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Abstract—The need to estimate a particular quantile of a
distribution is an important problem which frequently arises
in many computer vision and signal processing applications.
For example, our work was motivated by the requirements
of many semi-automatic surveillance analytics systems which
detect abnormalities in close-circuit television (CCTV) footage
using statistical models of low-level motion features. In this
paper we specifically address the problem of estimating the
running quantile of a data stream when the memory for storing
observations is limited. We make several major contributions: (i)
we highlight the limitations of approaches previously described
in the literature which make them unsuitable for non-stationary
streams, (ii) we describe a novel principle for the utilization
of the available storage space, (iii) we introduce two novel
algorithms which exploit the proposed principle in different
ways, and (iv) we present a comprehensive evaluation and
analysis of the proposed algorithms and the existing methods
in the literature on both synthetic data sets and three large
‘real-world’ streams acquired in the course of operation of
an existing commercial surveillance system. Our findings
convincingly demonstrate that both of the proposed methods are
highly successful and vastly outperform the existing alternatives.
We show that the better of the two algorithms (‘data-aligned
histogram’) exhibits far superior performance in comparison
with the previously described methods, achieving more than 10
times lower estimate errors on real-world data, even when its
available working memory is an order of magnitude smaller.

Index Terms—Novelty, histogram, surveillance, video.

I. INTRODUCTION

THE problem of quantile estimation is of pervasive impor-
tance across a variety of signal processing applications. It

is used extensively in data mining, simulation modelling [1],
database maintenance, risk management in finance [2], and
understanding computer network latencies [3], amongst others.
A particularly challenging form of the quantile estimation
problem arises when the desired quantile is high-valued (i.e.
close to 1, corresponding to the tail of the underlying distribu-
tion) and when data needs to be processed as a stream, with
limited memory capacity. An illustrative practical example
of when this is the case is encountered in CCTV-based
surveillance systems. In summary, as various types of low-
level observations related to events in the scene of interest
arrive in real-time, quantiles of the corresponding statistics
for time windows of different durations are needed in order
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to distinguish ‘normal’ (common) events from those which
are in some sense unusual and thus require human attention.
The amount of incoming data is extraordinarily large and the
capabilities of the available hardware highly limited both in
terms of storage capacity and processing power.

A. Previous work

Unsurprisingly, the problem of estimating a quantile of a
set has received considerable research attention, much of it in
the realm of theoretical research. In particular, a substantial
amount of work has focused on the study of asymptotic
limits of computational complexity of quantile estimation
algorithms [4], [5]. An important result emerging from this
corpus of work is the proof by Munro and Paterson [5] which
in summary states that the working memory requirement of
any algorithm that determines the median of a set by making
at most p sequential passes through the input is Ω(n1/p)
(i.e. asymptotically growing at least as fast as n1/p). This
implies that the exact computation of a quantile requires Ω(n)
working memory. Therefore a single-pass algorithm, required
to process streaming data, will necessarily produce an estimate
and not be able to guarantee the exactness of its result.

Most of the quantile estimation algorithms developed for
use in practice are not single-pass algorithms i.e. cannot be
applied to streaming data [6]. On the other hand, many single-
pass approaches focus on the exact computation of the quantile
and thus, as explained previously, demand O(n) storage space
which is clearly an unfeasible proposition in the context we
consider in the present paper. Amongst the few methods
described in the literature and which satisfy our constraints
are the histogram-based method of Schmeiser and Deutsch [7]
(with a similar approach described by McDermott et al. [8]),
and the P 2 algorithm of Jain and Chlamtac [1]. Schmeiser and
Deutsch maintain a preset number of bins, scaling their bound-
aries to cover the entire data range as needed and keeping them
equidistant. Jain and Chlamtac attempt to maintain a small set
of ad hoc selected key points of the data distribution, updating
their values using quadratic interpolation as new data arrives.
Lastly, random sample methods, such as that described by
Vitter [9], and Cormode and Muthukrishnan [10], use different
sampling strategies to fill the available buffer with random
data points from the stream, and estimate the quantile using
the distribution of values in the buffer.

In addition to the ad hoc elements of the previous algorithms
for quantile estimation on streaming data, which itself is a
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sufficient cause for concern when the algorithms need to be
deployed in applications which demand high robustness and
well understood failure modes, it is also important to recognize
that an implicit assumption underlying these approaches is
that the data is governed by a stationary stochastic process.
The assumption is often invalidated in real-world applications.
As we will demonstrate in Section III, a consequence of this
discrepancy between the model underlying existing algorithms
and the nature of data in practice is a major deterioration in
the quality of quantile estimates. Our principal aim is thus
to formulate a method which can cope with non-stationary
streaming data in a more robust manner.

II. PROPOSED ALGORITHMS

We start this section by formalizing the notion of a quantile.
This is then followed by the introduction of the key premise
of our contribution and finally a description of two algorithms
which exploit the underlying idea in different ways [11]. The
algorithms are evaluated on real-world data in the next section.

A. Quantiles

Let p be the probability density function of a real-valued
random variable X . Then the q-quantile vq of p is defined as:∫ vq

−∞
p(x) dx = q. (1)

Similarly, the q-quantile of a finite set D can be defined as:

|{x : x ∈ D and x ≤ vq}| ≤ q × |D|. (2)

In other words, the q-quantile is the smallest value below
which q fraction of the total values in a set lie [12]. The
concept of a quantile is thus intimately related to the tail
behaviour of a distribution.

B. Methodology: maximum entropy histograms

A consequence of the non-stationarity of data streams that
we are dealing with is that at no point in time can it be assumed
that the historical distribution of data values is representative
of its future distribution. This is true regardless of how much
historical data has been seen. Thus, the value of a particular
quantile can change greatly and rapidly, in either direction
(i.e. increase or decrease). This is illustrated on an example,
extracted from a real-world data set used for surveillance
video analysis (the full data corpus is used for comprehensive
evaluation of different methods in Section III), in Figure 1.
In particular, the top plot in this figure shows the variation
of the ground-truth 0.95-quantile which corresponds to the
data stream shown in the bottom plot. Notice that the quantile
exhibits little variation over the course of approximately the
first 75% of the duration of the time window (the first 190,000
data points). This corresponds to a period of little activity in
the video from which the data is extracted (see Section III for a
detailed explanation). Then, the value of the quantile increases
rapidly for over an order of magnitude – this is caused by
a sudden burst of activity in the surveillance video and the
corresponding change in the statistical behaviour of the data.
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Fig. 1. An example of a rapid change in the value of a quantile (specifically
the 0.95-quantile in this case) on a real-world data stream.

To be able to adapt to such unpredictable variability in input
it is therefore not possible to focus on only a part of the
historical data distribution but rather it is necessary to store
a ‘snapshot’ of the entire distribution. We achieve this using
a histogram of a fixed length, determined by the available
working memory. In contrast to the previous work which either
distributes the bin boundaries equidistantly or uses ad hoc
adjustments, our idea is to maintain bins in a manner which
maximizes the entropy of the corresponding estimate of the
historical data distribution.

Recall that the entropy of a discrete random variable is:

Hr = −
∑
x∈X

p(x) log2 p(x) (3)

where p(x) is the probability of the random variable taking on
the value x, and X the set of all possible values of x [13] (of
course

∑
x∈X p(x) = 1). Therefore, the entropy of a histogram

with n bins and the corresponding bin counts c1, c2, . . . , cn is:

Hh = −
n∑

i=1

ci
C

log2

( ci
C

)
(4)

where C =
∑n

i=1 ci is the normalization factor which makes
ci/C the probability of a randomly selected datum belonging
to the i-th bin [14]. Our goal is to dynamically allocate
and adjust bin boundaries in a manner which maximizes the
associated entropy for a fixed number of bins n (which is
an input parameter whose value is determined by practical
constraints). Much like the problem of computing a specific
quantile which, as we discussed with reference to Munro and
Paterson’s work [5] in Section I-A, is not solvable exactly
using a single-pass algorithm, the construction of the maximal
entropy histogram as defined above is not possible to guarantee
in the setting adopted in this paper whereby only a limited
and fixed amount of storage is available, and historical data is
inaccessible.

C. Method 1: interpolated bins

The first method based around the idea of maximum entropy
bins we introduce in this paper readjusts the boundaries of a
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fixed number of bins after the arrival of each new data point
di+1. Without loss of generality let us assume that each datum
is positive i.e. that di > 0. Furthermore, let the upper bin
boundaries before the arrival of di be bi1, b

i
2, . . . , b

i
n, where n

is the number of available bins. Thus, the j-th bin’s catchment
range is (bij−1, b

i
j ] where we will take that bi0 = 0 for all i.

We wish to maintain the condition that the piece-wise uniform
probability density function approximation of the historical
data distribution described by this histogram has the maximum
entropy of all those possible with the histogram of the same
length. This is achieved by having equiprobable bins. Thus,
before the arrival of di+1, the number of historical data points
in each bin is the same and equal to i/n. The corresponding
cumulative density is given by:

f i(d) =
1

n
×

[
j +

d− bij−1
bij − bij−1

]
(5)

and

bij−1 < d ≤ bij . (6)

After the arrival of di, but before the readjustment of bin
boundaries, the cumulative density becomes:

f̃ i(d) =


i

i+1 ×
1
n ×

[
j +

d−bij−1

bij−bij−1

]
for d < di

i
i+1 ×

1
n ×

[
j +

d−bij−1

bij−bij−1

]
+ 1

i+1 for d ≥ di
(7)

Lastly, to maintain the invariant of equiprobable bins, the
bin boundaries are readjusted by linear interpolation of the
corresponding inverse distribution function.

1) Initialization: The initialization of the proposed algo-
rithm is simple. Specifically, until the buffer is filled, i.e. until
the number of unique stream data points processed exceeds
n, the maximal entropy histogram is constructed by allocating
each unique data value its own bin. This is readily achieved
by making each unique data value the top boundary of a bin.

D. Method 2: data-aligned bins

The algorithm described in the preceding section appears
optimal in that it always attempts to realign bins so as to
maintain maximum entropy of the corresponding approxima-
tion for the given size of the histogram. However, a potential
source of errors can emerge cumulatively as a consequence of
repeated interpolation, done after every new datum. Indeed, we
will show this to be the case empirically in Section III. We
now introduce an alternative approach which aims to strike a
balance between some unavoidable loss of information, inher-
ently a consequence of the need to readjust an approximation
of the distribution of a continually growing data set, and the
desire to maximize the entropy of this approximation.

Much like in the previous section, bin boundaries are
potentially altered each time a new datum arrives. There are
two main differences in how this is performed. Firstly, unlike
in the previous case, bin boundaries are not allowed to assume
arbitrary values; rather, their values are constrained to the
values of the seen data points. Secondly, only at most a single

boundary is adjusted for each new datum. We now explain this
process in detail.

As before, let the upper bin boundaries before the arrival
of a new data point be bi1, b

i
2, . . . , b

i
n. Since unlike in the

case of the previous algorithm in general the bins will not
be equiprobable we also have to maintain a corresponding list
ci1, c

i
2, . . . , c

i
n which specifies the corresponding data counts.

Each time a new data point arrives, an (n+1)-st bin is created
temporarily. If the value of the new datum is greater than bin
(and thus greater than any of the historical data), a new bin
is created after the current n-th bin, with the upper boundary
set at d(i). The corresponding datum count c of the bin is set
to 1. Alternatively, if the value of the new data point is lower
than bin then there exists j such that:

bij−1 < d ≤ bij , (8)

and the new bin is inserted between the (j − 1)-st and j-th
bin. Its datum count is estimated using linear interpolation in
the following manner:

c = cij ×
d− bij−1
bij − bij−1

+ 1. (9)

Thus, regardless of the value of the new data point, temporarily
the number of bins is increased by 1. The original number
of bins is then restored by merging exactly a single pair of
neighbouring bins. For example, if the k-th and (k+ 1)-st bin
are merged, the new bin has the upper boundary value set to
the upper boundary value of the former (k + 1)-st bin, i.e.
bik+1, and its datum count becomes the sum of counts for the
k-th and (k + 1)-st bins, i.e. cik + cik+1. The choice of which
neighbouring pair to merge, out of n possible options, is made
according to the principle stated in Section II-B, i.e. the merge
actually performed should maximize the entropy of the new
n-bin histogram. This is illustrated conceptually in Figure 2.

New data point

Bin 4Bin 3Bin 2Bin 1Bin 3Bin 2Bin 1

Fig. 2. Conceptual illustration of the key update step of the second algorithm
first described in the present paper. The algorithm attempts to maximize the
entropy of the histogram approximating the distribution of historical data while
using bins with data-aligned boundaries. The figure shows the initial histogram
before the arrival of the new datum whose value is indicated by the arrow
(left-most illustration). A temporary new bin is created with the boundary
coinciding with the value of the new datum (shown in the centre of the
diagram). Lastly, to maintain a fixed number of bins, a single merging of two
neighbouring bins is performed; the three small illustrations on the right-hand
side show the possible options. The merge which results in highest entropy
is chosen and actually performed.

1) Initialization: The initialization of the histogram in the
proposed method can be achieved in the same manner as
in the interpolated bins algorithm introduced previously. To
repeat, until the buffer is filled, i.e. until the number of unique
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stream data points processed exceeds n, the maximal entropy
histogram is constructed by making each unique data value
the top boundary of a bin, thereby allocating each unique data
value its own bin.

III. EVALUATION AND RESULTS

We now turn our attention to the evaluation of the proposed
algorithms. In particular, to assess their effectiveness and
compare them with the algorithms described in the literature
(see Section I-A), in this section we report their performance
on two synthetic data sets and three large ‘real-world’ data
streams. Our aim is first to use simple synthetic data to
study the algorithms in a well understood and controlled
setting, before applying them on corpora collected by systems
deployed in practice. Specifically, the ‘real-world’ streams
correspond to motion statistics used by an existing CCTV
surveillance system for the detection of abnormalities in video
footage. It is important to emphasize that the data we used
was not acquired for the purpose of the present work nor
were the cameras installed with the same intention. Rather,
we used data which was acquired using existing, operational
surveillance systems. In particular, our data comes from three
CCTV cameras, two of which are located in Mexico and one
in Australia. The scenes they overlook are illustrated using a
single representative frame per camera in Figure 3. Table I
provides a summary of some of the key statistics of the three
data sets. We explain the source of these streams and the
nature of the phenomena they represent in further detail in
Section III-A2.

TABLE I
KEY STATISTICS OF THE THREE REAL-WORLD DATA SETS USED IN OUR
EVALUATION. THESE WERE ACQUIRED USING THREE EXISTING CCTV

CAMERAS IN OPERATION IN AUSTRALIA AND MEXICO.

Data set Data points Mean value Standard deviation

Stream 1 555, 022 7.81× 1010 1.65× 1011

Stream 2 10, 424, 756 2.25 15.92

Stream 3 1, 489, 618 1.51× 105 2.66× 106

A. Evaluation data

1) Synthetic data: The first synthetic data set that we
used for the evaluation in this paper is a simple stream
x1, x2, . . . , xn1 generated by drawing each datum xi indepen-
dently from a normal distribution represented by the random
variable X:

X ∼ N (5, 1) (10)

Therefore, this sequence has a stationary distribution. We used
n1 = 1, 000, 000 data points.

The second synthetic data set is somewhat more complex.
Specifically, each datum yi in the stream y1, y2, . . . , yn1

is
generated as follows:

yi = ci × y(1)i + (1− ci)× y(2)i (11)

where ci is drawn from a discrete uniform distribution over
the set {0, 1}, and y

(1)
i and y

(2)
i from normal distributions

represented by the random variables Y1 and Y2 respectively:

Y1 ∼ N (5, 1) (12)
Y2 ∼ N (10, 4). (13)

In intuitive terms, a datum is generated by flipping a fair coin
and then depending on the outcome drawing the value either
from Y1 or Y2. Notice that this data set therefore does not
have the property of stationarity. As in the first experiment we
used n2 = 1, 000, 000 data points.

2) Real-world surveillance data: Computer-assisted video
surveillance data analysis is of major commercial and law en-
forcement interest. On a broad scale, systems currently avail-
able on the market can be grouped into two categories in terms
of their approach. The first group focuses on a relatively small,
predefined and well understood subset of events or behaviours
of interest such as the detection of unattended baggage, violent
behaviour, etc [15], [16]. The narrow focus of these systems
prohibits their applicability in less constrained environments
in which a more general capability is required. In addition,
these approaches tend to be computationally expensive and
error prone, often requiring fine tuning by skilled technicians.
This is not practical in many circumstances, for example when
hundreds of cameras need to be deployed as often the case
with CCTV systems operated by municipal authorities. The
second group of systems approaches the problem of detecting
suspicious events at a semantically lower level [17], [18], [19],
[20], [21]. Their central paradigm is that an unusual behaviour
at a high semantic level will be associated with statistically
unusual patterns (also ‘behaviour’ in a sense) at a low semantic
level – the level of elementary image/video features. Thus
methods of this group detect events of interest by learning the
scope of normal variability of low-level patterns and alerting
to anything that does not conform to this model of what is
expected in a scene, without ‘understanding’ or interpreting
the nature of the event itself. These methods uniformly start
with the same procedure for feature extraction. As video data
is acquired, firstly a dense optical flow field is computed.
Then, to reduce the amount of data that needs to be processed,
stored, or transmitted, a thresholding operation is performed.
This results in a sparse optical flow field whereby only those
flow vectors whose magnitude exceeds a certain value are
retained; non-maximum suppression is applied here as well.
Normal variability within a scene and subsequent novelty
detection are achieved using various statistics computed over
this data. The three data streams, shown partially in Figure 4,
correspond to the values of these statistics (their exact meaning
is proprietary and has not been made known fully to the
authors of the present paper either; nonetheless we have
obtained permission to make the data public as we shall do
following the acceptance of the paper). Observe the non-
stationary nature of the data streams which is evident both
on the long and short time scales (magnifications are shown
for additional clarity and insight).
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(a) (b) (c)

Fig. 3. Screenshots of the three scenes used to acquire the data used in our experiments. Note that these are real, operational CCTV cameras, which were
not specifically installed for the purpose of data acquisition for the present work.
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(a) Data stream 1
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(c) Data stream 3

Fig. 4. The three large data streams used to evaluate the performance of
the proposed algorithms and compare them with the approaches previously
described in the literature.

B. Results

We now compare the performance of our algorithms with
the three alternatives from the literature described in Sec-
tion I-A: (i) the P 2 algorithm of Jain and Chlamtac [1], (ii)
the random sample based algorithm of Vitter [9], and (iii) the
uniform adjustable histogram of Schmeiser and Deutsch [7].

1) Synthetic data: We start by examining the results of
different algorithms on the first and simplest synthetic stream,
with stationary characteristics and data drawn from a normal
distribution. Different estimates for the quantile values of 0.95,
0.99, and 0.995 are shown in the stem plots of Figure 5.
Several trends are immediately obvious. Firstly, Jain and

Chlamtac’s algorithm consistently performed worse, signifi-
cantly so, than all other methods in all three experiments. This
is unsurprising, given that the algorithm uses the least amount
of memory. The best performance across all experiments was
exhibited by the data-aligned algorithm introduced in this
paper, while the relative performances of the sample-based
algorithm of Vitter and the uniform histogram method are
not immediately clear, one performing better than the other
in some cases and vice versa in others.

Figure 5 also shows that in all cases except that of the
sample-based algorithm of Vitter in the estimation of 0.995-
quantile, a particular method performed better when its avail-
able storage space was increased. This observation too is in
line with theoretical expectations. However, this is only a
partial picture because it offers only a snapshot of the estimates
after all data has been processed. The plot in Figure 6 plots
the running estimates of all algorithms as more and more
data is seen, and reveals further insight. The data-aligned
bins algorithm proposed herein (black lines) can again be
seen to perform the best, showing little fluctuation during the
processing of the stream, its performance with 100 being no
worse than with 500 bins. The plot also confirms the inferiority
of Jain and Chlamtac’s method. A more interesting result
pertains to the comparison of the sample-based algorithm
of Vitter and the uniform adjustable histogram of Schmeiser
and Deutsch. Specifically, despite its good accuracy at most
times, the latter can be seen to suffer intermittently from large
errors, as witnessed by the pronounced high-frequency strays
in the plot (green lines). These can be readily explained by
considering the operation of the algorithm and in particular
its behaviour when a new extreme datum, outside of the range
of the current uniform histogram, arrives. In such instances,
the bin boundaries need to be readjusted and are consequently
greatly altered, producing a number of poorly-sampled bins.
This results in inaccurate estimates (most markedly of high
quantiles), which are transient in nature as the sampling
becomes more accurate with the arrival of further data.

Lastly, considering that this data set has stationary charac-
teristics, we examined what we termed ‘time until accuracy’.
Specifically, we define time until accuracy t(α) as the number
of data points until the relative error of the estimate of an
algorithm on a stream s1, s2, . . . , sns

permanently drops to at
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(a) 0.95 quantile
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(b) 0.99 quantile
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(c) 0.995 quantile

Fig. 5. A comparison of different methods on the first synthetic data set used in this paper. This stream has stationary statistical characteristics and was
generated by drawing each datum (of 1,000,000 in total) independently from the normal distribution N (5, 1). The label ‘Jain’ refers to the P 2 algorithm
of Jain and Chlamtac [1], ‘Sample’ to the random sample based algorithm of Vitter [9], ‘Uniform’ to the uniform adjustable histogram of Schmeiser and
Deutsch [7], and ‘Proposed’ to the data-aligned bins described in Section II-D. The number in brackets after a method name signifies the size of its buffer
i.e. available working memory. The dotted red line shows the true quantile values.
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Fig. 6. Running estimate of the 0.95-quantile produced by different methods
on our first synthetic data set. The label ‘Jain’ refers to the P 2 algorithm of
Jain and Chlamtac [1], ‘Sample’ to the random sample based algorithm of
Vitter [9], ‘Uniform’ to the uniform adjustable histogram of Schmeiser and
Deutsch [7], and ‘Proposed’ to the data-aligned bins described in Section II-D.
The number in brackets after a method name signifies the size of its buffer
i.e. available working memory. Both of the proposed algorithms rapidly
achieve high accuracy which is maintained throughout. Since the two running
estimates are indistinguishable by the naked eye at the scale of the original
plot, for the benefit of the reader a small portion of the plot under the
magnification of approximately 200 times is shown too; at this scale a small
difference between the proposed methods can be observed.

most α:

t(α) = arg max
i=1,...,ns

|v̂q(i)− vq(i)|
vq(i)

> α, (14)

where vq(i) is the true value of a quantile after the first i data
points have been seen, and v̂q(i) an estimate of the quantile.
The plots in Figure 7 summarize the results obtained with
different methods for accuracies of 0.01 (or 1%), 0.05 (or
5%), and 0.1 (or 10%). The same trends observed thus far are
apparent in these results as well.

We now turn our attention to the second synthetic data
set which, unlike the first one, does not exhibit stationary
statistical properties. As before, we first summarized the

estimates of three quantile values for different algorithms after
all available data has been processed, as well as the running
estimates. The results are summarized in respectively Figure 8
and Figure 9. Most of the conclusions which can be drawn
from these mirror those already made on the first synthetic
set. The proposed data-aligned bins algorithm consistently
performed best and without any deterioration when the buffer
size was reduced from 500 to 100. The uniform adjustable
histogram of Schmeiser and Deutsch outperformed the sample-
based algorithm of Vitter on average but again exhibited short-
lived but large transient errors. The only major difference in
comparison with the results obtained on the first data set is that
in this case the simple method of Jain and Chlamtac performed
extremely well (the corresponding running quantile estimate in
Figure 9 is indistinguishable from that of the proposed method
on the scale shown).

0 2 4 6 8 10

x 10
5

0

2

4

6

8

10

12

14

16

18

20

Datum index

Q
ua

nt
ile

 e
st

im
at

e

Jain

Sample (100)

Sample (500)

Uniform (100)

Uniform (500)

Proposed (100)

Proposed (500)

Fig. 9. Running estimate of the 0.95-quantile produced by different methods
on our second (non-stationary) synthetic data set. The label ‘Jain’ refers to
the P 2 algorithm of Jain and Chlamtac [1], ‘Sample’ to the random sample
based algorithm of Vitter [9], ‘Uniform’ to the uniform adjustable histogram of
Schmeiser and Deutsch [7], and ‘Proposed’ to the data-aligned bins described
in Section II-D. The number in brackets after a method name signifies the
size of its buffer i.e. available working memory.

2) Real-world surveillance data: Having gained some un-
derstanding of the behaviour of different algorithms in a setting
in which input data was well understood and controlled, we
applied them to data acquired by a real-world surveillance sys-
tem. Representative results, obtained using the same number
of bins n = 500, for 0.95-quantile are shown in Figure 10,



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS 7

Jain Samplet(100) Samplet(500) Uniformt(100) Uniformt(500) Proposedt(100)Proposedt(500)
0

1

2

3

4

5

6

7

8

9

10
xt10

5

Method

D
at

um
tin

de
x

(a) Accuracy: 0.01 (1%)

Jain Samplet(100) Samplet(500) Uniformt(100) Uniformt(500) Proposedt(100)Proposedt(500)
0

1

2

3

4

5

6

7

8

9

10
xt10

5

Method

D
at

um
tin

de
x

(b) Accuracy: 0.05 (5%)
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Fig. 7. Running time (as number of historical data points) until the relative error of the estimate of an algorithm on a stream permanently drops to at most
the particular accuracy (see main text for formal definition). The label ‘Jain’ refers to the P 2 algorithm of Jain and Chlamtac [1], ‘Sample’ to the random
sample based algorithm of Vitter [9], ‘Uniform’ to the uniform adjustable histogram of Schmeiser and Deutsch [7], and ‘Proposed’ to the data-aligned bins
described in Section II-D. The number in brackets after a method name signifies the size of its buffer i.e. available working memory.
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Fig. 8. A comparison of different methods on the second synthetic data set used in this paper. Each datum of this stream (of 1,000,000 in total) was generated
by flipping a fair coin and then depending on the outcome drawing the value either from the normal distribution N (5, 1) or from N (10, 4). Notice that
data is not stationary in nature. The label ‘Jain’ refers to the P 2 algorithm of Jain and Chlamtac [1], ‘Sample’ to the random sample based algorithm of
Vitter [9], ‘Uniform’ to the uniform adjustable histogram of Schmeiser and Deutsch [7], and ‘Proposed’ to the data-aligned bins described in Section II-D.
The number in brackets after a method name signifies the size of its buffer i.e. available working memory. The dotted red line shows the true quantile values.
As in Figure 8 both of the proposed algorithms rapidly achieve high accuracy which is maintained throughout, resulting in running estimates indistinguishable
by the naked eye at the scale of the plot.

Figure 11, and Figure 12, each corresponding to one of the
three data streams. A single row of plots corresponds to a
particular method and shows, from left to right, the running
quantile estimate of the algorithm (purple line) superimposed
to the ground truth (cyan line), the error of the estimate relative
to its true value, and the error of the estimate plotted as a func-
tion of the quantile value. Firstly, compare the performances of
the two proposed algorithms. In all cases and across time, the
data-aligned bins algorithm produced a more reliable estimate.
Thus, the argument put forward in Section II-D turned out
to be correct – despite the attempt of the interpolated bins
algorithm to maintain exactly a maximum entropy approxi-
mation to the historical data distribution, the advantages of
this approach are outweighed by the accumulation of errors
caused by repeated interpolations. The data-aligned algorithm
consistently exhibited outstanding performance on all three
data sets, its estimate being virtually indistinguishable from the
ground truth. This is witnessed and more easily appreciated by
examining the plots showing its running relative error. In most
cases the error was approximately 0.2%; the only instances
when the error would exceed this substantially are in the cases
of very low quantile values (with even a tiny absolute error
magnified in relative terms as in the case of stream 2), and
transiently at times of sudden large change in the quantile
value (as in the case of stream 1), quickly recovering thereafter.

All of the algorithms from the literature performed sig-
nificantly worse than both of the proposed methods. The

assumption of stationary data statistics implicitly made in
the P 2 algorithm and discussed in Section I-A is evident
by its performance on stream 3. Following the initially good
estimates when the true quantile value is relatively large, the
algorithm is unable to adjust sufficiently to the changed data
distribution and the decreasing quantile value. Across the three
data sets, the random sample algorithm of Vitter [9] overall
performed best of the existing methods, never producing a
grossly inaccurate estimate. Nonetheless its accuracy is far
lower than that of the proposed algorithms, as easily seen
by the naked eye and further witnessed by the corresponding
plots of the relative error, with some tendency towards jittery
and erratic behaviour. The adaptive histogram based algorithm
of Schmeiser and Deutsch [7] performed comparatively well
on streams 2 and 3. On this account it may be surprising
to observe its complete failure at producing a meaningful
estimate in the case of stream 1. In fact the behaviour
the algorithm exhibited on this data set is most useful in
understanding the algorithm’s failure modes. Notice at what
points in time the estimate would shoot widely. If we take
a look at Figure 4a it can be seen that in each case this
behaviour coincides with the arrival of a datum which is much
larger than any of the historical data (and thus the range of
the histogram). What happens then is that in re-scaling the
histogram by such a large factor, many of the existing bins
get ‘squeezed’ into only a single bin of the new histogram,
resulting in a major loss of information. This is very much
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(a) Proposed: interpolated bins
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(b) Proposed: data-aligned bins
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(c) P 2 algorithm [1]
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(d) Random sample [9]
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(e) Uniform histogram [7]

Fig. 10. Running estimate of the 0.95-quantile on data stream 1. A single
row of plots corresponds to a particular method and shows, from left to right,
the running quantile estimate of the algorithm (purple line) superimposed to
the ground truth (cyan line), the error of the estimate relative to its true value,
and the error of the estimate plotted as a function of the quantile value.

like what we observed previously on simple synthetic data
in experiments in Section III-B1. When this behaviour is
contrasted with the performance of the algorithms we proposed
in this paper, the importance of the maximum entropy principle
as the foundational idea is easily appreciated; although our
algorithms too readjust their bins upon the arrival of each
new datum, the design of our histograms ensures that no
major loss of information occurs regardless of the value of
new data. Figure 13 illustrates the evolution of bin boundaries

and the corresponding bin counts in a run of our data-aligned
histogram-based algorithm.
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(a) Proposed: interpolated bins
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(b) Proposed: data-aligned bins
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(c) P 2 algorithm [1]
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(d) Random sample [9]
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(e) Uniform histogram [7]

Fig. 11. Running estimate of the 0.95-quantile on data stream 2. A single
row of plots corresponds to a particular method and shows, from left to right,
the running quantile estimate of the algorithm (purple line) superimposed to
the ground truth (cyan line), the error of the estimate relative to its true value,
and the error of the estimate plotted as a function of the quantile value.

Considering the outstanding performance of our algorithms,
and in particular the data-aligned histogram-based approach,
we next sought to examine how this performance is affected by
a gradual reduction of the working memory size. To make the
task more challenging we sought to estimate the 0.99-quantile
on the largest of our three data sets (stream 2). Our results
are summarized in Table II. This table shows the variation in
the mean relative error as well as the largest absolute error of
the quantile estimate for the proposed data-aligned histogram-
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based algorithm as the number of available bins is gradually
decreased from 500 to 12. For all other methods, the reported
result is for n = 500 bins. It is remarkable to observe that the
mean relative error of our algorithm does not decrease at all.
The largest absolute error does increase, only a small amount
as the number of bins is reduced from 500 to 50, and more
substantially thereafter. This shows that our algorithm overall
still produces excellent estimates with occasional and transient
difficulties when there is a rapid change in the quantile value.
Plots in Figure 14 corroborate this observation.
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(a) Proposed: interpolated bins
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(b) Proposed: data-aligned bins
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(c) P 2 algorithm [1]
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(d) Random sample [9]

0 5 10 15

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

Datum index

Q
ua

nt
ile

 e
st

im
at

e

0 5 10 15

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datum index

Q
ua

nt
ile

 e
st

im
at

e 
re

la
tiv

e 
er

ro
r

10
3

10
4

10
5

10
6

10
7

10
−2

10
−1

10
0

10
1

10
2

10
3

Quantile estimate relative error

G
ro

un
d 

tr
ut

h 
qu

an
til

e 
es

tim
at

e

(e) Uniform histogram [7]

Fig. 12. Running estimate of the 0.95-quantile on data stream 3. A single
row of plots corresponds to a particular method and shows, from left to right,
the running quantile estimate of the algorithm (purple line) superimposed to
the ground truth (cyan line), the error of the estimate relative to its true value,
and the error of the estimate plotted as a function of the quantile value.

TABLE II
A SUMMARY OF THE EXPERIMENTAL RESULTS OBTAINED ON THE
REAL-WORLD SURVEILLANCE DATA SET FOR THE 0.99-QUANTILE.

Method Mean relative error Absolute L∞ error

Pr
op

os
ed

da
ta

-a
lig

ne
d

bi
ns

w
/

bi
n

no
. 500 0.5% 2.43

100 0.5% 2.45

50 0.5% 3.01

25 0.4% 14.48

12 0.5% 28.83

P 2 algorithm [1] 45.6% 112.61

Random sample [9] 17.5% 64.00

Equispaced bins [7] 0.9% 76.88
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Fig. 13. An illustration of a typical evolution of the histogram used in the
proposed data-aligned bins algorithm. Shown on the left is the adaptation
in the upper bin boundary values; on the right are the corresponding datum
counts per bin. For this figure we used n = 100 bins.

IV. SUMMARY AND CONCLUSIONS

In this paper we addressed the problem of estimating a
desired quantile of a data set. Our goal was specifically
to perform quantile estimation on a data stream when the
available working memory is limited (constant), prohibiting
the storage of all historical data. This problem is ubiquitous in
computer vision and signal processing, and has been addressed
by a number of researchers in the past. We show that a
major shortcoming of the existing methods lies in their usually
implicit assumption that the data is being generated by a
stationary process. This assumption is invalidated in most
practical applications, as we illustrate using real-world data
extracted from surveillance videos.

Therefore we introduced two novel algorithms which deal
with the described challenges effectively. Motivated by the
observation that a consequence of non-stationarity is that the
historical data distribution need not be representative of the
future distribution and thus that a quantile value can change
rapidly, we adopt a histogram-based representation to allow
an adaptation to such unpredictable variability to take place.
In contrast to the previous work which either distributes the
bin boundaries equidistantly or uses ad hoc adjustments, our
idea was to maintain bins in a manner which maximizes the
entropy of the corresponding estimate of the historical data
distribution. The first method we described and which utilizes
the stated principle readjusts by interpolation the locations of
bin boundaries with every new incoming datum, attempting to
maintain equiprobable bins. In contrast, our second algorithm
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(a) Data stream 2, 0.99-quantile, 12 bins
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(b) Data stream 2, 0.99-quantile, 25 bins
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(c) Data stream 2, 0.99-quantile, 50 bins
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(d) Data stream 2, 0.99-quantile, 100 bins
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(e) Data stream 2, 0.99-quantile, 500 bins

Fig. 14. Running estimate of the 0.99-quantile on data stream 2 produced
using our data-aligned adaptive histogram algorithm and different numbers of
bins. A single row of plots corresponds to a particular method and shows,
from left to right, the running quantile estimate of the algorithm (purple line)
superimposed to the ground truth (cyan line), the error of the estimate relative
to its true value, and the error of the estimate plotted as a function of the
quantile value.

constrains bin boundaries to the values of seen data. When a
new datum arrives, a novel bin is created and the original
number of bins restored by selecting the optimal (in the
maximum entropy sense) merge of a pair of neighbouring bins.

The proposed algorithms were evaluated and compared
against the existing alternatives described in the literature
using three large data streams. This data was extracted from
CCTV footage, not collected specifically for the purposes of
this work, and represents specific motion characteristics over

time which are used by semi-automatic surveillance analytics
systems to alert to abnormalities in a scene. Our evaluation
conclusively demonstrated a vastly superior performance of
our algorithms, most notably the data-aligned bins algorithm.
The highly non-stationary nature of our data was shown
to cause major problems to the existing algorithms, often
leading to grossly inaccurate quantile estimates; in contrast,
our methods were virtually unaffected by it. What is more,
our experiments demonstrate that the superior performance of
our algorithms can be maintained effectively while drastically
reducing the working memory size in comparison with the
methods from the literature.
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Ognjen Arandjelović graduated top of his class
from the Department of Engineering Science at the
University of Oxford (M.Eng.). In 2007 he was
awarded the Ph.D. degree from the University of
Cambridge. After spending 4 years as a Fellow of
Trinity College Cambridge, he moved to Swansea
University as a Lecturer in Visual Computing. Cur-
rently he is a Senior Lecturer at Deakin University.
His main research interests are computer vision and
pattern recognition, and their applications in various
fields of science. He is a Fellow of the Cambridge

Overseas Trust and a winner of multiple best research paper awards.

Duc-Son Pham received the PhD degree from
Curtin University of Technology in 2005. He is
currently a Senior Research Fellow with the Institute
for Multi-sensor Processing and Content Analysis
(IMPCA), Department of Computing, Curtin Univer-
sity, Perth, Western Australia. His current research
interests include sparse learning theory, large-scale
data mining, and convex optimization with appli-
cations to computer vision and image processing.
He is a Member of the IEEE. He is a recipient
of the Young Author Best Paper Award 2010 for

a publication in IEEE Transactions on Signal Processing.

Svetha Venkatesh is Alfred Deakin Professor and
Director of Centre for Pattern Recognition and Data
Analytics( PRaDA) at Deakin University. Venkatesh
was elected a Fellow of the International Association
of Pattern Recognition in 2004 for contributions to
formulation and extraction of semantics in multime-
dia data. She is a Fellow of the Australian Academy
of Technological Sciences and Engineering. She
was on the editorial board of IEEE Transactions
on Multimedia and was on the board of ACM
Transactions on Multimedia (2008-2011). She is a

program member of several international conferences such as ACM Multi-
media. Venkatesh has developed frontier technologies in large scale pattern
recognition exemplified through 416 publications. She has won over $13
million in competitive research funding. Venkatesh and her colleagues have
filed 3 full patents. One start-up company, spun out of these patents is Virtual
Observer and based on the paradigm shifting methods that leverages mobile
cameras to deliver wide area surveillance solutions. The technology won the
Runner up in both the WA Inventor of the year (Early stage) and Global
Security Challenge (Asia-Pacific) in 2007. A recent spin-out company is
iCetana and is based on novel methods to find anomalies in video data. iCetana
won the Broadband Innovation Award at the prestigious Tech23 in 2010.


