the proposed

tuning rules in the following sections.

4.5.1 SODUP: PID Tuning Algorithm 1

This tuning rule is proposed in order to obtain tuning values within the stable

regions (see Table 4.1) corresponding to the cases 1.1 and 1.2.

Step 1: Initialization of tuning values; set rc = 0.7, rd = 0.5 and ri = 3.

Step 2: Calculate the following:

i Minimum of the derivative time τD,min

τD,min =


θ for 0 < θ <

√
τuτa

θτuτa
τuτa + θ(τu − τa)

for
√
τuτa < θ < τu

ii Maximum of the derivative time τD,max

τD,max =
τuτa
θ

iii Actual value of the derivative time τD

τD = rd(τD,max − τD,min) + τD,min, 0 < rd < 1

iv Minimum of the integral time τI,min based on the necessary condition

τI,min =
θτuτa

τuτa − θτD

v Actual value of the integral time τI

τI = ri(τI,min), ri > 1

vi Minimum of the loop gain Kmin

Kmin =
τI

τI − θ
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vii Maximum of the loop gain Kmax

Kmax =
τuτa
θτD

viii Actual value of the controller gain Kc

Kc =
rc(Kmax −Kmin) +Kmin

Kp

, 0 < rc < 1

ix Calculate the minimum of integral time based on the sufficient condition, i.e.,

Isc; if τI > Isc, then go to next Step 3, otherwise τI < Isc, go back to Step

2(v) and increase the value of ri such that the integral time is larger than its

lower limit based on the sufficient condition. Repeat Step 2(vi)-(ix).

Step 3: Evaluate the closed-loop robustness via gain margin (GM) and phase

margin (PM) analysis using Nyquist diagram. Evaluate the responses to step

changes in setpoint and disturbance. If the robustness and performance meet

desired specifications, then the tuning task is completed, otherwise, repeat Step

2(iii)-(ix) by adjusting the values of rc, rd and ri until acceptable or desired

robustness-performance is obtained. Moreover, a set point pre-filter (Fr) is sug-

gested in order to reduce the overshoot response in setpoint tracking. The setpoint

pre-filter is expressed by

Fr =
τI
ε
s+ 1

τIs+ 1
, 1.5 < ε < 5 (4.41)

Figure 4.2: Closed-loop stability regions of PID parameters when τu = 5 and

τa = 3 by setting rc = 0.7, rd = 0.5 and ri = 3

In Figure 4.2, the closed-loop stability regions of PID parameters are shown

when τu = 5 and τa = 3. The τD,min and τD,max are determined based on the

necessary criterion, where any value τD ∈ (τD,min, τD,max) is considered as sta-

bilizing τD boundary. By setting rd = 0.5, the actual value of τD is obtained
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which lead to the given range of the integral time τI,min based on the necessary

criterion. Notice that, any value above the τI,min is considered as stabilizing τI

boundary. The actual value of τI is determined by setting ri = 3, which can be

used to determine the stabilizing K boundary based on the necessary condition,

i.e. Kmin and Kmax. The actual value of K is obtained by setting rc = 0.7 and

calculate the minimum of integral time τ scI,min based on the sufficient condition.

From Figure 4.2, τI > τ scI,min, thus the closed-loop stability is satisfied.

4.5.2 SODUP: PID Tuning Algorithm 2

This tuning rule is developed based on the case 2 (Table 4.1) for a SODUP process

in which τu < τa.

Step 1: Initialization of tuning values; set rc = 0.7, rd = 0.9 and ri = 3.

Step 2: Calculate the following:

i Minimum of the derivative time τD,min

τD,min =


θτuτa

τuτa − θ(τa − τu)
for Knc

2a > Knc
2b

τa − τu + θ for Knc
2a < Knc

2b

ii Maximum of the derivative time τD,max

τD,max =

τa − τu + θ for Knc
2a > Knc

2b

τuτa
θ

for Knc
2a < Knc

2b

iii Actual value of the derivative time τD

τD = rd(τD,max − τD,min) + τD,min, 0 < rd < 1

iv Minimum of the loop gain Kmin

Kmin =


τa − τu
τD − θ

for Knc
2a > Knc

2b

τI
τI − θ

for Knc
2a < Knc

2b

v Maximum of the loop gain Kmax

Kmax =
τuτa
θτD
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vi Actual value of the controller gain Kc

Kc =
rc(Kmax −Kmin) +Kmin

Kp

, 0 < rc < 1

vii Minimum of the integral time τI,min

τI,min =

{
max(Inc2.1, I

sc) for Knc
2a > Knc

2b

max(Inc2.2b, I
sc) for Knc

2a < Knc
2b

viii Actual value of the integral time τI

τI = ri(τI,min), ri > 1

Step 3: Evaluate the closed-loop robustness via gain margin (GM) and phase

margin (PM) analysis using Nyquist diagram. Evaluate the responses to step

changes in setpoint and disturbance. If the robustness and performance meet

desired specifications, then the tuning task is completed, otherwise, repeat Step

2(iii)-(viii) by adjusting the values of rc, rd and ri until acceptable or desired

robustness-performance is obtained. The augmented lag filter as (4.42) is sug-

gested to reduce the impulsive spikes on the manipulated variable with setpoint

tracking and output disturbance rejection. The setpoint pre-filter as (4.41) can

be used to reduce the overshoot.

4.5.3 SODTUP: PID Tuning Algorithm 3

This tuning rule is developed based on the stabilizing region shown in Table 4.2.

Step 1: Initialization of tuning values; set rc = 0.8, rd = 10 and ri = 10.

Step 2: Calculate the following:

i Minimum of the derivative time τD,min

τD,min =
θτ1τ2

τ1τ2 − θ(τ1 + τ2)

ii Actual value of the derivative time τD

τD = rd(τD,min), rd > 1

iii Minimum of the loop gain Kmin

Kmin =
τ1 + τ2

τD − θ
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iv Maximum of the loop gain Kmax

Kmax =
τ1τ2

θτD

v Actual value of the controller gain Kc

Kc =
rc(Kmax −Kmin) +Kmin

Kp

, 0 < rc < 1

vi Minimum of the integral time τI,min

τI,min =

(
K

1 +K

)(
θ +

τ1τ2 −KθτD
K(τD − θ)− (τ1 + τ2)

)
vii Actual value of the integral time τI

τI = ri(τI,min), ri > 1

Step 3: Evaluate the closed-loop robustness via gain margin (GM) and phase

margin (PM) analysis using Nyquist diagram. Evaluate the responses to step

changes in setpoint and disturbance. If the robustness and performance meet

desired or acceptable specifications, then the tuning task is completed, otherwise,

repeat Step 2(ii)-(vii) by adjusting the values of rc, rd and ri until acceptable or

desired robustness-performance is obtained. Note that, a set point pre-filter (Fr)

is suggested in order to reduce the overshoot response in setpoint tracking. The

augmented lag filter as (4.42) is suggested to reduce the impulsive spikes on the

manipulated variable with setpoint tracking and output disturbance rejection.

The setpoint pre-filter is given by (4.41).

Remark 12. If there are impulsive spikes on the manipulated variable with set-

point tracking and output disturbance rejection, a lag filter is suggested to augment

with the proposed PID controller in order to reduce the impulsive spikes as follows:

Fa =
1

τfs+ 1
, 0.01 < τf < 0.1 (4.42)

4.6 Illustrative Examples

4.6.1 Example 1: SODUP (τu > τa)

Consider an example used in [175]:

P (s) =
exp (−0.5s)

(5s− 1)(2s+ 1)(0.5s+ 1)

77



This example has been widely used by researchers to evaluate the perfor-

mance of a PID controller based on several different tuning or design methods.

In [175], the researchers compared their simple analytical method with two dif-

ferent methods proposed in [130] and [131] and it was shown that the simple

analytical tuning rule led to improved performance of the PID controller. Re-

searchers in [175] also proposed a method of designing the setpoint pre-filter. For

this example, the PID controller and setpoint pre-filter based on Cho, Lee, and

Edgar (2014) [175] are Gc(s) = 4.7408(1 + 1/9.1627s + 1.6975s) and Fr(s) =

(4.6656s2 + 4.32s+ 1)(15.5539s2 + 9.1627s+ 1) respectively. This PID controller

produces a maximum peak of sensitivity function equals to 4.3. We use the pro-

posed PID controller tuning algorithm 1 in order to design a PID controller for

the given process. Before we can applying the PID tuning algorithm 1, we need

to reduce the third-order process to a SODUP form. We reduce the third-order

process to a SODUP form by approximating the third (smallest) time constant

in the denominator using the first-order Taylors series, which gives

P (s) =
exp (−s)

(5s− 1)(2s+ 1)

By dint of trial-and-error, we find that by settings rc = 0.8, rd = 0.11 and

ri = 7.7, where the resulting PID controller stability margin and performance

are quite satisfactory. Corresponding to these settings, the PID controller ob-

tained is Gc(s) = 4.2433(1 + 1/9.613s + 1.99s) augmented with a lag filter Fa =

(1/(0.05s+ 1)) to reduce the impulsive spikes on manipulated variable with set-

point tracking and output disturbance rejection. In order to reduce the setpoint

tracking overshoot, we apply the simple rule presented in the Section 4.5.1 to de-

sign a lead-lag filter. By setting ε = 2.5, we get Fr(s) = (3.8452s+1)/(9.613s+1)

which produces satisfactorily smooth setpoint tracking response. The proposed

PID controller has a gain margin (GM), phase margin (PM) and maximum peak

of sensitivity function (Ms) of 4.37 dB, 26.6° and 2.63 respectively. Based on the

values of Ms, the proposed PID controller seems to be more robust than the PID

controller designed in [175]. The performance robustness of the two different PID

controllers are evaluated at a perturbed condition represented as

P4(s) = 1.1

[
(−0.05s+ 1) exp (−0.6s)

(3.5s− 1)(3s+ 1)(0.4s+ 1)

]
The closed-loop performances of the PID controllers are evaluated based on a

sequential 1 unit step changes in the setpoint at t = 1 unit, input disturbance at
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t = 50 units and output disturbance at t = 100 units. Figure 4.3 shows the closed-

loop responses at the nominal condition while Figure 4.4 shows the responses at

the perturbed condition. Whilst at the nominal condition both PID controllers

shows almost similar responses but at the perturbed condition, the proposed

PID controller demonstrates improved performance robustness over that of PID

designed via [175].

Time
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Figure 4.3: Closed-loop responses at the nominal condition for example 1
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Figure 4.4: Closed-loop response at the perturbed condition for example 1

The responses of manipulated variable for setpoint tracking, input distur-

bance rejection and output disturbance rejection are shown in Figure 4.5, which
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Figure 4.5: Response of manipulated variable

shows no obvious impulsive spikes occurred on the manipulated variable for the

proposed PID controller. It is interesting to note that, the impulsive spikes on

the manipulated variable for setpoint tracking and output disturbance rejection

has been reduced significantly by augmenting the lag filter to the proposed PID

controller. In contrast, the PID controller based on Cho, Lee, and Edgar (2014)

[175] shows huge spikes on the manipulated variable for setpoint tracking, input

disturbance rejection and output disturbance rejection.

4.6.2 Example 2: SODTUP

To demonstrate the effectiveness of the PID tuning rule 3 (refer to Section 4.5.3),

we use an example (SODTUP process) cited in Panda (2009) [127] given as

P (s) =
2 exp (−0.3s)

(3s− 1)(s− 1)

Based on the PID synthesis in [127], a PID controller obtained is Gc(s) =

0.881(1 + 1/5.1103s + 3.42s). By using the PID tuning algorithm 3, we obtain

Gc(s) = 0.8277(1 + 1/4.0843s + 5s) after a trial-and-error tuning with rc = 0.7,

rd = 10 and ri = 15 augmented with a lag filter Fa = (1/(0.02s + 1)) to reduce

the impulsive spikes on manipulated variable with setpoint tracking and output

disturbance rejection. The proposed PID controller has a GM and PM of 3.48

dB and 12.9° respectively. For this example, the setpoint pre-filter is not needed

as the setpoint tracking shows no severe overshoot. To evaluate the performance
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robustness of the two PID controllers, we adopt a perturbed condition represented

by

P4(s) =
1.9(−0.1s+ 1) exp (−0.2s)

(2.8s− 1)(1.3s− 1)(0.1s+ 1)

The closed-loop responses of the two PID controllers are compared on the

basis of sequential step changes of magnitude 1 unit each in the setpoint, input

disturbance and output disturbance. Figure 4.6 displays the responses at the

nominal condition and Figure 4.7 shows the responses at the perturbed conditions.

Moreover, the simulation of the responses of manipulated variable for setpoint

tracking and disturbance rejection has been done but no impulsive spikes were

observed. It is worth noting that the proposed PID controller outperforms that

of [127] both in terms of nominal performance and performance robustness.

Figure 4.6: Closed-loop responses at the nominal condition for example 2

4.6.3 Example 3: SODUP (τu < τa)

In this example, we consider a SODUP process where τu < τa as follows

P (s) =
exp (−s)

(3s− 1)(10s+ 1)

Since PID controller tuning or synthesis for this type of SODUP has never

been reported in the open literature, we use the LQG controller to compare the

proposed PID controller designed using the tuning algorithm 2 in Section 4.5.2.
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Figure 4.7: Closed-loop response at the perturbed condition for example 2

By settings (through a trial-and-error) rc = 0.7, rd = 0.9 and ri = 2, we get a PID

controller Gc(s) = 3.1998(1 + 1/20.886s + 7.3294s) augmented with a lag filter

Fa = (1/(0.02s+ 1)) to reduce the impulsive spikes on manipulated variable with

setpoint tracking and output disturbance rejection. Since the setpoint tracking

response shows severe overshoot, we propose to use a lead-lag filter given as

Fr(s) = (6.962s+1)/(20.886s+1) by setting ε = 3. This proposed PID controller

has a GM and PM of 4.65 dB and 21.4° respectively. For the LQG controller

synthesis, we use the Matlab Controller System Design tool which produces a

stabilizing 5th order controller given as follows

Gc(s) = 0.03849

[
(0.0841s2 + 0.5s+ 1)(31s+ 1)(11s+ 1)

s(0.5476s2 + 0.62s+ 1)(0.0729s2 + 0.46s+ 1)

]
To evaluate the performance robustness, we consider a perturbed condition

given by

P4(s) =
1.1(−0.1s+ 1) exp (−1.1s)

(4.5s− 1)(7s+ 1)(0.1s+ 1)

Again the closed-loop responses of the two different controllers are compared

on the basis of 1 unit sequential step changes in the setpoint, input disturbance

and output disturbance. Figure 4.8 displays the closed-loop responses at the

nominal condition while Figure 4.9 demonstrates the responses at the perturbed

condition. The simulation of the responses of manipulated variable for setpoint

tracking and disturbance rejection has been done but no impulsive spikes were
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observed. It is worth mentioning that, the proposed PID controller outperforms

the high-order LQG controller both in terms of nominal performance and perfor-

mance robustness.

Figure 4.8: Closed-loop responses at the nominal condition for example 3

Figure 4.9: Closed-loop response at the perturbed condition for example 3
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4.6.4 Example 4: Simulation Example

The simulation example is taken from [176] based on a nonlinear bioreactor. The

models equation are obtained from [177], which are given as

dXv

dt
= (µ−D)Xv

dS

dt
= (Sf − S)D − µXv

γ

µ =
µmS

Km + S +KIS2

where the model parameters are given as: γ = 0.4g/g, Sf = 4g/L, µm = 0.53h−1,

D = 0.3h−1, Km = 0.12g/L and KI = 0.4545L/g. The bioreactor operated at

an unstable operating condition: biomass concentration Xv = 0.9951g/L and

substrate concentration S = 1.5122g/L. For controller design, a linearized model

is obtained at the operating condition:

P (s) =
Xv(s)

D(s)
=
−5.89 exp (−2.4s)

5.86s− 1

In order to use the proposed PID tuning algorithm which is developed for the

second-order unstable model, the process model above is approximated as follows

P (s) =
−5.89 exp (−2.4s)

5.86s− 1
∼=
−5.89 exp [−2.4(1− β)s]

(5.86s− 1)(2.4βs+ 1)

Here, we take β value to be a fraction of the dead-time value, i.e., 1/6 to

1/2 of the dead-time. In this case, let us take β = 1/2, so that τu = 5.86,

τa = 1.2 and the modified delay θm = 1.2. By using the PID tuning algorithm

1, and by setting rp = 0.4, ri = 12 and rd = 0.1, we get a PID controller tuning

values: Kc = −0.3472, τI = 20.1202 and τD = 1.666 augmented with a lag filter

Fa = (1/(0.05s+ 1)) to reduce the impulsive spikes on manipulated variable with

setpoint tracking and output disturbance rejection. For the setpoint pre-filter,

we set ε = 4.5 which gives Fr = (4.47s + 1)/(20.12s + 1). Meanwhile, based

on Jhunjhunwala and Chidambaram (2001) [176], the PID tuning values: Kc =

−0.4787, τI = 11.4932 and τD = 1.3671. Additionally, for further comparison

purpose we also use the PID tuning formula based on the multi-scale control

(MSC-PID) scheme proposed in [178]. The resulting ideal PID augmented with

a filter is obtained as follows

Gc(s) = 0.4018

(
1 +

1

17.4185s
+ 1.1008s

)(
1

0.0195s+ 1

)
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Additionally, a setpoint pre-filter is also obtained: Fr = (3.1395s + 1)/

(16.3434s+ 1). The performances of the 3 different PID controllers are evaluated

for setpoint tracking and disturbance rejection under a step change in biomass

concentration setpoint by 0.3 g/L and step change in feed substrate concentration

by -1.4 g/L. Figures 4.10 and 4.11 demonstrate the closed-loop responses of the

3 different controllers. Figure 4.12 shows the responses of manipulated variable

for proposed PID and MSC-PID controllers with setpoint tracking. There are no

obvious impulsive spikes occurred on the manipulated variable for both control

schemes. However, the PID controller based on Jhunjhunwala and Chidambaram

(2001) [176] shows impulsive spikes on the manipulated variable with setpoint

tracking. Meanwhile, the simulation of the responses of manipulated variable

with disturbance rejection for both control schemes has been done but no im-

pulsive spikes were observed instead. It is worth noting that, the proposed PID

controller gives a better response than that of the [176] both in terms of set-

point tracking and disturbance rejection. Also, the response of the proposed PID

controller is as good as the advanced decomposition method - MSC-PID scheme

designed by [178].

Figure 4.10: Setpoint tracking responses (step change in biomass setpoint = 0.3

g/L)
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Figure 4.11: Disturbance rejection responses (step change in feed concentration

= -1.4 g/L)
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Figure 4.12: Responses of manipulated variable for setpoint tracking

4.7 Summary

In this chapter, the characterization of the boundaries of stabilizing PID parame-

ter regions was evaluated based on the necessary criterion and sufficient criterion

of Routh stability. Three simple controller tuning algorithms for two types of

common second-order unstable processes, i.e., SODUP and SODTUP, have been

proposed. All of the algorithms have been constructed based on the obtained

boundaries of stabilizing PID controller parameter regions. Thus, the resulting
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PID controller is guaranteed to deliver stable closed-loop response. Moreover,

PID tuning algorithms are implemented to obtain tuning values within the sta-

ble regions to achieve optimum closed-loop performance-robustness. It is worth

mentioning that, the performances of proposed PID controllers are relatively en-

hanced compared to some established controller design methods. The Theorems

4.2.1 and 4.2.2 will be applied to the higher-order system in Chapter 5. The work

described in this chapter has been published in ISA Transactions1.

1Qiu Han Seer and Jobrun Nandong. Stabilization and PID tuning algorithms for second-

order unstable processes with time-delays. ISA transactions, 67: 233-245, 2017.
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Chapter 5

Fed-Batch Fermentation

Dynamics, Modeling and Control

Fed-batch dynamics are known to be of high-order and often vary nonlinearly

with the operating conditions. Several different forms of complex dynamics can

arise from a typical fed-batch fermentation process. At some points the process

can exhibit relatively simple dynamics, which can be simplified to a second- or

first-order system with delay (the PID stabilization of the second-order unstable

processes has been reported in Chapter 4). It should be pointed out that at some

points during the fed-batch fermentation, the process can simultaneously exhibit

complex inverse-responses and integrating plus unstable underdamped dynam-

ics, which could not be easily stabilized using the single-loop feedback control

structure. In this chapter, a class of fourth-order integrating model can be used

to adequately represent such a complex dynamics of the fed-batch fermentation

process. The rigorous stability analysis of PID controller based on the Routh-

Hurwitz criteria for the fourth-order integrating system is presented.

5.1 Ethanolic Fed-batch Fermentation

A fed-batch fermentation process is commonly used in biotechnological industries

where it is desired to overcome substrate inhibition, which is responsible for low

productivity in a batch fermentation [97, 98]. Like most modeling of common

chemical reactors, the fed-batch bioreactor can be represented by using a set of

mass balance equations or sometimes coupled with energy balances when the

thermal generation of microrganisms involved is significant. In a simplest case

under isothermal conditions, the application of mass balance often leads to a
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system of differential-algebraic equation (DAE) as follows

dZ

dt
= f(Z,U,Rr, T ) (5.1)

Rr = g(Z) (5.2)

where Z ∈ <n, U ∈ <m and Rr ∈ <q are vectors of state variables, input variables

and reaction rates respectively; meanwhile f and g are nonlinear functions of their

arguments. For a realistic modeling of the fed-batch bioreactor, a minimum of

four state variables is often required together with at least three kinetics or rate

equations. In many cases, only one input variable is available for manipulation,

i.e., the fresh feed flow rate.

5.1.1 System Model

A typical mechanistic model of fed-batch fermentation comprises of mass balance

differential equations, couple with constitutive rate equations on microorganism

growth and death, substrate consumption and product formation. According to

the mass balances for bioreactor volume, active biomass, substrate and product,

the dynamic model of a typical fed-batch bioreactor system of ethanol fermenta-

tion are shown as follows [172]:

dV

dt
= F (5.3a)

dXv

dt
= rx − rd −

FXv

V
(5.3b)

dGl

dt
= −rs +

F (Glin −Gl)
V

(5.3c)

dEt

dt
= rp −

FEt

V
(5.3d)

where the variables F , Xv, Gl, Et, and V denote the feed flow rate (m3/h), the

biomass concentration (kg/m3), the substrate (glucose) concentration (kg/m3),

the product (ethanol) concentration (kg/m3) and the fermentation medium vol-

ume (m3), respectively.

Most of the biotechnological processes are assumed to consist of pure culture

with a single growth limiting substrate. In this work, an unstructured model is

adopted for its simplicity and practicality in describing the modeling of microbial

kinetics in most fermentation processes. The growth rate of microorganism rx is

described using a modified Haldane kinetics in (5.4), which includes the effects

of the inhibition imposed by high substrate and product concentration whilst
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the death rate of microorganism via catabolism, which represents the rate of

endogenous metabolism rd is expressed in (5.5).

rx =
µ0GlXv

Ks0 +Gl +Ks1Gl2
exp

(
− Et

Etmax

)
(5.4)

rd = KdXv (5.5)

The rate of substrate consumption rs based on Pirt equation and the rate of

product formation rp based on Luedeking-Piret equation [96] are

rs = Ysrx +msXv (5.6)

rp = Yprx +mpXv (5.7)

The notations: Ys (kg/kg), Yp (kg/kg), ms (kg/kg h) and mp (kg/kg h) repre-

sent the coefficients for substrate yield over biomass, product yield over biomass,

substrate maintenance and product maintenance, respectively.

5.1.2 Linearization

It is interesting to note that, a linearization at any given operating point of the

simplest DAE system with only four state variables and one input variable can

lead to a fourth-order integrating system. Depending on the point at which the

system is linearized, the fourth-order integrating system can take several different

forms of complex dynamic behaviors. One of the particular forms which can be

very difficult to stabilized is given by

P (s) =
zi
u

=
Kp

∏3
j=1(τzjs+ 1)

s(τps+ 1)(τ 2
us

2 + 2ζτus+ 1)
(5.8)

with the following parameter assumptions

� A.1: two RHP zeros, τz1 < 0, τz2 < 0 and τz3 > 0.

� A.2: unstable-oscillatory, τp > 0, τu > 0 and −1 < ζ < 0.

Here, zi and u denote one of the state variables (e.g., substrate concentration)

and input variable (e.g., fresh feed flow rate), respectively. It should be empha-

sized that not all fed-batch processes will demonstrate such a complex dynamic

behavior. In some common cases of fermentation, the process involved can even

be simplified to a second- or even first-order system with delay. The nature of

fermentation dynamics depends on the types of applications and microrganisms

involved.
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5.1.3 Problem Statement

It can be readily shown that a linearization of the model (5.3) with respect to

the input variable F and the state variables Xv, Gl, Et, and V at any initial set

of values F , Xv, Gl, Et and V followed by Laplace Transform can take a number

of different transfer function forms. One of the forms of a transfer function from

F to Gl is

P (s) =
Kp

∏3
i=1(τzis+ 1)

s(τps+ 1)(α2s2 + α1s+ 1)
(5.9)

Another form is given by

P (s) =
Kp

∏3
i=1(τzis+ 1)

s
∏3

i=1(τpis+ 1)
(5.10)

Note that, the model parameters and detailed procedures for obtaining such

a linearized model in (5.9) or (5.10) are presented in Appendix D.1 and D.2.

Table 5.1: Model parameter values

Model parameters Values Units

µ0 0.4 h−1

Ks0 0.5 kg/m3

Ks1 0.05 kg/m3

Etmax 40 kg/m3

Kd 0.01 kg/kg h

Ys 1.5 kg/kg

ms 0.1 kg/kg h

Yp 1.2 kg/kg

mp 0.05 kg/kg h

Table 5.1 shows the values of model parameters used in this work to simulate

the fed-batch process (5.3). For the fed-batch process (5.3), five different forms

of possible transfer functions with respect to state variables χs = [Gl,Xv, Et, V ]ᵀ

and inputs U = [F,Glin]ᵀ are as follows:

P1(s) =
Gl(s)

F (s)
=

298.7(−7.73s + 1)(−10s + 1)(10.2s + 1)

s(10s + 1)(157.7s2 + 11.9s + 1)
,U = [0.1, 150]ᵀ,χs = [1, 1, 1, 1]ᵀ

P2(s) =
Gl(s)

F (s)
=

11.3(−4.7s + 1)(−60s + 1)(66.8s + 1)

s(60s + 1)(142.9s2 − 13s + 1)
,U = [0.1, 150]ᵀ,χs = [1, 1, 1, 6]ᵀ
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P3(s) =
Gl(s)

F (s)
=

0.73(−66.7s + 1)(5000s2 − 36.2s + 1)

s(−13.5s + 1)(33.5s + 1)(66.7s + 1)
,U = [0.3, 170]ᵀ,χs = [10, 10, 50, 20]ᵀ

P4(s) =
Gl(s)

F (s)
=

1.22(−100s + 1)(120s + 1)(573.4s + 1)

s(93.7s + 1)(100s + 1)(−229.3s + 1)
,U = [0.5, 200]ᵀ,χs = [4, 5, 100, 50]ᵀ

P5(s) =
Gl(s)

F (s)
=
−0.04(−100s + 1)(9390s2 + 62.5s + 1)

s(100s + 1)(81.3s2 + 11.5s + 1)
,U = [0.4, 200]ᵀ,χs = [1, 9, 80, 40]ᵀ

From the aforementioned examples, the transfer function given by P2 is the

most difficult to stabilize and control as it simultaneously possesses multiple right-

hand side (RHP) or unstable zeros (i.e., that cause complex inverse-responses and

impose serious limitation on control performance) and integrating plus unstable

second-order underdamped dynamics. The next difficult to control transfer func-

tions are of the forms given by P3 and P4 but as they do not possess underdamped

dynamics and have only one unstable zero, these transfer functions are relatively

easy to stabilize compared with P2. Meanwhile, the transfer functions represented

by P1 and P5 are the easiest to stabilize because both do not have unstable dy-

namics, i.e., only an integrating mode.

In short, we can draw a general conclusion about the typical fed-batch pro-

cess (5.3), that is, the process dynamics often vary nonlinearly with the operating

conditions, where at some points the process can simultaneously exhibit complex

inverse-responses and integrating plus unstable underdamped dynamics while at

others, its behaviors can be much less complex. Understanding of the detailed

fed-batch transient behaviors and rigorous methods to deal with them are vital

in the adaptive and self-tuning PID controller designs, which are common strate-

gies proposed by several researchers to control fed-batch processes. Most of the

existing adaptive or self-tuning PID strategies are based on single-loop feedback

structure. However, in view of some of the complex dynamics at certain operating

points (e.g., P2) which could not be easily stabilized using the single-loop feed-

back structure, those control strategies might not be able to deliver satisfactory

performance overall.

In a case where the transfer function obtained is of the form given in (5.9), the

system can exhibit simultaneous integrating, unstable and underdamped dynamic

behaviors (e.g., P2), which can pose a daunting challenge to designing a stabilizing

control system based on the single-loop structure.
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5.2 Fourth-order Integrating Process

In the present work, we consider a fourth-order integrating process as

P (s) =
Kp

∏3
i=1(τzis+ 1)

s(τps+ 1)(α2s2 + α1s+ 1)
(5.11)

It can also be presented in another form given by

P (s) =
Kp

∏3
i=1(τzis+ 1)

s
∏3

i=1(τpis+ 1)

where Kp, τzi, i = 1, 2, 3 and τpi, i = 1, 2, 3 represent the process gain, lead time

constant and time constant respectively. The following assumptions are made

based on (5.11).

I. P is an integrating process with τp > 0, α2 > 0 and α1 > 0

II. Two right-half plane (RHP) zeros, i.e., τz1 < 0, τz2 < 0 and τz3 > 0

For simplicity, the following terms q1, q2 and q3 are defined asq1

q2

q3

 ,

τz1τz2 + τz1τz3 + τz2τz3∑3
i=1 τzi∏3
i=1 τzi

 (5.12)

In terms of the three simplified terms in (5.12), the characteristic polynomial

of the closed-loop system in (4.1) can be written as

(τpα2τI +KτDτIq3)s5 + [τI(α2 + τpα1) +K(τDτIq1

+ τIq3)]s4 + [τI(α1 + τp) +K(τDτIq2 + τIq1 + q3)]s3

+ [τI +K(τDτI + τIq2 + q1)]s2

+K(τI + q2)s+K = 0

(5.13)

where K = KcKp denotes the loop gain.

The notations λ1 and λ2 are introduced and used to identify the possible

ranges of the relation between |τz1| and |τz2| to τz3 based on the conditions given

in each case of stabilizing PID controller region (to be discussed in the next

section). The ratios of |τz1| and |τz2| to τz3 are defined as follows:[
λ1

λ2

]
,

[
|τz1|
τz3
|τz2|
τz3

]
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Thus, q1, q2 and q3 can be further simplified in terms of λ1, λ2 and τz3:q1

q2

q3

 ,

τ 2
z3(λ1λ2 − λ1 − λ2)

τz3(1− λ1 − λ2)

λ1λ2τ
3
z3

 (5.14)

where λ1 > 0 and λ2 > 0.

5.3 PID Stability Analysis

5.3.1 Necessary Stability Conditions

Upon applying the necessary criterion of Routh stability (i.e., Theorem 4.2.1) to

the characteristic equation (5.13), the ranges or limits on the loop gain, derivative

time and integral time can be established, which render the coefficients in the

characteristic polynomial positive. From the coefficient of s5, a lower limit on the

loop gain can be obtained as follows

K > − τpα2τI
τDτIq3

Notice that, the lower limit based on the coefficient of s5 is always negative

in value, thus, it will not be taken into account, i.e., we consider the maximum

positive lower limit. On the other hand, the coefficient of s0 leads to another

lower limit on the loop gain:

K > Knc
o = 0 (5.15)

The q3 is always greater than zero as long as the assumption of two right-

half plane (RHP) zeros holds. Meanwhile, the limits on the loop gain from the

coefficients of s4, s3, s2 and s might be formed depending on which of the following

3 conditions holds:

Case 1 q1 < 0 and q2 < 0

Case 2 q1 > 0 and q2 < 0

Case 3 q1 < 0 and q2 > 0

Remark 13. The case 4 (i.e., q1 > 0 and q2 > 0) is not possible. When q1 > 0,

it gives a lower limit λ1 >
λ2
λ2−1

. Meanwhile, an upper limit of λ1 is given as

λ1 < 1 − λ2 when q2 > 0. To ensure that the upper limit is always greater than

the lower limit of λ1, the quadratic equation is obtained as λ2
2−λ2 + 1 < 0, which

always form complex roots. Therefore, this implies that case 4 is not possible.
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For cases 1-3, the ranges and limits on the loop gain based on the coefficients

of s4, s3 and s2 can also be established. It is important to point out that the

ranges of loop gain are affected by the coefficients of loop gain in the closed-loop

characteristic equation, i.e. positive or negative value. Hence, the following terms

are defined for the coefficients of loop gain from s4, s3 and s2 respectively:ζ1

ζ2

ζ3

 ,

 τDτIq1 + τIq3

τDτIq2 + τIq1 + q3

τDτI + τIq2 + q1

 (5.16)

Note that, the cases 1-3 can be further divided into several sub-cases based

on the values (i.e. positive or negative value) given by ζ1, ζ2 and ζ3, which will

be demonstrated in the following sections.

5.3.1.1 Case 1: q1 < 0 and q2 < 0

Under case 1, there are two conditions which can hold for different ranges of λ1.

λ1 :


λ1 > 1− λ2 for 0 < λ2 < 1

0 < λ1 <
λ2

λ2 − 1
for λ2 > 1

(5.17)

There are 8 different sub-cases which can arise from case 1 depending upon

the values of ζ1, ζ2 and ζ3 described as follows

Case 1.1 ζ1 > 0, ζ2 > 0 and ζ3 > 0

Case 1.2 ζ1 > 0, ζ2 > 0 and ζ3 < 0

Case 1.3 ζ1 > 0, ζ2 < 0 and ζ3 > 0

Case 1.4 ζ1 > 0, ζ2 < 0 and ζ3 < 0

Case 1.5 ζ1 < 0, ζ2 > 0 and ζ3 > 0

Case 1.6 ζ1 < 0, ζ2 > 0 and ζ3 < 0

Case 1.7 ζ1 < 0, ζ2 < 0 and ζ3 > 0

Case 1.8 ζ1 < 0, ζ2 < 0 and ζ3 < 0

Notice that, the coefficient of s always leads to a lower limit on the integral

time:

τI > Inc1 = |q2| (5.18)

It can be readily shown that, a negative value of lower limit on the loop gain

is obtained when ζi, i = 1, 2, 3 are greater than zero while upper limit is obtained

instead if ζi, i = 1, 2, 3 are less than zero.
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If ζ1 > 0, a negative value of lower limit on the loop gain is produced:

K > − τI(α2 + τpα1)

−τDτI |q1|+ τIq3

If ζ2 > 0, a negative value of lower limit on the loop gain is obtained:

K > − τI(α1 + τp)

−τDτI |q2| − τI |q1|+ q3

If ζ3 > 0, a negative value of lower limit on the loop gain is given as:

K > − τI
τDτI − τI |q2| − |q1|

The negative value of lower limits will not be taken into account as only the

maximum positive lower limit will be considered. On the other hand, the upper

limits on the loop gain are given as follows.

If ζ1 < 0, an upper limit on the loop gain is obtained:

K < K
nc

1a =
τI(α2 + τpα1)

| − τDτI |q1|+ τIq3|
(5.19)

If ζ2 < 0, another upper limit on the loop gain is produced:

K < K
nc

1b =
τI(α1 + τp)

| − τDτI |q2| − τI |q1|+ q3|
(5.20)

Also if ζ3 < 0, one more upper limit on the loop gain is given as:

K < K
nc

1c =
τI

|τDτI − τI |q2| − |q1||
(5.21)

The necessary regions of PID controller for case 1 based on Theorem 4.2.1

is shown in Table 5.2. The difference between the maximum lower limit and

minimum upper limit on the derivative time can be determined as:

R = Dmin −Dmax (5.22)

Let us take an exponential function on R and further by logarithms function

as follows:

log(R) = log10(eR) (5.23)

If log(R) is positive, it means the necessary criterion of stability is fulfilled,

otherwise negative implies the criterion is not fulfilled. The detailed calculation

on the necessary region of each PID parameter for the sub-cases 1.1 and 1.2 are

demonstrated in Appendix B.1.

96



Remark 14. It should be noted that, although the closed-loop region based on

Theorem 4.2.1 is satisfied, i.e., the necessary criterion of Routh stability is met;

this does not guarantee that the sufficient criterion for closed-loop stability is

fulfilled. The Theorem 4.2.2 will be further applied to establishing the stabilizing

regions of PID tuning parameters.

Table 5.2: Regions of PID controller for case 1 based on Theorem 4.2.1

case 1: q1 < 0 and q2 < 0

Sub-cases K τI τD

1.1

ζ1 > 0

ζ2 > 0

ζ3 > 0

K > Knc
0 max(0, I1, I1.1,1) <

τI < I1.1,1

I1 = |q2|
I1.1,1 = |q1|

τD−|q2|
I1.1,1 = q3

τD|q2|+|q1|

max(0, D1.1,1, D1.1,2) <

τD <

min(D1.1,1, D1.1,2)

D1.1,1 = |q2|
D1.1,2 = |q1|2+q3|q2|

q3−|q1||q2| ;

where q3 > |q1||q2|
D1.1,1 = q3

|q1|

D1.1,2 = q3−|q1||q2|
|q2|2 ;

where q3 > |q1||q2|
Refer to Figure 5.1a, the closed-loop system cannot satisfy

the necessary criterion.

1.2

ζ1 > 0

ζ2 > 0

ζ3 < 0

Knc
0 < K < K

nc

1c max(0, I1) < τI <

I1.2,1

I1 = |q2|
I1.2,1 = q3

τD|q2|+|q1|

0 < τD < min(D1.2,1,

D1.2,2, D1.2,3)

D1.2,1 = q3
|q1|

D1.2,2 = |q2|
D1.2,3 = q3−|q1||q2|

|q2|2 ;

where q3 > |q1||q2|
Refer to Figure 5.1b, the closed-loop system might be

marginally stable when λ2 < 1 & 1 − λ2 < λ1 < 1 or when

λ2 > 1 & 1 < λ1 <
λ2
λ2−1

based on necessary criterion.

1.3

ζ1 > 0

ζ2 < 0

ζ3 > 0

Knc
0 < K < K

nc

1c τI >

max(0, I1, I1.3,1, I1.3,2)

I1 = |q2|
I1.3,1 = q3

τD|q2|+|q1|

I1.3,2 = |q1|
τD−|q2|

max(0, D1.3,1) < τD <

D1.3,1

D1.3,1 = |q2|
D1.3,1 = q3

|q1|
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Table 5.2: continued

Sub-cases K τI τD

Refer to Figure 5.1c, the closed-loop system might be

marginally stable when λ2 < 1 & 1 − λ2 < λ1 < 1 or when

λ2 > 1 & 1 < λ1 <
λ2
λ2−1

based on necessary criterion.

1.4

ζ1 > 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

1b , K
nc

1c )

τI > max(0, I1, I1.4,1)

I1 = |q2|
I1.4,1 = q3

τD|q2|+|q1|

0 < τD <

min(D1.4,1, D1.4,2)

τD < D1.4,1 = q3
|q1|

τD < D1.4,2 = |q2|
Refer to Figure 5.1d, the closed-loop system might be stable

when λ2 < 1 & λ1 > 1− λ2 or when λ2 > 1 & 0 < λ1 <
λ2
λ2−1

based on necessary criterion.

1.5

ζ1 < 0

ζ2 > 0

ζ3 > 0

Knc
0 < K < K

nc

1a max(0, I1, I1.5,1) <

τI < I1.5,1

I1 = |q2|
I1.5,1 = |q1|

τD−|q2|
I1.5,1 = q3

τD|q2|+|q1|

max(0, D1.5,1, D1.5,2,

D1.5,3) < τD < D1.5,1

D1.5,1 = q3
|q1|

D1.5,2 = |q2|
D1.5,3 = |q1|2+q3|q2|

q3−|q1||q2| ;

where q3 > |q1||q2|
D1.5,1 = q3−|q1||q2|

|q2|2 ;

where q3 > |q1||q2|
Refer to Figure 5.1e, the closed-loop system might be

marginally stable with small regions when λ2 < 1 based on

necessary criterion.

1.6

ζ1 < 0

ζ2 > 0

ζ3 < 0

Knc
0 < K <

min(K
nc

1a, K
nc

1c )

max(0, I1) < τI <

I1.6,1

I1 = |q2|
I1.6,1 = q3

τD|q2|+|q1|

max(0, D1.6,1) < τD <

min(D1.6,1, D1.6,2)

D1.6,1 = q3
|q1|

D1.6,1 = |q2|
D1.6,2 = q3−|q1||q2|

|q2|2 ;

where q3 > |q1||q2|
Refer to Figure 5.1f, the closed-loop system cannot satisfy the

necessary criterion.

1.7

ζ1 < 0

ζ2 < 0

ζ3 > 0

Knc
0 < K <

min(K
nc

1a, K
nc

1b )

τI >

max(0, I1, I1.7,1, I1.7,2)

I1 = |q2|
I1.7,1 = q3

τD|q2|+|q1|

I1.7,2 = |q1|
τD−|q2|

τD >

max(0, D1.7,1, D1.7,2)

D1.7,1 = q3
|q1|

D1.7,2 = |q2|
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Table 5.2: continued

Sub-cases K τI τD

Refer to Figure 5.1g, the closed-loop system might be stable

when λ2 < 1 & λ1 > 1− λ2 or when λ2 > 1 & 0 < λ1 <
λ2
λ2−1

based on necessary criterion.

1.8

ζ1 < 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

1a, K
nc

1b ,

K
nc

1c )

τI > max(0, I1, I1.8,1)

I1 = |q2|
I1.8,1 = q3

τD|q2|+|q1|

max(0, D1.8,1) < τD <

D1.8,1

D1.8,1 = q3
|q1|

D1.8,1 = |q2|
Refer to Figure 5.1h, the closed-loop system might be

marginally stable when λ2 < 1 & λ1 > 1 or when λ2 > 1

& 0 < λ1 < 1 based on necessary criterion.

5.3.1.2 Case 2: q1 > 0 and q2 < 0

The range of λ1 for case 2 is given as:

λ1 >
λ2

λ2 − 1
for λ2 > 1 (5.24)

In this case 2, q1 > 0 and q3 > 0 result in ζ1 > 0. Thus, there are only 4

different sub-cases that can arise depending upon the values of ζ1, ζ2 and ζ3 as

follows

Sub-case 2.1 ζ1 > 0, ζ2 > 0 and ζ3 > 0

Sub-case 2.2 ζ1 > 0, ζ2 > 0 and ζ3 < 0

Sub-case 2.3 ζ1 > 0, ζ2 < 0 and ζ3 > 0

Sub-case 2.4 ζ1 > 0, ζ2 < 0 and ζ3 < 0

The coefficient of s always leads to a lower limit on the integral time given by

τI > Inc2 = |q2| (5.25)

A negative value of lower limit on the loop gain is obtained when ζi, i = 1, 2, 3

are greater than zero.

As ζ1 > 0, a negative value of lower limit on the loop gain is always formed:

K > −τI(α2 + τpα1)

τDτIq1 + τIq3

(5.26)
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If ζ2 > 0, a negative value of lower limit on the loop gain is obtained:

K > − τI(α1 + τp)

−τDτI |q2|+ τIq1 + q3

(5.27)

If ζ3 > 0, a negative value of lower limit on the loop gain is given as:

K > − τI
τDτI − τI |q2|+ q1

(5.28)

Meanwhile, the upper limits on the loop gain are produced when ζi, i = 2, 3

are less than zero.
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Figure 5.1: Case 1

If ζ2 < 0, another upper limit on the loop gain is produced:

K < K
nc

2a =
τI(α1 + τp)

| − τDτI |q2|+ τIq1 + q3|
(5.29)

Also if ζ3 < 0, one more upper limit on the loop gain is given as:

K < K
nc

2b =
τI

|τDτI − τ |q2|+ q1|
(5.30)

The negative value of lower limits on the loop gain are neglected as only the

maximum positive lower limits are considered. The necessary regions of PID

controller for case 2 based on Theorem 4.2.1 is shown in Table 5.3. In view

of remark 14, the stability analysis in Table 5.3 does not guarantee the closed-

loop stability. Theorem 4.2.2 have to be applied in order to further confirm the

closed-loop stability. The detailed calculation on the necessary region of each

PID parameter for the sub-case 2.1 is demonstrated in Appendix B.2.

Table 5.3: Regions of PID controller for case 2 based on Theorem 4.2.1

case 2: q1 > 0 and q2 < 0

Sub-cases K τI τD

2.1

ζ1 > 0

ζ2 > 0

ζ3 > 0

K > Knc
0 τI > max(0, I2)

I2 = |q2|
max(0, D2.1,1) < τD <

D2.1,1

D2.1,1 = |q2|
D2.1,1 = q1

|q2|

Refer to Figure 5.2a, the closed-loop system cannot be fulfilled

the necessary criterion.
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Table 5.3: continued

Sub-cases K τI τD

2.2

ζ1 > 0

ζ2 > 0

ζ3 < 0

Knc
0 < K < K

nc

2b τI > max(0, I2, I2.2,1)

I2 = |q2|
I2.2,1 = q1

|q2|−τD

0 < τD <

min(D2.2,1, D2.2,2)

D2.2,1 = q1
|q2|

D2.2,2 = |q2|
Refer to Figure 5.2b, the closed-loop system is able to fulfill

the necessary criterion.

2.3

ζ1 > 0

ζ2 < 0

ζ3 > 0

Knc
0 < K < K

nc

2a τI > max(0, I2, I2.3,1)

I2 = |q2|
I2.3,1 = q3

τD|q2|−q1

τD >

max(0, D2.3,1, D2.3,2)

D2.3,1 = q1
|q2|

D2.3,2 = |q2|
Refer to Figure 5.2c, the closed-loop system is able to fulfill

the necessary criterion.

2.4

ζ1 > 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

2a, K
nc

2b )

τI >

max(0, I2, I2.4,1, I2.4,2)

I2 = |q2|
I2.4,1 = q3

τD|q2|−q1
I2.4,2 = q1

|q2|−τD

max(0, D2.4,1) < τD <

D2.4,1

D2.4,1 = q1
|q2|

D2.4,1 = |q2|

Refer to Figure 5.2d, the closed-loop system is able to fulfill

the necessary criterion.

5.3.1.3 Case 3: q1 < 0 and q2 > 0

In this case 3, the range of λ1 only valid when

0 < λ1 < 1− λ2 for λ2 < 1 (5.31)

There are 8 different sub-cases in case 3, which can happen depending upon

the values of ζ1, ζ2 and ζ3 described as follows

Sub-case 3.1 ζ1 > 0, ζ2 > 0 and ζ3 > 0

Sub-case 3.2 ζ1 > 0, ζ2 > 0 and ζ3 < 0

Sub-case 3.3 ζ1 > 0, ζ2 < 0 and ζ3 > 0

Sub-case 3.4 ζ1 > 0, ζ2 < 0 and ζ3 < 0

Sub-case 3.5 ζ1 < 0, ζ2 > 0 and ζ3 > 0
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(d) Sub-case 2.4

Figure 5.2: Case 2

Sub-case 3.6 ζ1 < 0, ζ2 > 0 and ζ3 < 0

Sub-case 3.7 ζ1 < 0, ζ2 < 0 and ζ3 > 0

Sub-case 3.8 ζ1 < 0, ζ2 < 0 and ζ3 < 0

Under this case 3, the coefficient of s in the closed-loop characteristic poly-

nomial always leads to a negative value of lower limit on the integral time, i.e.

τI > −q2, which will not be considered as we consider only τI > 0.

Similar to case 1 and case 2, a negative value of lower limit on the loop gain

is obtained when ζi, i = 1, 2, 3 are greater than zero as follows:

If ζ1 > 0, a negative value of lower limit on the loop gain is formed:

K > − τI(α2 + τpα1)

−τDτI |q1|+ τIq3

(5.32)

If ζ2 > 0, a negative value of lower limit on the loop gain is obtained:

K > − τI(α1 + τp)

τDτIq2 − τI |q1|+ q3

(5.33)

If ζ3 > 0, a negative value of lower limit on the loop gain is given as:

K > − τI
τDτI + τIq2 − |q1|

(5.34)
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Since only the maximum positive lower limit on the loop gain is considered,

the negative value of lower limits on the loop gain are neglected. On the other

hand, the upper limits on the loop gain are formed when ζi, i = 2, 3 less than

zero. If ζ1 < 0, an upper limit on the loop gain is given as:

K < K
nc

3a =
τI(α2 + τpα1)

| − τDτI |q1|+ τIq3|
(5.35)

If ζ2 < 0, another upper limit on the loop gain is produced:

K < K
nc

3b =
τI(α1 + τp)

|τDτIq2 − τI |q1|+ q3|
(5.36)

Also if ζ3 < 0, one more upper limit on the loop gain is given as:

K < K
nc

3c =
τI

|τDτI + τIq2 − |q1||
(5.37)

The necessary regions of PID controller for case 3 based on Theorem 4.2.1 is

shown in Table 5.4. In view of remark 14, the stability analysis in Table 5.4 does

not guarantee the closed-loop stability, i.e. Theorem 4.2.2 have to be applied.

The detailed calculation on the necessary region of each PID parameter for the

sub-case 3.1 is demonstrated as illustrations in Appendix B.3.

Table 5.4: Regions of PID controller for case 3 based on Theorem 4.2.1

case 3: q1 < 0 and q2 > 0

Sub-cases K τI τD

3.1

ζ1 > 0

ζ2 > 0

ζ3 > 0

K > Knc
0 τI > max(0, I3.1,1)

I3.1,1 = |q1|
τD+q2

max(0, D3.1,1) < τD <

D3.1,1

D3.1,1 = |q1|
q2

D3.1,1 = q3
|q1|

Refer to Figure 5.3a, the closed-loop system cannot fulfill the

necessary criterion.

3.2

ζ1 > 0

ζ2 > 0

ζ3 < 0

Knc
0 < K < K

nc

3c 0 < τI < I3.2,1

I3.2,1 = |q1|
τD+q2

max(0, D3.2,1) < τD <

D3.2,1

D3.2,1 = |q1|
q2

D3.2,1 = q3
|q1|

Refer to Figure 5.3b, the closed-loop system cannot fulfill the

necessary criterion.
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Table 5.4: continued

Sub-cases K τI τD

3.3

ζ1 > 0

ζ2 < 0

ζ3 > 0

Knc
0 < K < K

nc

3b τI >

max(0, I3.3,1, I3.3,2)

I3.3,1 = q3
|q1|−τDq2

I3.3,2 = |q1|
τD+q2

0 < τD <

min(D3.3,1, D3.3,2)

D3.3,1 = q3
|q1|

D3.3,2 = |q1|
q2

Refer to Figure 5.3c, the closed-loop system can fulfill the

necessary criterion.

3.4

ζ1 > 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

3b , K
nc

3c )

max(0, I3.4,1) < τI <

I3.4,1

I3.4,1 = q3
|q1|−τDq2

I3.4,1 = |q1|
τD+|q2|

0 < τD < min(D3.4,1,

D3.4,2, D3.4,3)

D3.4,1 = q3
|q1|

D3.4,2 = |q1|
q2

D3.4,3 = |q1|2−q2q3
q3+q2|q1| ;

where |q1|2 > q2q3

Refer to Figure 5.3d, the closed-loop system can fulfill the

necessary criterion.

3.5

ζ1 < 0

ζ2 > 0

ζ3 > 0

Knc
0 < K < K

nc

3a τI > max(0, I3.5,1)

I3.5,1 = |q1|
τD+q2

τD >

max(0, D3.5,1, D3.5,2)

D3.5,1 = q3
|q1|

D3.5,2 = |q1|
q2

Refer to Figure 5.3e, the closed-loop system can fulfill the

necessary criterion.

3.6

ζ1 < 0

ζ2 > 0

ζ3 < 0

Knc
0 < K <

min(K
nc

3a, K
nc

3c )

0 < τI < I3.6,1

I3.6,1 = |q1|
τD+|q2|

τD >

max(0, D3.6,1, D3.6,2)

D3.6,1 = q3
|q1|

D3.6,2 = |q1|
q2

Refer to Figure 5.3f, the closed-loop system can fulfill the

necessary criterion.

3.7

ζ1 < 0

ζ2 < 0

ζ3 > 0

Knc
0 < K <

min(K
nc

3a, K
nc

3b )

τI >

max(0, I3.7,1, I3.7,2)

I3.7,1 = q3
|q1|−τDq2

I3.7,2 = |q1|
τD+q2

max(0, D3.7,1) < τD <

D3.7,1

D3.7,1 = q3
|q1|

D3.7,1 = |q1|
q2

Refer to Figure 5.3g, the closed-loop system can fulfill the

necessary criterion.
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Table 5.4: continued

Sub-cases K τI τD

3.8

ζ1 < 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

3a, K
nc

3b ,

K
nc

3c )

max(0, I3.8,1) < τI <

I3.8,1

I3.8,1 = q3
|q1|−τDq2

I3.8,1 = |q1|
τD+|q2|

max(0, D3.8,1) < τD <

D3.8,1

D3.8,1 = q3
|q1|

D3.8,1 = |q1|
q2

D3.8,2 = |q1|2−q2q3
q3+q2|q1| ;

where |q1|2 > q2q3

Refer to Figure 5.3h, the closed-loop system can fulfill the

necessary criterion.

5.3.2 Sufficient Stability Conditions

In view of remark 14, all coefficients of the closed-loop characteristic polyno-

mial are positive only if the conditions given by the Theorem 4.2.1 are fulfilled.

However, the sufficient criterion for closed-loop stability are not guaranteed, i.e.,

some of the elements in the left column of Routh array might be negative values.

Therefore, Theorem 4.2.2 is used to establish the limits on the integral time in

order to assure the sufficient criterion of Routh stability for the given closed-loop

characteristic polynomial.

Based on closed-loop characteristic polynomial (4.2), the following terms ai,

i = 0, 1, 2 . . . 5 are defined in term of integral time as

a5

a4

a3

a2

a1

a0


,



τI(e1 +Ke2)

τI(g1 +Kg2)

τIj1 +K(τIj2 + j3)

τI +K(τIm1 +m2)

K(τI + n1)

K


(5.38)

where e1 = τpα2, e2 = τDq3, g1 = α2 + τpα1, g2 = τDq1 + q3, j1 = α1 + τp,

j2 = τDq2 + q1, j3 = q3, m1 = τD + q2, m2 = q1 and n1 = q2.

The Routh array is formed by taking all the coefficients ai, i = 0, 1, 2, 3, 4, 5

of characteristic polynomial (4.2), and staggering them in array form as shown
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λ
1

0 0.2 0.4 0.6 0.8

lo
g(

R
)

-50

-40

-30

-20

-10

0
λ2=0.2

λ2=0.4

λ2=0.6

λ2=0.8

(a) Sub-case 3.1

λ
1

0 0.2 0.4 0.6 0.8

lo
g(

R
)

-25

-20

-15

-10

-5

0

λ2=0.2

λ2=0.4

λ2=0.6

λ2=0.8

(b) Sub-case 3.2

λ
1

0 0.2 0.4 0.6 0.8

lo
g(

R
)

0

0.1

0.2

0.3

0.4

λ2=0.2

λ2=0.4

λ2=0.6

λ2=0.8

(c) Sub-case 3.3

λ
1

0 0.2 0.4 0.6 0.8

lo
g(

R
)

0

0.1

0.2

0.3

0.4

λ2=0.2

λ2=0.4

λ2=0.6

λ2=0.8

(d) Sub-case 3.4

λ
1

0 0.2 0.4 0.6 0.8

lo
g(

R
)

0

5

10

15

20

25

λ2=0.2

λ2=0.4

λ2=0.6

λ2=0.8

(e) Sub-case 3.5

λ
1

0 0.2 0.4 0.6 0.8

lo
g(

R
)

0

5

10

15

20

25

λ2=0.2

λ2=0.4

λ2=0.6

λ2=0.8

(f) Sub-case 3.6

in (5.39).

RA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a5 a3 a1 0

a4 a2 a0 0

b1 b2 0 0

c1 c2 0 0

d1 0 0 0

c2 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.39)

It is noticed that, the coefficients ai, i = 0, 1, 2, 3, 4, 5 are always greater than

zero based on necessary stability criterion (Theorem 4.2.1 is obeyed). Meanwhile,

the elements b1, b2, c1, c2 and d1 must be greater than zero in order to fulfill the
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λ
1

0 0.2 0.4 0.6 0.8

lo
g(

R
)

0

5

10

15

20

25

λ2=0.2

λ2=0.4

λ2=0.6

λ2=0.8

(g) Sub-case 3.7

λ
1

0 0.2 0.4 0.6 0.8

lo
g(

R
)

0

2

4

6

λ2=0.2

λ2=0.4

λ2=0.6

λ2=0.8

(h) Sub-case 3.8

Figure 5.3: Case 3

sufficient stability criterion (Theorem 4.2.2) as follows

b1 = a3 −
a5a2

a4

> 0

b2 = a1 −
a5a0

a4

> 0

c1 = a2 −
a4b2

b1

> 0

c2 = a0 > 0

d1 = b2 −
b1c2

c1

> 0

Notice that, the elements in the Routh array are functions of K, τD and

τI where τD = f1(Θ), τI = f2(τD,Θ) and K = f3(τD, τI ,Θ). We can fix the

values of the derivative time, integral time and loop gain first to be within the

ranges established in the Theorem 4.2.1, such that τD ∈ (τncD,min, τ
nc
D,max), τI ∈

(τncI,min, τ
nc
I,max) and K ∈ (Knc

min, K
nc
max) if the necessary criterion of Routh stability

is met, then obtain the limit on the integral time as a function of K, τD and

model parameters based on the elements b1, b2, c1, c2 and d1.

Remark 15. The closed-loop stability is difficult to be satisfied when upper limits

on the integral time are imposed. Thus, it is desirable to form lower limit on

the integral time rather than upper limit on the integral time from the sufficient

criterion of Routh stability (Theorem 4.2.2).

Based on the inequality obtained from elements b1 and b2, the limits on integral

time is given as

τI > Iscb1 =
K(A1m2 − j3)

j1 +Kj2 − A1(1 +Km1)
(5.40)
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τI > Iscb2 = A1 − n1 (5.41)

where A1 = e1+Ke2
g1+Kg2

. Since we want the denominator of (5.40) to be positive,

otherwise, if the denominator is negative, (5.40) will become the upper limit on

the integral time - this upper limit is negative and lower than the lower limit. It

should be pointed out that for the lower limit on the integral time (5.40) to be

valid, a lower bound on the loop gain is given by

K > Ksc
b1 =

−B2 +
√
B2

2 − 4B1B3

2B1

(5.42)

where B1 = g2j2− e2m1, B2 = j2g1 + j1g2− e2− e1m1 and B3 = j1g1− e1. Notice

that, if B1 < 0, we choose the maximum root as the upper limit on the loop gain,

otherwise, choose the maximum root as the lower limit on the loop gain.

On the other hand, another limit on the integral time is established from the

element c1 as follows

τI > Iscc1 =
−C2 ±

√
C2

2 − 4C1C3

2C1

(5.43)

where C1 = A2(1 + Km1) −K(g1 + Kg2), C2 = K[(n1 − A1)(g1 + Kg2) − (1 +

Km1)(A1m2− j3) +A2m2], C3 = K2m2(A1m2− j3) and A2 = j1 +Kj2−A1(1 +

Km1). The maximum root is chosen as the lower limit on the integral time if

C1 > 0.

Obviously, the element c2 = a0 which is always greater than zero. Lastly, the

limit on the integral time can be obtained from the element d1, which forms a

third order polynomial as follows:

D1τ
3
I +D2τ

2
I +D3τI +D4 > 0

where D1 = KC1, D2 = KC2 +KC1(n1−A1), D3 = KC2(n1−A1)+KC3−KA2

and D4 = KC3(n1 − A1) + K2(A1m2 − j3). Assume that D1 > 0, we choose the

maximum root as the lower limit on the integral time as follows:

τI > Iscd1 (5.44)

A simple iterative tuning to determine the range of integral time from sufficient

condition of Routh stability is presented below.

Step 1: Set the K, τI and τD within the ranges based on necessary crite-

rion of Routh stability (Theorem 4.2.1) such that τD ∈ (τncD,min, τ
nc
D,max), τI ∈

(τncI,min, τ
nc
I,max) and K ∈ (Knc

min, K
nc
max). Note that, the K is obtained based on the

range of τI obtained from necessary criterion.
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Step 2: Calculate the τI based on sufficient condition of Routh stability. If the

lower limit on τI from sufficient condition is less and/or the upper limit on τI is

greater than the range of τI given by step 1, i.e., τncI,min < τI < τncI,max, the tuning is

completed for closed-loop stability. Otherwise, continue with the iterative tuning

until the value of τI falls within the range based on the sufficient condition of

Routh stability.

The summaries of the stabilizing regions of PID parameters for case 1, case 2

and case 3 based on the sufficient criterion of Routh stability are shown in Table

5.5, 5.6 and 5.7 respectively. From Table 5.5, 5.6 and 5.7, it can be noticed that

sub-cases 1.2, 1.5, 3.4, 3.6 and 3.8 cannot be stabilized, the sub-cases 1.3, 1.4, 1.7

and 1.8 can be marginally stabilized and the sub-cases 2.2, 2.3, 2.4, 3.3, 3.5 and

3.7 can be stabilized with PID controller.

Table 5.5: Summary of the stabilizing regions of PID parameter for case 1

case 1: q1 < 0 and q2 < 0

Sub-cases K τI τD

1.2

ζ1 > 0

ζ2 > 0

ζ3 < 0

Knc
0 < K < K

nc

1c max(0, I1, I
sc
b1, I

sc
b2, I

sc
c1,

Iscd1) < τI < I1.2,1

0 < τD < min(D1.2,1,

D1.2,2, D1.2,3)

In view of remark 15, the system is difficult to be stabilized. The

closed-loop system cannot fulfill the sufficient criterion of Routh

stability.

1.3

ζ1 > 0

ζ2 < 0

ζ3 > 0

Knc
0 < K < K

nc

1c τI > max(0, I1, I1.3,1,

I1.3,2, I
sc
b1, I

sc
b2, I

sc
c1, I

sc
d1)

max(0, D1.3,1) < τD <

D1.3,1

The closed-loop system is marginally stable when λ2 < 1 & 1 −
λ2 < λ1 < 1 or when λ2 > 1 & 1 < λ1 <

λ2
λ2−1

based on necessary

and sufficient criteria of Routh stability.

1.4

ζ1 > 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

1b , K
nc

1c )

τI > max(0, I1, I1.4,1,

Iscb1, I
sc
b2, I

sc
c1, I

sc
d1)

0 < τD <

min(D1.4,1, D1.4,2)
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Table 5.5: continued

Sub-cases K τI τD

The closed-loop system is marginally stable when λ2 < 1 & λ1 >

1 − λ2 or when λ2 > 1 & 0 < λ1 <
λ2
λ2−1

based on necessary and

sufficient criteria of Routh stability.

1.5

ζ1 < 0

ζ2 > 0

ζ3 > 0

Knc
0 < K < K

nc

1a max(0, I1, I1.5,1, I
sc
b1,

Iscb2, I
sc
c1, I

sc
d1) < τI <

I1.5,1

max(0, D1.5,1, D1.5,2,

D1.5,3) < τD < D1.5,1

In view of remark 15, the system is difficult to be stabilized. The

closed-loop system cannot fulfill the sufficient criterion of Routh

stability.

1.7

ζ1 < 0

ζ2 < 0

ζ3 > 0

Knc
0 < K <

min(K
nc

1a, K
nc

1b )

τI > max(0, I1, I1.7,1,

I1.7,2, I
sc
b1, I

sc
b2, I

sc
c1, I

sc
d1)

τD >

max(0, D1.7,1, D1.7,2)

The closed-loop system is marginally stable when λ2 < 1 & λ1 >

1 − λ2 or when λ2 > 1 & 0 < λ1 <
λ2
λ2−1

based on necessary and

sufficient criteria of Routh stability.

1.8

ζ1 < 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

1a, K
nc

1b ,

K
nc

1c )

τI > max(0, I1, I1.8,1,

Iscb1, I
sc
b2, I

sc
c1, I

sc
d1)

max(0, D1.8,1) < τD <

D1.8,1

The closed-loop system is marginally stable when λ2 < 1 & λ1 > 1

or when λ2 > 1 & 0 < λ1 < 1 based on necessary and sufficient

criteria of Routh stability.

Table 5.6: Summary of the stabilizing regions of PID parameter for case 2

case 2: q1 > 0 and q2 < 0

Sub-cases K τI τD

2.2

ζ1 > 0

ζ2 > 0

ζ3 < 0

Knc
0 < K < K

nc

2b τI > max(0, I2, I2.2,1,

Iscb1, I
sc
b2, I

sc
c1, I

sc
d1)

0 < τD <

min(D2.2,1, D2.2,2)
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Table 5.6: continued

Sub-cases K τI τD

The closed-loop system can fulfill the necessary and sufficient cri-

teria of Routh stability.

2.3

ζ1 > 0

ζ2 < 0

ζ3 > 0

Knc
0 < K < K

nc

2a τI > max(0, I2, I2.3,1,

Iscb1, I
sc
b2, I

sc
c1, I

sc
d1)

τD >

max(0, D2.3,1, D2.3,2)

The closed-loop system can fulfill the necessary and sufficient cri-

teria of Routh stability.

2.4

ζ1 > 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

2a, K
nc

2b )

τI > max(0, I2, I2.4,1,

I2.4,2, I
sc
b1, I

sc
b2, I

sc
c1, I

sc
d1)

max(0, D2.4,1) < τD <

D2.4,1

The closed-loop system can fulfill the necessary and sufficient cri-

teria of Routh stability.

Table 5.7: Summary of the stabilizing regions of PID parameter for case 3

case 3: q1 < 0 and q2 > 0

Sub-cases K τI τD

3.3

ζ1 > 0

ζ2 < 0

ζ3 > 0

Knc
0 < K < K

nc

3b τI > max(0, I3.3,1,

I3.3,2, I
sc
b1, I

sc
b2, I

sc
c1, I

sc
d1)

0 < τD <

min(D3.3,1, D3.3,2)

The closed-loop stability system can fulfill the necessary and suf-

ficient criteria of Routh stability.

3.4

ζ1 > 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

3b , K
nc

3c )

max(0, I3.4,1, I
sc
b1, I

sc
b2,

Iscc1, I
sc
d1) < τI < I3.4,1

0 < τD < min(D3.4,1,

D3.4,2, D3.4,3)

In view of remark 15, the system is difficult to be stabilized. The

closed-loop system cannot fulfill the sufficient criterion of Routh

stability.

112



Table 5.7: continued

Sub-cases K τI τD

3.5

ζ1 < 0

ζ2 > 0

ζ3 > 0

Knc
0 < K < K

nc

3a τI > max(0, I3.5,1, I
sc
b1,

Iscb2, I
sc
c1, I

sc
d1)

τD >

max(0, D3.5,1, D3.5,2)

The closed-loop system can fulfill the necessary and sufficient cri-

teria of Routh stability.

3.6

ζ1 < 0

ζ2 > 0

ζ3 < 0

Knc
0 < K <

min(K
nc

3a, K
nc

3c )

max(0, Iscb1, I
sc
b2, I

sc
c1, I

sc
d1)

< τI < I3.6,1

τD >

max(0, D3.6,1, D3.6,2)

In view of remark 15, the system is difficult to be stabilized. The

closed-loop system cannot fulfill the sufficient criterion of Routh

stability.

3.7

ζ1 < 0

ζ2 < 0

ζ3 > 0

Knc
0 < K <

min(K
nc

3a, K
nc

3b )

τI > max(0, I3.7,1,

I3.7,2, I
sc
b1, I

sc
b2, I

sc
c1, I

sc
d1)

max(0, D3.7,1) < τD <

D3.7,1

The closed-loop system can fulfill the necessary and sufficient cri-

teria of Routh stability.

3.8

ζ1 < 0

ζ2 < 0

ζ3 < 0

Knc
0 < K <

min(K
nc

3a, K
nc

3b ,

K
nc

3c )

max(0, I3.8,1, I
sc
b1, I

sc
b2,

Iscc1, I
sc
d1) < τI < I3.8,1

max(0, D3.8,1) < τD <

D3.8,1

In view of remark 15, the system is difficult to be stabilized. The

closed-loop system cannot fulfill the sufficient criterion of Routh

stability.

5.4 PID Tuning Algorithm

The Kc, τI and τD are tuned within the established stabilizing PID regions shown

in Tables 5.5, 5.6 and 5.7 in order to provide a desired or acceptable control

performance/robustness. As a prerequisite for the proposed tuning algorithms,

we introduce 3 new tuning or scaling parameters, namely rc, rd and ri which are
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used to calculate for the values of conventional PID parameters, Kc, τD and τI

respectively.

Step 1: From the given model (5.11), determine λ1 and λ2; then calculate q1, q2

and q3 based on which determine the main case (1, or 2, or 3) involved.

Step 2: Identify which sub-cases can be stabilized using a PID controller from

Tables 5.5-5.7. Choose one of the sub-cases which can be stabilized using the

PID controller and proceed to step 3.

Step 3: Calculate the following:

If there are no upper limits on Kc, τI and τD, the maximum lower limits are

selected as the basis for PID parameter tuning. For this reason, we introduce 3

scaling or tuning parameters rc1, ri1 and rd1 are given as follows:Kc

τI

τD

 ,


rc1Kmax

Kp

ri1Imax
rd1Dmax

 (5.45)

where rc1 > 1, ri1 > 1 and rd1 > 1.

On the other hand, if there are upper and lower limits on Kc, τI and τD, then

we propose a tuning formula in the form ofKc

τI

τD

 ,


rc2∆K+Kmax

Kp

ri2∆τI + Imax
rd2∆τD +Dmax

 (5.46)

where ∆K = Kmax −Kmin, ∆τI = Imax − Imin and ∆τD = Dmax −Dmin, while

0 < rc1 < 1, 0 < ri1 < 1 and 0 < rd1 < 1

Step 4: Calculate the minimum of integral time based on the sufficient condition,

i.e., Isc; if τI > Isc, then go to next Step 5, otherwise τI < Isc, go back to Step

3 and increase the value of ri such that the integral time is larger than its lower

limit based on the sufficient condition.

Step 5: Evaluate the closed-loop robustness via gain margin (GM) and phase

margin (PM) analysis using Nyquist diagram. Evaluate the responses to step

changes in setpoint and disturbance. If the robustness and performance meet

desired specification, then the tuning task is completed, otherwise, repeat Step

3 by adjusting the values of rc, rd and ri until acceptable or desired robustness-

performance is obtained. Note that, a set point pre-filter (Fr) is suggested in order

to reduce the overshoot response in setpoint tracking. The setpoint pre-filter is

expressed by

Fr =
τI
ε
s+ 1

τIs+ 1
, 1.5 < ε < 5 (5.47)
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Remark 16. In the step 3 calculation of PID parameters, the limits are taken

from the necessary criterion as we have not obtained the integral time limits based

on the sufficient condition. In other words, we need to specify first the loop gain,

integral time and derivative time within the maximum lower and minimum upper

limit given by the necessary criterion (Theorem 4.2.1). To check whether suffi-

cient condition is fulfilled or not, we then need to calculate the integral time limits

based on Theorem 4.2.2 (sufficient criterion of stability) in step 4. If the integral

time set in step 3 is within the limits (i.e., assuming sufficient condition imposes

upper and lower limits on the integral time), or is above the minimum limits

given by the sufficient criterion, then the PID controller is guaranteed stable,

hence proceed to step 5.

Remark 17. If there are impulsive spikes on the manipulated variable with set-

point tracking and output disturbance rejection, a lag filter is suggested to augment

with the proposed PID controller in order to reduce the impulsive spikes as follows:

Fa =
1

τfs+ 1
, 0.001 < τf < 0.005 (5.48)

5.5 Illustrative Example

Based on P2 from Section 5.1.3, a linearized model from F to Gl is obtained at

the operating condition for controller design as follows:

Ps =
Gl(s)

F (s)
=

298.7(−7.73s+ 1)(−10s+ 1)(10.2s+ 1)

s(10s+ 1)(157.7s2 + 11.9s+ 1)
(5.49)

It can be noticed that the transfer function belongs to case 1 as q1 < 0,

q2 < 0 and q3 > 0 are given. Note that, the sub-cases 1.3, 1.4, 1.7 and 1.8 can

be marginally stabilized for case 1. By using sub-case 1.3, we obtain Gc(s) =

3.7181× 10−5(1 + 1/1.2241× 104s+ 7.5723s) after a trial-and-error tuning with

rc = 8, ri = 5 and rd = 0.5 augmented with a lag filter Fa = (1/(0.001s + 1))

to reduce the impulsive spikes on manipulated variable with setpoint tracking

and output disturbance rejection. The proposed PID controller has a GM and

PM of 10.1 dB and 75° respectively. Moreover, we obtain Gc(s) = 3.3769 ×
10−5(1 + 1/263.55s+ 22.8438s) with rc = 5, ri = 8 and rd = 1.5 augmented with

a lag filter Fa = (1/(0.001s + 1)) by using sub-case 1.7 for further comparison

purpose, which leads to GM and PM of 8.86 dB and 55.9° respectively. The

set-point prefilter is not implemented in both cases as the overshoot is not large.
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For comparison purpose, two controllers, i.e., via LQG synthesis and Ziegler-

Nichols (ZN) frequency response tuning, are designed based on (5.49). The LQG

controller has a GM and PM of 8.32 dB and 38.1°, respectively. A stabilizing

fifth-order LQG controller is obtained as follows:

Gc(s) = 4.8134× 10−7 × (10s+ 1)(120s+ 1)(169s2 + 13s+ 1)

s(0.00067s+ 1)(10s+ 1)(37.21s2 + 8.1s+ 1)
(5.50)

Meanwhile, the PID controller with filter designed based on Ziegler-Nichols

(ZN) frequency response tuning has a GM of 3.11 dB and a PM of 34.1°, which

can be expressed as follows:

Gc(s) = 1.0998× 10−6 × 1156s2 + 65s+ 1

s(1.6s+ 1)
(5.51)
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Figure 5.4: Responses of setpoint tracking at nominal condition

The closed-loop responses of the PID controllers are evaluated on the basis of

separate step changes of magnitude 1 unit each in the setpoint at t = 1 unit and

output disturbance (glucose concentration in feed) at t = 50 units. Figure 5.4 and

Figure 5.5 demonstrate the responses of setpoint tracking and output disturbance

rejection at nominal condition, respectively. In Figure 5.4, the results show that

both proposed PID controllers from sub-cases 1.3 and 1.7 outperform the high-

order LQG controller and PID controller based on Ziegler-Nichols tuning, both

in the responses of setpoint tracking and output disturbance rejection. In Figure

5.5, it appears that the output disturbance rejection of proposed PID controller

from sub-case 1.7 is a bit sluggish compared to PID controllers from sub-case

1.3, LQG controller and PID controller based on Ziegler-Nichols tuning. The

responses of manipulated variable for each control schemes with setpoint tracking
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Figure 5.5: Responses of output disturbance at nominal condition
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Figure 5.6: Responses of manipulated variable for setpoint tracking

are shown in Figure 5.6, which shows no obvious impulsive spikes occurred on

the manipulated variable for each control schemes. Besides, the simulation of the

responses of manipulated variable for disturbance rejection has been done but no

impulsive spikes were observed instead.

5.6 Summary

Most of the existing reports on PID controller design and tuning are based on the

first- and second-order models, which are assumed to be able to represent many

real processes of interest. However, there are classes of important processes which

could not be simply reduced to a first- or second-order model without the risk of

losing information on significant dynamic behaviors. One such class of processes
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is the fed-batch fermentation, which are commonly used in the biotechnology

industry. Interestingly, these processes can be adequately represented by a class

of fourth-order integrating model with multiple right-half plane (RHP) zeros,

e.g., two RHP zeros. Unfortunately, so far there has been no report on PID

stabilization or tuning for such a class of fourth-order integrating system. The

present work aims to address this gap by establishing a set of stabilizing PID

controller parameter regions based on the Routh-Hurwitz stability criteria, with

the aid of two theorems recently published in the literature [179]. It has been

found that via the numerical study, a PID controller tuned based on the proposed

procedure can substantially outperform a high-order controller, e.g., the fifth-

order optimal LQG controller. This shows that for such high order systems,

e.g., fourth-order integrating system, one does not need a high-order controller to

provide closed-loop stability in fact, a low-order PID controller can do the job

well provided the stabilizing parameter regions are known beforehand. It should

be bear in mind that, the class of fourth-order integrating system currently under

investigation is not the only form that a fed-batch fermentation process can show

during the course of the batch operation period. Indeed, it has been shown

(unpublished) that a fed-batch process can show half a dozen forms of high-order

integrating dynamics. Addressing the stabilization via PID control of these other

forms of high-order integrating dynamics will remain an open problem for at least

in the next few years. The presented chapter could provide a meaningful direction

towards this future research direction. The work covered in this chapter has been

submitted to International Journal of Control1.

1Qiu Han Seer and Jobrun Nandong. Stabilizing PID Tuning for a class of fourth-order

integrating nonminimum-phase systems. Submitted to International Journal of Control - under

first revision May 2017.
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Chapter 6

Multi-scale Control Scheme

In bioprocesses, several complex dynamics are frequently encountered in prac-

tice. From Chapter 4 and 5, it can be noticed that the stabilizing PID parameter

regions are limited for such complex dynamic processes by using standard single-

loop PID control. This chapter presents a multi-scale control (MSC) scheme

which is applicable to both stable and unstable/integrating processes. The MSC

scheme aims to achieve good cooperation among the different plant modes. For

instance, a decentralized control and double-loop structure control strategies have

been developed based on the MSC scheme. Decentralized control strategies have

the advantages in controlling multi-inputs and multi-outputs processes. Mean-

while, double-loop structure control strategy can also be implemented to convert

the integrating system into pre-stabilized second-order system first before the

MSC scheme is employed to design the primary controller. This chapter presents

the fundamental of MSC scheme and its applications to designing multi-loop PID

control and double-loop PID control systems for some typical bioprocesses.

6.1 Fundamental of Multi-scale Control Scheme

The details of multi-scale control (MSC) scheme can be found in [154–157]. It has

been shown that the multi-scale control scheme can be used to synthesize practical

PID controller augmented with a filter. The multi-scale control scheme provides

significant performance and robustness improvements over the conventional PID

control for processes with long deadtime and inverse-response behaviors.
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6.1.1 Plant Decomposition

A brief overview of the MSC scheme is presented. The basic idea of the MSC

scheme is first to decompose a given plant system into a sum of basic factors

or modes with distinct speeds of responses to a manipulated variable (input).

Assume that a plant P is given by rational transfer function, which can be de-

composed into a sum of factors or modes by applying partial fraction expansion

as follows:

P (s) = P0(s) + P1(s) + P2(s) + ...+ Pn(s) (6.1)

where Pi, ∀i ∈ 0, 1, 2, ..., n is the plant factor, which can be first or second order

system with real coefficients. P0 is the outermost factor while Pi, ∀i ∈ 0, 1, 2, ..., n

is the inner-layer factor, where the response of Pj is slower that Pj+1, ∀j ∈
0, 1, 2, ..., n− 1. A set of sub-controllers is designed based on the basic modes,

which are then combined in such a way to enhance cooperation among these

different modes.

6.1.2 Realization of 2-layer Multi-scale Control Scheme

The block diagram of a 2-layer structure of multi-scale control (MSC) scheme is

shown in Figure 6.1, where the plant P can be decomposed into a sum of two

basic modes as follows:

Figure 6.1: Two-layer MSC scheme block diagram

Figure 6.2: Equivalent reduced single-loop feedback control of two-layer MSC

scheme block diagram

The plant P can be decomposed into a sum of two basic modes as follows:

P (s) = m0(s) +m1(s) (6.2)
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where m0 represent the outermost (slow) mode and m1 represent the inner-layer

(fast) mode. In Figure 6.1, Ki, i = 0, 1 represent the sub-controller of outer-

most and inner-layer modes, W is the multi-scale predictor, R and Y denote

the setpoint and controlled variable signals respectively. The closed-loop transfer

function for the inner-layer is defined as

G1(s) =
U(s)

C(s)
=

K1(s)

1 +K1(s)W (s)
(6.3)

The two-layer MSC scheme can now be reduced to single-loop feedback control

as shown in Figure 6.2. The overall MSC controller can be defined as follows:

Gc(s) = K0(s)G1(s) (6.4)

6.2 Multi-loop PID Controller Design

The details of multi-scale control scheme for multivariable processes has been

reported in [133, 180]. The multi-loop PID control has been widely used in

multi-input and multi-output (MIMO) industrial processes. The MSC scheme is

proposed to improve the effectiveness of multi-loop PID control in MIMO pro-

cesses.

6.2.1 Case Study - Extractive Fermentation Process

In fact, the conventional alcoholic fermentation is typically inhibited by high

product concentration, i.e., ethanol concentration above 12% (v/v) would re-

duce growth and production of conventional microorganisms, e.g., Baker’s yeast

[20]. In order to achieve high productivity in the fermentor, extractive fermenta-

tion technique has been implemented to partially remove the inhibiting ethanol

(products). Refer to Figure 6.3, the extractive alcoholic fermentation process is

constituted by four units: fermentor (ethanol production unit), centrifuge (cell

separation unit), cell treatment unit and vacuum flash vessel (ethanol-water sep-

aration unit) [20, 181].

The control of extractive alcoholic fermentation process using Bakers yeast

based on the decentralized partial control strategy was studied in [182]. In the

present study, the application of partial control strategy based on 3x3 extractive

fermentation system using Z. mobilis is proposed. The kinetics data for Z. mobilis

is obtained from [183]. The detailed mechanistic model of extractive fermentation

process is presented in Appendix C. The manipulated variables are: liquid flash
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Figure 6.3: Extractive alcoholic fermentation

recycle ratio (r), cell recycle ratio (R) and flowrate of fresh feed (F0, m3/hr). The

controlled variables are: concentration of glucose (Cg, kg/m3), concentration of

ethanol (Ce, kg/m3) and liquid level in fermentor (L, m). The PID controllers

required are designed based on the principle of multi-scale control scheme [154,

155]. The transfer function matrix for the 3x3 extractive fermentation system is

given by (6.5):

Gp =


3.25(s−0.849)

(s+0.165)(s+0.485)
28.43(s−0.077)(s+0.01)

(s+0.456)(s+0.204)(s+0.034)
5.49

(s+0.216)

−7
(s+0.106)

16.1(s+0.021)(s−0.873)
(s+0.125)(s+0.046)

6.08
(s+0.219)

0.5(s−0.074)(s+1.45)
(s+9.23)(s+0.503)(s+0.16)

0.19(s2+0.05s+0.001)
(s+0.11)(s2+0.53s+0.109)

0.029(s+0.028)
(s+0.21)(s+0.03)

 (6.5)

where the controlled variables Y = [Cg Ce L]T and manipulated variables U =

[r R F0]T .

The Relative Gain Array (RGA) is used to determine the controller pairings,

which given by (6.6):

RGA =

 45.7 −33.0 −11.7

−5.1 17.0 −10.9

−39.6 17.1 23.5

 (6.6)

Based on the RGA, the pairing of inputs and outputs are (r, Cg), (R, Ce) and

(F0, L). The transfer function of g11 for pairing of inputs and outputs (r, Cg) is
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used as an illustration, which is given by

g11(s) = P (s) =
Kp(τzs+ 1)

(τ0s+ 1)(τ1s+ 1)
(6.7)

where Kp, τz and τi, i = 0, 1 represent the process gain, lead time constant and

time constant respectively. Upon decomposition, a sum of two basic modes are

expressed by

P (s) =
k0

τ0s+ 1︸ ︷︷ ︸
m0

+
k1

τ1s+ 1︸ ︷︷ ︸
m1

(6.8)

where m0 and m1 denote the outermost and inner-layer modes, respectively and

the mode gains are given by

k0 =
Kp(τz − τ0)

τ1 − τ0

(6.9)

k1 =
Kp(τz − τ1)

τ0 − τ1

(6.10)

Design the K1 based on the predictor W . First, assume that a P-only con-

troller is used for controlling the inner-layer mode m1 (predictor) and the sub-

controller for inner-layer mode is given by

K1 = kc1 (6.11)

where kc1 denotes the sub-controller gain of inner-layer mode. The IMC Tuning

is applied with dominant closed-loop time constant τc1 in order to define the

sub-controller for inner-layer mode. Assume that the closed-loop time constant

will be improved four times compared to open-loop time constant. Thus, the

inner-layer closed-loop transfer function can be defined as

G1(s) =
kc1

1 + kc1W (s)
(6.12)

where the predictor W (s) = k1
τ1s+1

is substituted into (6.12). Construct the overall

plant transfer function as follows:

Pc = G1P (6.13)

A PI controller is used for controlling the outermost mode. The sub-controller

for outermost modes is designed based on the overall plant transfer function. The

IMC Tuning is applied with dominant closed-loop time constant τc2 in order to

define the sub-controller for outermost mode. Assume that the closed-loop time
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constant will be improved four times compared to open-loop time constant, which

is given by

K0 = kc0(1 +
1

τI0s
) (6.14)

where kc0 denotes the sub-controller gain of outermost mode whilst τI0 is the

integral time for the outermost mode sub-controller.

Thus, the overall MSC controller can be arranged as a PID controller with

filter in the classical PID form as follows:

Kmsc = K0G1 = Kc(1 +
1

τIs
)(
τDs+ 1

τfs+ 1
)S(kc1) (6.15)

where Kc, τI , τD and τf represent the controller gain, integral time, derivative

time and filter time constant respectively. Here, S(kc1) represents the sign of

controller gain kc1.

The MSC controller for g22 and g33, which represent the pairing of inputs

and outputs (R, Ce) and (F0, L), can be designed in similar way. The tunings

employed are as shown in Table 6.1.

Table 6.1: PID controller design based on the multi-scale control scheme

Loop Model Input Output Inner loop Outer loop

1 g11 r Cg
IMC

tuning

P

controller

IMC

tuning

PI

controller

2 g22 R Ce
IMC

tuning

P

controller

Ziegler-

Nichols

PI

controller

3 g33 F0 L
IMC

tuning

P

controller

IMC

tuning

PI

controller

Note that, the IMC tuning is applied to design the sub-controllers for inner-

layer and outermost modes. However, the PI controller for the outermost mode

in loop 2 could not be designed by applying IMC tuning. Thus, Ziegler-Nichols

tuning is applied instead.

The PID controllers of loop 1, loop 2 and loop 3 are given as follows:

Loop 1:

Gc1(s) = −0.0078×
(1 + 6s

s

)
×
(2.0668s+ 1

0.4148s+ 1

)
(6.16)

Loop 2:

Gc2(s) = 3.75× 10−5 ×
(1 + 53s

s

)
×
( 7.94s+ 1

1.3219s+ 1

)
(6.17)

Loop 3:

Gc3(s) = 51.4921×
(1 + 0.72s

s

)
×
(4.7596s+ 1

0.9598s+ 1

)
(6.18)
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6.2.2 Results and Discussion
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Figure 6.4: Closed-loop performances of 3×3 multi-scale control system with

disturbances

The operating conditions of biomass, glucose, ethanol and liquid level in the

fermentor are 24.4 kg/m3, 3.8 kg/m3, 54.4 kg/m3 and 6.6321 m, respectively. At

these conditions, the ethanol yield and productivity are 88.8% and 24.6 kg/m3.hr

respectively. It should be noted that the typical maximum yield and produc-

tivity for the extractive fermentation using Bakers yeast are about 82% and 21

kg/m3.hr, respectively. Thus, the application of the Z. mobilis substantial in-

creases both yield and productivity. The closed-loop performances subject to

disturbances in fresh feed glucose concentration (Sgo) and fresh feed xylose con-

centration (Sxo) of the 3×3 multi-scale control system are shown in Figure 6.4; the

responses are based on sequential step changes of 5 kg/m3 in the Sgo and followed

by 3 kg/m3 in the Sxo. As can be seen, all the controlled parameters are restored
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Figure 6.5: Responses of manipulated variables for 3×3 multi-scale control system

back the set point mentioned above. The steady-state drop in the productivity

(not directly controlled) is within 1 kg/m3.hr while the drop in yield is quite

negligible. This suggests that the 3×3 partial control strategy with three PID

controllers designed using the multi-scale control scheme is effective for the com-

plex nonlinear extractive fermentation process. Figure 6.5 shows the responses of

manipulated variables for 3×3 multi-scale control system. There is no impulsive

spikes occurred on the manipulated variables, i.e., liquid flash recycle ratio (r),

cell recycle ratio (R) and flowrate of fresh feed (F0, m3/hr).

Instead of applying 3×3 multi-scale control system, a 2×2 control system with

the control-loop 2 (R, Ce) turned off is used instead. Again subject to the similar

disturbances as mentioned previously, the closed-loop responses under the 2×2

control strategy is shown in Figure 6.6. As the loop control for ethanol concen-

tration was eliminated, the ethanol concentration reach higher concentration in

the beginning compared to 3×3 multi-scale control system (refer to Figure 6.4).

Other than this, the responses are pretty much the same as in the case of the

3x3 control strategy. Thus In this case, it can be concluded that a simple 2×2

control strategy is quite sufficient to control the alcoholic fermentation process

application of the 2×2 control strategy could be better in practice in term of the

cost savings related to the control instrumentation.
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Figure 6.6: Closed-loop performances of 2×2 multi-scale control system with

disturbances

6.3 Double-Loop Control Strategy for Integrat-

ing Systems

The integrating processes are frequently encountered in practice, especially in

chemical plants and electromechanical processes [130, 184], such as heating boil-

ers, liquid storing tanks with pump, heat exchanger and batch chemical reac-

tors [127, 185, 186]. In real processes, the presence of integrating dynamic can

cause poor control performance due to difficulty in stabilizing the unstable poles.

Moreover, the high overshoot or inverse response is frequently encountered in in-

tegrating processes due to the presence of negative or positive zero respectively,

which is highly undesirable [127, 184].

The main focus of this section is on the control of integrating systems com-
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monly encountered in bioprocesses, e.g., fed-batch fermentation. Two control

schemes are combined to address challenging control design in integrating pro-

cesses: (1) double-loop control structure and (2) multi-scale control (MSC) scheme.

The multi-scale control (MSC) scheme has been reported in [133], which offers

a systematic approach to designing multi-loop PID controllers augmented with

filters. The double-loop structure is implemented as to enable the use of the

existing MSC-PID tuning procedure. It shall be shown that the proposed tuning

method substantially simplifies the difficult PID tuning task for integrating sys-

tems. The idea of double-loop control structure was used in [187], in which an

inner feedback loop is used to first pre-stabilize the integrating process.

6.3.1 Block Diagram of Double-loop Control

Figure 6.7: Double-loop structure of feedback control scheme block diagram

Figure 6.8: Equivalent reduced single-loop feedback control of double-loop struc-

ture block diagram

The double-loop control structure for integrating process is shown in Figure

6.7. The basic idea is to first pre-stabilize the integrating process using the inner

feedback controller. This conversion of the integrating system to a stable one

enables a PID (main) controller to be tuned as in the standard-single loop control

scheme, as shown in Figure 6.8. Here, P is the integrating plant transfer function;

R and Y denote the setpoint and controlled variable signals respectively. There

are two controllers in a double-loop control structure, which is an inner controller

Gc2 and main controller Gc1. The plant transfer function P is first stabilized

using inner controller Gc2 and the main controller Gc1 is tuned to provide certain

performance and robustness improvements based on the overall process Pa. In this

work, a MSC-PID tuning method is used to tune the main PID controller, where

the construction of MSC-PID tuning method can be referred to next Section 6.1.
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6.3.2 Derivation of MSC-PID Tuning Formula

A brief construction procedure of MSC-PID tuning formula is presented for a

second order process, where the transfer function is represented as follows:

P (s) =
Kp(τzs+ 1)

(τ0s+ 1)(τ1s+ 1)
(6.19)

where Kp, τz and τi, i = 0, 1 represent the process gain, lead time constant and

time constant respectively.

The partial fraction expansion is applied to decompose (6.19) into a sum of

two basic modes given by

P (s) =
k0

τ0s+ 1︸ ︷︷ ︸
m0

+
k1

τ1s+ 1︸ ︷︷ ︸
m1

(6.20)

where the mode gains are

k0 =
Kp(τz − τ0)

τ1 − τ0

(6.21)

k1 =
Kp(τz − τ1)

τ0 − τ1

(6.22)

Assume that a P-only controller is used for controlling the inner-layer mode

m1 and a PI controller is used for controlling the outermost mode m0. The

sub-controllers for inner-layer and outermost modes are given by

K1 = kc1 (6.23)

K0 = kc0(1 +
1

τI0s
) (6.24)

where kc1 and kc0 denote the sub-controller gains of inner-layer and outermost

mode respectively; τI0 is the integral time for the outermost mode sub-controller.

The inner-layer transfer function can be defined in term of

G1(s) =
kc1

1 + kc1W (s)
(6.25)

After substituting W (s) = k1
τ1s+1

into (6.25), and followed by simplification as

follows

G1(s) =
k0
c1

τc1s+ 1
(6.26)

where the overall gain and closed-loop time constant are given by (6.27) and

(6.28) respectively

k0
c1 =

kc1
1 + kc1k1

(6.27)
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τc1 =
τ1

1 + kc1k1

(6.28)

The ratio of open-loop time constant to closed-loop time constant is defined

as follows

λ1 =
τ1

τc1
; λ1 > 1 (6.29)

From (6.28) and (6.29), kc1 can be expressed as follows:

kc1 =
λ1 − 1

k1

; λ1 > 1 (6.30)

Meanwhile, PI controller is chosen to control the outermost mode. However,

P-only controller is assumed first in order to determine the λ0 and kc0, which can

be determined in the same way as the inner-layer mode.

λ0 =
τ0

τc0
; λ0 > 1 (6.31)

kc0 =
λ0 − 1

k0

S(kc1) ; λ0 > 1 (6.32)

Here, S(kc1) represents the sign of controller gain kc1 which is included in

order to get the correct sign for the controller gain kc0. Also, the integral time

for outermost mode is expressed based on a desired fraction γ of the open-loop

time constant.

τI0 = γτ0 (6.33)

where 0.1 ≤ γ ≤ 1.5.

The overall MSC controller can be arranged as a PID controller augmented

with filter in the classical PID form

Gc(s) = Kc(1 +
1

τIs
)(
τDs+ 1

τfs+ 1
) (6.34)

where Kc, τI , τD and τf represent the controller gain, integral time, derivative

time and filter time constant respectively, which can be expressed as follows:

Kc =
(λ0 − 1)(λ1 − 1)(τ0 − τ1)2

λ1(τ0 − τz)(τ1 − τz)|Kp|Kp

(6.35)

τI = γτ0 (6.36)

τD = τ1 (6.37)

τf =
τ1

λ1

(6.38)

Here, |Kp| denotes the absolute value of Kp. Equations (6.35)-(6.38) represent

the MSC-PID tuning relations, which can be tuned by adjusting the dimensionless

parameters λ0, λ1 and γ.
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6.3.3 Double-loop Control System Design

6.3.3.1 Tuning Relations for Secondary Controller

The proposed double-loop control scheme can be referred in Section 6.3.1. Con-

sider a transfer function of a second order integrating process represented in the

form of

P =
Kp(τzs+ 1)

s(τs+ 1)
(6.39)

where Kp, τz and τ represent the process gain, lead time constant and lag time

constant for the integrating process, respectively.

From Figure 6.8, the closed-loop transfer function Pa is written as follows:

Pa(s) =
Y (s)

U(s)
=

P (s)

1 +Gc2(s)P (s)
(6.40)

Assume that the secondary controller is selected as a P controller, i.e. Gc2 =

Kc2. Based on (6.40), the characteristic equation is shown to be

1 +Kc2P = 0 (6.41)

By substituting (6.39) into (6.41), the characteristic equation is expressed in

the form of

τs2 + (1 +Kc2Kpτz)s+Kc2Kp = 0 (6.42)

The standard second-order form is given by

a2s
2 + a1s+ a0 = 0 (6.43)

where a2 = τ , a1 = 1 +Kc2Kpτz and a0 = Kc2Kp.

From the necessary condition of Routh Stability criterion, a2, a1, a0 > 0.

Based on the necessary stability condition, two cases can be encountered.

Case 1: If τz > 0

1 +Kc2Kpτz > 0 (6.44)

Upon simplification of (6.44), the stability range is

Kc2Kp > −
1

τz
(6.45)

Also, the Routh stability stipulates that a0 = Kc2Kp > 0. So, the lower limit

for Kc2Kp, which ensures closed-loop stability is

Kc2Kp > 0 (6.46)
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For simple tuning, let a parameter ω1 be defined as follows:

Kc2Kp = ω1 ; ω1 > 0 (6.47)

Then, the secondary controller gain is given by

Kc2 =
ω1

Kp

; ω1 > 0 (6.48)

Based on the second-order characteristic equation (6.42), the roots x0 and x1

of the equation can be obtained

x0, x1 =
−a1 ±

√
a2

1 − 4a0a2

2a2

(6.49)

To avoid the formation of imaginary roots, a2
1 − 4a0a2 > 0. For real roots, it

can be readily shown that

ω1 > ωcric1 =
4τ − 2τz +

√
(2τz − 4τ)2 − 4τ 2

z

2τ 2
z

(6.50)

where ωcric1 indicates a critical value below which the system has complex imag-

inary poles.

In (6.50), ω1 is specified in order to avoid unstable or complex imaginary poles.

Note that, ω1 is obtained by considering the requirements from (6.47) and (6.50)

in order to avoid unstable poles.

Case 2: If τz < 0

1−Kc2Kp|τz| > 0 (6.51)

Kc2Kp <
1

|τz|
(6.52)

The Routh stability requires that a0 = Kc2Kp > 0. There are upper and lower

limits for Kc2Kp, which ensure closed-loop stability

0 < Kc2Kp <
1

|τz|
(6.53)

Let us define a tuning parameter ω2 as follows:

Kc2Kp =
1

ω2|τz|
; ω2 > 1 (6.54)

Kc2 =
1

ω2Kp|τz|
; ω2 > 1 (6.55)
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The same condition as in case 1 is applied in order to avoid the imaginary

roots. It can be shown that, the tuning parameter ω2 has to be

ω2 > ωcric2 =
2 + 4τ

|τz | +
√

[−(2 + 4τ
|τz |)]

2 − 4

2
(6.56)

where ωcric2 denotes a critical value below which the system has complex imagi-

nary poles.

In (6.56), ω2 is specified in order to avoid unstable or complex imaginary poles.

Here, ω2 is obtained by considering the requirements from (6.54) and (6.56).

The closed-loop transfer function Pa in (6.40) can now be expressed as follows

Pa =
Kpa(τzs+ 1)

(τp0s+ 1)(τp1s+ 1)
(6.57)

where the overall process gain is given by

Kpa =
Kpτp0τp1

τ
(6.58)

Also, where the time constant τp0 = − 1
x0

and τp1 = − 1
x1

and τp0 > τp1.

For Case 1, the τp0 and τp1 can be expressed as follows

τp0 =
2τ

1 + ω1τz −
√

(1 + ω1τz)2 − 4ω1τ
(6.59)

τp1 =
2τ

1 + ω1τz +
√

(1 + ω1τz)2 − 4ω1τ
(6.60)

For Case 2, the τp0 and τp1 can be expressed as follows

τp0 =
2τ

1− 1
ω2
−
√

(1− 1
ω2

)2 − 4τ
ω2|τz |

(6.61)

τp1 =
2τ

1− 1
ω2

+
√

(1− 1
ω2

)2 − 4τ
ω2|τz |

(6.62)

Based on (6.57), the main controller (MSC-PID controller) parameters can be

tuned by referring to (6.35)-(6.38) which are shown in Section 6.1.

6.3.3.2 Modification of MSC Tuning Relations

The modification of the expression of filter time constant in main controller from

(6.38) is proposed in order to increase the overall closed-loop robustness, partic-

ularly to increase the Phase Margin (PM).

τf = Fa
τ1

λ1

(6.63)
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where the modifying factor of Fa is recommended in the range of 0.1 ≤ Fa ≤ 1.0.

The filter is implemented in order to reduce the high frequency noise presents in

the process variable with a very slow right-half plane (RHP) zero, i.e., large |τz|
in the case 2.

6.3.3.3 Robustness Criteria

In order to get additional insight into the performance-robustness of the system,

sensitivity function plays an important role in judging the performance of the

controller. The maximum peak of sensitivity function in frequency domain is

defined as follows:

Ms = ‖[1 +Gc1(jω)Pa(jω)]−1‖∞ (6.64)

where the maximum peak of sensitivity function should be in the range of Ms <

2.0 [188]. The lower value of maximum peak of sensitivity function leads to

higher robustness of controller but results in a sluggish response. A range of

1.0 < Ms < 2.0 is recommended to give a practical response.

6.3.3.4 Design Procedure

The general design procedure is proposed as follows:

Step 1: Obtain ωcric1 using (6.50) or ωcric2 using (6.56) for case 1 or 2 respectively.

Set ωi = fωcrici, 1.2 ≤ f ≤ 1.6, i = 1 or 2. Calculate Kc2 via (6.48) or (6.55) for

case 1 or 2 respectively.

Step 2: The closed-loop transfer function Pa as shown in (6.57) is obtained by

calculating the value of Kpa via (6.58); τp0 and τp1 via (6.59) and (6.60) for case

1 and (6.61) and (6.62) for case 2 respectively.

Step 3: The main controller Gc1 in (6.34) is tuned by specifying the three MSC

tuning parameters, which are λ0, λ1 and γ via (6.35)-(6.37) and (6.63) for the

controller gain Kc, integral time τI , derivative time τD and filter time constant τf

is calculated using the modified relation in (6.63) respectively. As a suggestion,

set Fa = 0.1 and λ0 = 1.1 while altering λ1 and γ in order to achieve GM close to

7.5 dB - 8.5 dB, PM close to 50°- 60°and maximum peak of sensitivity function

in the range of 1.0 < Ms < 2.0 by referring to (6.64).
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6.3.4 Illustrative Examples

6.3.4.1 Example 1

A linearized open-loop second order integrating process is obtained based on a

real case of fed-batch bioethanol production [172].

P (s) =
3.55(−20.64s+ 1)

s(42.81s+ 1)
(6.65)

The process parameters are given by: Kp = 3.55, τz = −20.64 and τ = 42.81.

A characteristic of inverse response is significant with τz = −20.64, case 2 is

applied for the secondary controller design by referring to Section 6.3.3.1. From

(6.54) and (6.56), the ω2 is obtained with ω2 > ωcric2 = 10.20 to avoid imaginary

roots. Specify the value ω2 = 1.2ωcric2, i.e., 20% above the critical value, which

leads to ω2 = 12.24 and Kc2 = 0.0011 by using (6.55). For the main controller,

the finalized MSC tuning values are λ0 = 1.1, λ1 = 3 and γ = 0.7 with Fa = 0.1,

which leads to GM = 8.23 dB, PM = 57.6°and Ms = 1.67. The MSC-PID

controller is given by

Gc(s) = 0.0035

(
1 +

1

117.13s

)(
64.62s+ 1

2.15s+ 1

)
(6.66)

Two other controllers are designed based on (6.65) in a standard single-loop

control scheme, one via the LQG synthesis and another via the Ziegler-Nichols

(ZN) frequency response tuning. Note that, the LQG controller can be expressed

in the form of a PID controller with second-order filter given as follows:

Gc(s) = 4.56× 10−5

(
44s+ 1

8.6s2 + s

)(
100s+ 1

0.0059s+ 1

)
(6.67)

Also, the PID controller based on ZN tuning is expressed in the form of PID

controller with lag filter as follows:

Gc(s) = 8.77× 10−5

(
2401s2 + 96s+ 1

2.3s2 + s

)
(6.68)

Moreover, two others controllers are designed in a double-loop control scheme,

i.e. via Skogestad IMC (SIMC) and Ziegler-Nichols (ZN) frequency response

tuning, in order to compare the performances of MSC-PID control scheme with

the others. The PID controller with filter designed based on double-loop SIMC

tuning is shown as follows:

Gc(s) = 1.14× 10−5

(
25s+ 1

s

)(
2.1× 102s+ 1

12s+ 1

)
(6.69)
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The PID controller with lag filter based on double-loop ZN tuning is given by

Gc(s) = 8.05× 10−5

(
2401s2 + 96s+ 1

2.3s2 + s

)
(6.70)
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Figure 6.9: Nominal responses for setpoint tracking
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Figure 6.10: Nominal responses for disturbance rejection

The performances of these established control strategies are compared with

the proposed MSC with double-loop control scheme. Figure 6.9 shows the set-

point tracking responses while Figure 6.10 shows the output disturbance rejection

responses. The performances of the five different control schemes are evaluated

based on 1 unit step changes in the setpoint and output disturbance. In Figure

6.9, the settling time under the proposed MSC scheme is much improved com-

pared to another four control schemes, i.e. under the proposed scheme is less than

170 units. Moreover, the Integral Absolute Error (IAE) values of the proposed
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Figure 6.11: Responses of manipulated variable for setpoint tracking

scheme is much lower, which gives a smooth response and provides improvement

on setpoint tracking performance over not only the single-loop LQG and PID con-

trollers but also double-loop PID controllers. A high overshoot is undesirable in

bioethanol production as this may retard the yeast activity and cause higher cell

death rate, which in turn lead to lower productivity and ethanol yield. In Figure

6.10, it is obvious that the proposed MSC with double-loop control scheme shows

improved output disturbance rejection performance, which provides fast response

compared to the other four control schemes. Obviously, the standard single-loop

control schemes, i.e. LQG synthesis and ZN tuning, unable to give good control

performance for the nonminimum-phase integrating systems. Whilst, the pro-

posed double-loop structure combining with MSC scheme shows the improved

performance compared to those existing control schemes with double-loop struc-

ture, i.e. ZN and SIMC tuning. Moreover, Figure 6.11 shows the responses of

manipulated variable for each control schemes with setpoint tracking. From the

Figure 6.11, there is no sign of impulsive spikes occurred on the manipulated

variable for each control schemes. The simulation of the responses of manipu-

lated variable for disturbance rejection has been done but no impulsive spikes

were observed instead.

The setpoint tracking and disturbance rejection with 1 unit step changes for

±10% modeling error in process gain and lead time constant are included and

shown in Figure 6.12. It shows that the proposed control scheme remains stable in

the presence of ±10% modeling error either in process gain or lead time constant.
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Figure 6.12: Nominal responses for setpoint tracking and disturbance rejection

for modeling error of ±10%

6.3.4.2 Example 2

In this example, we use the P5 from Section 5.1.3 to represent a less complex

dynamics (only an integrating mode) which can arise from a fed-batch fermenta-

tion process and this model can be reduced to a second-order integrating process

based on the model reduction algorithm from [189–191].

P5
∼=

298.74(−11.77s+ 1)

s(35.3s+ 1)

In here, since τz < 0, case 2 is applied for the secondary controller design.

The ω2 is obtained with ω2 > ωcric2 = 13.92 to avoid imaginary roots by referring

to (6.54) and (6.56). The value ω2 = 1.2ωcric2 = 16.71 and Kc2 = 1.7 × 10−5

are specified by using (6.55). The main controller, i.e., MSC-PID is obtained as

follows:

Gc(s) = 7.89× 10−5

(
1 +

1

79.51s

)(
52.39s+ 1

0.81s+ 1

)
(6.71)

where the finalized MSC tuning values are λ0 = 13, λ1 = 6.5 and γ = 0.6 with

Fa = 0.1, which has a GM = 7.67 dB, PM = 56.3°and Ms = 1.74.

For comparison purpose, two controllers, i.e., via LQG synthesis and Ziegler-

Nichols (ZN) frequency response tuning, are designed based on (6.65) in a stan-

dard single-loop control scheme. The LQG controller and PID controller based

on ZN tuning can be expressed respectively, as follows:

Gc(s) = 6.13× 10−7

(
36s+ 1

7.2s2 + s

)(
99s+ 1

0.001s+ 1

)
(6.72)

Gc(s) = 2.66× 10−6

(
1156s2 + 66s+ 1

1.6s2 + s

)
(6.73)
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Meanwhile, another two controllers are designed in a double-loop control

scheme, i.e. via Skogestad IMC (SIMC) and Ziegler-Nichols (ZN) frequency re-

sponse tuning. The PID controllers with filter designed based on double-loop

SIMC tuning and double-loop ZN tuning are shown as follows:

Gc(s) = 2.48× 10−7

(
17s+ 1

s

)(
1.7× 102s+ 1

8.6s+ 1

)
(6.74)

Gc(s) = 2.51× 10−6

(
1156s2 + 66s+ 1

1.6s2 + s

)
(6.75)
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Figure 6.13: Nominal responses for setpoint tracking

Time
0 50 100 150 200 250 300 350 400 450 500

Y

-1

-0.5

0

0.5

1

1.5

MSC: IAE = 50.49
LQG: IAE = 92.77
ZN: IAE = 88.09
SIMC (double-loop): IAE = 115.8
ZN (double-loop): IAE = 86.56

Figure 6.14: Nominal responses for disturbance rejection

The closed-loop responses of the five different control schemes are evaluated

based on 1 unit step changes in the setpoint and output disturbance. Figure 6.13

and Figure 6.14 show the setpoint tracking responses and output disturbance

rejection responses respectively. It is interesting to note that, the Integral Ab-

solute Error (IAE) values of the proposed scheme is much lower, which provides

improvement on the performance of setpoint tracking and disturbance rejection
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over the other four control schemes. The proposed MSC with double-loop control

scheme outperforms not only the single-loop control schemes, i.e. LQG synthesis

and ZN tuning, but also double-loop structure, i.e. ZN and SIMC tuning. The

simulation of the responses of manipulated variable for setpoint tracking and

disturbance rejection has been done but no impulsive spikes were observed.
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Figure 6.15: Nominal responses for setpoint tracking and disturbance rejection

for modeling error of ±10%

Figure 6.15 shows the setpoint tracking and disturbance rejection with 1 unit

step changes for ±10% modeling error in process gain and lead time constant.

Interestingly, the proposed control scheme remains stable in the presence of ±10%

modeling error either in process gain or lead time constant.

6.4 Summary

In this chapter, the applicability and effectiveness of the multi-scale control

scheme are demonstrated through 2 different types of processes, i.e., multi-inputs

and multi-outputs and second-order integrating processes. It can be noticed that,

the unstable and NMP integrating processes are difficult to control using the

standard single-loop control scheme. Note that, the MSC scheme can effectively

control both stable and NMP integrating processes. Also, the MSC scheme out-

performs some existing control schemes and PID tuning methods. The works

reported in this chapter have been published in Trans Tech Publications1 and

1Qiu Han Seer, Jobrun Nandong and Zhuquan Zang. Decentralized Control Design for

Ethanol Fermentation by Zymomonas Mobilis Multi-scale Control Approach, Applied Mechanics

and Materials, 625: 34-37, 2014.
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2Qiu Han Seer and Jobrun Nandong. Tuning method for double-loop control structure

for nonminimum-phase integrating systems. 2015 IEEE Conference on Control Applications

(CCA), 589-594, 2015.
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Chapter 7

Double-loop Multi-scale Control

Scheme

The basic idea of the MSC scheme has been reported in Chapter 6. This chapter

presents a new control strategy which unifies the direct and indirect multi-scale

control schemes via a double-loop control structure. This unified control strategy

is proposed for controlling a class of highly nonminimum-phase processes having

both integrating and unstable modes. This type of systems is often encountered

in fed-batch fermentation processes which are very difficult to stabilize via most of

the existing well-established control strategies. The double-loop MSC (DL-MSC)

scheme attempts to solve complex problem by breaking down the complex system

into 2 simple sub-systems. The first loop acts as to pre-stabilize the unstable mode

via the indirect MSC scheme, whilst the second loop provides overall control

robustness and performance where the primary controller is designed via the

direct MSC scheme.

7.1 DL-MSC Scheme for NMP Integrating- Un-

stable Systems

The unstable and integrating processes are frequently observed in process indus-

tries, such as batch reactors in the fermentation processes [186]. The unstable

processes are difficult to control compared to open-loop stable processes due to

the difficulty in stabilizing unstable poles, which can cause closed-loop instability

of the system and lead to poor control performance. However, the conventional

PID controllers are normally employed for stable processes [187], which are diffi-
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Figure 7.1: Direct MSC scheme

Figure 7.2: Indirect MSC scheme

cult to design for integrating and unstable processes [192].

This paper presents an idea of incorporating an inner feedback loop with the

multi-scale control (MSC) scheme. The MSC scheme offers a systematic approach

for designing PID controllers augmented with filters, which provide enhanced

performance robustness. Meanwhile, the inner feedback loop is able to first pre-

stabilize the unstable mode or pole, i.e. using a simple P controller, before the

implementation of MSC-PID controller in the outer loop.

7.1.1 Direct and Indirect MSC Schemes

Figure 7.1 represents the block diagram of a 2-layer direct multi-scale control

(MSC) scheme while the corresponding indirect MSC scheme is shown in Figure

7.2, where the plant P can be decomposed into a sum of two basic modes as

follows:

P (s) = m0(s) +m1(s) (7.1)

where m0 represents the outermost (slow) mode and m1 represents the inner-layer

(fast) mode, which can be first or second order systems with real coefficients. For

the direct MSC scheme, the multi-scale predictor is often chosen as the faster

inner mode. On the other hand, the multi-scale predictor is chosen as the slower

outermost mode for the indirect MSC scheme.

In Figure 7.1 and Figure 7.2, Ki, i = 0, 1 represent the sub-controllers of

outermost and inner-layer modes, W is the multi-scale predictor, R and Y denote

the setpoint and controlled variable signals respectively. The closed-loop transfer
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function for the inner-layer is defined as

G1(s) =
U(s)

C(s)
=

K1(s)

1 +K1(s)W (s)
(7.2)

The two-layer MSC scheme can now be reduced to single-loop feedback control

and the overall MSC controller can be defined as follows:

Gc(s) = K0(s)G1(s) (7.3)

7.1.2 Derivation of MSC-PID Tuning Relations

A second order integrating-unstable process is considered after partial stabiliza-

tion in order to present a brief construction procedure of MSC-PID tuning for-

mula.

P (s) =
Kp(−τzs+ 1)

s(τps+ 1)
(7.4)

where Kp, τz and τp represent the process gain, lead time constant and time

constant respectively.

The partial fraction expansion is applied to decompose (7.4) into a sum of

two basic modes given by

P (s) =
kp0
s︸︷︷︸
m0

+
kp1

τps+ 1︸ ︷︷ ︸
m1

(7.5)

where m0 and m1 denote the outermost and inner-layer modes, respectively. The

mode gains are given by

kp0 = Kp (7.6)

kp1 = −Kp(τz + τp) (7.7)

Assume that a P-only controller is used for controlling the inner-layer mode

m1 and a PI controller is used for controlling the outermost mode m0. The

sub-controllers for inner-layer and outermost modes are given by

K1 = kc1 (7.8)

K0 = kc0(1 +
1

τI0s
) (7.9)

where kc1 and kc0 denote the sub-controller gains of inner-layer and outermost

mode respectively; τI0 is the integral time for the outermost mode sub-controller.
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Based on the direct MSC scheme (refer to Figure 7.1), assume that the multi-

scale predictor is chosen as the fast inner mode, the inner-layer transfer function

is defined as

G1(s) =
kc1

1 + kc1W (s)
(7.10)

After substituting the inner mode W (s) = kp1
τps+1

into (7.10) and followed by

simplification

G1(s) =
k0
c1(τps+ 1)

τc1s+ 1
(7.11)

where the overall gain and closed-loop time constant are given in term of

k0
c1 =

kc1
1 + kc1kp1

(7.12)

τc1 =
τp

1 + kc1kp1
(7.13)

The ratio of open loop time constant to closed-loop time constant is defined

as follows:

λ1 =
τp
τc1

; λ1 > 1 (7.14)

From (7.13) and (7.14), kc1 can be expressed as follows:

kc1 =
λ1 − 1

kp1
; λ1 > 1 (7.15)

Meanwhile, PI controller is chosen to control the outermost mode. However,

P-only controller is assumed first in order to determine the kc0 following the same

way as the inner-layer mode.

kc0 =
λ0 − 1

kp0
(7.16)

However, the open-loop time constant is undefined for an integrating mode.

Thus, the range of λ0 is unclear.

In order to calculate kc0, P-only controller with gain kc0 is used based on the

unity feedback control and the characteristic equation by using (7.4) is given by

τps
2 + (1− kc0Kpτz)s+ kc0Kp = 0 (7.17)

Based on the Routh Stability criterion, the upper limits can be written in

term of a parameter r1 as follows:

kc0Kp <
1

τz
=

1

r1τz
; r1 > 1 (7.18)
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From (7.16) and (7.18), the kc0 can be calculated by applying (7.6) that kp0 =

Kp in the following manner.

kc0 =
1

r1τzKp

=
λ0 − 1

Kp

; r1 > 1 (7.19)

Thus, the outermost time constant λ0 can be obtained from (7.19) as follows:

λ0 =
r1τz + 1

r1τz
; r1 > 1 (7.20)

Thus, λ0 > 1 in order to stabilize the outermost mode.

Let us define an equivalent (’fictitious’) open-loop time constant τ∞ for the

integrating mode, similar to (7.14).

λ0 =
τ∞
τc0

; λ0 > 1 (7.21)

Note that, τc0 represents the closed-loop time constant for the outermost mode

as follows:

τc0 =
1

kc0Kp

= r1τz (7.22)

Substitute (7.20) and (7.22) into (7.21) in order to get the open-loop time

constant τ∞.

τ∞ = r1τz + 1 (7.23)

The integral time for the outermost mode is expressed based on desired frac-

tion γ of the open-loop time constant τ∞.

τI0 = γτ∞ (7.24)

where a range of 0.5 ≤ γ ≤ 3.0 is recommended.

The overall MSC controller for the partially stabilized plant can be arranged

as a PID controller with filter in the classical PID form.

Gc(s) = Kc(1 +
1

τIs
)(
τDs+ 1

τfs+ 1
)S(kc1) (7.25)

where S(kc1) represents the sign of controller gain kc1 which is included in order to

get the correct sign for the controller gain kc0. Also, Kc, τI , τD and τf represent the

controller gain, integral time, derivative time and filter time constant respectively,

which can be expressed as follows:

Kc =
λ1 − 1

λ1r1τzKp|Kp|(τp + τz)
(7.26)
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where |Kp| denoted the absolute value of Kp.

τI = γ(1 + r1τz) (7.27)

τD = τp (7.28)

τf =
τp
λ1

(7.29)

7.1.3 Unified Double-Loop MSC Scheme

The key feature of the proposed scheme is to combine both direct and indirect

MSC ideas. Figure 7.3 demonstrates the block diagram of the proposed MSC

scheme for controlling (i.e., highly nonminimum-phase) integrating unstable pro-

cess.

Figure 7.3: MSC with double-loop scheme

Guideline for choosing the predictor for DL-MSC scheme: choose as predictor

the mode or sum of modes such that the secondary loop will stabilize the desired

unstable mode/s. The indirect MSC scheme is used to design the secondary

controller Gc2 in order to first pre-stabilize the unstable process, whilst the direct

MSC scheme is used to design the primary controller Gc1. Figure 7.4 shows the

equivalent structure of the secondary loop with the implementation of indirect

MSC scheme.

Figure 7.4: Equivalent structure of the secondary loop
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7.1.3.1 Tuning Relations for Secondary Controller

Consider a second order unstable integrating process represented in term of

P (s) =
Kp(−τzs+ 1)

s(τps− 1)
(7.30)

where Kp, τz and τp represent the process gain, lead time constant and time

constant respectively. After the decomposition by partial fraction expansion, the

sum of two basic modes written as

P (s) =
kp0
s︸︷︷︸
m0

+
kp1

τps− 1︸ ︷︷ ︸
m1

(7.31)

where m0 and m1 denote the outermost and inner-layer modes, respectively and

the mode gains are

kp0 = −Kp (7.32)

kp1 = −Kp(τz − τp) (7.33)

Referring to Figure 7.4, a transfer function from C to U is given as

Hu =
Ku(τps− 1)

τc2s+ 1
(7.34)

A closed-loop transfer function from C to Y1 can be defined as

G2 =
K0
c1

τc2s+ 1
(7.35)

Also, a transfer function from C to Y0 can be written in the form of

G0 =
K0
c0(τps− 1)

s(τc2s+ 1)
(7.36)

where the parameters in (7.34)-(7.36) are given by

Ku =
1

Kc2kp1 − 1
(7.37)

K0
c1 =

kp1
Kc2kp1 − 1

(7.38)

K0
c0 =

kp0
Kc2kp1 − 1

(7.39)

τc2 =
τp

Kc2kp1 − 1
=

τp
−Kc2Kp(τz − τp)− 1

(7.40)
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The augmented plant transfer function from C to Y is obtained by summing

(7.35) and (7.36) as follows:

Pa(s) = G0(s) +G2(s) = Hu(s)P (s) (7.41)

After the simplification of (7.41), the augmented plant transfer function Pa

can be expressed as

Pa(s) =
Kpa(−τzs+ 1)

s(τc2s+ 1)
(7.42)

where the augmented process gain is given by

Kpa = −K0
c0 =

Kp

−Kc2Kp(τz − τp)− 1
(7.43)

It is worth to note that, the ill-conditioned process of the form given by (7.30)

can now be relieved to (7.42), i.e. similar to (7.4), which is relatively easy to

stabilize.

7.1.3.2 Secondary Controller Setting

Referring to (7.10), by applying the Routh stability criterion to its characteristic

equation to get the range τc2 > 0. Thus, the following limit can be obtained from

(7.40). For simple tuning, let a parameter r2 be defined as follows:

−Kc2Kp(τz − τp) = r2 > 1 ; r2 > 1 (7.44)

Here, r2 is used as a tuning parameter to calculate Kc2, which ensures local

stability of the mode m1 with a range of r2 > 1 as follows:

Kc2 =
r2

−Kp(τz − τp)
; r2 > 1 (7.45)

Also, the augmented process gain in (7.43) can now be rewritten as

Kpa =
Kp

r2 − 1
(7.46)

A recommended range of 0.5τz ≤ r2 ≤ τz + τp is sufficient for the partial

stabilization purpose for secondary controller tuning.

7.1.3.3 Primary Controller Tuning

The overall system performance is to be attained via the tuning of the main

controller Gc1, which can be referred to (7.26)-(7.29) in Section 7.1.2. Meanwhile,
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the controller parameters based on the partially stabilized plant Pa in (7.42) can

be expressed in the form of

Kc =
(λ1 − 1)(r2 − 1)3

λ1r1τzKp|Kp|(τp + τz)
(7.47)

τI = γ(1 + r1τz) (7.48)

τD = τp (7.49)

τf =
τp
λ1

(7.50)

From (7.47), an approximated linear relation which provides an inversely pro-

portional relationship between the controller gain and the process gain is given

as follows, i.e., one of the terms |Kp| has been removed.

Kc =
(λ1 − 1)(r2 − 1)3

λ1r1τzKp(τp + τz)
(7.51)

For simple tuning task (approximate linear relation between Kc and Kp), we

recommend a tuning formula where one of the Kp term is removed. Note that,

in the exact synthesis there are both Kp and |Kp| terms in the relation.

Thus, (7.48)-(7.51) represent the MSC-PID tuning relations, which can be

tuned by adjusting λ1, γ, r1 and r2.

7.1.3.4 Robustness Criteria

Sensitivity function plays an important role for judging the performance-robustness

of the system. The maximum peak of sensitivity function in frequency domain is

defined as follows:

Ms = ‖[1 +Gc1(jω)Pa(jω)]−1‖∞ (7.52)

where the maximum peak of sensitivity function is recommended in the range of

Ms < 2.0 [188]. The lower value of maximum peak of sensitivity function leads

to higher robustness of controller but results in a sluggish response. A range of

1.0 < Ms < 2.0 is recommended to give a practical response.

7.1.3.5 Design Procedure

The general design procedure is generated based on the design of double-loop

control structure for unstable integrating systems. The indirect MSC scheme is

used to stabilize the unstable process in the secondary loop, while direct MSC

scheme is used as the main controller. The design steps are as follows:
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Step 1: Tune the secondary controller, i.e. obtain the value of controller gain

Kc2 via (7.45) by specifying the tuning parameter r2 with a range of 0.5τz ≤ r2 ≤
τz + τp.

Step 2: Obtain the augmented plant transfer function Pa as (7.42). The value

of Kpa and τc2 can be calculated by (7.40) and (7.43).

Step 3: The main controller Gc1 in (7.25) is tuned by specifying the four

MSC tuning parameters, which are λ1, γ, r1 and r2 via (7.48)-(7.51) for the

controller gain Kc, integral time τI , derivative time τD and filter time constant τf

respectively. Note that, λ1 > 1, r1 > 1, 0.5τz ≤ r2 ≤ τz + τp and 0.5 ≤ γ ≤ 3.0.

As a suggestion, set λ1 = 5 while altering r1, r2 and γ in order to achieve GM

close to 7.5 dB - 8.5 dB, PM close to 45°- 60°and maximum peak of sensitivity

function in the range of 1.0 < Ms < 2.0 by referring to (7.52).

7.1.4 Closed-loop PID Stability Analysis

By using the ideal PID controller, the closed-loop characteristic polynomial of

second-order integrating-unstable process (7.30) can be written as

τI(τp −KτzτD)︸ ︷︷ ︸
a3

s3 + τI [K(τD − τz)− 1]︸ ︷︷ ︸
a2

s2+

[K(τI − τz)]︸ ︷︷ ︸
a1

s+ K︸︷︷︸
a0

= 0 (7.53)

where K = KcKp.

Theorem 4.2.1 (necessary criterion) is applied in order to establish the ranges

or limits on the loop gain, derivative time and integral time which render all the

coefficients in the characteristic equation (4.11) positive, i.e. ai > 0, i = 0, 1, 2, 3.

From the characteristic equation (7.53), an upper limit on the loop gain K can

be established from the coefficient a3 as follows

K <
τp
τzτD

(7.54)

and a lower limit based on the coefficient a2

K >
1

τD − τz
(7.55)

From the coefficient a0, a lower limit on the integral time is given

τI > τz (7.56)
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There is a lower limit on the K which are obtained from the coefficients a1

and a0 where τI > τz:

K > 0

Since the upper limit must be greater than the lower limit on the loop gain,

the lower bound on the derivative time is obtained

τD >
τzτp
τp − τz

(7.57)

where τp must be greater than τz. The derivative time must be bounded from

above, otherwise, there is no stable PID controller exists for stabilizing the second-

order integrating-unstable process.

Remark 18. If τp < τz, we will get a lower limit on the derivative time given by

τD <
−τzτp
τz − τp

Since the derivative time must be negative leads to a lower limit on the loop

gain instead of upper limit from the coefficient a3 as follows:

K >
−τp
τz|τD|

and a negative upper limit will be obtained from coefficient a2 as

K <
−1

τz + |τD|

Since this upper limit is less than maximum lower limit K > 0, so this implies

that PID controller cannot stabilize the process (7.30) if τp < τz.

On the other hand, Theorem 4.2.2 (sufficient criterion) stipulates that b > 0

in the Routh array, which give a lower limit on the integral time as

τI >
τp −KτzτD

K(τD − τz)− 1
+ τz (7.58)

Based on the limits on K, τI and τD obtained, it can be readily shown that

the stabilizing regions of those parameters are limited for the given standard

single-loop PID controller. Thus, this motivates the use of DL-MSC scheme.
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7.1.5 Illustrative Examples

7.1.5.1 Example 1

A real case of nonlinear fed-batch bioethanol production is used as a case study in

this paper [193]. A linearized open-loop second order unstable integrating process

(SOUIP) is used to demonstrate the effectiveness of the proposed control scheme

as follows:

P (s) =
Gl(s)

F (s)
=
−13.99(−3.81s+ 1)

s(3.83s− 1)
(7.59)

Based on (7.30), the process parameters are stated as: Kp = −13.99, τz = 3.81

and τp = 3.83. Following (7.59) shows that the lower limit on the derivative (7.57)

given by

τD =
(3.81)(3.83)

(3.83− 3.81)
= 729.6

Since τp is very close to τz, this indicates that the system will be very difficult

to control using a standard single-loop PID controller. Within a very limited sta-

bilizing region, we need a very high value of derivative time to deliver closed-loop

stability. In practice, this closed-loop system will be very sensitive to uncertain-

ties and noise in measurement will seriously degrade the controller due to a very

large action from derivative mode. Hence, even if the system can be stabilized

by a PID controller, it is unlikely that we can obtain a satisfactory performance

in practice. So this shall motive the use of DL-MSC scheme which can not only

stabilize the system but also can provide better performance within adequate

robustness margin.

The −τz and negative pole value causes the inverse response and unstable

open-loop system respectively. Note that, the process is extremely difficult to

stabilize with the conventional PID controller including with some of the advanced

control techniques, e.g., Linear-Quadratic Gaussian (LQG) and robust control.

So far, there is no report in the open literature of a control scheme which can

stabilize such a type of processes.

The design procedure of the proposed control system is shown in Section

6.3.3.4. The secondary controller is obtained by specifying the tuning parameter

r2 = 7.5 in order to pre-stabilize the unstable process, which leads to Kc2 =

−29.14 by using (7.45). For the main controller, the finalized MSC tuning values

are λ1 = 5, r1 = 3 and γ = 2, which leads to GM = 8.04dB and PM = 46.1°.

Thus, the MSC-PID controller is given by

Gc(s) = −0.0481

(
1 +

1

24.8480s

)(
0.5887s+ 1

0.1177s+ 1

)
(7.60)
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The maximum peak of sensitivity function is given as Ms = 1.67, which is

within the recommended range. Note that, a set point pre-filter (Fr) is suggested

in order to reduce the overshoot response in setpoint tracking. The setpoint

pre-filter is expressed by

Fr =
τI
3
s+ 1

τIs+ 1
(7.61)

In order to compare the performances of proposed MSC scheme, a Skogestad

IMC (SIMC) tuning are designed based on a double-loop control scheme [194].

The PID with filter based on double-loop SIMC tuning is shown as follows:

Gc(s) = −0.00034

(
2.2s+ 1

s

)(
35s+ 1

1.1s+ 1

)
(7.62)
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Figure 7.5: Nominal response for setpoint tracking
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Figure 7.6: Response of manipulated variable for setpoint tracking

The performances of the proposed control system design are presented based

on the response of setpoint tracking, output disturbance and input distrubance

with 1 unit step changes. In Figure 7.5, the settling time of the proposed MSC
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Figure 7.7: Nominal response for output disturbance rejection
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Figure 7.8: Nominal response for input disturbance rejection

scheme is much improved with the employ of setpoint pre-filter and SIMC tuning,

i.e. 63 units, which gives a smooth response and faster settling time. Noted that,

the setpoint pre-filter is able to reduce the overshoot and underdamped responses

in setpoint tracking, which does not affect the disturbances rejection performance.

Figure 7.7 and Figure 7.8 demonstrate the output and input disturbance rejection

responses respectively. Obviously, the proposed MSC scheme shows improved

performance compared to the established control strategy, i.e. SIMC tuning. The

responses of manipulated variable for each control schemes with setpoint tracking

are shown in Figure 7.6, which shows no obvious impulsive spikes occurred on

the manipulated variable for DL-MSC scheme. The simulation of the responses

of manipulated variable for disturbance rejection has been done but no impulsive

spikes were observed instead.
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7.1.5.2 Example 2

We consider the P4 from Section 5.1.3, which can be reduced to a second-order

integrating-unstable process based on the model reduction algorithm from [189–

191].

P (s) =
Gl(s)

F (s)
∼=
−0.73(−79.7s+ 1)

s(13.5s− 1)
(7.63)

Note that, this dynamics cannot be controlled using a standard single-loop

PID controller as τp < τz giving a negative upper limit of τD which leads to

negative upper limit on the loop gain, hence unstable closed-loop system will

result. Thus, the DL-MSC scheme can be used in order to provide better control

performance.

Base on the proposed control system design, the secondary controller obtained

is Kc2 = 1.86 by specifying the tuning parameter r2 = 90, which convert the

integrating system into the pre-stabilized system. By setting (through a trial-and-

error) the MSC tuning parameter λ1 = 2.5, r1 = 9 and γ = 2.6, the MSC-PID

controller is obtained

Gc(s) = −0.6062

(
1 +

1

520.65s

)(
0.1517s+ 1

0.0169s+ 1

)
(7.64)

which has a GM = 8.04 dB, PM = 46.9°and Ms = 1.66 respectively. Note that,

the setpoint prefilter is not applied in this case as the overshoot is not significant.

The integrating-unstable system is difficult to control by using some existing

control schemes. It is worth to highlight that, the Skogestad IMC (SIMC), Ziegler-

Nichols (ZN) frequency response tuning and LQG synthesis are unable to design

the controller based on a double-loop control scheme.

The performances of the proposed DL-MSC scheme are evaluated based on

1 unit step changes in the response of setpoint tracking, output disturbance and

input disturbance, which are shown in Figure 7.9, Figure 7.10 and Figure 7.11

respectively. The simulation of the responses of manipulated variable for setpoint

tracking and disturbance rejection has been done but no impulsive spikes were

observed.

7.2 Summary

A new variant of an MSC scheme with double-loop control structure which unifies

the direct and indirect MSC schemes has been presented for NMP integrating-

unstable systems, which are difficult to control using standard single-loop feed-

back structure, or even the double-loop structure employing some existing PID
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Figure 7.9: Nominal response for setpoint tracking
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Figure 7.10: Nominal response for output disturbance rejection
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Figure 7.11: Nominal response for input disturbance rejection

tuning methods, e.g., well-known LQG, SIMC and ZN tuning methods. Note

that, the DL-MSC scheme can be extended into triple-loop multi-scale control

scheme (TL-MSC), which will be presented in Chapter 8. The TL-MSC scheme

can be used to control some of the most complex forms of dynamic behavior which
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cannot be stabilized using existing single-loop controllers. These very complex dy-

namic behaviors can occur during a fed-batch fermentation process. These com-

plex dynamic behaviors can be represented by fourth-order integrating-unstable

models with multiple RHP zeros. Please note that, part of the work described in

this chapter has been published in IOP Science1.

1Qiu Han Seer and Jobrun Nandong. A unified double-loop multi-scale control strategy for

NMP integrating-unstable systems. IOP Conference Series: Materials Science and Engineering,

121 (1): 12-21, 2016.
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Chapter 8

Triple-loop Multi-scale Control

Scheme

It is worth to highlight that, a linearization at any given operating point of even

the simplest fed-batch system of differential algebraic equations (DAE system),

e.g., with only four state variables and one input variable can lead to a complex

fourth-order integrating dynamics as previously reported in Chapter 5. One of

the most intriguing form of dynamic behaviors that can occur at some points

during the fed-batch operation is a fourth-order integrating-unstable plus oscil-

latory system with multiple RHP zeros. To deal with the stabilization of this

complex dynamics, a new triple-loop multi-scale control (TL-MSC) scheme is

proposed. This scheme aims to first decompose the complex dynamics into three

simpler sub-systems, which are then separately addressed within the proposed

multi-scale structure. This chapter presents both the fundamental of TL-MSC

scheme and the details of its design. A typical fed-batch alcoholic fermentation

reported in Chapter 5 is used as an example to demonstrate the applicability of

the new scheme.
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8.1 Fundamental of Triple-loop Multi-scale Con-

trol Scheme

8.1.1 Realization Block Diagram

The model in (5.8) can be decomposed into 3 basic modes

P =
k1

s︸︷︷︸
M0

+
k2

τps+ 1︸ ︷︷ ︸
M1

+
k3s+ k4

α2s2 + α1s+ 1︸ ︷︷ ︸
M2

(8.1)

where the mode parameters kj, j = 1, 2, 3, 4 are obtained via the procedure in

the Appendix D.3.

The decomposition in (8.1) assumes that in term of dynamics, the integrating

modeM0 is the slowest, followed by the stable first-order modeM1 and the second-

order underdamped unstable mode M2 is the fastest. An interesting point to note

is that, the third mode M2 is not only unstable (i.e., α2 > 0 and α1 < 0) but also

it exhibits an inverse-response, i.e., b = k3/k4 < 0.

A process which has a combination of integrating and unstable underdamped

modes as in (8.1) is extremely difficult to control (or might be even impossible to

stabilize using a PID-type controller) via a standard single-loop feedback control

structure. For the process given in (8.1), it is imperative to introduce a more

advanced control structure, which not only can stabilize the process but also can

provide good closed-loop performance and robustness. A possible choice of an

advanced control structure is the proposed triple-loop multi-scale control (TL-

MSC) scheme.

The details of multi-scale control (MSC) scheme can be found in [133, 154].

The block-diagram of the proposed TL-MSC scheme is shown in Figure 8.1. The

scheme has three controllers. First, the tertiary controller Gc2 is used to stabilize

the unstable underdamped mode M2 leading to a pre-stabilized system but it still

exhibits both integrating mode and stable underdamped mode with an unstable

zero, i.e., nonminimum-phase mode. This pre-stabilized system is still quite diffi-

cult to control due to the presence of the nonminimum-phase underdamped mode.

Thus, the secondary controller Gc1 is then needed to provide further stabiliza-

tion of the pre-stabilized integrating-underdamped system, thereby it is desired

to convert the process P into an overdamped self-regulating system. This over-

damped self-regulating system is quite easy to control compared with the original

process P . Finally the primary controller Gc0 is required as to provide a desired

control performance-robustness trade-off of the overall system.

160



Figure 8.1: Block diagram of the triple-loop MSC scheme

In Figure 8.1, R, Y , D1 and D2 denote the setpoint, output variable, output

disturbance and input disturbance signals respectively; W represents the multi-

scale predictor.

The multi-scale predictor in the proposed scheme is chosen to be the slower

M0 and M1 modes as follows:

W =
k1

s
+

k2

τps+ 1
(8.2)

In other words, the tertiary controller is designed based on the indirect MSC

scheme [155] where the controller is primarily intended to stabilize the unstable

M2 mode. It is interesting to point out that under a perfect model assumption,

the tertiary loop in Figure 8.1 can be represented as in Figure 8.2. Figure 8.2

clearly shows that Gc2 only serves to directly control (stabilize) the M2 mode.

Figure 8.2: Equivalent block-diagram representation of the tertiary inner-loop

Based on Figure 8.2, corresponding to the tertiary loop the closed-loop transfer
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function from C to Y is given by

Pa1 =
Y

C
=

P

1 +Gc2M2

(8.3)

The equation (8.3) represents the first pre-stabilized process.

8.1.2 Stabilization of the Unstable Mode

Case 1: τp > 0, α2 > 0 and α1 < 0

We consider a case where the second order M2 mode is unstable, i.e., α1 < 0.

Let us re-write the unstable mode as follows:

M2 =
kp2(bs+ 1)

α2s2 + α1s+ 1
(8.4)

where kp2 = k4 and b = k3
k4

.

Referring to Figure 8.2, the transfer function from C to U is given by

Hu =
U

C
=

1

1 +Gc2M2

(8.5)

In the present work, the tertiary controller is chosen to be a proportional-

derivative (PD) controller, i.e.:

Gc2 = Kc2(1 + τD2s) (8.6)

Remark 19. It is desired to use a simple controller algorithm for the tertiary

loop for easy controller design. It can easily be shown that the simplest P-only

controller is unable to stabilize the unstable M2 mode with the presence of an

unstable zero in the mode. Thus, a PD controller is chosen as it can stabilize the

mode and the controller is quite simple to use in practice.

Notice that, the characteristic equation in (8.5) is given by

(α2 +Kc2kp2bτD2)s2 + [α1 +Kc2kp2(b+ τD2)]s+Kc2kp2 + 1 = 0 (8.7)

Upon applying the necessary criterion of Routh stability to the characteristic

equation, the following inequalities are obtained

Kc2kp2 > −1 (8.8)

α1 +Kc2kp2(b+ τD2) > 0 (8.9)

α2 +Kc2kp2bτD2 > 0 (8.10)
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In order to obtain the lower and upper limits on the loop gain, we propose to

further divide the case 1 into two sub-cases detailed as follows.

Case 1.1: b < 0 and τD2 > 0

From (8.10), an upper limit on the loop gain can be described as

Kc2kp2 <
α2

|b|τD2

(8.11)

The lower limit on loop gain is obtained from (8.9)

Kc2kp2 >
|α1|

τD2 − |b|
(8.12)

Note that, the upper limit (8.11) must be greater than the lower limit (8.12)

for stability. Upon simplification, the range of derivative time is given by

τD2 >
|b|α2

α2 − |b||α1|
(8.13)

The range of derivative time (8.13) holds for stability only if

α2 − |b||α1| > 0 (8.14)

Otherwise, the derivative time has to change sign (i.e., negative) to produce

closed-loop stability, and this issue is dealt with in the following case 1.2.

Case 1.2: b < 0 and τD2 < 0

From (8.10), a lower limit on the loop gain is obtained

Kc2kp2 >
−α2

|b||τD2|
(8.15)

whereas (8.9) leads to an upper limit given as

Kc2kp2 <
−|α1|
|τD2|+ |b|

(8.16)

To stabilize the unstable M2 mode (tertiary loop), it is necessary that the

upper limit (8.16) is greater than the lower limit (8.15). Hence, absolute value

for the derivative time that leads to stability must be

|τD| <
|b|α2

|b||α1| − α2

(8.17)

More specifically, the range of derivative time that provides stability is

τD >
|b|α2

α2 − |b||α1|
(8.18)

where the range of derivative time (8.18) holds for stability only if

α2 − |b||α1| < 0 (8.19)
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8.1.2.1 Tertiary Controller Tuning

Note that, choosing an appropriate value for the derivative time is important to

ensure closed-loop stability of the tertiary loop. We propose to first specify the

value for the derivative time before specifying the value for the controller gain.

Here, two PD controller tuning rules are proposed as follows.

PD Controller Tuning for Case 1.1:

Based on the range of derivative time (8.13), the value of the derivative time

can be determined as follows

τD2 = FTD

(
|b|α2

α2 − |b||α1|

)
(8.20)

where the tuning parameter FTD > 1 is introduced.

After the derivative time is determined, the controller gain can be obtained

based on the upper limit in (8.11) which yields the following relation

Kc2 =
FTC
kp2

(
α2

|b|τD2

)
(8.21)

where the tuning parameter FTC is introduced and for ensuring stability its range

is
|b||α1|τD2

α2(τD2 − |b|)
< FTC < 1 (8.22)

Notice that, the application of the tuning relations (8.20) and (8.21) requires

the determination of appropriate values for FTD and FTC , which can be done

manually or by some optimization techniques. Such tuning task can be eliminated

by establishing some fixed tuning relations, which can directly ensure that the

tertiary controller is able to stabilize the unstable M2 mode. At this stage, it is

not necessary to achieve a specific control performance, i.e., only stabilization of

the mode is required. Thus, it is important to specify the values for the derivative

time and controller gain that lead to stability. This can be easily done via the

proposed Average Value Tuning (AVT) rule described in the following section.

Average Value Tuning Rule

The AVT rule is proposed to remove the need for tedious manual tuning of

the tertiary controller. The AVT rule is established as follows.

First, notice that the value of τD affects both the upper and lower limits shown

in (8.11) and (8.12) respectively. It is desired that the difference (i.e., ratio of the
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upper to lower limit) between these limits to be large enough to ensure sufficient

controller robustness, hence closed-loop stabilization. The ratio between the two

limits is expressed by

κUL =
α2(τD2 − |b|)
τD2|α1||b|

, κUL > 1 (8.23)

Hence, the derivative time can be written in the form of

τD2 =
|b|α2

α2 − κUL|b||α1|
(8.24)

In (8.24), the denominator must be positive, i.e., α2 − κUL|b||α1| > 0. To

ensure the denominator is always positive, the following equality is imposed

κUL|b||α1| =
α2 + |b||α1|

2
(8.25)

After substituting (8.25) into (8.24), the derivative time is expressed by

τD2 =
2|b|α2

α2 − |b||α1|
(8.26)

Next, let us specify the value of loop gain such that it is equal to the average

value between the upper limit (8.11) and lower limit (8.12), which leads to the

controller gain relation

Kc2 =
1

2kp2

(
α2

|b|τD2

+
|α1|

τD2 − |b|

)
(8.27)

Please note that, the relations in (8.26) and (8.27) for calculating τD2 and Kc2

represent the AVT rule for PD controller design.

PD Controller Tuning for Case 1.2:

For this case, the derivative time is written as

τD2 = F ′TD

(
|b|α2

α2 − |b||α1|

)
(8.28)

Here, the tuning parameter F ′TD < 1 is imposed to be consistent with the

lower limit in (8.18).

To ensure stability, the ratio of the lower limit (8.15) to the upper limit (8.16)

must be greater than unity, where

κLU =
α2(|τD2|+ |b|)
|τD2||α1||b|

, κLU > 1 (8.29)
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Hence, the derivative time can also be written in the form of

τD2 =
|b|α2

α2 − κLU |b||α1|
(8.30)

Note that, the denominator in (8.30) must be negative, i.e., α2−κLU |b||α1| < 0.

Let us specify κLU |b||α1| as follows:

κLU |b||α1| = |b||α1|+
|b||α1|+ α2

2
(8.31)

Upon substituting (8.31) into (8.30), the derivative time can be determined

by

τD2 =
2|b|α2

α2 − 3|b||α1|
(8.32)

The controller gain can be determined from the knowledge of the upper limit

from (8.16)

Kc2 =
F ′TC
kp2

−|α1|
|τD2|+ |b|

(8.33)

For stability, the tuning parameter must lie in the following range

F ′TC = 1 < F ′TC <
α2(|τD2|+ |b|)
|τD2||α1||b|

(8.34)

Alternatively, by using the AVT rule the value of the controller gain is specified

as follows:

Kc2 =
1

2kp2

(
− α2

|b||τD|
− |α1|
|τD|+ |b|

)
(8.35)

Remark 20. The controller gain relation (8.35) for the case 1.2 gives more

conservative value than that of the case 1.1 in (8.27). The reason is that, for the

case 1.2 the mode has an unstable zero (b < 0) which imposes a serious limitation

on the control performance. In contrast, for the case 1.1 the mode has a stable

zero which does not impose serious limitation on the control performance, hence,

the controller can afford to be more aggressive.

8.1.3 Secondary Controller Tuning

After stabilizing the unstable M2 mode, the first pre-stabilized overall process

becomes

Pa1 =
Kpa1

∏3
i=1(τzis+ 1)

s(τps+ 1)(β2s2 + β1s+ 1)
(8.36)

where βj > 0, j = 1, 2 and Kpa1 = Kp

1+Kc2kp2
.
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The pre-stabilized process remains an integrating one and which probably

possesses underdamped but stable mode. Unlike in the original process (5.9), the

pre-stabilized process (8.36) can be stabilized using the simplest P-only controller.

Thus, the secondary controller is chosen to be a P-only controller, i.e., Gc1 = Kc1.

Corresponding to the secondary loop, the characteristic equation is given as

τpβ2s
4 + (τpβ1 + β2 +Kc1Kpa1τz1τz2τz3)s3

+ [τp + β1 +Kc1Kpa1(τz1(τz2 + τz3) + τz2τz3)]s2

+ [1 +Kc1Kpa1(τz1 + τz2 + τz3)]s+Kc1Kpa1 = 0

(8.37)

Based on the necessary criterion of Routh stability, all of the coefficients

in (8.37) must be positive. Obviously, regardless of the values of the model

parameters in (8.36), one of the lower limits is fixed as

Kc1Kpa1 > 0 (8.38)

In view of the assumption that τz1 < 0, τz2 < 0, τz3 > 0 and τp > 0, it is

noticed that the coefficient of s3 can also leads to a lower limit. However, it is

always smaller than (8.38), which can be ignored.

With regard to the coefficients of s2 and s, either upper or lower limit might

be formed depending on which one of the following 3 conditions holds.

C.1. τz1(τz2 + τz3) + τz2τz3 < 0 and τz1 + τz2 + τz3 < 0

C.2. τz1(τz2 + τz3) + τz2τz3 > 0 and τz1 + τz2 + τz3 < 0

C.3. τz1(τz2 + τz3) + τz2τz3 < 0 and τz1 + τz2 + τz3 > 0

Notice that, case 4 (i.e., both terms greater than 0) is not possible.

Given the condition C.1, the following upper limits UL1 and UL2 are obtained

Kc1Kpa1 < UL1 =
τp + β1

|τz1(τz2 + τz3) + τz2τz3|
(8.39)

Kc1Kpa1 < UL2 =
1

|τz1 + τz2 + τz3|
(8.40)

As for the condition C.2, another lower limit is obtained as follows

Kc1Kpa1 > −
τp + β1

τz1(τz2 + τz3) + τz2τz3
(8.41)

while an upper limit is as (8.40).

Corresponding to the condition C.3, an upper limit is as (8.39) while another

lower limit is

Kc1Kpa1 < −
1

τz1 + τz2 + τz3
(8.42)
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Remark 21. The lower limit given by (8.38) is a common limit for all conditions.

Another lower limit in (8.41) is imposed by the condition C.2 and (8.42) imposed

by C.3. Under C.1, 2 upper limits (8.39) and (8.40) exist but the lowest one

should be cosnidered to ensure stability. Under C.2, the upper limit is given only

by (8.40) and under C.3 the upper limit is only by (8.39).

P Controller Tuning Rules

Please note that, a new tuning parameter R1 is introduced in order to obtain

Kc1 via the following tuning rules.

In the case when the condition C.1 holds, the controller gain is expressed as

follows

Kc1 =


UL1

R1Kpa1

for UL1 < UL2, R1 > 1

UL2

R1Kpa1

for UL2 < UL1, R1 > 1

(8.43)

If the condition C.2 holds, then the controller gain is given as

Kc1 =
UL2

R1Kpa1

, R1 > 1 (8.44)

If the condition C.3 holds, then

Kc1 =
UL1

R1Kpa1

, R1 > 1 (8.45)

where UL1 and UL2 are as in (8.39) and (8.40) respectively.

Remark 22. In order to ensure closed-loop stability, it is important to impose

R1 > 1. The larger the value of R1 the less aggressive is the controller action, i.e.,

as the loop gain moves further away from the lowest upper limit. It is proposed

to set a value for R1 which simultaneously gives a maximum peak of sensitivity

function Ms1 of the secondary loop in the range of Ms1 = [1.5 2.5], and such

that the closed-loop poles are all real and distinct.

The controller gain Kc1 is calculated by specifying an appropriate value for

the tuning parameter R1. Since we propose to set R1 to a value which will lead to

real and distinct closed-loop poles of the secondary loop, the closed-loop transfer

function from B to Y can be written in the form of

Pa0 =
Pa1

1 +Gc1Pa1

=
Kpa0

∏3
i=1(τzis+ 1)∏3

j=0(τjs+ 1)
(8.46)

Here, the closed-loop time constants τj > τj+1, j = 0, 1, 2, 3 and the overall

gain Kpa0 = K−1
c1 .
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The maximum peak of sensitivity function for the secondary loop is calculated

as follows

Ms1 = max
ω
‖[1 +Kc1(jω)Gpa1(jω)]−1‖∞ (8.47)

8.1.4 Primary Controller Tuning

8.1.4.1 Model Reduction

For the main (primary) controller Gc0, we propose to use a PID controller aug-

mented with a filter based on the second pre-stabilized process (8.46). As the

pre-stabilized process (8.46) is complex and high-order, it is recommended to

design the controller via the multi-scale control (MSC) scheme for effective con-

troller tuning. In view of the assumption that one of the process zeros, i.e., τz3 > 0

, the model in (8.46) can be further simplified to a third-order system using the

Skogestad half-rule [194], which leads to a reduced model in the form of

P a0
∼=

K0(τz1s+ 1)(τz2s+ 1)

(τ1s+ 1)(τ2s+ 1)(τ3s+ 1)
(8.48)

where the process gain is K0 = τz3
τ0Kc1

. Bear in mind that, the process model in

(8.48) is used to design the primary controller. The first step in the MSC scheme

is to decompose the given process model (8.48) into its 3 basic factors or modes,

which in this case are all first order systems with real coefficients.

8.1.4.2 Model Decomposition

The model decomposition is carried out by applying the partial fraction expansion

to the reduced process model (8.48), which leads to 3 basic modes, i.e., m1, m2

and m3.

P a0 =
km1

τ1s+ 1︸ ︷︷ ︸
m1

+
km2

τ2s+ 1︸ ︷︷ ︸
m2

+
km3

τ3s+ 1︸ ︷︷ ︸
m3

(8.49)

where mj is slower than mj+1 for j = 1, 2. The mode gains are given by

km1 =
K0(τ1 − τz1)(τ1 − τz2)

(τ1 − τ2)(τ1 − τ3)
(8.50)

km2 =
K0(τ2 − τz1)(τ2 − τz2)

(τ2 − τ1)(τ2 − τ3)
(8.51)

km3 =
K0(τ3 − τz1)(τ3 − τz2)

(τ3 − τ1)(τ3 − τ2)
(8.52)
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The next step after the model decomposition is to design a sub-controller for

each of the three basic modes. For simplicity, P-only controller form is chosen for

the sub-controllers controlling the second and third modes while for the outermost

(slowest) mode a PI controller form is used.

Figure 8.3: Block diagram illustrating the primary controller design via the MSC

scheme

Figure 8.3 shows the block diagram of the primary controller design via the

direct multi-scale control (MSC) scheme. Note that, Gs1, Gs2 and Gs3 denote the

outermost, inner-layer and innermost sub-controllers; Pa0 is the pre-stabilized

process in (8.46); Wi, i = 2, 3 represent the multi-scale predictors selected to be

W3 = m3 and W2 = m2.

8.1.4.3 Sub-controller Design for the Innermost Mode m3

Consider a P-only controller with the gain Gs3 = ks3 which can be calculated via

[133]

ks3 =
λ3 − 1

km3

, λ3 > 1 (8.53)

where λ3 represents a ratio of the open loop time constant to the closed time

constant corresponding to the mode m3, i.e., λ3 = τ3
τ3c

= km3ks3 + 1 where the

closed-loop time constant is τ3c = τ3
km3ks3+1

= τ3
λ3

.

The corresponding closed-loop inner layer transfer function is

g3 =
B

V2

=
k0
s3(τ3s+ 1)

τ3cs+ 1
(8.54)

where the overall gain is k0
s3 = λ3−1

λ3km3
.

The augmented transfer function of the mode m2 becomes

h2 =
Z

V2

=
k0
m2(τ3s+ 1)

(τ3cs+ 1)(τ2s+ 1)
(8.55)
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where the augmented gain is k0
m2 = km2(λ3−1)

λ3km3
.

Please note that, the next sub-controller is designed based on the augmented

mode m2 in (8.55).

8.1.4.4 Sub-controller Design for the Inner-layer Mode m2

Again a P-only controller (Gs2 = ks2) is used to control the second (inner) mode,

which can be calculated in the same way as the innermost sub-controller

ks2 =
λ2 − 1

k0
m2

=
λ3km3(λ2 − 1)

km2(λ3 − 1)
(8.56)

where the sub-controller is designed based on the augmented mode m2 in (8.55).

As τ3c and τ3 are very small, it can be ignored in the closed-loop transfer function

g2 =
B

V1

=
k0
s2(τ2s+ 1)

τ2cs+ 1
(8.57)

where the overall gain is k0
s2 = ks2

1+ks2k0m2
and τ2c is the closed-loop time constant

corresponding to the second mode.

The characteristic equation of the transfer function from V1 to B is written

as follows (
τ3cτ2

1 + ks2k0
m2

)
s2 +

(
τ3c + τ2 + ks2k

0
m2τ3

1 + ks2k0
m2

)
s+ 1 = 0 (8.58)

From the characteristic equation (8.58), notice that the closed-loop damping

factor can be expressed in term of λi, i = 2, 3

ζ2c =
τ3 + λ3(τ2 + τ3(λ2 − 1))

2
√
λ3λ2τ3τ2

(8.59)

where the closed-loop time constant is given as

τ2c =

√
τ3τ2

λ3λ2

(8.60)

We propose to tune λ2 with a value above unity which leads to an overdamped

behaviour ζ2c > 1. Specifically, it is proposed in this work to set λ2 such that the

closed-loop damping factor lies in the range of ζ2c = [1.1 3]. Since the closed-

loop behaviour is overdamped, the augmented transfer function of the second

loop simplifies to

q2 =
ks2g3

1 + ks2h2

=
k0
s2(τ2s+ 1)(τ3s+ 1)

(τ2c1s+ 1)(τ2c2s+ 1)
(8.61)
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where the overall gain in (8.61) is written in terms of λ2

k0
s2 =

λ2 − 1

km2λ2

(8.62)

Meanwhile, the closed-loop time constants in (8.61) are

τ2c1 =
τ2c

ζ2c −
√
ζ2

2c − 1
(8.63)

τ2c2 =
τ2c

ζ2c +
√
ζ2

2c − 1
(8.64)

The augmented overall plant transfer function can be arranged as follows

P0 = P a0q2 =
K0
P (τz1s+ 1)(τz2s+ 1)

(τ1s+ 1)(τ2c1s+ 1)(τ2c2s+ 1)
(8.65)

where the overall augmented process gain expressed in terms of the tuning pa-

rameters λ2

K0
P =

τz3(λ2 − 1)

km2λ2τ0Kc1

(8.66)

The augmented overall plant transfer function (8.65) is used to design the

outermost sub-controller which is chosen to take the form of a PI controller as

Gs1 = ks1

(
1 +

1

τI1s

)
(8.67)

where ks1 and τI1 denote the sub-controller gain and reset time respectively. One

simple way to obtain these two parameters are discussed in the next section.

8.1.4.5 Sub-controller Design for the Outermost Mode m1

The characteristic equation corresponding to the augmented overall plant in

(8.65) assuming the outermost sub-controller is of the form (8.67)

τI1τ1τ
2
2cs

4 + [τI1(2τ1τ2cζ2c + τ 2
2c) + ks1K

0
P τI1τz1τz2]s3

+ [τI1(τ1 + 2τ2cζ2c) + ks1K
0
P (τI1(τz1 + τz2) + τz1τz2)]s2

+ [τI1 + ks1K
0
P (τI1 + τz1 + τz2)]s+ ks1K

0
P = 0

(8.68)

Recall that, it has been assumed that τz1 < 0, τz2 < 0. Let us further assume

that the reset time is set to a value greater than the sum of absolute values of τz1

and τz2, i.e.:

τI1 = µ|τz1 + τz2|, µ > 1 (8.69)
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Due to the specification imposed in (8.69), from the characteristic equation

in (8.68) the following limits are concluded

ks1K
0
P > 0 (8.70)

ks1K
0
P > −

µ

µ− 1
, µ > 1 (8.71)

ks1K
0
P > −

2τ1τ2cζ2c + τ 2
2c

τz1τz2
(8.72)

ks1K
0
P <

µ|τz1 + τz2|(τ1 + 2τ2cζ2c)

µ(τz1 + τz2)2 − τz1τz2
(8.73)

Note that, there are three lower limits (8.70)-(8.72) and one upper limit (8.73)

exist. We propose to use the upper limit (8.73) as a basis to calculate the value

of ks1 by adjusting a parameter λ1 as

ks1 =
1

λ1K0
P

(
µ|τz1 + τz2|(τ1 + 2τ2cζ2c)

µ(τz1 + τz2)2 − τz1τz2

)
, λ > 1 (8.74)

Note that, the primary controller can be arranged as in the form of a classical

PID controller augmented with a lead-lag filter, i.e.:

Gc0 = Gs1q2 = Kc0

(
1 +

1

τI1s

)(
τ2s+ 1

τ2c1s+ 1

)
Gf (8.75)

where the lead-lag filter is given as

Gf =
τ3s+ 1

τ2c2s+ 1
(8.76)

The primary controller gain in (8.75) is Kc0 = ks1k
0
s2 which can be simplified

to

Kc0 =
τ0Kc1

λ1τz3

(
µ|τz1 + τz2|(τ1 + 2τ2cζ2c)

µ(τz1 + τz2)2 − τz1τz2

)
(8.77)

Here, Kc1 denotes the secondary controller gain given by either (8.43) or (8.44)

or (8.45).

In summary, the tuning parameters for the primary controller Gc0 are:λ1, λ2,

λ3 and µ. It should be noted that, λ2 and λ3 implicitly affect Kc0 via the terms

ζ2c and τ2c respectively.

The maximum peak of sensitivity function corresponding to the overall control

system is

Ms0 = max
ω
‖[1 +Gc0(jω)Gpa0(jω)]−1‖∞ (8.78)

Sometimes, it is necessary to include a setpoint pre-filter Fr to avoid impulsive

spikes in both controller output and output variable responses following a step
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change in the setpoint. Here, it is proposed to use a lead-lag pre-filter given in

the form of

Fr =
(τI1 + τ2)s/ε+ 1

(τI1 + τ2)s+ 1
, ε = [2 5] (8.79)

8.2 Proposed Control Design Procedure

A simple procedure based on the established relationships in this work is pro-

posed.

Step 1 : Tune the tertiary controller Gc2 = Kc2(1 + τD2s). If case 1.1, first

calculate τD2 using (8.26) and then Kc2 via (8.27). If case 1.2, first calculate τD2

using (8.32) and then Kc2 via (8.35).

Step 2 : Tune the secondary controller Gc1 = Kc1. First, determine which one of

the 3 conditions (C.1 or C.2 or C.3) holds: if C.1 then calculate Kc1 via (8.43),

else if C.2 calculate Kc1 via (8.44), else C.3 use (8.45). Specify the value of the

tuning parameter R1 > 1 such that (a) the closed-loop poles are all real and

distinct, and (b) the maximum peak of sensitivity function Ms1 lies in the range

of 1.5 and 2.5.

Step 3 : Tune the primary controller Gc0 in (8.75): set λ3 = 10 and a value for

λ2 that gives damping factor in (8.59), i.e., ζ2c = [1.1 3]. Next, set µ = 1.1 and

tune λ1 such that the maximum peak of sensitivity function Ms0 lies between

1.5 and 2.5. Finally, the reset time is calculated using (8.69) while the controller

gain using (8.77); the augmented filter is given in (8.76). Use (8.79) to tune the

setpoint pre-filter by using a default value ε = 3.

8.3 Illustrative Examples

From the aforementioned examples, the transfer function P2 is chosen to demon-

strate the effectiveness of the proposed control scheme as it is the most difficult

to stabilize and control, which is given as follows:

P (s) =
11.3

s
+

131.3

60s+ 1
+
−638.7(−2.5s+ 1)

142.9s2 − 13s+ 1
(8.80)

Two control schemes are used for controlling the process given in (8.80), i.e.,

triple-loop multi-scale control (TL-MSC) and robust control schemes. The control

performances of these control schemes are evaluated via both simulation and

Nyquist stability plot. Sequential step changes in setpoint, input disturbance

and output disturbance are used to determine the nominal performances while
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the general Nyquist stability plot is adopted for stability/robustness analysis.

The dynamic simulation is performed by using Matlab Simulink, where the ode45

solver is used.

8.3.1 Triple-loop MSC scheme

The triple-loop MSC scheme is selected where three controllers are included. For

the tertiary controller, the multi-scale predictor is chosen as:

W =
11.3

s
+

131.3

60s+ 1
(8.81)

The tertiary controller is obtained by applying Average Value Tuning (AVT)

rule, which is given by

Gc2 = −0.0092(1 + 6.6043s) (8.82)

The secondary controller is obtained as follows:

Kc1 = 0.0046 (8.83)

where R1 = 2 and Ms1 = 2.2387.

The finalized MSC tuning values for the primary controller are λ3 = 10,

λ2 = 5, λ1 = 2.5 and µ = 1.1. The primary controller can be arranged as in the

form of a classical PID controller augmented with a lead-lag filter, which is given

by

Gc0(s) = 0.0014

(
1 +

1

71.16s

)(
9.11s+ 1

3.45s+ 1

)
Gf (8.84)

where the lead-lag filter is given as

Gf =
2.12s+ 1

0.11s+ 1
(8.85)

which leads to Gain Margin (GM) = 7.49 dB, Phase Margin (PM) = 85.5°and

Ms0 = 1.74, which is within the recommended range.

Note that, a set point pre-filter (Fr) is suggested in order to reduce the

overshoot response in setpoint tracking. The setpoint pre-filter for the proposed

MSC scheme is expressed as follows:

Fr =
80.27

3
s+ 1

80.27s+ 1
(8.86)
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8.3.2 Robust control

In order to compare the performances of proposed MSC scheme, a loop shaping

design method of McFarlane and Glover [195] is used to synthesize the primary

controller (Gc0). In this case, the secondary and tertiary controllers used are the

same as in the previous scheme. Note that, the loop shaping design is unable

to produce stable controller based on original plant transfer function, i.e., direct

application of loop shaping method in the standard single-loop feedback control

structure. Thus, the primary controller is designed based on the reduced closed-

loop transfer function from B to Y, i.e., P a0, which is given by

P a0
∼=

153.7(−4.7s+ 1)(−60s+ 1)

(2.1s+ 1)(9.1s+ 1)(28.3s+ 1)
(8.87)

Using the loop shaping control design, the primary controller is obtained based

on (8.87) is given as follows:

Gc(s) = −0.0017
(s+ 0.4629)(s+ 0.0985)(s+ 0.0392)(s+ 0.0112)

s(s+ 0.0159)(s2 + 0.4213s+ 0.1424)
(8.88)

where the stable minimum-phase LTI weight is designed based on Ziegler-Nicholas

frequency response, which is given as

w1(s) = 1.7× 10−5

(
1 + 89s

s

)
(8.89)

It should be noted that, the input weight w1 is designed based on P a0 (8.87).

The stability margin gives a good indication of robustness to a wide class of

unstructured plant variations. The value of stability margin of robust control

is 0.6643, with Gain Margin (GM) = 14 dB, Phase Margin (PM) = 84.1°and

Ms = 1.25. Notice that, the primary controller designed based on loop shaping

method produces 4th order controller while that designed via the proposed method

is 3rd order. Thus, this leads to the difference in the stability margins between

the two controllers in (8.84) and (8.88). For practicality, it is desired to have a

low-order controller.

Furthermore, the performance robustness of the two different control schemes

are evaluated under perturbed conditions of the fed-batch process (5.3), i.e., U =

[0.15, 100]ᵀ, χs = [1, 1, 1, 6]ᵀ. The ν-gap metric [196] between the system at the

nominal level and perturbed level is 0.2016. The performances of the two different

control schemes are evaluated based on 1 unit step changes in the setpoint and

output disturbance and 0.05 unit in the input disturbance.
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Figure 8.4: Responses of setpoint tracking at nominal condition
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Figure 8.5: Responses of input disturbance at nominal condition

Table 8.1 shows the Integral Absolute Error (IAE) values for the two con-

trol schemes, i.e., proposed MSC and robust control at the nominal and per-

turbed conditions. Meanwhile, Figure 8.4 , Figure 8.5 and Figure 8.6 show the

setpoint tracking, input disturbance rejection and output disturbance rejection

Table 8.1: The IAE value at nominal and perturbed conditions

Nominal condition Perturbed condition

MSC Robust control MSC Robust control

Setpoint tracking 233.7 304.6 233.1 303.2

Input disturbance 3152 3835 3013 3706

Output disturbance 467.4 608.7 466.4 605.7
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Figure 8.6: Responses of output disturbance at nominal condition
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Figure 8.7: Responses of manipulated variable for setpoint tracking at nominal

condition

responses at nominal condition respectively. As shown by the Table 8.1 and fig-

ures, the proposed MSC scheme achieves substantial improvement in nominal

performance over the robust control scheme. Figure 8.7 shows the responses of

manipulated variable for setpoint tracking at nominal condition. The proposed

TL-MSC scheme and robust control scheme shows not obvious impulsive spikes

on the manipulated variable for setpoint tracking. Moreover, the simulation of

the responses of manipulated variable for output disturbance rejection has been

done but no impulsive spikes were observed.

Figure 8.8 , Figure 8.9 and Figure 8.10 show the setpoint tracking, input

disturbance rejection and output disturbance rejection responses at perturbed

condition respectively. Based on the figures and Table 8.1, the proposed MSC
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Figure 8.8: Responses of setpoint tracking at perturbed condition
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Figure 8.9: Responses of input disturbance at perturbed condition

scheme is still stable and gives improved performance robustness compared to

robust control scheme especially for the input-output disturbance rejection.

8.4 Summary

This chapter has demonstrated that a fed-batch fermentation can show several

forms of complex dynamic behaviors throughout the course of its operation, e.g.,

a fourth-order integrating-unstable plus oscillatory system with multiple RHP

zeros. This form of fourth-order integrating-unstable system has never been re-

ported in the open literature. Noteworthy, this type of system is very difficult to

stabilize using a single-loop PID controller, and even with a robust loop shaping

method (in Matlab 2008b), a minimum of a tenth-order controller form is required
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Figure 8.10: Responses of output disturbance at perturbed condition

for possible stabilization of the system. It is worth highlighting that, the pro-

posed TL-MSC scheme not only can stabilize the complex system but also can give

good closed-loop performance by using a combination of three traditional PID-

type controllers. Although in the presented design procedure a low-order PID

controller augmented with filter has been proposed for the primary controller,

it should be noted that an advanced controller such as the loop-shaping robust

controller can also be used in the primary loop. However, the use of such an

advanced controller will lead to a high-order controller form, e.g., a fourth-order

robust controller. Despite its higher order form, the simulation study has shown

that the high-order robust controller in the primary loop could not necessarily

lead to a better performance than that of a well-tuned low-order PID controller.

This implies that the structure of control scheme itself is more important than

the individual control laws involved. The work presented in this chapter has been

submitted to Journal of Franklin Institute1.

1Qiu Han Seer and Jobrun Nandong. Multi-scale control scheme: stabilization of a class of

fourth-order integrating-unstable systems. Submitted to Journal of Franklin Institute - under

first revision May 2017.
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Chapter 9

Conclusions and

Recommendations

9.1 Conclusions

From the literature review, we can conclude that fed-batch control remains an

open-ended issue in both academia and industry. In fed-batch fermentation, due

to the process variability and the complexity of biological systems, often results in

strong nonlinear and complex dynamics, which become major concerns in control

system design. The nonlinearity problem has been addressed by using some

advanced control strategies as mentioned in the literature. An interesting point

is that, so far, there has been limited studies regarding the challenges of several

complex dynamics which can arise from the fermentation process; these dynamics

can be described using fourth-order integrating models. Even more surprising is

that, there has been very few reports on PID stabilization and tuning for cases of

complex dynamics represented by such high-order integrating models. In response

to this research gap, this dissertation has presented the results of an investigation

into the design and application of several control strategies, i.e., using standard

single-loop as well as non-standard PID feedback control structures, which can be

used not only to stabilize such complex dynamics but also to provide improved

performance robustness of the closed-loop system.

In this regard, this dissertation answers three important questions: (1) how

microbial kinetics models affect the controllability of the fed-batch system, (2)

how complex dynamics in fed-batch fermentation process affect the stability of

standard PID feedback controllers, and (3) how to improve control performance

by using a non-standard PID controller to address the complex dynamics. Hence,
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the conclusions are discussed as follows:

9.1.1 Experimental and Kinetics Modeling of Batch Fer-

mentation Process

The microbial kinetics model represents an important part of the mathematical

model of the fed-batch fermentation process, which can be used to obtain satis-

factory results in optimization and control studies. An experimental study was

required to develop the kinetics model of the fermentation process. In this case

study, mixed mango waste and cassava were used as feedstock and the effects

of pH and mixing intensity (i.e., aeration rate and stirrer speed) were studied.

The test results showed the fermentation was affected more significantly by the

changes in the pH and aeration rate compared to the stirrer speed. In kinetics

modeling, the proposed Herbert-Haldane microbial model provided an appro-

priate fit, which is uniquely capable in capturing the death phase of biomass

concentration during the end of fermentation. The proposed microbial model

is simple and can be implemented for process optimization and control studies.

For example, an advanced expanded microbial kinetics (EMK) model has been

constructed based on the proposed Herbert-Haldane model (reported in [173]),

which can provide greater accuracy in estimating the kinetic parameters value in

a case of a highly nonlinear dynamic fermentation process. The advanced EMK

model can be used in bioreactor simulation, optimization and control studies.

9.1.2 PID stabilization

There has been a limited number of studies addressing the stabilization of some

specific complex dynamic behaviors inherent in fed-batch fermentation processes.

In this dissertation, the characterization of the boundaries of stabilizing PID pa-

rameter regions was evaluated based on the necessary and sufficient criterion of

the Routh-Hurwitz stability analysis. In Chapter 4, the stabilization by a PID

controller of second-order unstable processes, i.e., second-order deadtime with

an unstable pole (SODUP) and second-order deadtime with two unstable poles

(SODTUP), was performed. In Chapter 5, several different forms of complex

dynamics that can arise from a typical fed-batch fermentation process have been

presented. A class of fourth-order integrating-unstable model was used to ade-

quately represent the most complex forms of dynamic behavior encountered in the

fed-batch fermentation process. The novelty of this PID stabilization approach
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can be summarized as follows:

� An interesting feature of this approach is that, explicit upper and lower lim-

its on K, τI and τD were systematically established. Some of the existing

methods reported in open literature rely quite a lot on the graphical plots

representing the stability regions, whereas the proposed method requires

no such plots because it yields explicit stabilizing regions in mathemati-

cal expressions. Therefore, the proposed method can provide a practical

alternative way to construct systematically the stabilizing PID parameter

regions.

� A low-order controller can provide closed-loop stability for such complex and

high order systems, e.g., second-order unstable and fourth-order integrating-

unstable processes, when the stabilizing parameter regions are known be-

forehand, rather than using a high-order controller.

9.1.3 Extended Multi-scale Control Scheme

This dissertation intend to provide a solution to achieve an improved closed-loop

performance for addressing some of the complex dynamics inherent in fed-batch

system with the combination of 2 or 3 PID-type controllers. With respect to this

goal, some novel basic multi-scale control, double-loop multi-scale control (DL-

MSC) and triple-loop multi-scale control (TL-MSC) schemes have been proposed

in order to address each linearized form of complex dynamics, where the behaviors

changed throughout the course of the fed-batch operation.

� In Chapter 6, the application of the multi-scale control scheme to design

the multi-loop PID control for an extractive alcoholic fermentation by Zy-

momonas mobilis has been presented. The results showed that the 2 × 2

and 3× 3 partial control strategies with 2 to 3 PID controllers, which were

designed using the multi-scale control scheme were effective for the complex

nonlinear extractive fermentation process.

� A new control scheme combining the direct multi-scale control and double-

loop structure has been presented in Chapter 6. The proposed scheme

provides a simple way to design an effective control system for a second-

order nonminimum-phase integrating processes, which may be exhibited

occasionally in a fed-batch system.
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� A new extended control strategy which unifies the direct and indirect multi-

scale control schemes via a double-loop control structure has been presented

in Chapter 7. This unified control strategy has been proposed for controlling

a class of highly nonminimum-phase processes having both integrating and

unstable modes using two controllers, i.e., a P controller in the inner loop

and a PID controller in the external loop. The secondary controller was

designed via indirect MSC scheme, which can always guarantee the pre-

stabilization of unstable pole and the finalized MSC controller provides the

overall system performance.

� The triple-loop MSC scheme has been presented to stabilize the most com-

plex forms of dynamic behavior, i.e., a fourth-order integrating-unstable

system with multiple right-half plane (RHP) zeros, encountered in the fed-

batch fermentation process by using a combination of 3 PID-type con-

trollers. The proposed scheme provided an improved closed-loop perfor-

mance compared to other advanced controllers, such as the loop-shaping

robust controller.

9.2 Recommendations

Some future research directions extending the work in this dissertation are sug-

gested as follows:

1. Kinetics modeling

The product inhibition can be evaluated via experimental study so the

kinetics of ethanol inhibition can be examined in order to provide a better

description on cell population especially in fed-batch bioprocesses with a

higher ethanol concentration.

2. Expanding the developed control approach to address the nonlinearity prob-

lem

The proposed MSC schemes can be combined with some advanced control

strategies such as robust, adaptive, and nonlinear control, to address the

nonlinearity problem in order to provide an integrated control system for

fed-batch fermentation processes.

3. Separation processes in fed-batch bioprocesses

The separation approaches (i.e., membrane separation, vacuum fermenta-

tion, liquid-liquid extraction, adsorption and etc.) can be implemented
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in the bioprocesses in order to remove the products simultaneously from

fed-batch systems whereby reducing the product inhibition and increasing

yields.
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[34] M. Balat, H. Balat, C. Öz, Progress in bioethanol processing, Progress in

Energy and Combustion Science.

[35] N. Sarkar, S. K. Ghosh, S. Bannerjee, K. Aikat, Bioethanol production from

agricultural wastes: An overview, Renewable Energy 37 (1) (2012) 19–27.

[36] I. C. Onwueme, Cassava in asia and the pacific, Cassava: Biology, produc-

tion and utilization (2002) 55–65.

[37] R. Liu, F. Shen, Impacts of main factors on bioethanol fermentation

from stalk juice of sweet sorghum by immobilized saccharomyces cerevisiae

(CICC 1308), Bioresource Technology 99 (4) (2008) 847 – 854.

[38] Y. Lin, W. Zhang, C. Li, K. Sakakibara, S. Tanaka, H. Kong, Factors affect-

ing ethanol fermentation using saccharomyces cerevisiae BY4742, Biomass

and Bioenergy 47 (2012) 395–401.

[39] J. Eed, Factors affecting enzyme activity, ESSAI 10 (1) (2012) 19.

[40] W. Zhang, Y. Lin, Q. Zhang, X. Wang, D. Wu, H. Kong, Optimisation of

simultaneous saccharification and fermentation of wheat straw for ethanol

production, Fuel 112 (2013) 331–337.
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[168] H. De Battista, J. Picó, E. Picó-Marco, Nonlinear PI control of fed-batch

processes for growth rate regulation, Journal of Process Control 22 (4)

(2012) 789–797.

[169] D. C. Montgomery, Design and Analysis of Experiments, John Wiley &

Sons, Inc., 2001.

201



[170] A. A. K. M. Ghareib, K. A. Youssef, Ethanol tolerance of saccharomyces

cerevisiae and its relationship to lipid content and composition, Folia Mi-

crobiol 33 (1988) 447–452.

[171] D. Herbert, In Recent Progress in Microbiology, Almquist and Wiksell,

Stockholm, Sweden, 1958.

[172] E. C. Rivera, C. K. Yamakawa, M. H. Garcia, V. C. Geraldo, C. E. Rossell,

R. M. Filho, A. Bonomia, A procedure for estimation of fermentation kinetic

parameters in fed-batch bioethanol production process with cell recycle,

Chemical Engineering Transactions 32 (2013) 1369–1374.

[173] Q. H. Seer, J. Nandong, Advanced expanded microbial kinetics (EMK)

model for ethanol production from mixed cassava and fruit wastes, Procedia

Engineering 148 (2016) 417–425.

[174] D. E. Seborg, T. F. Edgar, D. A. Mellichamp, F. J. D. III, Process Dynamics

and Control, John Wiley & Sons, Inc., 2010.

[175] W. Cho, J. Lee, T. F. Edgar, Simple analytic proportional-integral-

derivative (PID) controller tuning rules for unstable processes, Industrial

& Engineering Chemistry Research 53 (13) (2014) 5048–5054.

[176] M. K. Jhunjhunwala, M. Chidambaram, PID controller tuning for unstable

systems by optimization method, Chemical Engineering Communications

185 (1) (2001) 91–113.

[177] P. Agrawal, H. C. Lim, Analyses of various control schemes for continuous

bioreactors, in: Bioprocess Parameter Control, Springer Berlin Heidelberg,

1984, pp. 61–90.

[178] J. Nandong, Guaranteed stable PID controller tuning rules for first-order

dead-time unstable processes, in: 2015 IEEE 10th Conference on Industrial

Electronics and Applications (ICIEA),, IEEE, 2015, pp. 1443–1448.

[179] Q. H. Seer, J. Nandong, Stabilization and PID tuning algorithms for second-

order unstable processes with time-delays, ISA transactions 67 (2017) 233–

245.

[180] J. Nandong, Heuristic-based multi-scale control procedure of simultaneous

multi-loop pid tuning for multivariable processes, Journal of Process Con-

trol 35 (2015) 101–112.

202



[181] F. L. H. da Silva, M. I. Rodrigues, F. Maugeri, Dynamic modelling, simu-

lation and optimization of an extractive continuous alcoholic fermentation

process, Journal of Chemical Technology and Biotechnology 74 (1999) 176–

182.

[182] J. Nandong, Y. Samyudia, M. O. Tadé, Novel PCA-based technique for
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Appendix A

Experimental Procedure and

Analysis

A set of experiments was executed in batch mode by using a BIOSTAT A-plus 2

L, MO-Assembly bioreactor. Rejected mango juice and hydrolyzed cassava were

used as a carbon source for the fermentation process. The batch experiments

were run for a period of about 60 hours until the substrate was used up. In this

study, the effect of pH, stirrer speed (SS) and aeration rate (AR) on the rates

of microbial growth, substrate consumption and ethanol production were studied

throughout the experiments.

A.1 Medium Preparation

The preparation of medium is outlined in Table A.1. The cassava medium was

prepared to be used for fermentation. The formulation is similar to inoculum,

except that the glucose is changed into cassava.

1.5 L of culture medium was prepared. First, 150 g of cassava powder was

mixed with 562.5 mL of 1 N H2SO4 solution. The cassava culture medium was

cooked at 121� for 20 minutes in order to break down the cassava starch into

fermentable sugars and then cooled down to room temperature, approximately

at 30�. All the chemicals listed in Table A.1 were dissolved in 562.5 mL of

distilled water and mixed with the hydrolyzed cassava culture medium. 375 mL

of pure filtered fresh mango juice was then added into the hydrolyzed cassava

culture medium according to a volume ratio of 75:25. The culture medium was

adjusted to desired pH by using solutions of 1 N of NaOH and 1 N of H2SO4.

The culture medium was sterilized at 121� for 20 minutes to avoid contamination
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Table A.1: Medium preparation formulation

Constituents Amounts (g/L)

Cassava 100

Yeast extract 1.0

NH4CL 2.5

NA2HPO4 2.91

KH2PO4 3.0

MgSO4 0.25

CaCl2 0.08

Citric acid 4.3

Sodium citrate 3.0

and then cooled down to room temperature. 4% (v/v) of inoculum was added to

the fermentation medium prior to fermentation start-up. Figure A.1 shows the

cassava culture medium after sterilization, which is brownish in colour.

Figure A.1: Cassava culture medium
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A.2 Inoculum Preparation

The inoculum was prepared by using Baker’s yeast incubated in glucose solution.

The preparation of inoculum is referred to formulation based on [197], which is

outlined in Table A.2.

Table A.2: Inoculum preparation formulation

Constituents Amounts (g/L)

Glucose 100

Yeast extract 1.0

NH4CL 2.5

NA2HPO4 2.91

KH2PO4 3.0

MgSO4 0.25

CaCl2 0.08

Citric acid 4.3

Sodium citrate 3.0

250 mL of inoculum was prepared in a conical flask by adding all the chemicals

listed in Table A.2. The inoculum was adjusted to pH 5 by using solutions of 1

N of NaOH and 1 N of H2SO4. The inoculum is covered with cotton wool and

aluminium foil and sterilized at 121� for 20 minutes to avoid contamination and

then cooled down to room temperature. 1 g of Baker’s yeast is added and stand

for 8-10 hours for microbial growth. Cotton wool and aluminium foil are used to

cover the conical flask to prevent contamination. The appearance of inoculum

after 8-10 hours is shown in Figure A.2.

A.3 Preparation of Mango Juice

The rejected mango fruits were needed for mango juice preparation. The damaged

parts of fruits were removed. The mango fruits were blended into juice by using

blender and the juice was filtered by using a filter bag. The pure filtered fresh

mango juice was ready for used.
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Figure A.2: Inoculum after 8-10 hours

A.4 Sample Analysis

A number of samples were taken throughout the experiment for every 2-3 hours

of sampling interval. The concentrations of glucose and ethanol were analyzed

by using R-Biopharm test kits and UV spectrophotometer (Lambda 25) at a

wavelength of 340 nm under room temperature. The preparations were done

based on the procedures provided by the manuals of the test kits under different

concentration measurements. Semi-micro (1.5 L) methacrylate cuvettes are used

during the analysis process. Figure A.3 shows the R-Biopharm test kits for glucose

and ethanol, whilst Figure fig:UV shows the UV spectrophotometer used for

analysis.

On the other hand, the biomass concentration was analyzed by using UV

spectrophotometer at a wavelength of 340 nm for cell concentration. Prior to

analysis, the sample was diluted to appropriate concentrations so that the range

of absorbance range was between 0.1 and 0.4.
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Figure A.3: R-Biopharm test kits for glucose and ethanol

Figure A.4: UV spectrophotometer (Lambda 25)

A.4.1 Calculation of Glucose Concentration

The calculation of glucose concentration was done based on the manual provided

by glucose test kit. The absorbances of the solutions were measured by using UV
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spectrophotometer at a wavelength of 340 nm under temperature of 25�, whereby

the absorbance value were recorded for the calculation of glucose concentration

based on the equation as follows:

∆A = (A1 − A2)sample − (A1 − A2)blank (A.1)

where A1 is the absorbance value upon reaction after approximately 3 minutes

before adding suspension 2.

A2 is the absorbance value upon reaction after approximately 10-15 min-

utes after adding suspension 2.

c =
V ×MW

ε× d× v × 1000
×∆A[g/L] (A.2)

where V = final volume [mL]

v = sample volume [mL]

MW = molecular weight of the substance to be assayed [g/mol]

d = light path = 1 cm

ε = extinction coefficient of NADPH at 340 nm = 6.3 [L×mmol−1×cm−1]

Notice that, the result have to multiply by dilution factor F.

A.4.2 Calculation of Ethanol Concentration

The calculation of ethanol concentration was measured in the similar way as the

analysis of glucose concentration at a wavelength of 340 nm under temperature

of 25�. The absorbance value were recorded for the calculation of ethanol con-

centration as follows:

∆A = (A1 − A2)sample − (A1 − A2)blank (A.3)

where A1 is the absorbance value upon reaction after approximately 3 minutes

before adding suspension 2.

A2 is the absorbance value upon reaction after approximately 5-10 minutes

after adding suspension 2.

c =
V ×MW

ε× d× v × 1000
×∆A[g/L] (A.4)

where V = final volume [mL]

v = sample volume [mL]

MW = molecular weight of the substance to be assayed [g/mol]
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d = light path = 1 cm

ε = extinction coefficient of NADPH at 340 nm = 6.3 [L×mmol−1×cm−1]

Note that, the result have to multiply by dilution factor F.
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Appendix B

Detailed Calculations on the

Necessary Region for

Fourth-order Integrating

Nonminimum-phase System

B.1 Case 1: Example

Sub-case 1.1: ζ1 > 0, ζ2 > 0 and ζ3 > 0

For this sub-case 1.1, since ζ1 > 0, ζ2 > 0 and ζ3 > 0, there exists only 1 lower

limit (Knc
o ) on the loop gain from the coefficient of s0 as

K > Knc
o = 0 (B.1)

In addition to the lower limit on the integral time (Inc1 ) in (5.18), the ranges

of derivative time and integral time can be determined from the conditions given

in sub-case 1.1 where ζ1 > 0, ζ2 > 0 and ζ3 > 0 as follows. In view of ζ1 > 0, the

derivative time must be bounded from below

τD < D
nc

1.1,1 =
q3

|q1|
(B.2)

For ζ2 > 0 to occur, it is required that the integral time must be bounded as

follows

τI < I
nc

1.1,1 =
q3

τD|q2|+ |q1|
(B.3)

Notice that, to ensure that the upper limit on the integral time (B.3) holds, the

denominator of (B.3) must be positive. Otherwise, the integral time will become
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a negative upper limit - τI > 0 violated. Hence, by assuming that denominator

of (B.3) is always positive, the negative lower bound on the derivative time is

given, i.e., τD > − |q1||q2| , which can be ignored as only τD > 0 is considered in this

case. In view of ζ3 > 0, another lower bound on the integral time is produced

τI > Inc1.1,1 =
|q1|

τD − |q2|
(B.4)

where the denominator of (B.4) must be positive to guarantee a positive lower

bound on the integral time. Hence, the derivative time must be limited by a lower

bound as follows

τD > Dnc
1.1,1 = |q2| (B.5)

Remark 23. Based on Theorem 4.2.1 states, the upper limit on the integral time

must always be greater than the lower limit to ensure that the necessary criterion

of the Routh stability is obeyed, otherwise, no stable PID controller exists to

stabilize the process.

In view of remark 23, we have to ensure that the upper limit on the integral

time (B.3) is always greater than the lower limit (5.18), thus another upper limit

on the derivative time is imposed:

τD < D
nc

1.1,2 =
q3 − |q1||q2|
|q2|2

(B.6)

Also, the upper limit on the integral time (B.3) must be greater than the

lower limit (B.4), another lower limit on the derivative time is obtained:

τD > Dnc
1.1,2 =

|q1|2 + q3|q2|
q3 − |q1||q2|

(B.7)

where the limits q3 > |q1||q2| is given to ensure the numerator of (B.6) and

denominator of (B.7) must be positive.

Since there are multiple upper and lower limits, to meet the Routh stability

necessary criterion, Theorem 4.2.1 stipulates that the derivative time have to be

bounded between its maximum lower limit and minimum upper limit, i.e.:

max(0, Dnc
1.1,1, D

nc
1.1,2) < τD < min(D

nc

1.1,1, D
nc

1.1,2) (B.8)

The ranges of derivative time are used to verify the stability of PID controller.

The minimum upper limit must always greater than the maximum lower limit,

otherwise, there is no stable PID controller exists for stabilizing the given process -
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violate the necessary condition for closed-loop stability as stated by the Theorem

4.2.1. However, the inequality above is hard to prove analytically; due to the

complexity of the equation. Alternatively, the results can be proved graphically.

The difference between the maximum lower limit and minimum upper limit

on the derivative time can be determined as:

R = Dmin −Dmax (B.9)

Let us take an exponential function on R and further by logarithms function

as follows:

log(R) = log10(eR) (B.10)

The graph of log(R) versus λ1 are shown in Figure B.1 where λ2 = 0.4, 0.8,1.5,5

and τz3 = 3 for validation. As illustrations, λ2 = 0.4, 0.8 and λ2 = 1.5, 5 are used

as examples to illustrate λ2 < 1 and λ2 > 1 respectively.
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Figure B.1: Sub-case 1.1 - log(R) versus λ1

Figure B.1 shows that the log(R) gives negative value when λ2 = 0.4, 0.8, 1.5, 5

and τz3 = 3, which means that the minimum upper limit on derivative time is

always lower than its maximum lower limit - Theorem 4.2.1 is violated. Thus, it

can be proved that the closed-loop stability cannot be satisfied, thus there is no

stable PID controller exists to stabilize this sub-cases 1.1.

Sub-case 1.2: ζ1 > 0, ζ2 > 0 and ζ3 < 0

Under the sub-case 1.2, there exists only 1 lower limit (Knc
o ) and 1 upper limit

(K
nc

1c ) on the loop gain. For closed-loop stability, it is necessary that the range of
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loop gain must lie between these lower limit and upper limit. As such, the range

of loop gain is given as:

Knc
o < K < K

nc

1c (B.11)

From the closed-loop characteristic polynomial, the coefficient of s always

leads to a lower limit on the integral time (5.18). Moreover, the upper and lower

limits on the derivative time and integral time can be obtained from ζ1, ζ2 and

ζ3. When ζ1 > 0, the upper limit on the derivative time is given as

τD < D
nc

1.2,1 =
q3

|q1|
(B.12)

Additionally, the integral time must be bounded from below when ζ2 > 0.

τI < I
nc

1.2,1 =
q3

τD|q2|+ |q1|
(B.13)

By assuming the denominator of (B.13) is always positive, a negative lower

bound on the derivative time is given as τD > − |q1||q2| . It should be note that only

τD > 0 is considered, thus, the given negative lower bound on the derivative time

can be neglected in this case.

By rearranging the coefficient of the loop gain given by ζ3 < 0, it can either

form a positive upper limit or a negative lower limit on the integral time. The

upper bound on the integral time is undesired as it give a limitation on selecting

the range of integral time. Hence, the negative lower limit on the integral time

is preferred in this case, which give a larger range on integral time as follows:

τI > Inc1.2,1 = − |q1|
|q2| − τD

(B.14)

Note that, the negative lower limit on the integral time above (B.14) can be

neglected as only τI > 0 is considered in this case. However, the denominator of

(B.14) must be positive to ensure this negative lower limit on the integral time

holds, which means that the derivative time has to be restricted by an upper limit

as follows:

τD < D
nc

1.2,2 = |q2| (B.15)

In view of remark 23, to ensure that the upper limit on the integral time (B.13)

is greater than the maximum lower limit (5.18), a upper limit on the derivative

time has to be imposed:

τD < D
nc

1.2,3 =
q3 − |q1||q2|
|q2|2

(B.16)
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where the inequality q3 > |q1||q2| is established to ensure the numerator of (B.16)

must be positive.

For this sub-case 1.2, only upper limits on the derivative time are encountered.

Since τD > 0, in order to fulfill the Theorem 4.2.1 - necessary criterion of Routh

stability, the range of derivative time is bounded as:

0 < τD < min(D
nc

1.2,1, D
nc

1.2,2, D
nc

1.2,3) (B.17)
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Figure B.2: Sub-case 1.2 - log(R) versus λ1

The limits on the derivative time are used to verify the closed-loop stability

of a PID controller. For this sub-case 1.2, the graph of log(R) versus λ1 is shown

in Figure B.2 where λ2 = 0.4, 0.8, 1.5, 5 and τz3 = 3 are used for validation.

λ2 = 0.4, 0.8 are used to illustrate λ2 < 1 while λ2 = 1.5, 5 are used as examples

to describe λ2 > 1. In Figure B.2, the results show that the positive values of

log(R) can be attained when λ1 < 0, λ2 < 0 and when λ1 > 0, λ2 > 0. It can

be proved that for this sub-case 1.2, it can only be stabilized by using a PID

controller when λ1 < 0, λ2 < 0 or when λ1 > 0, λ2 > 0 in certain range given in

Figure B.2.

B.2 Case 2: Example

The sub-case 2.1 is used as illustration as follows.
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Sub-case 2.1: ζ1 > 0, ζ2 > 0 and ζ3 > 0

Under the sub-case 2.1, the conditions ζ1 > 0, ζ2 > 0 and ζ3 > 0 result in only

1 non-negative lower limit (Knc
o ) on the loop gain as

K > Knc
o = 0 (B.18)

The coefficient of s in the characteristic equation always lead to a lower limit

on the integral time as in (5.25). The upper and lower limits on the integral time

and derivative time can be determined based on ζ1, ζ2 and ζ3. For ζ1 > 0 to be

valid, the derivative time has to be greater than certain value, i.e., τD > − q3
q1

,

which will not be taken into account as we assume τD > 0.

When ζ2 > 0 occurred, a negative lower limit on the integral time is given

based on the coefficient of s3 in characteristic equation as follows

τI > −
q3

−τD|q2|+ q1

To ensure this negative lower limit on the integral time holds, the denominator

must be positive, which the derivative time limited by an upper limit

τD < D
nc

2.1,1 =
q1

|q2|
(B.19)

On the other hand, when ζ3 > 0, another negative lower limit on the integral

time is obtained as

τI > −
q1

τD − |q2|
Thus, the lower bound on the derivative time is given to ensure that the

denominator of the lower limit on the integral time above to be valid.

τD > Dnc
2.1,1 = |q2| (B.20)

In this sub-case 2.1, there exists only 1 lower limit on the integral time (5.25)

based on necessary criterion of Routh stability. There is no extra limits on the

derivative time to be imposed to ensure that the upper limit on the integral time

is always greater than its lower limit.

The range of the derivative time is imposed as to fulfill the necessary criterion

of Routh stability (Theorem 4.2.1), i.e.:

max(0, Dnc
2.1,1) < τD < D

nc

2.1,1 (B.21)

The upper and lower limits on the derivative time are used to verify the

stability of PID controller for the given process. The graph of log(R) versus λ1
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Figure B.3: Sub-case 2.1 - log(R) versus λ1

is shown in Figure B.3. Consider λ2 > 1, for an illustration, λ2 = 1.5, 5, 10 and

τz3 = 3 are used for the validation of the range of derivative time.

The results show that the log(R) is always negative value when λ2 = 1.5, 5, 10

and τz3 = 3, which means that the minimum upper limit on the derivative time

is always lower than its maximum lower limit - violation of Theorem 4.2.1. It can

be proved that the closed-loop stability of the given process is not stable.

B.3 Case 3: Example

The sub-cases 3.1 is demonstrated as illustration as follows.

Sub-case 3.1: ζ1 > 0, ζ2 > 0 and ζ3 > 0

For this sub-case 3.1 to occur, there exists only 1 lower limit on the loop gain

from the coefficient s0.

K > Knc
o = 0 (B.22)

When ζ1 > 0, we have an upper limit on the derivative time

τD < D
nc

3.1,1 =
q3

|q1|
(B.23)

Based on the ζ2 > 0, we can further obtain a negative value of lower limit on

the integral time.

τI > −
q3

τDq2 − |q1|
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which the denominator must be positive, it stipulates the derivative time must

be bounded from below, hence

τD > Dnc
3.1,1 =

|q1|
q2

(B.24)

For the ζ3 > 0 to be valid, the integral time has to be greater than a certain

value given by

τI > Inc3.1,1 =
q1

τD + q2

(B.25)

The denominator of (B.25) must be positive to guarantee the lower limit

on the integral time holds, which deliver a negative value of lower limit on the

derivative time, i.e., τD > q2. This negative lower bound on the derivative time

can be neglected as we only consider τD > 0 in this case.

The range of derivative time is used to guarantee the stability of PID controller

as follows

max(0, Dnc
3.1,1) < τD < min(D

nc

3.1,1) (B.26)

According to necessary critetion of Routh stability, the minimum upper limit

on the derivative time (B.23) must be greater than its lower limit (B.24). It

should be note that, there is no stable PID controller exists for stabilizing this

sub-case 3.1 as the upper limit on the derivative time (B.23) is always less than

the lower limit (B.24), which can be proved analytically - violate the Theorem

4.2.1. Additionally, the graph of log(R) versus λ1 is shown in Figure B.4.

In Figure B.4, it can be readily shown that the log(R) is always in negative

value when λ2 = 0.2, 0.4, 0.6, 0.8 and τz3 = 3, which means that the minimum

upper limit on the derivative time is lower than its maximum lower limit, i.e.

Theorem 4.2.1 is violated. Thus, it can be proved that the closed-loop stability

of this sub-case 3.1 is not stable.
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Appendix C

Extractive Alcoholic

Fermentation Model

C.1 System Model

The dynamic model of a extractive bioreactor system of ethanol fermentation are

shown as follows:

dL

dt
=
Fin − F

A
(C.1a)

dXv

dt
= αrx,1 + (1− α)rx,2 −

(
FXv − FinXv,in

V

)
− XvdL

L
(C.1b)

dCg
dt

= −αrs,1 +

(
FinCg,in − FCg

V

)
− CgdL

L
(C.1c)

dCx
dt

= −(1− α)rs,2 +

(
FinCx,in − FCx

V

)
− CxdL

L
(C.1d)

dCe
dt

= αrp,1 + (1− α)rp,2 −
(
FCe − FinCe,in

V

)
− CedL

L
(C.1e)

dT

dt
=

(
FinTin − FT

V

)
+

∆H(αrs,1 + (1− α)rs,2)

ρCp
− TdL

L
(C.1f)

where the variables L, Xv, Cg, Cx, Ce, and T denote the medium level (m),

biomass concentration (kg/m3), glucose concentration (kg/m3), xylose concentra-

tion (kg/m3), ethanol concentration (kg/m3) and temperature (�) respectively.

The cross-sectional area of fermentor (A) is given as 50 m2. The weighting factor

of substrate consumptions is given as

α =
rs,1

rs,1 + rs,2
(C.2)
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The cell growth on glucose (1) and xylose (2) is represented by the specific

growth rates of recombinant Z. mobilis ZM4(pZB5) are shown as

rx,1 = µmax,1

(
Cg

Ksx,1 + Cg

)(
1− Ce − Pix,1

Pmx,1 − Pix,1

)(
Kix,1

Kix,1 + Cg

)
(C.3)

rx,2 = µmax,2

(
Cx

Ksx,2 + Cx

)(
1− Ce − Pix,2

Pmx,2 − Pix,2

)(
Kix,2

Kix,2 + Cx

)
(C.4)

The rates of glucose (1) and xylose (2) consumption on are represented as

rs,1 = qs,max,1

(
Cg

Kss,1 + Cg

)(
1− Ce − Pis,1

Pms,1 − Pis,1

)(
Kis,1

Kis,1 + Cg

)
(C.5)

rs,2 = qs,max,2

(
Cx

Kss,2 + Cx

)(
1− Ce − Pis,2

Pms,2 − Pis,2

)(
Kis,2

Kis,2 + Cx

)
(C.6)

The rate of ethanol production on glucose (1) and xylose (2) are

rp,1 = qp,max,1

(
Cg

Ksp,1 + Cg

)(
1− Ce − Pip,1

Pmp,1 − Pip,1

)(
Kip,1

Kip,1 + Cg

)
(C.7)

rp,2 = qp,max,2

(
Cx

Ksp,2 + Cx

)(
1− Ce − Pip,2

Pmp,2 − Pip,2

)(
Kip,2

Kip,2 + Cx

)
(C.8)

The kinetics parameters and physical constants adopted in this study can be

found in Table C.1 and C.2. Furthermore, other algebraic equations describing

the system are given as:

Fin = Fo + FR + Fr (C.9)

FR = RF (C.10)

Fr = rFL (C.11)
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Table C.1: Kinetic parameters

Glucose Xylose

Specific growth rate

µmax,1 0.31 µmax,2 0.1

Ksx,1 1.45 Ksx,2 4.91

Pmx,1 80 Pmx,2 80

Kix,1 200 Kix,2 600

Pix,1 28.9 Pix,2 26.6

Rate of substrate consumption

qs,max,1 10.9 qs,max,2 3.27

Kss,1 6.32 Kss,2 0.03

Pms,1 75.4 Pms,2 81.2

Kis,1 186 Kis,2 600

Pis,1 42.6 Pis,2 53.1

Rate of ethanol production

qp,max,1 5.12 qp,max,2 1.59

Ksp,1 6.32 Ksp,2 0.03

Pmp,1 75.4 Pmp,2 81.2

Kip,1 186 Kip,2 600

Pip,1 42.6 Pip,2 53.1

Table C.2: Physical constants

Physical constants

∆H (kJ/kg) 51.76

ρ (kg/m3) 1000

Cp (kJ/kg �) 1.0
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Appendix D

Linearization and Partial

Fraction Expansion

D.1 Linearization

D.1.1 Linearized Rate Equations

The linearization of nonlinear rate equations of fed-batch bioreactor process using

Taylor Series approximation is as follows.

rx = rx + βxsG
′ + βxxX

′ + βxpP
′ (D.1)

rp = rp + βpsG
′ + βpxX

′ + βppP
′ (D.2)

rs = rs + βssG
′ + βsxX

′ + βspP
′ (D.3)

rd = rd + kdX
′ (D.4)

where the parameters are given by

rx = δ1GX (D.5)

βxs = (δ1 − δ2G)X (D.6)

βxx = δ1G (D.7)
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βxp = −δ3GX (D.8)

rp = Yprx +mpX (D.9)

βps = Ypβxs (D.10)

βpx = Ypβxx +mp (D.11)

βpp = Ypβxp (D.12)

rs = Ysrx +msX (D.13)

βss = Ysβxs (D.14)

βsx = Ysβxx +ms (D.15)

βsp = Ysβxp (D.16)

Others parameters:

δ1 =
µ0

Ks0 +G+Ks1G
2 exp

(
− P

Pmax

)
(D.17)

δ2 =
(1 + sKs1)µ0

(Ks0 +G+Ks1G
2
)2
exp

(
− P

Pmax

)
(D.18)

δ3 =
δ1

Pmax
(D.19)

D.1.2 Linearized Convective Terms

Let

fx =
FX

V
∼=
FX

V
+ γxfF

′ + γxxX
′ + γxvV

′ (D.20)

where γxf = X
V

, γxx = F
V

, γxv = −FX

V
2 and Y ′ = Y − Y denote the deviated

variable form and the value at which the linearization is made, respectively.
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Let

fs =
F (Gin −G)

V
∼=
F (Gin −G)

V
+ γsfF

′ + γssG
′ + γsvV

′ (D.21)

where γsf = Gin−G
V

, γss = −F
V

and γsv = −F (Gin−G)

V
2 .

Let

fp =
FP

V
∼=
FP

V
+ γpfF

′ + γppP
′ + γpvV

′ (D.22)

where γpf = P
V

, γpp = F
V

and γpv = −FP

V
2 .

D.2 Development of Linearized Model

Let us convert the model equations (5.3) into the deviated variable form:

dV ′

dt
= F ′ (D.23)

dX ′

dt
= βxsG

′ + βxxX
′ + βxpP

′ − kdX ′ − (γxfF
′ + γxxX

′ + γxvV
′) (D.24)

dG′

dt
= −(βssG

′ + βsxX
′ + βspP

′) + γsfF
′ + γssG

′ + γsvV
′ (D.25)

dP ′

dt
= βpsG

′ + βpxX
′ + βppP

′ − (γpfF
′ + γppP

′ + γpvV
′) (D.26)

Laplace Transform is applied to all 4 of the model equations which leads to:

V ′(s) =
F ′(s)

s
(D.27)

X ′(s) =
1

L1(s)

[
βxsG

′(s) + βxpP
′(s)− N1(s)

s
F ′(s)

]
(D.28)

G′(s) =
1

L2(s)

[
N3(s)

s
F ′(s)− βsxX ′(s)− βspP ′(s)

]
(D.29)

P ′(s) =
1

L3(s)

[
βpsG

′(s) + βpxX
′(s)− N2(s)

s
F ′(s)

]
(D.30)
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where L1(s) = s + a1, L2(s) = s + a2, L3(s) = s + a3, N1(s) = γxfs + γxv,

N2(s) = γpfs + γpv, N3(s) = γsfs + γsv, a1 = γxx + kd − βxx, a2 = βss − γss and

a3 = γpp − βpp.
It can be readily shown that the overall transfer function relating the input

F to output G can be written in the form of

Gp =
L3(L1N3 + βsxN1) + βxp(βsxN2 − βpxN3) + βsp(L1N2 + βpxN1)

s[L3(L1L2 + βsxβxs) + βsp(L1βps − βpxβxs) + βxp(L2βpx − βsxβps)]
(D.31)

D.3 Partial Fraction Expansion

The partial fraction expansion is applied to decompose process transfer function

(5.9) into a sum of three basic factors as follows:

Gp =
k1

s
+

k2

τps+ 1
+

k3s+ k4

α2s2 + α1s+ 1
(D.32)

where the parameters kj, j = 1, 2, 3, 4 are given by k1 = Kp, k2 =
−Kp

∏3
i=1(τp−τzi)

α2−α1τp+τ2p
,

k3 = 2ψ2 − ψ1 and k4 = ψ1−ψ2

τp
. Here,

ψ1 =
1

3τp
[Kp

3∏
i=1

(τzi + 2τp)− Am2(k2 + 3τpk1)] (D.33)

ψ2 =
1

2τp
[Kp

3∏
i=1

(τzi + τp)− Am1(k2 + 2τpk1)] (D.34)

where Am1 = α2 + α1τp + τ 2
p and Am2 = α2 + 2α1τp + 4τ 2

p .
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