Coenen, P. and Parry, S. and Willenberg, L. and Shi, J. and Romero, L. and Blackwood, D. and Healy, G. et al. 2017. Associations of prolonged standing with musculoskeletal symptoms—A systematic review of laboratory studies. Gait and Posture. 58: pp. 310-318.

Abstract

While prolonged standing has shown to be detrimentally associated with musculoskeletal symptoms, exposure limits and underlying mechanisms are not well understood. We systematically reviewed evidence from laboratory studies on musculoskeletal symptom development during prolonged (≥20 minutes) uninterrupted standing, quantified acute dose-response associations and described underlying mechanisms.

Peer-reviewed articles were systematically searched for. Data from included articles were tabulated, and dose-response associations were statistically pooled. A linear interpolation of pooled dose-response associations was performed to estimate the duration of prolonged standing associated with musculoskeletal symptoms with a clinically relevant intensity of ≥ 9 (out of 100).

We included 26 articles (from 25 studies with 591 participants), of which the majority examined associations of prolonged standing with low back and lower extremity symptoms. Evidence on other (e.g., upper limb) symptoms was limited and inconsistent. Pooled dose-response associations showed that clinically relevant levels of low back symptoms were reached after 71 minutes of prolonged standing, with this shortened to 42 minutes in those considered pain developers. Regarding standing-related low back symptoms, consistent evidence was found for postural mechanisms (i.e., trunk flexion and lumbar curvature), but not for mechanisms of muscle fatigue and/or variation in movement. Blood pooling was the most consistently reported mechanism for standing-related lower extremity symptoms.

Evidence suggests a detrimental association of prolonged standing with low back and lower extremity symptoms. To avoid musculoskeletal symptoms (without having a-priori knowledge on whether someone will develop symptoms or not), dose-response evidence

from this study suggests a recommendation to refrain from standing for prolonged periods >40 minutes. Interventions should also focus on underlying pain mechanisms.

Key words: Standing - Musculoskeletal symptoms – Systematic review – Exposure limit

Introduction

Prolonged periods of standing are traditionally common in certain occupations, including in retail, food, healthcare, education, and manufacturing industries. It has been shown that 62% of a sample from the general Australian working population reported their work involved standing[1]; which is consistent with findings from a study in a Canadian working population[2].

A growing body of evidence suggests that prolonged sitting is associated with several adverse health outcomes[3-5]. Consequently, expert recommendations advise workers to replace periods of sitting at work with standing and other light activities such as walking[6]. There is a growing interest in workplaces implementing this advice[7], most notably through the introduction of sit/stand office workstations[8]. However, these alternatives to sitting, such as standing, may expose workers to other health consequences[9].

Adverse health outcomes of standing have been previously reported[10], and include lower extremity venous disorders[11, 12], perinatal health complications (such as preterm delivery and pre-eclampsia)[13] and musculoskeletal symptoms (e.g. self-reported pain, discomfort or complaints in any region of the musculoskeletal system). In a recent systematic review on epidemiological evidence, it was identified (albeit from limited high quality evidence from longitudinal studies) that occupational standing was detrimentally associated with low back symptoms[14]. Evidence regarding the association of excessive standing and lower extremity symptoms was inconclusive, while of the limited evidence with upper extremity symptoms, a significant association did not seem to be evident.

One key issue inadequately addressed to date is the dosage of prolonged standing that may induce musculoskeletal symptoms. The prolonged standing strain index developed by Halim and Omar[15], which was based on a review of (scientific and professional)

occupational health literature and expert (e.g., ergonomic practitioners, medical doctors and physiotherapists) opinions, states that ≤ 1 hour of continuous standing can be considered safe, >1 hour of continuous standing is slightly unsafe and >1 hour of continuous standing in combination with >4 hours of standing per day as unsafe. The scientific basis of these exposure limits was, however, unclear as a systematic review of evidence on dose-response associations has not been undertaken.

Apart from the lack of understanding about exposure limits, underlying mechanisms explaining the associations of prolonged standing with musculoskeletal symptoms have not been elucidated. Such knowledge is needed for the development of interventions targeted at preventing detrimental effects of prolonged standing. Previous work has suggested mechanisms of muscle fatigue[16], static postures and lack of variation in movement[17, 18] to be possible contributors to standing-related low back symptoms. It has also been suggested that there may be different subgroups of people that do and do not develop low back symptoms during periods of prolonged standing[19-21]; often referred to as 'pain developers' and 'non-pain developers', respectively. However, factors that distinguish pain developers from non-pain developers are not well understood yet. For the association of standing and lower limb symptoms, mechanisms of muscle fatigue[22] and mechanisms from a non-musculoskeletal origin such as those of swelling[23] due to blood pooling in the lower limbs[16] have been suggested. However, a systematic overview of such mechanisms has not, as yet, been provided.

Considering the current emphasis on replacing office workplace sitting with standing, and the number of existing occupations that have traditionally been exposed to prolonged standing, a profound understanding of the health consequences of standing is needed to inform healthy work practices. Evidence-based exposure limits of standing are needed, while

an understanding of the mechanisms with regards to the association of prolonged standing and musculoskeletal symptoms is required. Our prior review of epidemiological studies examined the evidence of medium to long term dose-response relationships[14] but was not able to address acute dose-response relationships and contemporaneous potential mechanism changes. In this review we therefore aimed to: 1) systematically review the evidence on the acute associations between prolonged uninterrupted standing and nonspecific musculoskeletal symptoms from controlled laboratory studies; 2) describe acute dose-response associations for standing and musculoskeletal symptoms to establish exposure limits; and, 3) tabulate potential mechanisms for these associations.

Methods

Search strategy

This review was a-priori registered[24] and executed according to the PRISMA statement guidelines[25]. To identify relevant publications, a comprehensive literature search was undertaken in electronic databases from database inception to 21 June 2016 using a combination of terms relevant to 'standing' and 'work-related' (Supplementary Material 1-6). No specific terms for health outcomes were used as this study is part of a larger review aimed at assessing the associations of standing with multiple health outcomes.

Two reviewers independently screened all potentially relevant titles and abstracts for eligibility, and if necessary, full-text articles were checked. Differences in judgment were resolved through a consensus procedure. Reference lists of selected articles were screened to identify additional potentially eligible articles. Studies were included if the article reported on the association of prolonged standing (defined for the purpose of this study as uninterrupted periods of standing for \geq 20 minutes) with non-specific musculoskeletal

symptoms from a laboratory study; i.e., a controlled study which reported both the exposure to prolonged standing and musculoskeletal and possibly physiological outcomes (e.g., muscle activity, posture and leg circumference). We included articles published in English and in peer-reviewed journals. Reviews, editorials, letters and conference proceedings were excluded. Studies in which standing was not the main exposure variable (e.g., standing was only part of a certain condition/trial such as 'lifting during standing'), or in which standing was only used as a confounding variable, were excluded. Only articles describing a general adult population were included (e.g., excluding studies selecting workers with chronic disorders and non-adult populations). Moreover, for the purpose of this review, studies concerned with specific musculoskeletal conditions (e.g., osteoarthritis, fracture, cartilage damage) were excluded.

Data extraction and risk of bias assessment

Two reviewers independently assessed all selected articles for risk of bias and extracted relevant data. In cases of disagreement, consensus was reached during a meeting. Risk of bias was evaluated using an adapted version of a published methodological quality scoring system[26], based on eleven criteria for the reporting of study methods and results (Supplementary Material 7). Studies with a summary score ≥ 0.75 out of 1.00 were considered to be of high methodological quality[26], hence low risk of bias.

The following data from each included article were extracted: first author and year of publication, study design, sample description (i.e., number of participants, age, sex, country and other relevant specifics), standing condition (i.e., the duration of prolonged standing), other associated physiological outcomes (e.g., muscle activity, posture, spinal shrinkage, spinal load, leg circumference) and dose-response estimates. From articles reporting on multiple conditions, only data from the prolonged standing condition were extracted. Where insufficient information was reported in the articles, authors were contacted to retrieve additional information. When dose-response information was otherwise unavailable, Digizeit software (Digizeit, Braunschweig, Germany, <u>www.digitizeit.de</u>) was used to digitize information on dose-response association from figures presented in the original articles.

Data-analysis

All included articles were qualitatively described according to their extracted data and risk of bias. Study findings were stratified according to the symptom body area.

Dose-response data from individual studies were plotted and statistically pooled using Microsoft Excel (Microsoft Corporation, Redmond USA). To do so, musculoskeletal symptom outcomes were harmonized by normalizing outcomes to a 100 point scale. A linear interpolation of the pooled dose-response was performed to estimate musculoskeletal symptom intensity with a given dosage of prolonged standing. To develop evidence-based exposure limits, the dosage of prolonged standing accompanying a clinical relevant musculoskeletal symptom intensity level of 9 (out of 100)[27] was estimated. As earlier study samples have been stratified into pain developers and non-pain developers[19-21], based on whether, a-posteriori, participant's symptoms exceeded or changed by more than a given threshold amount, the abovementioned procedure were repeated for: a) all participants (combining data from pain developers and non-pain developers, and using data from articles not distinguishing these two groups), and separately for b) pain developers and c) non-pain developers.

Potential mechanisms underlying the associations of prolonged standing with musculoskeletal symptoms were tabulated.

Results

Study selection

The flow chart of the search and selection of literature is presented in Figure 1. The search strategy yielded, after removing duplicates, 13,702 individual articles that were screened for inclusion. A total of 509 full text articles were considered, of which 296 met the criteria of describing outcomes of standing, 140 of them reporting on musculoskeletal symptoms. A total of 17 of these articles specifically addressed the association of prolonged standing and non-specific musculoskeletal symptoms using a laboratory study design. After screening the reference lists of these articles, nine more articles were added, resulting in a total of 26 articles[16-21, 23, 28-46] (reporting from 25 studies with 591 participants) included in the current review from which risk of bias assessment and data-extraction was conducted (see Supplementary Material 8 and 9 for a summary of findings).

Data extraction

All included articles described studies in which participants performed a laboratory static standing trial, while in ten studies participants[18, 20, 28, 32, 34-36, 38-40] additionally performed a light manual (e.g., clerical, assembly or precision) tasks for a prolonged period of time, averaging 107.5 (SD:40.9) minutes, ranging from 32 to 240 minutes. During these trials, musculoskeletal symptoms was self-reported, and in most of the studies, also other physiological outcomes (e.g., muscle activity, body postures or lower limbs swelling) were repeatedly objectively measured. Studied samples typically consisted of young and generally healthy participants without comorbidities such as pre-existing musculoskeletal symptoms

and/or other conditions that would prevent them from standing for a prolonged period of time. Participants also typically did not have any prior habituation to prolonged standing.

Identified articles reported musculoskeletal symptoms in the low back[17-21, 29-32, 35-43, 45] (19 articles), upper back[29] (two articles), trunk[44] (one article), neck/shoulder[44] (one article), and lower limbs[32] (one article), while various articles reported symptoms in specific areas of the lower limbs; i.e., thighs/buttocks[44], hips[29], upper legs[29], knees[29], lower legs[29, 33], ankles[29], feet[29, 32]. One article reported general symptoms (not in any specific body area)[34] while four articles measured and/or combined symptoms from various body areas[16, 23, 28, 46]. Thirteen articles assessed pain[17, 19, 21, 31, 35-43, 45], 10 articles assessed discomfort[16, 18, 20, 28, 29, 32, 33, 44, 46], one article assessed comfort[23] and one article assessed unpleasantness[34]. Musculoskeletal symptoms were assessed with self-reports using a visual analog scale (VAS) in 17 articles[17-21, 31-43], while five articles used a 0-10 scale[16, 28, 44-46], one article used a Borg scale[29] and one article used a 1-9 comfort rating scale[23].

Extracted studies showed consistent associations of prolonged standing with low back and lower extremity symptoms, with all identified studies showing symptom development (at least in a subgroup of the participants) during prolonged standing. However, inconsistent and limited study findings on other body area (e.g., upper limb) symptoms were found.

Thirteen articles categorized participants into pain developers and non-pain developers, using the following thresholds to make this categorization: one article used >10/100 symptoms intensity[21], one article used a change of >8/100[43] and two articles used a change >10/100 during the entire trial[19, 41], seven articles used a change >10/100 from the baseline score[17, 30, 31, 35-38, 40], one article used any change in symptoms during

the standing trial[42] and one article used symptoms intensity >20/100 at any point and >10/100 overall[39]. The prevalence of pain developers reported in the included articles ranged from 28%[41] to 71%[35], with an average of 44%.

Risk of bias

The average methodological quality score was 0.80 (SD:0.12) out of 1, ranging from 0.59 to 0.95, with 10 articles describing a study considered to have a high risk of bias (sum scores <0.75) (Supplementary Material 9).

Exposure limits for prolonged standing

Plots for the dose-response of prolonged standing and low back and lower extremity symptoms are shown in Figures 2-4 in which results of 18 articles are presented. As two papers reported on the same study data[18, 20], only data from one article was used for data pooling[18].

Information from five articles could not be pooled because: only symptoms[29] or change in symptoms[36] at the end of the trial were reported; or, no time series on symptoms were provided[37, 41, 42]. While the association of prolonged standing and upper extremity symptoms had been evaluated in some of the studies[16, 28, 39, 44], the articles did not report on any development of symptoms during their respective trials, hence no dose-response associations could be assessed. Two articles reported general musculoskeletal symptoms (not in any specific body area)[23, 46] and were therefore also not presented in the plots.

Dose-response associations from 14 articles on the association of prolonged standing and low back symptoms, for participants not differentiated into pain developers and non-

pain developers (Figure 2), show a gradual increase in low back symptoms during prolonged standing. The pooled dose-response association is depicted by:

Symptoms = 0.12 * standing time + 0.66

According to this equation, a clinical relevant symptom intensity of $\geq 9/100[27]$ would be achieved after 71 minutes of prolonged standing.

Stratified dose-response associations from the 10 different studies which provided data separately for pain developers (Figure 3) and non-pain developers (Supplementary Material 10) were plotted. The pooled dose-response association in the group of pain developers is depicted by:

Symptoms = 0.20 * standing time + 0.52

According to this equation, a clinical relevant symptom intensity of $\geq 9/100[27]$ would be achieved after 42 minutes of prolonged standing in pain developers.

The pooled dose-response association in the group of non-pain developers was depicted by:

Symptoms = 0.02 * standing time + 0.31

According to this equation, a clinical relevant symptom intensity of $\geq 9/100[27]$ would be achieved after 480 minutes (8 hours) of prolonged standing.

Finally, using data from six different articles[16, 28, 32-34, 44], the dose-response associations between prolonged standing and lower limb symptoms were plotted (Figure 4), showing an increasing pattern of lower limbs symptoms during prolonged standing. Due to the wide heterogeneity in associations (between studies), these data were not statistically pooled.

Mechanisms for musculoskeletal symptoms due to prolonged standing

Mechanisms for the development of low back and lower extremity symptoms due to prolonged standing are described in Tables 1 and 2 (from 17 and 10 studies, respectively). For low back symptoms, mechanisms at the level of the muscle, such as increased co-contraction, muscle fatigue or muscle stiffness, and a lack of muscle strength or endurance have been hypothesized to be a potential cause of low back symptoms. However, we could not find consistent evidence in supporting these mechanisms, with studies that did and did not find a significant association of these factors with either prolonged standing or the development of standing-related symptoms. We did however find consistency in evidence for mechanisms for the development of standing-related low back symptoms due to postures such as an increase in trunk flexion, axial rotation and lumbar curvature[18, 31, 42]. Evidence for a mechanism of (either too much or too little) variation in movement causing low back symptoms during standing showed a rather inconsistent picture with studies that did and did and did not find an association between factors like body sway, shifting of body weight and fidgeting with prolonged standing or the development of symptoms 16, 17, 29-32, 46].

For lower extremity symptoms, the mechanism of blood pooling during prolonged standing was most often reported. Consistent evidence showed that prolonged standing may cause an increase in blood flow (assessed by using Laser Doppler Flowmetry measured at the level of the skin), skin temperature and leg volume (typically assessed by measuring leg circumference), that may be associated with the development of musculoskeletal symptoms[16, 23, 28, 32-34, 45]. Evidence for mechanisms of (either too much or too little) variation in movement or muscle fatigue being the cause of standing-related lower-extremity symptoms showed a rather inconsistent picture with both studies that did and did not find an association of certain factors with prolonged standing or the development of symptoms.

Discussion

Prolonged standing and musculoskeletal symptoms

We have described the evidence on acute associations of prolonged standing and musculoskeletal symptoms from controlled laboratory studies. Prolonged standing was consistently associated with the development of low back and lower extremity symptoms in all identified studies reporting on these symptoms. There was inconsistent and limited evidence concerning risk for symptoms in other (e.g. upper extremity) areas. Our findings are broadly in line with what has been reported in earlier reviews[10, 14] showing the association of standing and musculoskeletal symptoms in epidemiological studies.

Importantly, our findings extend previous reports by quantifying the acute doseresponse association between prolonged standing and low back symptoms. These findings were based on pooled dose-response associations of various studies from which data on low-back symptoms (i.e., pain and discomfort) were harmonized. In a general population (i.e. those not differentiated into pain developers and non-pain developers) it appeared that, a clinical relevant symptom intensity of ≥9/100 was evident after 71 minutes of prolonged standing, whereas such an intensity is reached after only 42 minutes in participants who develop pain. To minimize the risk of people developing musculoskeletal symptoms due to prolonged standing (without having a-priori knowledge on whether someone will develop symptoms or not), this information suggests ~40 minutes should be adopted as an exposure limit for prolonged standing. It should, however, be noted that even after a break from standing, symptoms are more likely to return in those that have developed standing-related symptoms prior to taking a break[47]. Care should thus be taken with applying the established threshold in those that have been exposed to earlier episodes of prolonged standing.

The dose-response associations of prolonged standing with lower extremity symptoms were substantially more heterogeneous than those for low back symptoms, as a result of which specific exposure limits for this body area were not determined. One possible reason for the heterogeneity could be the different areas of the lower extremity that were studied, with articles reporting lower limb symptoms in general[16, 32, 44], and symptoms in specific areas such as the feet[28, 32, 34], ankles[28] and lower legs[33].

An alternative approach to reducing the risk of developing standing-related musculoskeletal symptoms may be to distinguish pain developers from non-pain developers for more targeted intervention strategies. Specific groups of standing-related pain developers have been described[19-21], with an average prevalence of 44% in the study samples described in our review. The reliability and validity of the pain developer paradigm has been reported. Sorensen and colleagues described a number of symptoms that were reported by both standing-related pain developers and regular pain patients, thereby concluding to have found evidence for the validity of the paradigm[41]. Nelson-Wong and colleagues[37] showed high repeatability in identifying pain developing participants when tested four weeks apart. Our findings provide some guidance on identifying pain developers (Table 1). For example, pain developers showed to have a larger lumbar curvature[42] and a smaller hip range of motion[19] than non-pain developers. However, more information on the pain developer paradigm is needed to enable targeted intervention actions.

Mechanisms for the association of prolonged standing with musculoskeletal symptoms

Evidence on potential underlying mechanisms for the development of musculoskeletal symptoms due to prolonged standing was tabulated (Tables 1-2). Some consistency in the evidence for the postural mechanisms for the development of low back symptoms was found with postures such as trunk flexion, axial rotation and lumbar curvature seemingly playing a role in the development of low back symptoms related to standing[18, 31, 42]. Such postures may induce an increase in lumbar load during prolonged standing[18], while the low back load during standing has already been shown to be higher than during sitting[48]. These elevated loads may play a role in the development of low back symptoms during prolonged standing.

For low back symptoms, mechanisms at the level of muscle, such as an increased cocontraction, muscle fatigue or stiffness, or a lack of muscle strength or endurance have been hypothesized to be a potential cause of low back symptom development. However, we only found limited, but inconsistent, evidence to support these mechanisms. Although variation in postures has often been suggested to be an important factor in the prevention of musculoskeletal symptoms[49], we identified only limited and inconsistent evidence supporting such a mechanism.

For lower extremity symptoms, although not necessarily musculoskeletal in nature, blood pooling in the lower extremities is one of the most often reported mechanisms for the adverse associations observed with prolonged standing. It has been shown previously that prolonged standing can increase intravascular hydrostatic venous pressure[50], whereas the lack of muscle pump action may contribute to venous stasis[50] and increased lower limb volume[23, 28, 45] which may put passive structures under stress, causing symptoms. Relatively consistent evidence showed that prolonged standing may cause an increase in blood flow, skin temperature and leg volume, providing funding for this mechanism. Evidence for mechanisms of variation in movement or muscle fatigue being the cause of standing-related lower-extremity symptoms was rather inconsistent, with both studies that

did and did not find an association between postural or muscle activity variables and either prolonged standing or the development of symptoms.

Implications for occupational health

Based on evidence examined in this review, it can be concluded that interventions to prevent standing-related musculoskeletal symptoms should aim at reducing prolonged standing time to below the evidence-based exposure limit suggested. However, interventions impacting on underlying mechanisms could also be considered. Such interventions may, for example, be directed at postures during standing or may be targeted at preventing lower limb blood pooling.

Various interventions for the prevention of standing-related musculoskeletal symptoms have been suggested, including those based on the notion that symptom development can be altered through postural modifications[31, 51] or movement[36]. These include breaking up prolonged standing by intermittent sitting[47] (to keep prolonged bouts below exposure limits) or by movement[52], or by applying certain shoe or floor conditions[53] (to address possible underlying mechanisms. However these interventions have generally only shown moderate effects on reducing symptoms so far[47, 52, 53]. In addition to health outcomes, interventions should also consider potential impact on work productivity to ensure they are feasible and sustainable.

Methodological considerations

Substantial evidence on the association of standing with musculoskeletal symptoms was found from laboratory studies, with data on physiological outcomes providing insight into possible mechanisms for the association. Although the evidence presented in this review

provides detailed information about the acute response to prolonged standing in a controlled situation, information on both the effect of long-term exposure to prolonged standing and/or responses to prolonged standing outside a laboratory setting is lacking. This includes a lack of information on, for example, more dynamic types of standing (as opposed to the predominantly static standing performed in laboratory settings), or standing that is broken up by bouts of other activities (e.g., sitting). Moreover, the described studies were typically conducted among groups of relatively healthy populations (i.e., young participants without comorbidities such as pre-existing musculoskeletal symptoms) (see information in Supplementary Material 8). As such, the current review findings cannot necessarily be extrapolated to other (more generic) populations. Some studies excluded participants from occupations that encompass substantial amounts of prolonged standing[28, 30, 31, 33]. Thus, at least for these studies, the findings from this review cannot be generalized to populations of workers that are habituated to prolonged standing. Therefore, it remains unknown whether dose-response associations differ for such populations as compared to the general population.

Regarding risk of bias, the majority of the articles in this systematic review did not control for relevant other (potentially confounding) factors. As a result of which, the role of socio-demographic (e.g., age and sex) and other (e.g., psychosocial or physical work demands) factors on the association of prolonged standing with musculoskeletal symptoms remains unknown. Moreover, most studies scored relatively low on the sample size, analytical methods used, and reporting data in sufficient detail. Such aspects should therefore deserve more attention in future work as they may underlie the lack of consistent findings for some of the aspects studied in our review.

No clear difference in dose-response associations could be obtained from studies reporting musculoskeletal pain compared to those reporting musculoskeletal discomfort (as per the dashed and solid lines in Figures 2-4). Such a difference was expected as earlier work had indicated that whilst they were strongly related, discomfort is more sensitive and develops earlier than pain in response to exposures to physical work demands[54]. This suggests participants in the various studies examined in this review perceived symptom intensity similarly regardless of whether pain or discomfort was the anchor term used.

Conclusion

This systematic review on laboratory studies found convincing evidence for a detrimental association between acute prolonged standing and development of musculoskeletal symptoms in the low back and lower extremities. We have reported on underlying mechanisms for these associations. Moreover, a safe exposure limit of 40 minutes of uninterrupted standing has been suggested before people typically develop clinically relevant levels of low back symptoms. This general exposure limit needs to considered in relation to other factors which may influence a worker's risk including prior exposure, unaccustomed to standing, older, and having comorbidities. Interventions should therefore be aimed at reducing prolonged standing time, below the provided exposure limit, or should focus on underlying pain mechanisms. Also interventions targeted at pain developers specifically should be developed.

Acknowledgements

Funding sources: GNH was supported by a NHMRC Career Development Fellowship (NHMRC #108029). DD was supported by a NHMRC Senior Research Fellowship (NHMRC #1078360). LS was supported by a NHMRC Senior Research Fellowship (NHMRC #1019980). CGM was supported by a NHMRC Principal Research Fellowship (NHMRC #1103022). We are grateful for the financial assistance from the Victorian Government's OIS Program.

Author contribution

PC, LW, SP and JS conducted literature screening and data extraction of all included papers. LR and DB conducted the literature search in electronic data bases. All authors (PC, LW, SP, JS, LR, DB, GH, DD and LS) analysed the data and reviewed the manuscript for important intellectual content. LS is the study guarantor.

Figure 1. Flow chart depicting the literature selection procedure

Figure 2. Dose-response of the association between prolonged standing (in minutes) and low back symptoms (i.e., pain or discomfort, on a 0 to 100 scale). Scores from articles reporting discomfort are depicting in dashed lines, while scores from articles reporting pain are depicted in solid lines. The thick grey line depicts the statistically pooled dose-response association.

Figure 3. Dose-response of the association between prolonged standing (in minutes) and low back symptoms (i.e., pain or discomfort, on a 0 to 100 scale) in pain developers. Scores from articles reporting discomfort are depicting in dashed lines, while scores from articles reporting pain are depicted in solid lines. The thick grey line depicts the statistically pooled dose-response association.

Figure 4. Dose-response of the association of prolonged standing (in minutes) and lower limb symptoms (i.e., pain or discomfort, on a 0 to 100 scale). Scores from articles reporting discomfort are depicting in dashed lines, while scores from articles reporting pain are depicted in solid lines.

Possible m	lechanisms	Evidence in favor	Evidence against		
Muscle	Co-contraction	 Higher gluteus medius co-contraction in PD* than in NPD[19, 21, 39] Higher trunk co-contraction in PD than in NPD[39] Gluteus medius co-contraction decreased during prolonged standing[19] 	 No change in gluteus medius co-contraction during prolonged standing[21, 35, 39] No change in change in trunk muscle co-contraction during prolonged standing[35, 39] No difference in trunk muscle co-contraction between PD and NPD[39] 		
	Fatigue/ Oxygenation	 Increase in frequency of trunk muscle activity during prolonged standing[32] 	 No change in trunk muscle activity during prolonged standing[16, 18, 32, 34, 44] No association of trunk muscle activity and symptoms[29] No change in muscle oxygenation during prolonged standing[18, 20] No association of symptoms and muscle oxygenation[20] 		
	Strength	Hip abductor muscle strength reduced after prolonged standing[35]	• No difference in gluteus medius muscle strength between PD and NPD[19]		
	Endurance	• Hip abductor muscle endurance reduced after prolonged standing in PD[35]	 No difference in gluteus medius muscle endurance between PD and NPD[19] 		
	Stiffness	• Smaller hip range of motion in PD than NPD[19]	 No difference in hamstring stiffness, stretch tolerance and extensibility between PD and NPD[40] 		
Postural	Body sway	Increase in sway during prolonged standing[16, 32, 46]	 No change in sway during prolonged standing[16, 30, 34] No association between the number of weight shifts and symptoms[29] 		
	Lumbar posture	 Increase in lumbar flexion during prolonged standing[18, 31] More spinal axial rotation with symptoms[18] More lumbar curvature in PD than NPD[42] More lumbar curvature with symptoms[42] 	No change in asymmetrical posture during prolonged standing[17]		

Table 1. Mechanisms for the association of prolonged standing and low back symptoms.

	Posture	Decrease in body weight shift frequency during prolonged	No change in body weight shift amplitude during prolonged		
	(variation)	standing[17]	standing[17]		
 Decrease[17] and increase[30] in body weight shift duration 		• Decrease[17] and increase[30] in body weight shift duration			
during prolonged standing		during prolonged standing			
		• Increase in fidget amplitude during prolonged standing[17]			
		• Higher[17] and lower[30, 31] fidget frequency in PD than			
		NPD			
		Less spinal movement in PD than NPD[30]			
		More body shifts with symptoms[18]			
		• Increase in postural changes during prolonged standing[46]			
Loading	Lumbar load	Increase in lumbar load during prolonged standing[18]			
Blood	Skin temperature	-	• No change in skin temperature during prolonged standing[18]		
flow					
* PD = Pain developers					
NPD = Non	-pain developers				

Possible mecha	nisms	Evidence in favor	Evidence against		
Blood pooling	Blood flow	 Increase in blood flow at the level of the foot[16, 28, 44] and the soleus muscle[28, 44] during prolonged standing More blood flow and symptoms[16, 28] 	 No increase in blood flow at the level of the soleus muscle during prolonged standing[16] 		
Blood pressure		• Increase in blood pressure at the level of the ankle during prolonged standing[16, 28, 44]	No change in blood pressure at the level of the ankle during prolonged standing[44]		
	Skin temperature	 Increase in lower limb skin temperature during prolonged standing[32, 34] More lower limb skin temperature with symptoms[29] 	-		
	Leg circumference/volume	 Increase in lower leg volume during prolonged standing[23, 32-34, 45] More lower leg volume and symptoms[23] 	No association of lower limb volume and symptoms[29]		
Muscle	Fatigue/ Oxygenation	 Increase in tibialis and gastrocnemius muscle activity during prolonged standing[16, 33] 	 No change in lower limb muscle activity during prolonged standing[16, 28, 29, 34, 44, 46] No association of lower limb muscle activity and symptoms[29] 		
Postural	Postures	 Increase in centre of gravity changes during prolonged standing[46] 	No change in centre of pressure movement during prolonged standing[34]		
	Body sway	 Increase in sway during prolonged standing[16, 32, 46] More number of weight shift with symptoms[29] 	No change in sway during prolonged standing[16, 34]		

Table 2. Mechanisms for the prolonged standing and lower extremity symptoms.

Reference

- 1. Safe Work Australia, National hazard exposure worker surveillance: exposure to biomechanical demands, pain and fatigue symptoms and the provision of controls in Australian workplaces. 2011: Canberra, Australia.
- 2. Tissot, F., Messing, K., and Stock, S., Standing, sitting and associated working conditions in the Quebec population in 1998. *Ergonomics*, 2005. 48(3): 249-269.
- 3. Tremblay, M.S., Colley, R.C., Saunders, T.J., Healy, G.N., and Owen, N., Physiological and health implications of a sedentary lifestyle. *Applied Physiology, Nutrition, and Metabolism*, 2010. 35(6): 725-740.
- 4. Thorp, A.A., Owen, N., Neuhaus, M., and Dunstan, D.W., Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996-2011. *American Journal of Preventive Medicine*, 2011. 41(2): 207-215.
- 5. Straker, L., Coenen, P., Dunstan, D.W., Gilson, N., and Healy, G.N., Sedentary work Evidence on an emergent work health and safety issue. 2016, Safe Work Australia: Canberra, Australia.
- 6. Buckley, J.P., Hedge, A., Yates, T., Copeland, R.J., Loosemore, M., Hamer, M., Bradley, G., et al., The sedentary office: a growing case for change towards better health and productivity. Expert statement commissioned by Public Health England and the Active Working Community Interest Company. *British Journal of Sports Medicine*, 2015. 49(21): 1357-1362.
- 7. Shrestha, N., Ijaz, S., Kukkonen-Harjula, K.T., Kumar, S., and Nwankwo, C.P., Workplace interventions for reducing sitting at work. *Cochrane Database of Systematic Reviews*, 2015. 1: CD010912.
- 8. Neuhaus, M., Eakin, E.G., Straker, L., Owen, N., Dunstan, D.W., Reid, N., and Healy, G.N., Reducing occupational sedentary time: a systematic review and meta-analysis of evidence on activity-permissive workstations. *Obesity Reviews*, 2014. 15(10): 822-838.
- 9. Callaghan, J.P., de Carvalho, D., Gallagher, K., Karakolis, T., and Nelson-Wong, E., Is standing the solution to sedentary office work? *Ergonomics in Design* 2015. 23(3): 20-24.
- 10. Waters, T.R. and Dick, R.B., Evidence of health risks associated with prolonged standing at work and intervention effectiveness. *Rehabilitation Nursing*, 2014. 40(3): 148-165.
- 11. Beebe-Dimmer, J.L., Pfeifer, J.R., Engle, J.S., and Schottenfeld, D., The epidemiology of chronic venous insufficiency and varicose veins. *Annals of Epidemiology*, 2005. 15(3): 175-184.
- 12. Jawien, A., The influence of environmental factors in chronic venous insufficiency. *Angiology*, 2003. 54 (Suppl 1): S19-S31.
- 13. Bonzini, M., Coggon, D., and Palmer, K.T., Risk of prematurity, low birthweight and preeclampsia in relation to working hours and physical activities: a systematic review. *Occupational and Environmental Medicine*, 2007. 64(4): 228-243.
- 14. Coenen, P., Willenberg, L., Parry, S., Shi, J., Maher, C., Healy, G., Dunstan, D., et al., Associations of occupational standing with musculoskeletal symptoms: a systematic review with meta-analysis. *British Journal of Sports Medicine*, 2016. 10.1136/bjsports-2016-096795.
- 15. Halim, I. and Omar, A.R., Development of prolonged standing strain index to quantify risk levels of standing jobs. *International Journal of Occupational Safety and Ergonomics*, 2012. 18(1): 85-96.
- 16. Antle, D.M. and Cote, J.N., Relationships between lower limb and trunk discomfort and vascular, muscular and kinetic outcomes during stationary standing work. *Gait & Posture*, 2013. 37(4): 615-619.
- 17. Gallagher, K.M., Nelson-Wong, E., and Callaghan, J.P., Do individuals who develop transient low back pain exhibit different postural changes than non-pain developers during prolonged standing? *Gait & Posture*, 2011. 34(4): 490-495.
- 18. Gregory, D.E. and Callaghan, J.P., Prolonged standing as a precursor for the development of low back discomfort: an investigation of possible mechanisms. *Gait & Posture*, 2008. 28(1): 86-92.

- 19. Bussey, M.D., Kennedy, J.E., and Kennedy, G., Gluteus medius coactivation response in field hockey players with and without low back pain. *Physical Therapy in Sport*, 2016. 17: 24-29.
- 20. Callaghan, J.P., Gregory, D.E., and Durkin, J.L., Do NIRS measures relate to subjective low back discomfort during sedentary tasks? *International Journal of Industrial Ergonomics*, 2010. 40: 165-170.
- 21. Aghazadeh, J., Ghaderi, M., Azghani, M.R., Khalkhali, H.R., Allahyari, T., and Mohebbi, I., Antifatigue mats, low back pain, and electromyography: An interventional study. *International Journal of Occupational Medicine and Environmental Health*, 2015. 28(2): 347-356.
- 22. Balasubramanian, V., Adalarasu, K., and Regulapati, R., Comparing dynamic and stationary standing postures in an assembly task. *International Journal of Industrial Ergonomics*, 2009. 39(5): 649-654.
- 23. Chester, M.R., Rys, M.J., and Konz, S.A., Leg swelling, comfort and fatigue when sitting, standing, and sit/standing. *International Journal of Industrial Ergonomics*, 2002. 29(5): 289-296.
- 24. Coenen, P., Willenberg, L., Parry, S., Shi, J., Romero, L., Blackwood, D., Healy, G., et al., The association of prolonged standing and musculoskeletal symptoms: a systematic review of laboratory-based studies. *Prospero*, 2016: CRD42016048919.
- 25. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., and Group., P., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ* 2009. 21(339): 2535.
- 26. Kmet, L.M., Lee, R.C., and Cook, L.S., Standard quality assessment criteria for evaluating primary research papers from a variety of fields Alberta Heritage Foundation for Medical Research, Editor. 2004: Edmonton, Canada.
- 27. Kelly, A.M., Does the clinically significant difference in visual analog scale pain scores vary with gender, age, or cause of pain? *Academic Emergency Medicine*, 1998. 5(11): 1086-1090.
- 28. Antle, D.M., Vézina, N., Messing, K., and Côté, J.N., Development of discomfort and vascular and muscular changes during a prolonged standing task. *Occupational Ergonomics*, 2013. 11(1): 21-33.
- 29. Cham, R. and Redfern, M.S., Effect of flooring on standing comfort and fatigue. *Human Factors*, 2001. 43(3): 381-391.
- 30. Gallagher, K.M. and Callaghan, J.P., Early static standing is associated with prolonged standing induced low back pain. *Human Movement Science*, 2015. 44: 111-121.
- 31. Gallagher, K.M. and Callaghan, J.P., Standing on a declining surface reduces transient prolonged standing induced low back pain development. *Applied Ergonomics*, 2016. 56: 76-83.
- 32. Hansen, L., Winkel, J., and Jorgensen, K., Significance of mat and shoe softness during prolonged work in upright position: based on measurements of low back muscle EMG, foot volume changes, discomfort and ground force reactions. *Applied Ergonomics*, 1998. 29(3): 217-224.
- 33. Karimi, Z., Allahyari, T., Azghani, M.R., and Khalkhali, H., Influence of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. *Applied Ergonomics*, 2016. 53(Part A): 95-102.
- 34. Madeleine, P., Voigt, M., and Arendt-Nielsen, L., Subjective, physiological and biomechanical responses to prolonged manual work performed standing on hard and soft surfaces. *European Journal of Applied Physical and Occupational Physiology*, 1998. 77(1-2): 1-9.
- 35. Marshall, P.W., Patel, H., and Callaghan, J.P., Gluteus medius strength, endurance, and coactivation in the development of low back pain during prolonged standing. *Human Movement Science*, 2011. 30(1): 63-73.
- 36. Nelson-Wong, E. and Callaghan, J.P., Changes in muscle activation patterns and subjective low back pain ratings during prolonged standing in response to an exercise intervention. *Journal of Electromyography and Kinesiology*, 2010. 20(6): 1125-1533.

- 37. Nelson-Wong, E. and Callaghan, J.P., Repeatability of clinical, biomechanical, and motor control profiles in people with and without standing-induced low back pain. *Rehabilitation Research and Practice*, 2010. 2010: 289278.
- 38. Nelson-Wong, E. and Callaghan, J.P., Is muscle co-activation a predisposing factor for low back pain development during standing? A multifactorial approach for early identification of at-risk individuals. *Journal of Electromyography and Kinesiology*, 2010. 20(2): 256-263.
- 39. Nelson-Wong, E., Gregory, D.E., Winter, D.A., and Callaghan, J.P., Gluteus medius muscle activation patterns as a predictor of low back pain during standing. *Clinical Biomechanics*, 2008. 23(5): 545-553.
- 40. Raftry, S.M. and Marshall, P.W., Does a 'tight' hamstring predict low back pain reporting during prolonged standing? *Journal of Electromyography and Kinesiology*, 2012. 22(3): 407-411.
- 41. Sorensen, C.J., Johnson, M.B., Callaghan, J.P., George, S.Z., and van Dillen, L.R., Validity of a paradigm for low back pain symptom development during prolonged standing. *Clinical Journal of Pain*, 2015. 31(7): 652-659.
- 42. Sorensen, C.J., Norton, B.J., Callaghan, J.P., Hwang, C.T., and van Dillen, L.R., Is lumbar lordosis related to low back pain development during prolonged standing? *Manual Therapy*, 2015. 20(4): 553-557.
- 43. Stewart, D.M. and Gregory, D.E., The use of intermittent trunk flexion to alleviate low back pain during prolonged standing. *Journal of Electromyography and Kinesiology*, 2016. 27: 46-51.
- 44. Antle, D.M., Vezina, N., and Cote, J.N., Comparing standing posture and use of a sit-stand stool: Analysis of vascular, muscular and discomfort outcomes during simulated industrial work. *International Journal of Industrial Ergonomics*, 2015. 45(98): e106.
- 45. Seo, A., Kakehashi, M., Tsuru, S., and Yoshinaga, F., Leg swelling during continuous standing and sitting work without restricting leg movement. *Journal of Occupational Health*, 1996. 38(4): 186-186.
- 46. Zhang, L., Drury, C.G., and Woolley, S., Constrained standing: Evaluating the foot/floor interface. *Ergonomics*, 1991. 34(2): 175-192.
- 47. Gallagher, K.M., Campbell, T., and Callaghan, J.P., The influence of a seated break on prolonged standing induced low back pain development. *Ergonomics*, 2014. 57 (4): 555-562.
- 48. Dolan, P., Adams, M.A., and Hutton, W.C., Commonly adopted postures and their effect on the lumbar spine. *Spine*, 1988. 13: 197-201.
- 49. Mathiassen, S.E., Diversity and variation in biomechanical exposure: what is it, and why would we like to know? *Applied Ergonomics*, 2006. 37(4): 419-427.
- 50. Tuchsen, F., Hannerz, H., Burr, H., and Krause, N., Prolonged standing at work and hospitalisation due to varicose veins: a 12 year prospective study of the Danish population. *Occupational and Environmental Medicine*, 2005. 62(12): 847-850.
- 51. Nelson-Wong, E. and Callaghan, J.P., The impact of a sloped surface on low back pain during prolonged standing work: a biomechanical analysis. *Applied Ergonomics*, 2010. 41(6): 787-795.
- 52. Lin, Y.H., Chen, C.Y., and Cho, M.H., Effectiveness of leg movement in reducing leg swelling and discomfort in lower extremities. *Applied Ergonomics*, 2012. 43(6): 1033-1037.
- 53. Lin, Y.H., Chen, C.Y., and Cho, M.H., Influence of shoe/floor conditions on lower leg circumference and subjective discomfort during prolonged standing. *Applied Ergonomics*, 2012. 43(5): 965-970.
- 54. Straker, L.M., Body discomfort assessment tool, in *The occupational ergonomics handbook*, W. Karwowski and W.S. Marras, Editors. 1999, CRC Press: Boca Raton, USA.

- Aghazadeh 2015
- --- Antle 2013B
- ----- Bussey 2016
- --- Callaghan 2010
- Gallagher 2011
- ---- Gallagher 2015
- ---- Gallagher 2016
- --- Hansen 1998
- ----- Marshall 2011
- ---- Nelson-Wong 2008
- ---- Nelson-Wong 2010B
- Raftry 2012
- Seo 1996
- ------ Stewart 2016

- Aghazadeh 2015
- ----- Bussey 2016
- · Callaghan 2010
- ---- Gallagher 2011
- Gallagher 2015
- ---- Gallagher 2016
- ---- Marshall 2011
- ---- Nelson-Wong 2008
- ----- Nelson-Wong 2010B
- ----- Raftry 2012

111e - 2013A - Feet 111e - 2013A - Ankle 111e - 2013B - Lower limb 111e - 2015 - Lower limb ansen - 1998 - Feet ansen - 1998 - Legs 111mi - 2016 - Lower legs adeleine - 1998 - Feet Supplementary Material 1. Search strategy in Health & Safety Science Abstracts (ProQuest)

#	Search	Results
1	(((TI,AB,SU(Standing) AND TI,AB,SU(work* OR job* OR occupation* OR employee* OR staff* OR personnel OR ergonomic*))	
	OR (TI,AB,SU(posture* OR postural) AND TI,AB,SU(work* OR job* OR occupation* OR employee* OR staff* OR personnel	
	OR ergonomic*)) OR (TI,AB,SU(stood OR stand) NEAR/3 TI,AB,SU(work* OR job* OR occupation* OR employee* OR staff*	
	OR personnel OR ergonomic*)) OR (TI,AB,SU(stood OR stand OR standing) NEAR/4 TI,AB,SU(prolonged)) OR	
	(TI,AB,SU(upright OR posture* OR stance) NEAR/3 TI,AB,SU(prolonged)) OR (TI,AB,SU(standing OR stand OR posture* OR	
	stance) NEAR/2 TI,AB,SU(continuous)) OR (TI,AB,SU(stood OR stand OR standing) NEAR/4 TI,AB,SU(period*1)) OR	
	(TI,AB,SU(stood OR stand OR standing) NEAR/2 TI,AB,SU(time*1 OR duration)) OR (TI,AB,SU(stood OR stand OR standing)	
	NEAR/4 TI,AB,SU(hour*1)) OR (TI,AB,SU(stood OR stand OR standing) NEAR/4 TI,AB,SU(day)))	
2	TI,AB,SU(trial OR trials OR study OR studies))	
3	1 and 2	
4	(((TI,AB,SU(Standing) AND TI,AB,SU(work* OR job* OR occupation* OR employee* OR staff* OR personnel OR ergonomic*))	
	OR (TI,AB,SU(posture* OR postural) AND TI,AB,SU(work* OR job* OR occupation* OR employee* OR staff* OR personnel	
	OR ergonomic*)) OR (TI,AB,SU(stood OR stand) NEAR/3 TI,AB,SU(work* OR job* OR occupation* OR employee* OR staff*	
	OR personnel OR ergonomic*)) OR (TI,AB,SU(stood OR stand OR standing) NEAR/4 TI,AB,SU(prolonged)) OR	
	(TI,AB,SU(upright OR posture* OR stance) NEAR/3 TI,AB,SU(prolonged)) OR (TI,AB,SU(standing OR stand OR posture* OR	
	stance) NEAR/2 TI,AB,SU(continuous)) OR (TI,AB,SU(stood OR stand OR standing) NEAR/4 TI,AB,SU(period*1)) OR	
	(TI,AB,SU(stood OR stand OR standing) NEAR/2 TI,AB,SU(time*1 OR duration)) OR (TI,AB,SU(stood OR stand OR standing)	
	NEAR/4 TI,AB,SU(hour*1)) OR (TI,AB,SU(stood OR stand OR standing) NEAR/4 TI,AB,SU(day)))	
5	(TI,AB(random* OR quasirandom* OR placebo) OR TI,AB(single-blind OR double-blind OR triple-blind OR treble-blind)))	
6	4 and 5	
7	3 or 6	468

Supplementary Material 2. Search strategy in CINAHL Plus (EBSCO)

#	Search	Results
34	S28 AND S32	2,746
	LIMIT: English Language	
33	S28 AND S32	2,970
32	S29 OR S30 OR S31	1,142,504
31	(Tl (study or studies)) OR (AB (study or studies))	786,316
30	(MH "Prospective Studies+") OR (MH "Case Control Studies+") OR (MH "Correlational Studies") OR (MH "Cross Sectional	519,587
	Studies") OR (MH "Double-Blind Studies") OR (MH "Panel Studies+") OR (MH "Single-Blind Studies") OR (MH "Triple-	
	Blind Studies") OR (MH "Quasi-Experimental Studies+") OR (MH "Multicenter Studies") OR (MH "Qualitative Studies+")	
-	OR (MH "Multimethod Studies") OR (MH "Field Studies")	
29	(MH "Clinical Trials+") OR (MH "Quantitative Studies") OR PT Clinical Trial OR TI (clinical trial*) OR AB (clinical trial*) OR	281,256
	TI random* or AB random*	
28	S8 OR S10 OR S18 OR S27	6,128
27	S19 OR S20 OR S21 OR S22 OR S23 OR S24 OR S25 OR S26	406
26	((stood or stand or standing) N3 (period or periods)	68
25	(standing N2 (day or time or duration))	183
24	((stood or stand or standing) N4 (hour or hours))	42
23	((longterm or long-term or sustained) N0 standing)	2
22	(prolonged N2 (upright or posture))	29
21	(prolonged N0 (orthosta* or stance))	7
20	(continuous* N1 (stand or standing or posture*))	14
19	(prolonged N4 (stand or standing))	99
18	S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17	771
17	((occupation* or profession* or job* or employee* or staff* or personnel) N3 (posture* or postural*))	83
16	((profession or professions) N2 standing)	7
15	(work* N1 stand)	36
14	(work* N3 stood)	2
13	(work* N7 posture*)	453
12	((work* or job* or occupation*) N2 upright)	3
11	((work* or job* or occupation*) N6 standing)	244
10	S7 AND S9	1,888
9	TI standing or AB standing	8,598
8	S1 AND S7	3,976
7	S2 OR S3 OR S4 OR S5 OR S6	981,422
6	(MH "Ergonomics") OR (MH "Task Performance and Analysis")	13,274
5	(MH "Absenteeism") OR (MH "Sick Leave") OR (MH "Retirement") OR (MH "Job Satisfaction") OR (MH "Job	28,005
	Performance")	
4	(MH "Work") OR (MH "Work Environment") OR (MH "Work Capacity Evaluation") OR (MH "Work Experiences") OR (MH	46,833
	"Workload Measurement") OR (MH "Workload") OR (MH "Shiftwork") OR (MH "Women, Working+") OR (MH	
	"Workforce") OR (MH "Shift Workers")	
3	(MH "Occupations and Professions") OR (MH "Health Occupations+") OR (MH "Named Groups by Occupation+") OR	914,979
	(MH "Employment") OR (MH "Employment of Women") OR (MH "Employment of Older Workers") OR (MH	
	"Employment Status") OR (MH "Part Time Employment")	
2	(MH "Occupational Diseases") OR (MH "Occupational-Related Injuries") OR (MH "Occupational Exposure") OR (MH	53,568
	"Accidents, Occupational") OR (MH "Occupational Hazards") OR (MH "Occupational Health") OR (MH "Occupational	
<u> </u>	Health Services") OR (MH "Occupational Medicine") OR (MH "Occupational Safety") OR (MH "Occupational Science")	
1	(MH "Standing+") OR (MH "Posture") OR (MH "Balance, Postural")	18,531

Supplementary Material 3. Search strategy in EBM Reviews - Cochrane Central Register of Controlled Trials

#	Search	Results
1	postural balance/ or posture/	3,766
2	occupational diseases/ or occupational exposure/ or occupational health/ or occupational medicine/ or Occupational	1,473
	Injuries/ or Occupational Health Services/ or Accidents, Occupational/	
3	Health Occupations/ or Occupations/ or exp occupational groups/ or exp Employment/	6,697
4	work/ or work schedule tolerance/ or workload/ or workplace/ or Women, Working/ or Work Capacity Evaluation/ or	1,062
	Work Simplification/	
5	Absenteeism/ or Sick Leave/ or Retirement/ or Job Satisfaction/	818
6	Human Engineering/ or ergonomic*.tw.	513
7	2 or 3 or 4 or 5 or 6	8,967
8	1 and 7	150
9	standing.ti. or standing.ab. /freq=2	1,286
10	7 and 9	36
11	((standing adj4 (posture* or position)) and (work* or job* or occupation* or employee* or staff* or ergonomic* or	50
	personnel)).mp.	
12	((work* or job* or occupation*) adj7 standing).tw.	58
13	((work* or job* or occupation*) adj3 upright).tw.	8
14	(work* adj8 posture*).tw.	90
15	(work* adj4 stood).tw.	0
16	(work* adj2 stand).tw.	13
17	(profession*1 adj3 standing).tw.	7
18	((occupation* or profession* or job* or employee* or staff* or personnel) adj4 (posture* or postural*)).tw.	19
19	12 or 13 or 14 or 15 or 16 or 17 or 18	169
20	(prolonged adj5 (stand or standing)).tw.	28
21	(continuous* adj2 (stand or standing or posture*)).tw.	8
22	(prolonged adj (orthosta* or stance)).tw.	3
23	(prolonged adj3 (upright or posture)).tw.	7
24	((longterm or long-term or sustained) adj standing).tw.	0
25	((stood or stand or standing) adj5 hour*1).tw.	85
26	(standing adj2 (day or time or duration)).tw.	97
27	((stood or stand or standing) adj4 period*1).tw.	75
28	20 or 21 or 22 or 23 or 24 or 25 or 26 or 27	287
29	8 or 10 or 11 or 19 or 28	581
30	limit 29 to english language	468

Supplementary Material 4, search strategy in Embase (Ovid)

#	Search	Results
1	body posture/ or standing/	63,339
2	occupational disease/ or occupational health/ or occupational exposure/ or occupational hazard/ or occupational	190,792
	health service/ or occupational safety/ or occupational accident/ or occupational medicine/ or industrial medicine/	
3	occupation/ or medical profession/ or nursing as a profession/ or paramedical profession/ or exp named groups by	1,327,430
	occupation/ or exp employment/	
4	work/ or work schedule/ or working time/ or workload/ or work capacity/ or work environment/ or work experience/	113,731
	or workplace/	
5	absenteeism/ or job satisfaction/ or medical leave/ or retirement/	48,686
6	ergonomics/	8,684
7	2 or 3 or 4 or 5 or 6	1,534,465
8	1 and 7	7,055
9	standing.ti. or standing.ab. /freq=2	16,406
10	7 and 9	1,458
11	((standing adj4 (posture* or position)) and (work* or job* or occupation* or employee* or staff* or ergonomic* or	692
	personnel)).mp.	
12	((work* or job* or occupation*) adj7 standing).tw.	1,069
13	((work* or job* or occupation*) adj3 upright).tw.	37
14	(work* adj8 posture*).tw.	1,752
15	(work* adj4 stood).tw.	22
16	(work* adj2 stand).tw.	97
17	(profession*1 adj3 standing).tw.	28
18	((occupation* or profession* or job* or employee* or staff* or personnel) adj4 (posture* or postural*)).tw.	249
19	12 or 13 or 14 or 15 or 16 or 17 or 18	2,942
20	(prolonged adj5 (stand or standing)).tw.	438
21	(continuous* adj2 (stand or standing or posture*)).tw.	92
22	(prolonged adj (orthosta* or stance)).tw.	65
23	(prolonged adj3 (upright or posture)).tw.	129
24	((longterm or long-term or sustained) adj standing).tw.	27
25	((stood or stand or standing) adj5 hour*1).tw.	389
26	(standing adj2 (day or time or duration)).tw.	1,018
27	((stood or stand or standing) adj4 period*1).tw.	477
28	20 or 21 or 22 or 23 or 24 or 25 or 26 or 27	2,431
29	8 or 10 or 11 or 19 or 28	12,029
30	limit 29 to (clinical trial or randomized controlled trial or controlled clinical trial or multicenter study)	552
31	(random* or quasirandom* or trial or trials or placebo).tw. or clinical trial*.mp.	2,003,888
32	cohort analysis/ or case control study/ or longitudinal study/ or prospective study/ or retrospective study/	896,544
33	observational study/ or quasi experimental study/ or clinical study/ or intervention study/ or prevention study/	199,113
34	crossover procedure/ or controlled study/ or randomization/	4,565,179
35	((single or double or triple or treble) adj (blind* or mask*)).tw.	170,885
36	(study or studies).tw.	805,8649
37	31 or 32 or 33 or 34 or 35 or 36	1,103,7922
38	29 and 37	7,344
39	30 or 38	7,344
40	exp animal/ not human.sh.	4,480,661
41	39 not 40	6,923
42	limit 41 to english language	6,290

Supplementary Material 5. Search strategy in Ovid MEDLINE.

#	Search	Results
1	postural balance/ or posture/	66,510
2	occupational diseases/ or occupational exposure/ or occupational health/ or occupational medicine/ or Occupational	164,970
	Injuries/ or Occupational Health Services/ or Accidents, Occupational/	
3	Health Occupations/ or Occupations/ or exp occupational groups/ or exp Employment/	500,223
4	work/ or work schedule tolerance/ or workload/ or workplace/ or Women, Working/ or Work Capacity Evaluation/ or	50,324
	Work Simplification/	
5	Absenteeism/ or Sick Leave/ or Retirement/ or Job Satisfaction/	37,021
6	Human Engineering/ or ergonomic*.tw.	12,042
7	2 or 3 or 4 or 5 or 6	675,628
8	1 and 7	3,706
9	standing.ti. or standing.ab. /freq=2	12,325
10	7 and 9	579
11	((standing adj4 (posture* or position)) and (work* or job* or occupation* or employee* or staff* or ergonomic* or personnel)).mp.	435
12	((work* or job* or occupation*) adj7 standing).tw.	734
13	((work* or job* or occupation*) adj3 upright).tw.	30
14	(work* adj8 posture*).tw.	1,239
15	(work* adj4 stood).tw.	16
16	(work* adj2 stand).tw.	71
17	(profession*1 adj3 standing).tw.	17
18	((occupation* or profession* or job* or employee* or staff* or personnel) adj4 (posture* or postural*)).tw.	173
19	12 or 13 or 14 or 15 or 16 or 17 or 18	2,058
20	(prolonged adj5 (stand or standing)).tw.	291
21	(continuous* adj2 (stand or standing or posture*)).tw.	67
22	(prolonged adj (orthosta* or stance)).tw.	51
23	(prolonged adj3 (upright or posture)).tw.	104
24	((longterm or long-term or sustained) adj standing).tw.	18
25	((stood or stand or standing) adj5 hour*1).tw.	280
26	(standing adj2 (day or time or duration)).tw.	739
27	((stood or stand or standing) adj4 period*1).tw.	346
28	20 or 21 or 22 or 23 or 24 or 25 or 26 or 27	1,749
29	8 or 10 or 11 or 19 or 28	7,017
30	(controlled clinical trial or randomized controlled trial).pt.	467,024
31	(random* or quasirandom* or trial or trials or placebo).tw. or clinical trial*.mp.	1,395,354
32	case-control studies/ or retrospective studies/ or cohort studies/ or longitudinal studies/ or follow-up studies/ or	1,693,552
	prospective studies/ or cross-sectional studies/ or epidemiologic studies/ or intervention studies/	
33	control groups/ or cross-over studies/ or double-blind method/ or random allocation/ or single-blind method/	239,123
34	((case-control or cross-sectional or cohort* or (follow-up or followup or observational or longitudinal or prospective or	566,533
	retrospective or epidemiologic* or intervention* or incidence or prevalence)) adj (study or studies)).tw.	
35	((single or double or triple or treble) adj (blind* or mask*)).tw.	124,949
36	case reports/ or comparative study/ or evaluation studies/ or multicenter study/ or twin study/ or validation studies/	3,709,309
37	(comparative study or evaluation studies or multicenter study or observational study or validation studies).pt.	2,021,391
38	(study or studies).tw.	5,922,027
39	30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38	9,419,258
40	29 and 39	4,408
41	explanimals/ not humans.sh.	3,982,927
42	40 not 41	4,103
43	limit 42 to english language	3,606

Supplementary Material 6. Search strategy in PsycINFO. (Ovid)

#	Searches	Results
1	posture/	4,286
2	occupational exposure/ or occupational health/ or occupational safety/ or work related illnesses/ or industrial	5,846
	accidents/	
3	exp personnel/ or occupations/ or working women/ or exp employment status/	344,148
4	working conditions/ or work scheduling/ or work load/ or workday shifts/ or working space/ or job characteristics/ or	26,709
	work rest cycles/	
5	job satisfaction/ or job performance/ or employee productivity/ or employee characteristics/ or productivity/ or	36,744
	employee efficiency/ or Employee Absenteeism/	
6	Human Factors Engineering/ or ergonomic*.tw.	7,220
7	2 or 3 or 4 or 5 or 6	382,120
8	1 and 7	441
9	standing.ti. or standing.ab. /freq=2	2,209
10	7 and 9	198
11	((standing adj4 (posture* or position)) and (work* or job* or occupation* or employee* or staff* or ergonomic* or	89
	personnel)).mp.	
12	((work* or job* or occupation*) adj7 standing).tw.	412
13	((work* or job* or occupation*) adj3 upright).tw.	3
14	(work* adj8 posture*).tw.	379
15	(work* adj4 stood).tw.	9
16	(work* adj2 stand).tw.	53
17	(profession*1 adj3 standing).tw.	12
18	((occupation* or profession* or job* or employee* or staff* or personnel) adj4 (posture* or postural*)).tw.	61
19	12 or 13 or 14 or 15 or 16 or 17 or 18	885
20	(prolonged adj5 (stand or standing)).tw.	41
21	(continuous* adj2 (stand or standing or posture*)).tw.	12
22	(prolonged adj (orthosta* or stance)).tw.	5
23	(prolonged adj3 (upright or posture)).tw.	15
24	((longterm or long -term or sustained) adj standing).tw.	4
25	((stood or stand or standing) adj5 hour*1).tw.	33
26	(standing adj2 (day or time or duration)).tw.	189
27	((stood or stand or standing) adj4 period*1).tw.	56
28	20 or 21 or 22 or 23 or 24 or 25 or 26 or 27	334
29	8 or 10 or 11 or 19 or 28	1,659
30	clinical trials/ or cohort analysis/ or followup studies/ or longitudinal studies/ or retrospective studies/ or prospective	118,841
	studies/ or experimentation/ or interdisciplinary research/ or qualitative research/ or quantitative methods/ or causal	
	analysis/ or exp experimental methods/ or exp experimental design/	
31	random sampling/ or experiment controls/	1,406
32	(random* or quasirandom* or trial or trials or placebo).tw. or clinical trial*.mp.	240,824
33	((single or double or triple or treble) adj (blind* or mask*)).tw.	20,454
34	(study or studies).tw.	1,442,328
35	30 or 31 or 32 or 33 or 34	1,608,930
36	29 and 35	923
37	limit 29 to ("0200 clinical case study" or "0400 empirical study" or "0430 followup study" or "0450 longitudinal study" or	1,080
	"0451 prospective study" or "0453 retrospective study" or "0600 field study" or 1400 nonclinical case study or 1600	
	qualitative study or 1800 quantitative study or 2200 twin study)	
38		1,245
39	limit 38 to english language	1,210

Supplementary Material 7. Methodological quality scale for the assessment of risk of bias.

	Criteria	Yes (2)	Partial (1)	No (0)	N/A
1.	Question / objective sufficiently described?				
2.	Study design evident and appropriate?				
3.	Method of subject/comparison group selection or source of information/input variables described and appropriate?				
4.	Subject (and comparison group, if applicable) characteristics sufficiently described?				
5.	Outcome and (if applicable) exposure measure(s) well defined and robust to measurement / misclassification bias? Means of assessment reported?				
6.	Sample size appropriate?				
7.	Analytic methods described/justified and appropriate?				
8.	Some estimate of variance is reported for the main results?				
9.	Controlled for confounding?				
10.	Results reported in sufficient detail?				
11.	Conclusions supported by the results?				
	Summary score				

Note, N/A is not a response option for items for items 1, 2, 4m 10 and 11. The summary score was calculated as: total sum[(number of 'yes' × 2) + (number of 'partial' × 1)]/total possible sum[22 – (number of 'N/A' ×

2)], with a maximum possible total score of 1.

	First author;	Sample (n, % female,	Standing condition	Symptoms (pain /discomfort)	Physiological outcomes	Results
	Year	age, country and other relevant				
		sample specifics)				
1	Aghazadeh; 2015[22]	n=15 %female: 0% Age: PD 22(0.56) years and NPD 22.8(1.36) years. Country: Iran Other specifics: Participants who could stand for >4 hours were selected. Individuals with a history of low back pain in the last 12 months (requiring medication or sickness absence) were	Participants stood for 2 hours on a normal firm surface ¹ . Relevant variables were measured every 15 minutes.	A VAS (ranging from 0 to 100mm) was used to assess low back pain. Participants were classified into PDs (those with maximum VAS scores >10mm) and NPD	Bilateral muscle activity of the gluteus medius muscle, assessing co- contraction.	Ten (67%) of the participants were considered PD. Low back pain increased significantly during standing Gluteus medius co-contraction did not change during standing. Hover values were significantly higher in PD compared to NPD.
2	Antle:	n=10	Participants stood bare-	Discomfort in several body	Muscle activity of the right and left	Discomfort in the feet and knees was
2	2013A[29]	%female: 100% Age: 22.8 (3.8) years; Country: Canada Other specifics: Asymptomatic, not employed in standing jobs	feet on a 2mm thick carpet that was placed on a concrete floor for 32 minutes. Relevant variables were collected every 4 minutes	regions (as specified by the participants) was assessed using a scale with numerical values between 0 and 10. Only body areas with >50% of the participants reporting discomfort were analysed.	lumbar erector spinae and rectus abdominis. Cutaneous blood flow at the level of the soleus muscle and metatarsal (measured by using Laser Doppler Flowmetry). Heart rate and blood pressure at the level of the ankle	significantly higher from minute 12 onwards compared to minute 4 (with the exception of knee discomfort at minute 16). Blood volume flow in feet and soleus was significantly higher from minute 24 onwards compared to minute 4. There was a strong correlations between the blood flow and lower limb discomfort. Blood pressure in the ankles was significantly higher from minute 8 onwards compared to minute 4 No significant changes in muscle activity and heart rate were observed.
3	Antle; 2013B[17]	n=18 %female: 44% Age: 32.4(8.2) years Country: Canada Other specifics: Asymptomatic	Participants stood bare- feet on a 2 mm rubber carpet for 34 minutes (in 4 bouts of 8.5 minutes) during which participants constructed a box. Variables were measured after every 8.5 minute.	Discomfort in several body regions (as specified by the participants) was assessed using a scale with numerical values between 0 and 10.	Muscle activity of tibialis anterior, soleus, gastrocnemius, gluteus medius, rectus abdominis, external oblique and lumbar erector spinae, assessing RMS activity and cross- correlations (to obtain a value for co- activation between trunk flexors and extensors).	Fifteen participants (83%) reported discomfort in the feet or lower limb and 5 (28%) in the back at some point during the trial. Discomfort in these areas significantly increased over time. Muscle activity amplitude of the tibialis anterior and gastrocnemius significantly decreased while standing after the

Supplementary Material 8. Data extraction table of included articles.

		participants were selected.			Skin blood flow at the level of the distal soleus and the 4 th foot metatarsal Lower limb blood pressure at the level of the ankle (measured by using Laser Doppler Flowmetry). Body centre of pressure sway in anterior-posterior and medio-lateral direction were obtained from force plate measurements.	 second measurement and maintained its values during the rest of the trial. There were no changes in activity of the soleus or any of the trunk or hip muscles, nor in the co-activation. Skin blood flow at the foot increased significantly to 126% of its baseline value. No changes in blood flow at the level of the soleus were found. Ankle blood pressure significantly increased (already after 17 minutes) and maintained its high value during the rest of the trial. Centre of pressure sway increased significantly in medio-lateral direction, but not in anterior posterior direction. Lower limb discomfort was significantly correlated with skin blood flow in the foot
4	Antle; 2015[45]	n=15 %female: 7 females (47%) Age: 32.4 (8.7) years Country: Canada Other specifics: Asymptomatic, non- pregnant participants without a history of neurological, musculoskeletal or vascular disorders during the past year were selected.	Participants stood for 34 minutes in 4 bouts of 8.5 minutes ¹ . Relevant variables were measured before and after every 8.5 minute (with the exception of muscle activity that was measured every 4 minutes).	Discomfort of the trunk, neck/shoulder and lower limbs was measured using a scale from 0 (no discomfort) to 10 (unbearable discomfort).	Muscle activity of the bilateral gluteus medius, rectus abdominis, external oblique and lumbar erector spinae, as well as the right trapezius and deltoid muscles, assessing root- mean-square muscle activity and co- contraction. Skin blood flow at the level of the soleus and foot (measured by using Laser Doppler Flowmetry). Blood pressure at the level of the ankle.	Discomfort in the lower limbs and low back increased significantly over time. No significant change in neck/shoulder discomfort over time were observed, and no participants reported discomfort in the buttocks/thighs. There was a significant increase in blood flow over time. No changes in any of the other physiological outcomes were observed.
5	Bussey; 2016[20]	n= 39 %female: 100% Age: PD 19.31 (1.44) years and NPD 20.04 (1.67) years. Country: New Zealand	Participants stood for 70 minutes Relevant variables were measured every 10 minutes.	Low back pain was measured with a VAS ranging from 0 ('no pain') to 100mm ('the worst pain imaginable'). Participants who changed >10mm on the VAS were considered PD.	Gluteus medius activity assessing co- activation. Only before the standing trial, gluteus medius strengths, endurance and range of motion were assessed.	Fourteen participants (36%) were considered PD (of which 11 with and 3 without a history of pain). Out of the 25 NPD, 3 had a history of pain). Low back pain increased over time and was significantly different between PD and NPD. Hip range of motion was significantly

		Other specifics: Field hockey players (premier level) with (n=14) and without (n=25) a history of low back pain were selected. Participants without a history of pain did not have any acute or subacute episode of pain in the last 24 months or chronic pain or spinal morphologies (e.g. fractures, ruptures or surgery)				lower in PD but gluteus medius strength and endurance did not differ between the two groups. Gluteus medius co-activation decreased significantly over time. Values were higher in PD compared to NPD, but there were no differences in the pain scores over time between the two groups
6	Callaghan; 2010[21]	n=16 (participants who participated in standing protocol) %female: 50% Age: 25.1(2.1) (males), 23.5(2.3) (females) Country: Canada Other specifics: Participants free of low back disorders in the last 12 months were selected	Participants stood for 2 hours (wearing their own shoes) while performing four precision tasks. Relevant variables were measured every 15 minutes	Perceived low back discomfort was assessed using a 100mm VAS (0=no discomfort at all, 100=worst discomfort imaginable) The 6 participants with the highest low back discomfort and 6 participants with the lowest low back discomfort were analysed separately.	Near infrared spectroscopy was used to assess muscle oxygenation of the erector spinae at L3 level.	(interaction effect). Low back discomfort significantly increased over time with a mean increase of 21.1(19.5)mm No change in muscle oxygenation over time was observed. However, when participants with high and low levels of low back discomfort were analysed separately, there was a change in muscle oxygenation over time for the low low back discomfort participants. There was no correlation between discomfort and muscle oxygenation.
7	Cham; 2001[30]	n=10 %females :50% Age: 27(6) years Country: USA Other specifics: Participants with no history of lower-extremity or back problem were selected	Participants stood for four hours on a hard floor wearing the same footwear ¹ . Discomfort was measured every 30 minutes while other relevant variables were measured every 15- 20 minutes.	Discomfort (in upper and lower back, hips, upper legs, knees, lower legs, ankles and feet) and fatigue (overall fatigue and leg fatigue) were assessed using a CR10 Borg scale (ranging from 6 to 20).	Lateral displacement of the centre of pressure was assessed using a force platform. Muscle activity of the tibialis anterior, soleus and erector spinae muscles, assessing median frequency shifts. Skin temperature at the level of the soleus, tibialis anterior, quadriceps and hamstring muscles Leg volume (up to the level of the tibial plateau) was measured using a water tank displacement method	A significant correlation was found between the number of centre of pressure weight shifts (for hours 3 and 4) and skin temperature, and discomfort/fatigue in the lower limbs. No significant associations of the other physiological outcomes with discomfort/fatigue were observed.
8	Chester; 2002[24]	n=18 %females: 39% Age: 21.9 years	Participants stood for 90 minutes on a floor mat wearing sneakers.	Comfort in the upper back, lower back, hips, upper legs, knees, lower legs, ankles and feet was measured every 30 minutes, using a comfort rating chart (ranging from 1 to 9, with 9 being	Impedance in of the skin of the at the level of the calf muscles was measured every 5 minutes, assessing the volume of the lower leg Calf diameter was measured every 9	Overall, comfort decreased over time. Overall tiredness increased over time Leg volume increased 38.2 cm ³ and calve circumference increase 1.7% over time.

		Country: USA		very comfortable)	minutes	
						Change in lower leg volume was
		Other specifics: Participants without		Overall tiredness was measured		negatively correlated with upper back,
		previous lower extremity or back		using a VAS		lower back, and hip comfort. Change in
		problems were selected.				call circumference is positively correlated
_	Callashan	- 40	Deuticiaente etce d'fau true		Levren linele en el terre le bie encette e	With ankle and foot comfort.
9	Gallagher;	n=40	Participants stood for two	Low back pain was assessed	Lower limb and trunk kinematics.	Inirteen participants (33%) were
	2011[18]	0/formation FO0/	nours	using a 100mm VAS (0mm=no	Centre of pressure was measured	classified as PD.
		%remale: 50%	Deleventureriehlee	pain, 100mm=worst imaginable	using a force plate. Centre of	
			Relevant variables were	pain).	pressure shift flaget, drift frequency	Body weight shift frequency and average
		Age: 24.4 (2.9) years	measured every 15		and amplitude and body weight shift	shift duration decreased over time in all
			minutes.	Participants were categorised	were determined.	participants, anterior-posterior fidget
		Country: Canada		into a PD (>10mm change from		amplitude increased over time.
		Other energifics: Participants without a		and NPD		No significant offect of time for anterior
		bistory of low back pain requiring		and NPD.		no significant effect of time for anterior-
		modical treatment or resulting in >2				in an asymmetrical posture were
		days off school (work word solocted				observed
		days on school work were selected				observed.
						PD had a greater medio-lateral fidget
						frequency than NPD.
10	Gallagher;	n=32	Participants stood for 2	Low back pain was assessed	Bilateral ground reaction force was	Fourteen participants (44%) were
	2015[31]		hours	using a 100 mm VAS with 0 being	measured with two force plates,	classified as PD.
		%female: 47%		'no pain' and 100 mm being the	assessing Anterior-posterior centre of	
			Relevant variables were	'worst imaginable pain'.	pressure movement and body weight	There was a significant difference
		Age: NPD 22.2 (2.04) years, PD 23.0	measured every 7,5		shifts.	between the frequency of fidgets for PD
		(2.54) years	minute	Participants were classified as PD		and NPD during the first 15 min (with
				if they increased their pain levels	Lumbar spinal fidgets (fast and large	more fidgets in NPD), but not at the 30
		Country= Canada		>10mm from baseline values	displacement of center of pressure	and 45 min time points. The number of
				during the standing trial.	that returns to approximately the	shifts increased over time but did not
		Other specifics: Participants were			same location) and shifts (a fast	differ between pain development groups.
		selected from a university population			displacement of the center of	Total movements differed only during the
		without a history of low back pain			pressure from one location to	first 15 minutes with more movement in
		(requiring medical care or sick leave), a			another) were assessed using a	NPD.
		standing occupation or the inability to			motion analysis system. Also total	
		stand for >2 hours.			movement (sum of shifts and fidgets)	There were no effects for center of
					was estimated.	pressure metrics.
11	Gallagher;	n= 17	Participants stood on a	Low back pain was assessed	A motion analysis system was used to	Nine (53%) participants were classified as
1	2016[32]		levelled surface for 75	using a 100 mm VAS (with 0 mm	assess movement of the spine (trunk,	PD. Low back pain increased significantly
		%female: 47%	minutes	being no pain and 100 mm being	lumbar spine and hip), feet and	In the PD group.
1			Deleventurrichien	worst pain imaginable). Also pain	thighs. Irunk centre of gravity and	These was as similared shares in suff
		Age= 22.6 (1.5) years in temales and	Relevant Variables were	In the lower limbs was assessed	iumbar spine flogets were assessed	diagonal forth (0.6 (10.2) man shares a built
1		23.3 (2.6) In males	measured every 7,5	(gluteal pain and pain in the		discomfort (8.6 (10.3) mm change), but
1		Country Conodo	minute.	iower iimb).		time (10.0 (11.2)mm change)
1		Country: Callaua		Participants were classified as PD		time (10.0 (11.3)mm change).
L				Participants were classified as PD		

		Other specifics: Participants without a history of low back pain that required medical intervention or time off work were selected. Participants engaging in prolonged standing at work or with the inability to stand for two hours were excluded.		(those who changed >10mm from baseline values on the low back pain VAS) and NPD.		There was a significant but small (~2°) increase in lumbar spine flexion during standing. There were less lumbar fidgets in PD compared to NPD, which in both groups decreased over time.
12	Gregory; 2008[19]	n=16 %female: 50% Age: Males 25.1(2.1) years, females 23.5(2.3) years. Country: Canada Other specifics: Participants free of low back discomfort in the last 12 months were selected.	Participants stood for 2 hours wearing their own athletic shoes while performing precisions tasks. Relevant variables were measured every 15 minutes.	Low back discomfort was assessed using a 100mm VAS (with 0mm=no discomfort, and100mm=worst discomfort imaginable).	Muscle activity was obtained for thoracic erector spinae, lumbar erector spinae, rectus abdominis, external oblique and gluteus medius muscles, assessing the number of breaks, amplitude and number of 'shifts' in muscle activity signals. Body kinematics was obtained, assessing flexion–extension, lateral bending, axial twist angles and load (i.e., force) on the L4/L5 segment. Centre of pressure in anterior- posterior and medio-lateral direction were obtained with a force plate Muscle oxygenation was assessed using near-infrared spectroscopy. Skin temperature at the level of the thoracic and lumbar erector spinae.	 Discomfort increased significantly over time and was significantly higher than baseline levels from 60 minutes onwards Variables that changed significantly over time: Lumbar spine flexion-extension (0.35° at 15 minutes to 1.76° at 120 minutes) L4/L5 shear force (22.6N at 15 minutes to 14.6N after 120 minutes) Skin temperature at the level of thoracic erector spinae (31.1°C after 15 minutes to 30.7°C after 120 minutes). The development of discomfort after 2 hours could best be predicted by the following variables measured after 15 minutes Number of centre of pressure shifts in anterior posterior direction Number of gaps in left gluteus maximus activation Axial twist
13	Hansen; 1998[33]	n=8 %female: 100%	Participants stood for 2 hours while performing a letter-sorting task. Standing was performed in different conditions:	Perceived discomfort in the feet, legs and low back was rated by a VAS (0%=no discomfort, 100%=worst conceivable discomfort) massured after 0.20	Volume and change in volume of the left foot was measured by hydro- plethysmography (measured before and after standing)	 During standing, discomfort increased in the: Low back (from 6% to 30%) Legs (from 3% to 14%)
		Age: 24(21-29) year Country: Denmark Other specifics: Participants without varicose veins were selected	hard and soft surface with hard and soft surface with hard and soft shoes (data presented are overall outcomes).	60, 115 and 120 minutes.	Skin temperature of the foot was measured before and after standing Muscle activity of the bilateral erector spinae was measured, assessing RMS amplitude and mean power frequency after 5, 55 and 115	 Feet (from 8% to 31%) Foot volume increased on average 3.9%, mainly due to a 3% increase in interstitial foot volume and a 0.9% increase in vascular volume. Foot skin temperature increased from

					minutor	22 1º to 25 5º
					minutes	52.1 (0.55.5).
					Movement of the centre pressure	Centre of pressure movement increased
					with a force plate was measured	10-15% after 1 hour but returned to
					after 5, 55 and 115 minutes	initial values after 2 hours
					Oxygen uptake (VO ₂), blood pressure	RMS muscle activity in the erector spinae
					and heart rate were measured at	remained the same but mean frequency
					minute 0, 10-15, 65-70 and 100-105	increased after two hours.
14	Karimi;	n=10	Participants stood for 2	Lower leg discomfort was	Bilateral muscle activity of the	Lower leg discomfort increased over time
	2016[34]		hours on flat-bottomed	measured using a 100mm VAS	gastrocnemius and tibialis anderior	
		%female: 0%	shoes ¹	(with 0 being 'no discomfort 'and	was measured, assessing root-mean-	Left and right muscle activity in both
				100 being 'worst discomfort	square and variation of the activity.	muscles increased slightly during
		Age: 25.3(1.49) years	Relevant variables were	imaginable')		prolonged standing. Variation of gluteus
			measured every 30		Lower leg circumference was	muscle activity increased gradually but
		Country: Iran	minutes.		measured with a measuring tape	that of the tibialis anterior fluctuated
					before and after the standing	without an apparent increase or
		Other specifics: University students			protocol, estimating leg volume was	decrease.
		wearing shoe size 42 and without a job			estimated.	
		requiring prolonged standing were				Leg volume increased from 991.9(76.5) to
		selected. None of the participants had				1037.2(75.8) cm ³ in the right legs and
		lower extremity injuries/deformities,				from 996.8(87.4) to 1041.7(86.3) cm ³ in
		physical disabilities or discomfort.				the left leg.
15	Madeleine;	n=10	Participants stood for 2	Intensity of general	Shank circumference and	Unpleasantness increased over time
	1998[35]		hours on a hard surface	unpleasantness was measured on	temperature.	(however no statistical test results were
		%female: 0%	doing a simulated work	a 100mm VAS (with 0mm being		provided)
			task ^{1,2} .	not unpleasant and 100mm being	Muscle activity of the right soleus	
		Age: 23.3(0.5) years		most unpleasant).	and tibialis anterior muscles was	Shank circumference increased
			Relevant variables were		measured, assessing root-mean-	0.86(0.19)mm during the standing trial.
		Country: Denmark	measured every 15		square, mean power frequency and	Musele estivity, movement and
		Other energificer lighthy participants	minutes.		resting events. Also, maximal	displacement of the centre of processor
		wore selected			standing were compared	did not appear to change substantially
		wele selected			standing were compared.	over time (however no statistical test
					Ankle movement in the sagittal plane	results were provided)
					was measured assessing the mean	results were provided)
					amplitude	Skin temperature increase 0.37° and
						0.32° for the left and right leg,
					Mean amplitude of centre of	respectively.
					pressure displacement in the frontal	
					and sagittal plane was assessed using	
					a force plate	
16	Marshall;	n=24	Participants stood in a	Low back pain was measured	Muscle activity of gluteus medius was	Seventeen participants (71%) were
	2011[36]		confined area for 2 hours	using a 100mm VAS pain scale	measured, assessing co-activation	classified PD. In this group, average
		%female: 67%	while completing 4	(with 0=no pain, 100=worst pain	(cross-correlation) and fatigue	change in VAS were 32(4.8), while this
	1		different techs in 20 min	imaginable)	(median frequency)	was only 5 $Q(0,0)$ in the NPD group

		Age: PD 22.6(1.5) years: NPD 22.9(1.8)	blocks			
		Country: Australia Other specifics: Participants without previous low back pain were selected	Relevant variables were measured every 15 minutes	Participants were categorised in a PD (>10mm change from baseline values on the VAS) and a NPD group	Hip abduction strength and endurance and side-bridge endurance and muscle fatigue were measured pre and post standing.	Hip abduction strength was reduced by 0.36[0.32 0.94] N/kg in both groups (from 4.4(0.8) to 4.0(1.0) in PD; from 5.0(1.0) to 4.4(1.3) in NPD). Side-bridge endurance changed significantly in the PD (from 78(29.1) to 57.7(19.8)) and NPD (from 112.7(21.0) to 87.8(31.5)). Fatigue during side-bridge was higher (but not significant) after standing compared to before in the PD. This was the other way around for the
						NPD No changes in co-activation over time was observed
17	Nelson- Wong; 2008[40]	N=23 %female: 48% Age: low back pain 23.9(1.8) years, no low back pain 23.9(2.3) years Country: Canada Other specifics: Participants without a history of low back pain in last 12 months were selected	Participants stood in a constrained area for 2 hours while completing 4 different tasks in 30 min blocks Relevant variables were measured every 15 minutes.	Musculoskeletal pain in various body areas (neck, shoulder, upper back and low back) was assessed on a 100mm VAS with 0="no pain" and 100="worst pain imaginable"). Only low back pain was used in (as it showed the most consistent increase). Participants were categorised into a PD (>20mm at any point and >10mm overall average VAS score) and a NPD group	Muscle activity of bilateral lumbar erector spinae, thoracic erector spinae, rectus abdominus, external oblique and gluteus medius were measured, assessing co-contraction (cross-correlation between muscles).	Fifteen participants (65%) were considered PD. There were effects of time (p<0.001), group (p<0.001) and interaction between group and time (p<0.001) for low back pain There were no significant difference between PD and NPD for co-actiation between thoracic erector spinae and rectus abdominus, or external obliques, bilateral thoracic erector spinae, lumbar erector spinae and rectus abdominus, or bilateral lumbar erector spinae muscles. There were significant differences for co- activation of bilateral gluteus medius and lumbar erector spinae with external oblique muscles
18	Nelson- Wong; 2010A[37]	n=41 %female: 49% Age: low back pain 23.5(3.7) years, no low back pain 22.1 (3.0) years Country: Canada Other specifics: Participants without lifetime event of low back pain	Participants stood for 2 hours performing 3 different 30 min simulated occupational tasks ³ Relevant variables were measured every 15 minutes.	Low back pain was assessed on a 100mm VAS (with 0 being "no pain" and 100 being "worst pain imaginable") Participants were categorised into a PD (>10mm increase from baseline values in VAS score) and a NPD group	-	Seventeen participants (41%) were classified PD

		requiring management of healthcare practitioner or 3 days off work or current low back/hip pain were selected				
19	Nelson- Wong; 2010B[39]	n=43 %female: 49% Age: low back pain 23.5(3.7) years, no low back pain 22.1(3.0) years Country: Canada Other specifics: Participants without lifetime event of low back pain requiring management of healthcare practitioner or 3 days off work or current low back/hip pain were selected	Participants stood for 2 hours performing 3 different 30 min simulated occupational tasks Relevant variables were measured every 15 minutes.	Low back pain was assessed on a 100mm VAS (with 0 being "no pain" and 100 being "worst pain imaginable") Participants were categorised into a PD (>10mm increase from baseline in VAS score) and a NPD group	Muscle activity from bilateral lumbar erector spinae, thoracic erector spinae, latissimus dorsi, rectus abdominus, internal oblique external oblique and gluteus medius and gluteus maximus were measured, assessing co-contraction (cross- correlation) between muscles.	Twenty participants (46%) were considered PD. There was a significant interaction between group and time (p< 0.001) for low back pain PDs demonstrated bilateral gluteus medius and trunk flexor–extensor muscle co-activation prior to reports of PD. PD and NPD demonstrated markedly different patterns of muscle activation during standing
20	Nelson- Wong; 2010C[38]	n=23 %female: 48% Age:. NPD 22.6(3.3) years, NPD 22.1(2.9) years Country: Canada Other specifics: Participants without any significant lifetime events of low back pain or with the ability to stand for >4 hours were selected.	During two measurement days (4 weeks apart), participants stood for 2 hours. Relevant variables were measured every 15 minutes.	Low back pain was assessed using a 100mm VAS (with 0 being no pain and 100 being the worst pain imaginable) Participants were classified PD (when changing >10mm from baseline on the VAS) or NPD	4	Eight participants (35%) were classified PD at the first measurement occasion, while 6 of them would still be classified PD during the second measurement. Fifteen participants were classified NPD on the first measurement occasion, while 13 remained NPD after the second measurement occasion
21	Raftry; 2012[41]	n=20 %female: 66% Age: 22.6(2.7) years Country: Australia Other specifics: Young adults without a lifetime history of low back pain were selected	2 hours standing protocol in a confined space performing various tasks.	Low back pain was assessed using a 100mm VAS scale (with 0 being 'no pain' and 100 being 'worst pain'). Participants were categorised in a PD (>10mm change from baseline in VAS) and a NPD group.	Hamstring stiffness (maximum torque required to raise the leg) and extensibility (maximum extension angle) was measured with a dynamometer Stretch tolerance during the testing protocol was measured with a VAS (no-pain=0mm; worst pain=100mm)	Ten participants (50%) were considered PD. Change in VAS was 36.4(21.9) in the PD group and 2.9(0.9) in the NPD group No differences in hamstring stiffness, extensibility or hamstring stretch tolerance between the two group or changes over time were observed.
22	Seo; 1996[46]	n=12 %females: 33%	Participants stood for one hour in a confined space (in which participants	Leg dullness, low back pain and whole body fatigue were self- reported on a 10 level scale	Swelling of the lower leg was measured using electrode impedance.	The three subjective scores increased over time

			were permitted to walk).	(1=lowest, 10=highest)		There was a 5.9(4.1)% increase in leg
		Age: 24.1(1.2) years;				swelling after 30 minutes and a 5.9(3.7)%
			Relevant variables were			increase after 60 minutes.
		Country: Japan	measured every 2			
			minutes.			
		Other specifics: Participants not				
		suffering from oedematous disease,				
		varicose veins or injury in the lower leg				
		were selected				
23	Sorensen; 2015A[43]	n= 57 %female: 49%	Participants stood for 2 hours.	Low back pain was measure with a 100mm VAS (with 0m being 'no pain' and 100mm being worst	At baseline, body posture of the trunk (using motion analysis system) were measured, assessing lumbar	Twenty-tour participants (42%) were classified as PD.
		Ago: NDD 22 0/2 E) years DD 24 7/2 2)		pain maginable) every 15	curvature was estimated.	PDS displayed a significantly larger
		Age. NPD 23.9(3.3) years, PD 24.7(3.3)		minutes.		numbar curvature (4.4 difference) and in
		years		Deuticine ato ware classified as DD		PD, lumbar curvature was significantly
		Country: USA		(reported any symptoms after baseline) and NPD.		associated with the maximum pain score.
		Other: Health volunteers with no				
		lifetime history of an episode of low				
		back pain requiring health intervention,				
		≥ 3 consecutive days of missed work or				
		school or ≥3 days altered activities of				
		daily living were selected.				
24	Sorensen;	n=53 healthy participants and n=15	Participants stood for 2	Low back pain was measure with	-	Fifteen of the healthy participants (28%)
	2015B[42]	participants with low back pain	hours	a 100mm VAS (with 0 being no		were categorised as PD. There was a 18.7
		%female: NBP 60%, PD 60%	Relevant variables were	pain imaginable).		score between PD and NPD during the
		Age: NPD 23 5(3 1) years PD 22 7(1 6)	minutes	Healthy participants were		
		Age. 10 23.3(3.1) years, 10 22.7(1.0)	minutes.	classified as PD (those who		
		years		changed ≥ 10 mm on the pain		
		Country: USA		scale) and NPD.		
		Other specifics: People with low back				
		pain (any lifetime episode of pain				
		resulting in >3 days of missed work or				
		school or seeking health interventions)				
		and healthy controls were selected.				
		Participants unable to stand >4 hours				
		and those with high BMI were				
		excluded.				
25	Stewart;	n= 16	Participants stood for 2	A perceived pain scale was used	-	Low back pain increased significantly
	2016[44]		hours	to assess low back pain with a		during the two hours of standing. Eight
1		%female: 50%		VAS from 0 (no pain) to 100		participants (50%) were considered PD.
			Relevant variables were	(worst pain imaginable).		

		Age: Males 22.75(0.92) years, females	measured every 15	Participants who ranked their		Averaged over the two hours of standing,
		22.88(0.93) years	minutes ¹ .	low back pain ≥8mm were		low back pain for NPD was 1.64 mm (SE
				classified as PD.		0.4) and 16.19 mm (SE 1.78) for PD. Low
		Country: Canada				back pain at the end of the standing
						protocol for NPD was 2.75 mm (SE 1.6)
		Other specifics: University students				and 28.33 mm (SE 5.49) for PD.
		were selected. Participants with chronic				
		low back pain in the past 12 months				
-		were excluded.				
26	Zhang;	n=6	Participants stood for two	Discomfort was measured with	Muscle activity of tibialis anterior and	Foot and lower leg discomfort were the
	1991[47]		hours.	using a 10 point scale (with	gastrocnemius were measured	most frequently reported discomfort
		%female: 17%		0=nothing at all and 10=almost		sited. There were significant effects of
			Relevant variables were	maximal). Three variables were	Centre of gravity was obtained with a	time for most of the measured variables
		Age: range 24-45 years	measured every 15	reported on:	force plate (with standard deviation	(discomfort scores, centre of gravity,
			minutes.	1. Number of body parts with	in sagittal, lateral and combined	posture changes), but not the muscle
		Country: USA		discomfort >1	direction as well as distance of the	activity.
				2. Mean discomfort for all	centre of gravity)	
		Other specifics: Healthy participants		non-zero discomfort scores		
		were selected		'sum of discomfort severity'	Video recordings were performed	
				3. Sum of discomfort severity	and number of posture changes were	
					counted.	
PD =	Pain developer	s				
NPD) = Non-pain dev	elopers				