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ABSTRACT 26 

Magmatic activity plays an important role in mineralization, but little is 27 

understood of its role with respect to carbonate-hosted stratabound epigenetic 28 

Pb-Zn deposits. The Fule Pb-Zn deposit (~10 Mt of sulfide ore with mean 29 

grades of 15-20 wt. % Zn + Pb), is stratigraphically placed in middle Permian 30 

strata and spatially (~1 m) associated with late Permian continental flood 31 

basalts of the Emeishan Large Igneous Province (ELIP). It thus provides an 32 

ideal case to investigate its genetic relationship with the ELIP. In addition, the 33 

Fule deposit is characterized by high concentrations of Ag, Cd, Ge and Ga, and 34 

contains a variety of Cu and Ni sulfide minerals. Syn-ore calcite (δ13C = +2.57-35 

+3.01‰) and associated fluids (δ13C = +2.96-+3.40‰) have δ13C values similar 36 

to those of fresh limestone (δ13C = +1.58-+2.63‰), but the δ18O values of 37 

calcite (+16.83-+19.92‰) and associated fluids (+7.80-+10.89‰) are distinctly 38 

lower than those of limestone (δ18O = +21.85-+23.61‰). This means that C is 39 

mainly derived from limestone, whereas the O isotope signature may be related 40 

to water/rock (W/R) interaction between mantle and/or metamorphic fluids and 41 

limestone. δ34S values of sulfide minerals obtained by in situ NanoSIMS and 42 

conventional bulk techniques record a range of +9.8-+23.1‰ and +10.04-43 

+16.43‰, respectively, reflecting the enrichment of heavy S isotopes in the ore-44 

forming fluids and thermochemical sulfate reduction (TSR) is the principal 45 

mechanism for the formation of S2-. Cores of sulfide crystals have much higher 46 

δ34S values than their rims, indicating a probable mixture of multiple S 47 

reservoirs and/or a dynamic fractionation of S isotopes occurred during sulfide 48 

precipitation. The uniform femtosecond (fs) LA-MC-ICPMS in situ Pb isotopic 49 

data for galena plot in the field that differs from any of the three potential 50 
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sources in the region. Such signatures demonstrate that metal Pb was most 51 

likely derived from a well-mixed source of basalts, sedimentary rocks and 52 

basement rocks. We propose that (a) the enrichment in Ag, Cu, Ni, Cd, Ge and 53 

Ga, and the isotope signatures of hydrothermal minerals in the Fule region are 54 

related to fluids derived from or flowed through multiple reservoirs; (b) 55 

Emeishan magmatism provided heat, elements and associated fluids, and its 56 

basalts acted as an impermeable and protective layer; and (c) fluid mixing 57 

caused TSR, and then resulted in W/R interaction and CO2 degassing, all of 58 

which played a key role in the precipitation of hydrothermal minerals. 59 

Key words   NanoSIMS in situ S isotopes; Fs LA-MC-ICPMS in situ Pb 60 

isotopes; Role of Emeishan magmatism; Carbonate-hosted Pb-Zn deposits in 61 

the ELIP, South China 62 

 63 

 64 

1. Introduction 65 

Carbonate-hosted stratabound epigenetic Pb-Zn deposits, traditionally named 66 

as Mississippi Valley-type (MVT), are an important source of base metal ores 67 

that form in sediments some time during the lifetime of a sedimentary basin 68 

(Anderson and Macqueen, 1982). MVT deposits predominantly form in platform 69 

carbonate sequences and are typically located within extensional zones 70 

inboard of orogenic belts (Leach et al., 2005). As such type of deposits is 71 

characterized by the absence of temporally or spatially associated magmatic 72 

activity, the classical thinking about the origin of MVT deposits is that it was 73 

related to the low temperature (50-200 °C) and high salinity (10-30 wt. % NaCl 74 

equiv.) basin brines (Leach et al., 2010). However, many carbonate-hosted Pb-75 
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Zn deposits are spatially associated with igneous rocks, but whether they are 76 

related to the igneous activity is unclear and needs to be carefully investigated. 77 

In the western Yangtze Block (Fig. 1a), South China, there are more than 400 78 

carbonate-hosted Pb-Zn deposits and many basalt-hosted native Cu deposits 79 

within the Emeishan Large Igneous Province (ELIP) (Fig. 1b) (Liu and Lin, 1999; 80 

Zhu et al., 2007; Zhou et al., 2014a). These Pb-Zn deposits form the giant 81 

Sichuan-Yunnan-Guizhou (SYG) Pb-Zn metallogenic province (Fig. 1a-b), 82 

representing ~27% of the total Zn + Pb resources in China, and are an important 83 

part of the South China low-temperature metallogenic domain (Zhou et al., 84 

2013a; Wang et al., 2014; Zhang et al., 2015; Hu et al., 2017). The SYG 85 

province is structurally bounded by the N-S-trending Anninghe-Lvzhijiang, the 86 

NE-SW-trending Mile-Shizong-Shuicheng and the NW-SE-trending Kangding-87 

Yiliang-Shuicheng (Fig. 1a) faults. The Pb-Zn deposits in the SYG province are 88 

characterized by (a) ore bodies that are hosted by late Ediacaran to middle 89 

Permian carbonate rocks that are spatially associated with late Permian 90 

Emeishan continental flood basalts (Figs. 1b, 2-3); (b) ore bodies that have 91 

stratiform or lentiform shape within bedding-planes and/or steeply-dipping veins 92 

along fault dip planes (Zheng and Wang, 1991; Li et al., 2007; Zhou et al., 2013b; 93 

Wei et al., 2015; Jin et al., 2016; Zhu et al., 2016); (c) sulfide ore that has high 94 

mean grades of 10-35 wt. % Zn + Pb, and high contents of Ag, Cu, Cd, Ge and 95 

Ga (Si et al., 2006; Ye et al., 2011; Zhou et al., 2011, 2014b; Zhu et al., 2017); 96 

and (d) ore-forming fluids of low-medium temperatures (<300 °C) and salinities 97 

(<15 wt. % NaCl equiv.) (Bai et al., 2013; Li et al., 2015; Zhang et al., 2015; Liu 98 

et al., 2017). These features are significantly different from those of typical MVT 99 

deposits (Leach et al., 2005, 2010). As the only large-scale igneous event 100 
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between the Ediacaran and Triassic in the SYG province was eruption of the 101 

Emeishan flood basalts, the above mineralization features were generally 102 

considered to be related to the ELIP (Huang et al., 2010; Xu et al., 2014; Zhou 103 

et al., 2013a, 2014a; Li et al., 2016). 104 

The Fule Pb-Zn deposit, hosted by carbonate rocks of the middle Permian 105 

Yangxin Formation (Si et al., 2006), is stratigraphically and spatially (~1 m) 106 

close to the late Permian Emeishan basalts (Figs. 1b, 2-3). This deposit 107 

contains very high ore grades (up to 60 wt. % Zn + Pb, mean 15-20 wt. %) and 108 

is rich in multiple elements (4567 t Cd, 329 t Ge, and 177 t Ga at mean grades 109 

of 0.127 wt. % Cd, 0.012 wt. % Ge, and 0.007 wt. % Ga) (Si et al., 2011, 2013; 110 

Ye et al., 2011). These features are similar to those of the adjacent world-class 111 

Huize Pb-Zn deposit (hosted in Carboniferous strata with >30 Mt of sulfide ore 112 

with average grades of 25-35 wt. % Zn + Pb) (Fig. 1b) (Zhou et al., 2001; Li et 113 

al., 2006; Huang et al., 2010; Bao et al., 2017), which is considered to be a 114 

typical representative of the unique SYG-type deposits (related to the ELIP) in 115 

the western Yangtze Block (Huang et al., 2010). In spite of this, there is still 116 

debate on the ore genesis type, including whether it is a distal magmatic 117 

hydrothermal-type (based on geological evidence: Liu and Lin, 1999), 118 

stratabound-type (based on trace element data: Si et al., 2006, 2011) or MVT 119 

(based on Cd isotopic data: Zhu et al., 2017). Hence, the Fule deposit provides 120 

an ideal case for understanding the role of magmatism during the formation of 121 

carbonate-hosted Pb-Zn deposits. 122 

Micro-scale variation of elements and isotopes in hydrothermal minerals, 123 

obtained by micro-beam analysis, can provide crucial clues for revealing the 124 

source and evolution of ore-forming elements and associated fluids, and the 125 
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cause of hydrothermal mineral precipitation (Barker et al., 2009; Nishizawa et 126 

al., 2010; Ye et al., 2011; Jin et al., 2016; Deng et al., 2017). Laser-ablation 127 

multi-collector inductively coupled plasma mass spectroscopy (LA-MC-ICPMS) 128 

and secondary ion mass spectroscopy (SIMS) can accurately analyze isotopic 129 

compositions of hydrothermal minerals in situ (Ikehata et al., 2008; Zhang et al., 130 

2014; Yuan et al., 2015; Bao et al., 2016). Here we use the Fule deposit as a 131 

case study, utilizing NanoSIMS in situ S, femtosecond (fs) LA-MC-ICPMS in 132 

situ Pb, and bulk C-O-S isotope analyses, together with a detailed dataset of 133 

the ore deposit geology and mineralogy, aimed at revealing the ore genesis of 134 

the Fule deposit and its relationship with the ELIP. The outcomes will have wide 135 

significance for further exploration of carbonate-hosted Pb-Zn deposits in the 136 

ELIP and can open the door to similar situations in other Large Igneous 137 

Provinces where they interact with carbonate rocks. 138 

 139 

2. Geological setting 140 

2.1 Geology of the western Yangtze Block 141 

The Yangtze Block is bounded by the Cathysia Block to the southeast, the 142 

Sanjiang Orogenic Belt to the southwest and the Songpan-Ganzê Orogenic Belt 143 

to the northwest (Fig. 1a). In the western Yangtze Block, the basement is 144 

comprised of late Paleoproterozoic to early Neoproterozoic metamorphic rocks, 145 

which were intruded by late Neoproterozoic and Mesozoic igneous rocks (Fig. 146 

1b) (Gao et al., 2011; Zhou et al., 2014c; Hu et al., 2017). The cover sequence 147 

in the western Yangtze Block is late Ediacaran to Triassic marine, and Jurassic 148 

to Cenozoic continental sedimentary rocks (Liu and Lin, 1999; Yan et al., 2003; 149 
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Zhou et al., 2013a). The platform carbonate sequences constitute an important 150 

part of the late Ediacaran to Triassic marine strata, which are rich in salt-gypsum 151 

and organic matters (Huang et al., 2004; Jin, 2008; Zhou et al., 2014a). The 152 

western margin of the Yangtze Block is characterized by multiple processes of 153 

tectonic activity, which strictly controlled sedimentation, magmatism and 154 

mineralization (Figs. 1b, 2). 155 

The late Permian ELIP (263-259 Ma) covers ~0.3×106 km2 of the western 156 

Yangtze Block and eastern Songpan-Ganzê Orogenic Belt (Fig. 1a-b), with 157 

displaced correlative units in northern Vietnam (Song Da zone). It hosts many 158 

economically important Fe-Ti-V oxide deposits, Ni-Cu-(PGE) sulfide deposits 159 

and native Cu deposits (Zhou et al., 2002; Ali et al., 2005; Zhu et al., 2007; Jian 160 

et al., 2009; Shellnutt, 2014; Tran et al., 2016). The Emeishan flood basalts 161 

constitute a significant part of the ELIP, and are up to ~5 km maximum thickness 162 

in the western part of the ELIP (i.e. Yunnan), whereas the maximum thickness 163 

is only a few hundred meters in the eastern part (i.e. Guizhou) (Xu et al., 2001; 164 

Pirajno, 2013; Shellnutt, 2014). After eruption of the Emeishan basalts, the 165 

Indosinian Orogeny (257-200 Ma) resulted from closure of Paleotethys (Carter 166 

et al., 2001; Lepvrier et al., 2004; Enkelmann et al., 2007; Reid et al., 2007; 167 

Pullen et al., 2008; Qiu et al., 2016), resulting in faulting and folding that 168 

structurally controlled the occurrence of hydrothermal deposits in the western 169 

Yangtze Block (Fig. 1b) (Liu and Lin, 1999; Zaw et al., 2007; Zhu et al., 2007; 170 

Hu and Zhou, 2012; Chen et al., 2015). 171 
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The SYG Pb-Zn metallogenic province covers ~0.2×106 km2 of SW Sichuan, 172 

NE Yunnan and NW Guizhou provinces (Fig. 1a), and hosts 408 carbonate-173 

hosted Pb-Zn deposits in late Mesoproterozoic to late Paleozoic, all of which 174 

are spatially associated with the late Permian Emeishan basalts (Fig. 1b) (Liu 175 

and Lin, 1999; Zhou et al., 2013a; Wang et al., 2014; Zhang et al., 2015; Hu et 176 

al., 2017). These deposits were formed between 245 Ma and 192±7 Ma as 177 

constrained by Pb model ages, and hydrothermal calcite/fluorite Sm-Nd and 178 

sphalerite/pyrite Rb-Sr isochron dating (Guan and Li, 1999; Si et al., 2006; Li et 179 

al., 2007; Lin et al., 2010; Mao et al., 2012; Zhou et al., 2013a, 2013b, 2015; 180 

Zhang et al., 2015). These dates broadly match the ages of basalt-hosted native 181 

Cu deposits in the ELIP (231±3-225±2 Ma: Zhu et al., 2007), Carlin-like Au 182 

deposits in the Youjiang Basin (235±33-204±19 Ma: Chen et al., 2015) and 183 

detritus (~230-206 Ma) in the Songpan-Ganzê Orogenic Belt that resulted from 184 

collision with the western Yangtze Block during the late Triassic (Enkelmann et 185 

al., 2007).  186 

2.2 Regional geology of the Fule district 187 

The Fule carbonate-hosted Pb-Zn deposit is located 110 km NE of Luoping City, 188 

NE Yunnan Province (Fig. 1b). The exposed rocks include the Mesoproterozoic 189 

Kunyang Group basement rocks, and late Paleozoic (middle Devonian, 190 

Carboniferous and Permian) and early Mesozoic (early-middle Triassic) cover 191 

sequences (Si et al., 2006; Lu et al., 2015). The Kunyang Group is composed 192 

mainly of mudstone and metasandstone, which are unconformably overlain by 193 
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the middle Devonian Haikou Formation that consists mainly of limestone and 194 

sandstone. The Haikou Formation sedimentary rocks are unconformably 195 

overlain by early Carboniferous coal-bearing clastic rocks and late 196 

Carboniferous carbonate rocks. Sedimentary rocks of Carboniferous age are 197 

conformably overlain by early Permian limestone, shale and sandstone, which 198 

are in turn conformably overlain by limestone and dolostone of middle Permian 199 

Yangxin Formation. Carbonate rocks of the Yangxin Formation are 200 

disconformably overlain by late Permian, which consists mainly of Emeishan 201 

basalts, and coal-bearing clastic rocks. Late Permian clastic rocks are 202 

conformably overlain by early Triassic sandstone, mudstone and carbonates, 203 

which are in turn overlain conformably by middle Triassic carbonates. 204 

The Mile-Shizong-Shuicheng fault (Fig. 1a) and Faben anticline (Si et al., 2011; 205 

Lu et al., 2015) form major structural features in the studied district. The Mile-206 

Shizong-Shuicheng regional fault strikes NE-SW, with a slight bend in the Fule 207 

district (Fig. 1b). It consists of a series of secondary fractures that controlled the 208 

distribution of Pb-Zn deposits (Figs. 2-3) (Liu and Lin, 1999; Zhou et al., 2013b; 209 

Qiu et al., 2016). The Faben anticline is 20 km in length and 10 km wide, and 210 

is a gentle fold structure whose axis strikes 030-040° (Si et al., 2006). 211 

Carboniferous rocks in the central part of the anticline have a horizontal dip 212 

angle, whereas Permian rocks dip at 5°-10°. The Emeishan flood basalts are 213 

widely distributed in the Fule district, but their thickness is relatively thin, as they 214 

form the southeastern margin of the ELIP (Liu and Lin, 1999; Xu et al., 2001; 215 



 10 

Pirajno, 2013; Shellnutt, 2014). 216 

More than 10 Pb-Zn ore deposits have been discovered over ~60 km2 in the 217 

Fule district (Fig. 2), including the Fule (~10 Mt of sulfide ore with mean grades 218 

of 15-20 wt. % Zn + Pb), Fusheng (~3 Mt of sulfide ore with average grades of 219 

15-25 wt. % Zn + Pb) and Fuli (~1 Mt of sulfide ore with mean grades of 10-15 220 

wt. % Zn + Pb) deposits (Si et al., 2006; Lu et al., 2015). All the Pb-Zn deposits 221 

are hosted by carbonate rocks of the middle Permian Yangxin Formation (Figs. 222 

2-3). Ore bodies occur as stratiform or lentiform shapes along bedding-planes 223 

(Fig. 3), and are structurally controlled by the regional fault-fold system (Figs. 224 

1b, 2-3). A principal feature of these deposits is that they are rich in Ag, Cu, Cd, 225 

Ge and Ga (Si et al., 2006; Ye et al., 2011; Zhu et al., 2017). 226 

 227 

3. Geology of the Fule ore deposit 228 

3.1 Stratigraphy and lithology 229 

In the Fule mining area, the exposed lithologies include Permian, early-middle 230 

Triassic and Quaternary rocks (Figs. 2-3). The late Carboniferous Maping 231 

Formation was exposed by underground mining tunnels (Fig. 3), and consists 232 

mainly of dolomitic bioclastic limestone. The Maping Formation limestone is 233 

conformably overlain by the early Permian Liangshan Formation that is mainly 234 

composed of limestone, shale and sandstone. Sedimentary rocks of the 235 

Liangshan Formation are conformably overlain by carbonate rocks of the 236 

middle Permian Yangxin Formation, which are in turn disconformably overlain 237 
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by late Permian Emeishan flood basalts. The basalts are disconformably 238 

overlain by the terrestrial coal-bearing clastic sequence of the late Permian 239 

Xuanwei Formation. Clastic rocks of the Xuanwei Formation are conformably 240 

overlain by the early Triassic Feixianguan Formation, which consists mainly of 241 

sandstone, shale and argillaceous limestone. The Feixianguan Formation 242 

sedimentary rocks are conformably overlain by the early Triassic Yongzhenning 243 

Formation that is composed mainly of carbonate rocks, which are in turn 244 

conformably overlain by oolitic dolostone and limestone of the middle Triassic 245 

Guanling Formation. Quaternary sediments locally overlie the Permian and 246 

Triassic rocks (Figs. 2-3). 247 

3.2 Structural Geology 248 

The major structures in the Fule mining area include secondary structures of 249 

the Mile-Shizong-Shuicheng regional fault and the right limb of the Faben 250 

anticline (Figs. 1b, and see Figs. 2-3 for the details). The F4 fault is a normal 251 

structure and strikes 000°-030° with a length of 43 km (Figs. 2-3). The F5 fault 252 

is a reverse fault and trends 000-045° and is 17 km long (Figs. 2-3). Another 253 

important fault, the F6 reverse fault (Fig. 4a), is 20 km in length and strikes 000-254 

050° (Figs. 2-3). The F5 and F6 reverse faults controlled the occurrence of the 255 

Pb-Zn ore bodies in the Fule mining area (Figs. 2-3). 256 

3.3 Magmatic rocks 257 

The Emeishan flood basalts are the only igneous rocks exposed in the Fule 258 

mining area, and have a close spatial association with all the known Pb-Zn 259 
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deposits (Figs. 2-3). The distance between the basalts and Pb-Zn ores is less 260 

than 1 m locally (Fig. 3). 261 

3.4 Ore bodies 262 

Twenty-ore bodies have been discovered in the Fule deposit, all of which are 263 

buried, and these have a total NW-SE length of 3000 m and NE-SW width of 264 

1500 m. They have been divided into the Laojuntai and Xinjuntai sections, with 265 

the Laojuntai section having been completely mined-out (Si et al., 2011). Ore 266 

bodies in the Xinjuntai section occur as stratiform to lentiform shapes or as 267 

veins along bedding-planes within the Yangxin Formation; they trend SE with a 268 

dip of 10° (Fig. 3). The Erdong stratiform ore body is the largest one in the 269 

Xinjuntai section, and is 1000 m in length, 300-500 m in width and 0-20 m in 270 

thickness. The next largest is the Danaotang ore body, which is lenticular and 271 

500 m long, 400 m wide and 0-20m thick. These large ore bodies have also 272 

been completely mined-out. The total mined-out sulfide ore in the two sections 273 

are more than 7 Mt (Si et al., 2013). Some medium-scale ore bodies have been 274 

found recently, for example, the No. 108 stratiform ore body, which is 400 m 275 

long, 200m wide and 2-12 m thick; the No. 904 lentiform ore body, which is 340 276 

m in length, 200m in width and 1.5-15m in thickness; and the No.74 veined ore 277 

body, which is 200 m long, 150 m wide and 3-15 m thick. Sulfide ore in these 278 

newly-discovered ore bodies contains Zn + Pb grades up to 60 wt. %, averaging 279 

15-20 wt. %, and 256-8171 µg/g Cd, 1.77-239 µg/g Ge, 0.74-182 µg/g Ga, 23.5-280 

107 µg/g Se, and 0.98-122.1 g/t Ag. The total metal reserves of Cd, Ge and Ga 281 
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are more than 4567 t, 329 t and 177 t, respectively (Si et al., 2006, 2011, 2013; 282 

Zhu et al., 2017). 283 

3.5 Structure and texture of the sulfide ores 284 

Previous studies showed that sulfide ore in the Fule deposit is composed mainly 285 

of sphalerite, galena and pyrite, with calcite and dolomite as gangue minerals 286 

(Figs. 4-7). In this study, Cu and Ni sulfide minerals, together with apatite (Fig. 287 

7f), have been identified, including tetrahedrite (Figs. 6g, k, m, t and 7g-h, j, l-288 

s), chalcopyrite (Fig. 6i, r-t), millerite, polydymite, and pentlandite (Fig. 7s). 289 

The main sulfide minerals occur as either massive (Figs. 4c-f, h-o, q-s and 5a, 290 

e, k-q), veined (Figs. 4h, 5b-d, i-j, r-t and 6a-c), disseminated (Figs. 4p and 5g-291 

h, n, r-s) or brecciated (Figs. 4g, 5f and 6d) structure. Aggregations of sulfide 292 

minerals in the wall rocks form massive ore (Figs. 4c-e, i-j, n-o and 5a, k); sulfide 293 

veins between millimeter-scale veinlets (Figs. 4h, 5b-d and 6a) or centimeter-294 

scale veins of calcite/dolomite (Figs. 5i-j, r-t and 6b-c) constitute the veined ore, 295 

whereas in the disseminated ore, sulfide minerals occur as speckles or single 296 

crystals irregularly distributed in the wall rocks (Fig. 4p) or in calcite/dolomite 297 

veins (Fig. 5g-i, n, r-s). In the brecciated ore, fragments of sulfides and 298 

carbonate rocks are enclosed in calcite/dolomite cements (Figs. 4g and 5f). 299 

The hydrothermal minerals occur in a variety of forms and may be granular 300 

(Figs. 6e-t and 7a-t), form replacement minerals (Fig. 6r), have embayments 301 

(Figs. 6f, l, s and 7b, d, j, m), occur in solid-solution (Figs. 6i, s and 7a-b, d, k, 302 

o, s), show stress deformation (Figs. 6e-f, l-m and 7g-h) or have cataclastic 303 
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textures (Fig. 6n). Granular form is common and sphalerite occurs as euhedral 304 

to anhedral fine- (< 0.5 mm, Figs. 6e-f, h, j-m, o-r, t and 7a, c, h-i, p), medium- 305 

(0.5-5 mm, Fig. 6g, k-l and 7a-d, q) to coarse-grained minerals (> 5 mm, Figs. 306 

5i, n, r-s, 6b-d, i, s and 7t); Galena is euhedral to anhedral, fine- to coarse-307 

grained with grain sizes of 0.01-15 mm (Figs. 5k, 6c, e-f, l-m and 7a-h, j, i-t). 308 

Stress deformation is a common feature in galena (Figs. 6e-f, l-m and 7g-h). 309 

Chalcopyrite has a solid-solution texture within sphalerite (Fig. 6i, s) or else 310 

replaces pyrite (Fig. 6r). The contacts between sphalerite and galena (Fig. 6f, l) 311 

or calcite/dolomite (Fig. 6s and 7b, d, j, m) commonly show embayment. Pyrite 312 

has commonly has a cataclastic texture (Figs. 6h, n and 12). In contrast, 313 

millerite and pentlandite occur as a solid-solution in polydymite (Fig. 7s), 314 

whereas calcite and dolomite often form solid-solutions (Fig. 7a-b, d, k, o, s). 315 

3.6 Mineral paragenesis 316 

Based on macro-scale geological observations, microscope identification and 317 

scanning electron microscopy (SEM) analysis, together with previously 318 

published geological data (Si et al., 2006, 2011), the ore-forming process of the 319 

Fule deposit can be divided into diagenetic, hydrothermal and supergene 320 

periods (Fig. 8). The hydrothermal period can be further divided into sulfide + 321 

carbonate (including two generations, i.e. I and II) and barren carbonate 322 

(includes one generation, namely III) stages (Fig. 8). There are two principal 323 

sulfide ore types: sphalerite-dominated (Figs. 4h, q, 5a-j, p-t and 6a-c) and 324 

sphalerite + galena-dominated (Figs. 4c-f, i-p, r-s, 5k-o and 6d). These two ore 325 
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types have the following spatial distribution from bottom to top as follows: 326 

massive sphalerite-dominated ore often occurs at the bottom of the ore body 327 

(Fig. 4j, m, o, q), followed by massive sphalerite + galena-dominated (Figs. 4c-328 

f, i-p, r-s and 5n) or sphalerite-dominated interbedded veins (Figs. 4h, 5b-d, i-j, 329 

r-t and 6a-c), with disseminated sphalerite + galena-dominated ore commonly 330 

at the top (Figs. 4p and 5g-j, n, r-s). 331 

Overall, there are at least two generations of hydrothermal minerals formed in 332 

the two types of sulfide ore. Sphalerite-I is euhedral (Figs. 5e, h, j, o, r and 6i) 333 

to anhedral (Figs. 5f-g, k-n and 6a-e) fine- to medium-grained (0.01-0.5 mm), 334 

coexisting with galena-I (Figs. 6a-c and 7a, q), pyrite-I (Figs. 6k, 7e and 10), 335 

tetrahedrite (Figs. 6m and 7h, q) or calcite/dolomite-I (Figs. 6a-c and 7a-b), and 336 

is enclosed by galena-II (Figs. 6f, l-m and 7h, l), as well as being filled by galena-337 

II (Fig. 6g, q and 7g, t), tetrahedrite (Figs. 6h and 7g), pyrite-II (Fig. 6n), 338 

calcite/dolomite-II (Figs. 6g, k, n, q and 7a, e) or replaced by chalcopyrite (Fig. 339 

6i). Sphalerite-II occurs as subhedral to anhedral medium- to coarse-grained 340 

crystals (0.5-10 mm) that coexist with galena-II (Figs. 6e-f, l, p, r and 7h, j, l, p, 341 

r), pyrite-II (Figs. 6h, r and 7c-d), tetrahedrite (Fig. 6t and 7l, p, r), chalcopyrite 342 

(Fig. 6r) or calcite/dolomite-II (Fig. 6e-f, p, s-t), and are enclosed by 343 

calcite/dolomite-II (Figs. 6h, j, o, r and 7i). Galena-I is euhedral to anhedral fine- 344 

to medium-grained (0.01-0.1 mm), and coexists with sphalerite-I (Figs. 6a-c and 345 

7a, q), pyrite-I (Fig. 7e) or calcite/dolomite-I (Figs. 6a-c and 7a), and is enclosed 346 

by pyrite-II (Fig. 7c-d) or calcite/dolomite-II (Fig. 7e, m, o). Galena-II forms 347 
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subhedral to anhedral medium- to coarse-grained crystals (0.1-15 mm) that 348 

coexist with sphalerite-II (Figs. 6e-f, l, p, r and 7h, j, l, p, r), tetrahedrite (Figs. 349 

6g and 7l-m, o-p), or calcite/dolomite-II (Figs. 6e-g, p-r and 7m-o), and enclose 350 

sphalerite-I (Figs. 6f, l-m and 7h, l), pyrite-I (Figs. 6r and 7n) or tetrahedrite (Figs. 351 

6m and 7h, j, n, r), as well as filling sphalerite-I (Figs. 6g, q and 7g, t). Pyrite-I 352 

coexists with sphalerite-I (Figs. 6k, 7e and 11) or galena-I (Fig. 7e), and is 353 

enclosed by galena-II (Figs. 6r, and 7n) or calcite/dolomite-II (Fig. 7e). Pyrite-II 354 

coexists with sphalerite-II (Figs. 6h, r and 7c-d) or calcite/dolomite-II (Figs. 6h, 355 

n, r and 7c-d), and encloses galena-I (Fig. 7c-d), as well as being replaced by 356 

chalcopyrite (Fig. 6r). Syn-ore calcite/dolomite-I occurs as crumbs or millimeter-357 

scale discrete veinlets that enclose or coexist with sphalerite-I and galena-I 358 

(Figs. 6a-c and 7a-b). Syn-ore calcite/dolomite-II forms centimeter-scale veins 359 

(Figs. 5i-j, r-t and 6b-d) that fill, cement or coexist with two generations of sulfide 360 

minerals (Figs. 6-7). Post-ore calcite/dolomite-III occurs as veinlets or 361 

stockworks that fill fractures in the sulfide ores (Figs. 4e-g and 6a) or cement 362 

carbonate breccias (Fig. 4b, t). In addition, millerite and pentlandite coexists 363 

with galena-I and all are enclosed by polydymite (Fig. 7s). Apatite occurs as 364 

euhedral crystal and is enclosed by dolomite-III that fills fractures in galena-II 365 

(Fig. 7f). 366 

3.7 Wall rock alteration 367 

Wall rock alteration includes chloritization and carbonatization, which can be 368 

divided into pre- and post-ore stages. The pre-ore stage of chloritization 369 
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generated chlorite along fault planes within the basalts (Fig. 4a), and 370 

carbonatization recrystallized coarse-granular dolostone (Fig. 4b-c). The post-371 

ore stage is of carbonatization forming barren carbonate (dolomite and calcite) 372 

veins or veinlets, which cement/fill fractures within sulfide ore (Figs. 4e-g and 373 

6a) or wall rocks (Fig. 4b, t). The pre-ore chloritization/carbonatization, resulted 374 

from water/rock interaction between fluids and basalts/carbonates, usually 375 

occur along fluid migration pathways. The post-ore alteration is always close to 376 

sulfide ore, and thus can be used as a clue in mineral exploration. 377 

 378 

4. Samples and analytical methods 379 

4.1 Samples 380 

Sulfide ore samples were collected mainly from the newly-discovered ore 381 

bodies, because the other main ore bodies had been mined-out completely (Si 382 

et al., 2011). Seven calcite and ten sulfide mineral separates were handpicked 383 

from seventeen sulfide ore samples, which were used for bulk C-O and S 384 

isotope analyses, respectively. Four fresh limestone samples were also used 385 

for bulk C-O isotope analysis. Twelve polished thin sections of sulfide ores were 386 

used for NanoSIMS in situ S and Fs-LA-MC-ICPMS in situ Pb isotope analyses. 387 

In situ δ34S values for galena were not obtained, because no galena standard 388 

was available (Tang et al., 2014; Zhang et al., 2014). Also, no in situ Pb isotopic 389 

ratios of pyrite and sphalerite were obtained as their high Hg contents could 390 

markedly affect the quality of the data (Chen et al., 2014; Bao et al., 2016, 2017; 391 
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Tan et al., 2017). 392 

4.2 Analytical methods 393 

4.2.1 Bulk C-O isotope analysis 394 

Bulk C-O isotope analysis was performed at the State Key Laboratory of Ore 395 

Deposit Geochemistry (SKLODG), Institute of Geochemistry (IG), Chinese 396 

Academy Sciences (CAS), using a Finnigan MAT-253 mass spectrometer. 397 

Calcite separates and limestone whole-rock reacted with 100% H3PO4 to 398 

produce CO2. The analytical precisions calculated from replicate analyses of 399 

unknown samples were better than 0.2‰ (2σ) and 1‰ (2σ) for δ13C and δ18O, 400 

respectively. The δ13C and δ18O values were reported relative to the Vienna 401 

Pee Dee Belemnite (V-PDB) standard and Standard Mean Ocean Water 402 

(SMOW), respectively. 403 

4.2.2 In situ S isotope analysis 404 

In situ S isotope analysis was undertaken at the Key Laboratory of Earth and 405 

Planetary Physics, Institute of Geology and Geophysics, CAS, using a 406 

CAMECA NanoSIMS. The measurements were made using 3 different settings 407 

of the Faraday cups/electron multiplier (EM) detectors, in order to meet the 408 

diverse requirements for spatial resolution. The standard-sample-standard 409 

bracketing method was applied to correct for instrumental mass fractionation. 410 

Target spots of the most homogeneous isotopes (such as 32S, 34S and 75As in 411 

Fig. 9) were selected for in situ S isotope analysis in order to obtain the most 412 

credible data. Internal standards included PY-1117 (pyrite), CS01 (pyrite), JC-413 
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14 (sphalerite) and MY09-12 (sphalerite), and international standards included 414 

Balmat (pyrite and sphalerite) and CAR 123 (pyrite). The analytical precision 415 

calculated from replicate analyses of the unknown samples was better than 0.2‰ 416 

(1σ). The in situ S isotopic compositions were reported relative to the Vienna 417 

Canyon Diablo Troilite (V-CDT) standard. Details of instrument parameters and 418 

NanoSIMS in situ S isotope analysis techniques were described in Zhang et al. 419 

(2014). 420 

4.2.3 Bulk S isotope analysis 421 

Bulk S isotope analysis was undertaken at the SKLODG, IGCAS, using a 422 

Finnigan MAT-253 mass spectrometer. Sulfide mineral powders (200 mesh) 423 

were mixed with CuO powder, and then were heated to extract SO2. The 424 

analytical uncertainty was better than 0.1‰ (1σ) calculated from replicate 425 

analyses of the IAEA international standards: IAEA S1 (-0.3‰), IAEA S2 426 

(+22.62‰) and IAEA S3 (-32.49‰). The analytical precision calculated from 427 

replicate analyses of the unknown samples is better than 0.2‰ (2σ). The bulk 428 

δ34S values are reported relative to the Vienna Canyon Diablo Troilite (V-CDT) 429 

standard. 430 

4.2.4 In situ Pb isotope analysis 431 

In situ Pb isotopes were analyzed at the State Key Laboratory of Continental 432 

Dynamics, Northwest University, using a Nu II MC-ICPMS instrument combined 433 

with a 266 nm femtosecond (fs) laser ablation system. The surface of the 434 

polished thin sections was cleaned with milli-Q water (18.2 MΩ·cm). Line scan 435 
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ablation consisted of background collection for 20 s followed by 50 s of laser 436 

ablation for signal collection. Laser ablation parameters were: 15 μm spot size 437 

for galena; 100% output energy, >600 μJ; 100% energy density, 6 J/cm2; laser 438 

frequency, 5-50 Hz; and ablation way, line 3 μm/s. These ensured a strong 439 

enough Pb signal for the in situ analysis of galena samples. The Tl (20 ppb), 440 

NIST SRM 997 (205Tl/203Tl = 2.38890) and NIST SRM 610 glass served as 441 

internal and external standards. The repeated analyses of NIST SRM 610 glass 442 

yielded highly reliable and reproducible results during the whole analytical 443 

process with mean 206Pb/204Pb = 17.052 ± 0.003, 207Pb/204Pb = 15.515 ± 0.003 444 

and 208Pb/204Pb = 36.980 ± 0.007 (1 s, n = 183). Details of instrument 445 

parameters and fs LA-MC-ICP-MS in situ Pb isotope analyses were described 446 

in Bao et al. (2016). 447 

 448 

5. Analytical results 449 

5.1 Bulk C-O isotopic compositions 450 

Bulk δ13C and δ18O values of syn-ore calcite separates and fresh limestone 451 

whole-rock samples are listed in Table 1 and are shown in Figure 10. Syn-ore 452 

calcite (generation II) separates have δ13C and δ18O values ranging from +2.57 453 

to +3.01‰ and +16.83 to +19.92‰, respectively. δ13C and δ18O values of fresh 454 

limestone whole-rock samples range from +1.58 to +2.63‰ and +21.85 to 455 

+24.01‰, respectively. The δ13C values of syn-ore calcite can be compared 456 

with those of fresh limestone, but the former has slightly lower δ18O values than 457 
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those of the latter (Fig. 10). 458 

5.2 In situ and bulk δ34S values 459 

In situ and bulk δ34S values are presented in Table 2 and are shown in Figures 460 

11-12. The NanoSIMS in situ δ34S values of sulfide minerals range from +9.8 to 461 

+23.1‰, of which pyrite and sphalerite crystals have δ34S values ranging from 462 

+10.3 to +19.4‰ and +9.8 to +23.1‰, respectively. In situ δ34S values of pyrite-463 

I and pyrite-II crystals range from +12.8 to +19.4‰ and +10.3 to +10.4‰, 464 

respectively. Sphalerite-I and sphalerite-II crystals have in situ δ34S values 465 

ranging from +12.5 to +23.1‰ and +9.8 to +16.9‰, respectively. A principal 466 

feature of both pyrite and sphalerite crystals is that their δ34S values decrease 467 

gradually from core to rim (pyrite: decreasing from +19.4 to +10.3‰; sphalerite: 468 

decreasing from +23.1 to +9.8‰; Figs. 11 and 12a). Sulfide minerals have bulk 469 

δ34S values ranging from +10.04 to +16.43‰, of which sphalerite has δ34S 470 

values (+14.16-+16.43‰) higher than those of galena (generation II: +10.04-471 

+11.86‰). Sphalerite-I has bulk δ34S values (+14.16-+16.43‰) similar to those 472 

of sphalerite-II (+14.21-+15.10‰). Another major feature is that bulk S isotopic 473 

data of sphalerite have a much narrower range than in situ S isotopic data (Fig. 474 

11a-b). 475 

5.3 In situ Pb isotopic compositions 476 

In situ Pb isotopic ratios of galena are listed in Table 3 and are shown in Figures 477 

13-14. Galena (generation I and II) crystals have in situ 206Pb/204Pb ratios of 478 

18.572-18.617, 207Pb/204Pb ratios of 15.711-15.728 and 208Pb/204Pb ratios of 479 
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38.592-38.727. In situ Pb isotopic ratios of galena-I are as follows: 206Pb/204Pb 480 

= 18.572-18.598, 207Pb/204Pb = 15.711-15.728 and 208Pb/204Pb = 38.592-38.695 481 

and in situ Pb isotopic ratios of galena-II are: 206Pb/204Pb = 18.580-18.617, 482 

207Pb/204Pb = 15.712-15.727, and 208Pb/204Pb = 38.597-38.727. The main 483 

feature is that 206Pb/204Pb and 208Pb/204Pb ratios of galena-I are lower than 484 

those of galena-II (Fig. 14a-b). 485 

 486 

6. Discussion 487 

6.1 Sources of ore-forming elements and associated fluids 488 

6.1.1 New insights from C-O isotopes 489 

Mineralogical records reveal that calcite and dolomite are the two main C-490 

bearing minerals in the sulfide ores (Figs. 4-8). Thus, HCO3
- and H2CO3 491 

[occurring as CO2 (aqueous)] are two dominant C species in the hydrothermal 492 

fluid, as supported by the analysis of fluid inclusions in sphalerite (Li ZL 493 

unpublished data). Therefore, the calculated δ13CCO2 value is approximate to 494 

the theoretical δ13Cfluid value, namely δ13CCO2 ≈ δ13Cfluid, if the fractionation of C 495 

isotopes between HCO3
- (liquid) or H2CO3 and CO2 (gas) is negligible (Ohmoto, 496 

1972; Hoefs, 2009). The δ13CCO2 values were calculated using the temperature 497 

function of 1000 lnα (CO2-Calcite) = -2.4612 + 7.663 × 103 / (t + 273.15) - 2.988 × 498 

106 / (t + 273.15)2 (Bottinga, 1968; “t” [200 °C] is an average homogenization 499 

temperature of fluid inclusions in sphalerite, Li ZL unpublished data). Similarly, 500 

the δ18OH2O values were calculated using the temperature function of 1000 lnα 501 
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(Calcite-H2O) = 2.78 × 106 / (t + 273.15)2 - 3.39 (O’Neil et al., 1969). We obtained 502 

δ13Cfluid and δ18Ofluid values having a range of +2.96-+3.40‰ and +7.80-503 

+10.89‰, respectively (Table 2; Fig. 10). 504 

It has been well-documented that δ13C and δ18O values of different geological 505 

reservoirs are distinct (Fig. 10). For instance, typical marine carbonate rocks 506 

have δ13C values of -4-+4‰ and δ18O values of +20-+30‰ (Veizer and Hoefs, 507 

1976), the δ13C and δ18O values of mantle-derived CO2 range from -8 to -4‰ 508 

and +6 to +10‰, respectively (Taylor et al., 1967; Demény et al., 1998), 509 

whereas sedimentary organic matters have δ13C and δ18O values mainly 510 

ranging from -30 to -15‰ and +24 to +30‰, respectively (Kump and Arthur, 511 

1999; Hoefs, 2009). Therefore, C-O isotopes can provide an important 512 

constraint on the source of ore-forming fluids. 513 

Compared with the above three main reservoirs of CO2, the calculated δ13Cfluid 514 

values (+2.96-+3.40‰) are higher than those of organic matters and the mantle, 515 

but are similar to those of carbonate rocks and limestone (Fig. 10). However, 516 

the calculated δ18Ofluid values (+7.80-+10.89‰) are lower than those of organic 517 

matters, carbonate rocks and limestone (Fig. 10), but are similar to those of 518 

mantle or metamorphic fluids (+2-+25‰: Hoefs, 2009). This means that C is 519 

mainly derived from limestone, whereas the O isotope signature may be related 520 

to water/rock (W/R) interaction between mantle and/or metamorphic fluids and 521 

limestone. 522 

Geologically, the mantle-derived basalts of the ELIP and the metamorphic rocks 523 



 24 

of the Mesoproterozoic Kunyang Group are spatially associated with Pb-Zn 524 

deposits in the Fule region (Figs. 1b, 2-3), suggesting that both mantle 525 

magmatism and metamorphism have the potential to provide elements and 526 

associated fluids to the hydrothermal system, as suggested in other places 527 

(Pirajno, 2000; Davidheiser-Kroll et al., 2014). In addition, the occurrence of 528 

abundant Cu and Ni sulfide minerals (Figs. 6-8) indicates a genetic relationship 529 

between Emeishan magmatism and Pb-Zn mineralization. Furthermore, 530 

evidence from in situ Pb isotopic data suggests that the metal Pb was derived 531 

from a well-mixed source involving the basalts, sedimentary rocks and 532 

metamorphic rocks (see below). Therefore, we propose that the O isotope 533 

signature was generated by W/R interaction between mixed (mantle and 534 

metamorphic) fluids and limestone. 535 

6.1.2 Constraints from in situ and bulk S isotopes 536 

Primary ore in the Fule deposit is composed of sphalerite, galena, pyrite, and 537 

Cu and Ni sulfide minerals, but lacks sulfate minerals (Figs. 4-8). Hence, the 538 

δ34S values of sulfide minerals approximate those of the corresponding fluids, 539 

namely δ34Ssulfide ≈ δ34Sfluid (Ohmoto, 1972; Seal, 2006). The δ34S values of 540 

sulfide minerals obtained by NanoSIMS in situ analyses compared with bulk 541 

techniques range from +9.8 to +23.1‰ (average +15.5‰) and +10.04 to +16.43‰ 542 

(average +13.3‰), respectively (Figs. 11-12), reflecting the enrichment of 543 

heavy S isotopes in the hydrothermal fluids. The mean δ34S value of sulfide 544 

minerals is +14.8‰, which approximates that of the ore-forming fluids. Such S 545 
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isotope signatures differ from mantle-derived S (0 ± 3‰: Chaussidon et al., 546 

1989), and are similar to Permian seawater (+11-+15‰: Claypool et al., 1980; 547 

Seal, 2006). Given that the S was completely sourced from Permian seawater, 548 

as the thermochemical sulfide reduction (see below) can form up to +15‰ of 549 

the Δ34Ssulfate-sulfide value (Ohmoto et al., 1990; Machel et al., 1995; Worden et 550 

al., 1995; Ohmoto and Goldhaber, 1997), so the theoretical δ34Ssulfide value 551 

could drop to -4‰. The theoretically predicted δ34Ssulfide values (-7-+15‰) do 552 

not match well with the observed δ34S values (+9.8-+23.1‰). Hence, Permian 553 

seawater was not the only S source for the Fule deposit.  554 

Previous studies suggested that the sulfate-bearing evaporites (salt-gypsum 555 

rocks) that are common in the late Ediacaran to Triassic marine strata in the 556 

region, with δ34S values ranging from +22 to +28‰ (Fig. 11c; Zhou et al., 2013c), 557 

overlap with those of the Ediacaran to Triassic seawater (+10-+35‰: Claypool 558 

et al., 1980; Seal, 2006). If the S was totally derived from the above evaporites 559 

or seawater, the theoretical δ34Ssulfide values (+7-+28‰ or -5-+35‰) can match 560 

reasonably well with the observed δ34S values (+9.8-+23.1‰). Evidence from 561 

S isotopes for the nearby Pb-Zn deposits (Fig. 12c), including the Shaojiwan 562 

(hosted in early Permian) (Zhou et al., 2013c), Huize (hosted in early 563 

Carboniferous) (Li et al., 2006, 2007), Nayongzhi (hosted in early Cambrian and 564 

late Ediacaran) (Jin et al., 2016) and Maozu (hosted in late Ediacaran) (Zhou 565 

et al., 2013b), also suggests that the S in the hydrothermal fluids was derived 566 

from multiple S reservoirs. Hence, we conclude that the S in the Fule deposit 567 
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had multiple sources. 568 

Thermochemical sulfate reduction (TSR) and bacterial sulfate reduction (BSR) 569 

are two crucial processes for the formation of S2- from SO4
2-, and they are 570 

temperature-dependent (Ohmoto et al., 1990; Machel et al., 1995; Hoefs, 2009; 571 

Zhou et al., 2013c). TSR occurs at a relatively high temperature (higher than 572 

100-140°C: Machel et al., 1995; Worden et al., 1995) and can generate a large 573 

amount of S2- with relatively stable δ34S values (Ohmoto et al., 1990; Seal, 2006; 574 

Zhou et al., 2013c). BSR occurs at a relatively low temperature (lower than 575 

110°C: e.g. Jørgenson et al., 1992; Worden et al., 1995; Basuki et al., 2008). 576 

As the metallogenic temperature (180-210°C, based on fluid inclusions in 577 

sphalerite-II: Li ZL unpublished data) is too high for bacteria to survive, hence 578 

BSR played an insignificant role in the formation of S2-. In addition, the sulfide 579 

ore reserves of the Fule deposit are more than 10 Mt, which suggests a 580 

significant requirement of S2-. This means that TSR has played a crucial role in 581 

the formation of S2- from SO4
2 in the Fule deposit. 582 

The δ34S values of pyrite-I crystals (rims: +12.8-+13.4‰) are higher than those 583 

of paragenetic sphalerite-I crystals (rims: +12.5‰) in sample Fl14-95 (Fig. 11). 584 

Similarly, in sample Fl14-65 (Fig. 11), pyrite-II crystals have δ34S values (rims: 585 

+10.3-+10.4‰) higher than those of paragenetic sphalerite-II crystals (rims: 586 

+9.8-+10.1‰). Such S isotope signatures suggest that the fractionation of S 587 

isotopes between pyrite and paragenetic sphalerite reached equilibrium 588 

(Ohmoto, 1972; Seal, 2006). In addition, sphalerite-II has δ34S values (+14.21-589 
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+15.10‰) higher than those of galena-II (+10.04-+11.86‰) (Fig. 12a), which 590 

indicates that S isotope fractionation between sphalerite and galena had also 591 

reached equilibrium (Seal, 2006; Hoefs, 2009). Hence, equilibrium fractionation 592 

played an important role in the variation of δ34S values for the sulfide minerals 593 

in the Fule deposit. On the other hand, the δ34S values decrease gradually from 594 

core to rim in both sphalerite and pyrite crystals (Fig. 11), which suggests that 595 

other factors may have controlled the S isotope signatures, such as changes in 596 

the physico-chemical conditions (T, pH, fO2, fS, etc.), Rayleigh fractionation, or 597 

mixing of multiple S reservoirs (Ohmoto, 1972; Hoefs, 2009). Previous studies 598 

suggested that physical and chemical conditions are crucial factors that can 599 

cause large variations in S isotopes (Seal, 2006; Hoefs, 2009). However, the 600 

circulating process (dissolution and re-precipitation) of local carbonate rocks 601 

that was caused by water/rock (W/R) interaction (O’Neil et al., 1969; Zheng and 602 

Hoefs, 1993; Warren, 2000) can help keep a metastable metallogenic 603 

environment (see below). Hence, changes in physical-chemical conditions can 604 

be ruled out. In contrast, as a consequence of dynamic fractionation, heavy S 605 

isotopes are expected to be more enriched in the cores of sulfide minerals than 606 

their rims (Figs. 11-12) during precipitation, due to the fact that light S isotopes 607 

are more enriched in the gas phase (H2S) (Seal, 2006; Zhou et al., 2013c). 608 

Alternatively, a mixing process of multiple reservoirs and associated fluids can 609 

cause distinct variation of S isotopes (Basuki et al., 2008; Zhou et al., 2013c), 610 

and our isotopic data imply that multiple reservoirs were involved (Figs. 11-12), 611 
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providing the S source for the formation of the Fule sulfide ore. Therefore, both 612 

equilibrium and dynamic fractionation of S isotopes occurred during sulfide 613 

precipitation. 614 

6.1.3 Evidence from in situ Pb isotopes 615 

The extremely low U and Th contents in sulfide minerals (Carr et al., 1995; 616 

Muchez et al., 2005; Zhou et al., 2013a; Pass et al., 2014) enables us to use 617 

the Pb isotopic ratios of galena formed at different paragenetic stages in the 618 

Fule deposit to investigate the nature of the hydrothermal fluids. Uniform in situ 619 

Pb isotopic ratios of galena suggest a single or a well-mixed source of Pb (Fig. 620 

13). The Pb isotopic data plot above the Pb evolution curve of the average 621 

upper continental crust in the diagram of 207Pb/204Pb vs. 206Pb/204Pb (Fig. 13) 622 

(Zartman and Doe, 1981). 623 

Previous studies suggested that there are three potential metal sources in the 624 

SYG province, namely the late Permian Emeishan basalts, ore-hosting late 625 

Ediacaran to middle Permian sedimentary rocks and Meso- to Neo-proterozoic 626 

metamorphic rocks (Zheng and Wang, 1991; Zhou et al., 2001, 2013a; Huang 627 

et al., 2004; Li et al., 2007, 2015, 2016; Zhang et al., 2015; Jin et al., 2016; Zhu 628 

et al., 2017). Compared with the basalts, sedimentary rocks and basement 629 

rocks, galena has Pb isotopic ratios that differ from all of them in the diagram 630 

of 207Pb/204Pb vs. 206Pb/204Pb (Fig. 13). This means that there was not a single 631 

source for the Pb. In addition, galena displays higher 207Pb/204Pb than those of 632 

the basalts and basement rocks at a given 206Pb/204Pb ratio (Fig. 13), but both 633 
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the galena and the basalts, sedimentary rocks and basement rocks have the 634 

same 206Pb/204Pb ratio at a given 206Pb/204Pb ratio (Fig. 13). It should be noted 635 

that many of the ELIP basalts show evidence of crustal contamination and that 636 

it is possible the contamination originated from carbonate rocks (possibly their 637 

fluids) (Xu et al., 2001; Pirajno, 2013; Shellnutt, 2014). Hence, we cannot rule 638 

out contribution from the ELIP basalts (6-323 µg/g Cu, 66-156 µg/g Zn and 3-639 

30 µg/g Pb: Huang et al., 2004; Xu et al., 2001, 2007) and we consider a well-640 

mixed metal source is a reasonable postulate (Fig. 13). 641 

There is a gradual increase in the 206Pb/204Pb and 208Pb/204Pb ratios from 642 

galena-I to galena-II (Fig. 14a-b), which can be explained by: (a) a high 643 

206Pb/204Pb and 208Pb/204Pb-enriched source provided more Pb for galena-II 644 

than galena-I, or (b) galena-I had lower 238U and 232Th contents than galena-II. 645 

Because of the low U and Th contents in galena, and the lack of any distinct 646 

difference between the two generations of galena (Zhou et al., 2011; Ye et al., 647 

2011 and unpublished data), so a highly radiogenic Pb-enriched source (such 648 

as basalts or basements), which may have provided more Pb to the 649 

hydrothermal fluids in the late phase is possible. This explanation is further 650 

supported by the occurrence of abundant Cu and Ni sulfide minerals in the late 651 

phase (Figs. 6-8). 652 

6.2 Precipitation mechanisms of hydrothermal minerals 653 

6.2.1 Mechanisms of calcite precipitation 654 

As the solubility of calcite decreases with increase in temperature, so cooling 655 



 30 

of the fluid itself could not cause calcite precipitation (Zheng, 1990; Barnes, 656 

1997; Hoefs, 2009). There are three main processes that can lead to calcite 657 

precipitation in an open hydrothermal system, i.e. fluid mixing, water/rock (W/R) 658 

interaction and CO2 degassing (Zheng and Hoefs, 1993; Huang et al., 2010; Du 659 

et al., 2017). Our C isotopic data suggest that C is sourced mainly from the 660 

limestone (Fig. 10). This means that the process of fluid mixing played an 661 

insignificant role in calcite precipitation. As a consequence of W/R interaction, 662 

the circulating process between dissolution and re-precipitation in carbonate 663 

rocks can cause calcite precipitation, at least locally (Warren, 2000). Moreover, 664 

such circulating processes of precipitation → dissolution → re-precipitation can 665 

generate metastable conditions that are beneficial to the continuous formation 666 

of sulfide ore (Zhou et al., 2018). In addition, the C-O isotopic evolution curve 667 

of W/R interaction between fluids (initial δ13Cfluid = +2‰, δ18Ofluid = +6‰) and 668 

limestone (Fig. 15) was simulated, using the fractionation factor and equation 669 

of C-O isotopes (O’Neil et al., 1969; Zheng and Hoefs 1993). The simulation 670 

results suggest that our C-O isotopic data match well with the evolution curves 671 

of both HCO3
- and H2CO3 (Fig. 15) as the dominant C species (Zheng and 672 

Hoefs, 1993). Similarly, the C-O isotopic evolution curve of CO2 degassing (with 673 

0.1, 0.2, 0.3 and 0.4 mol fraction of total C and O; initial δ13Cfluid = +2‰, δ18Ofluid 674 

= +6‰) was also simulated (Fig. 16a-b). The results show that our C-O isotopic 675 

data still match well with the evolution curve of both H2CO3 (Fig. 16a) and HCO3
- 676 

(Fig. 16b) as the dominant C species. Hence, calcite precipitation was 677 
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controlled by both W/R interaction and CO2 degassing. 678 

6.2.2 Mechanisms of sulfide precipitation 679 

Previous studies suggested that there are three main models (reduced S, local 680 

sulfate reduction, and mixing of metal and reduced S) that can account for 681 

sulfide precipitation in hydrothermal systems (Anderson, 1975; Corbella et al., 682 

2004; Leach et al., 2005). The reduced S model requires metal and reduced S 683 

to be transported together to the depositional site; the local sulfate reduction 684 

model calls upon increasing the concentration of reduced S at the depositional 685 

site through sulfate reduction; and the mixing of metal and reduced S demands 686 

a metal-rich, but reduced S-poor brine, mixed with a fluid rich in hydrogen 687 

sulfide at the depositional site (Heijlen et al., 2003; Leach et al., 2005). Our S 688 

isotopic data suggest that S was derived from multiple reservoirs and TSR 689 

played a dominant role in the formation of S2- from SO4
2- (Figs. 11-12). However, 690 

our Pb isotopic data indicate that a well-mixed source of the basalts, 691 

sedimentary rocks and basement rocks provided the main metal source (Figs. 692 

13-14). As the normal SO4
2--bearing basin brines are of low temperature 693 

(usually < 100 °C) (Corbella et al., 2004; Leach et al., 2005), which is lower than 694 

the required temperature for activating TSR, so the aforementioned three 695 

models cannot reasonably explain the formation of sulfide ore in the Fule 696 

deposit. Therefore, an alternative model is proposed here, namely fluid mixing 697 

caused by TSR, which then resulted in sulfide precipitation. 698 

6.3 Possible mineralizing age and related geological events 699 
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In the Fule mining area, the ore-bearing strata are the middle Permian Yangxin 700 

Formation (Figs. 2-3), which implies that the ore formation time was not older 701 

than middle Permian age. In addition, the evidence from mineralogy (Cu and Ni 702 

sulfide minerals) (Figs. 6g, i, k, m, r-t and 7g-h, j, l-s), and O (Fig. 10) and Pb 703 

isotopes (Figs. 13-14) reveals a genetic association with Emeishan magmatism. 704 

This reflects that mineralization may have occurred at the same time as the 705 

ELIP. The most reliable radiometric dates indicate generation of the ELIP at 706 

263-259 Ma (Xu et al., 2001; Zhou et al., 2002; Ali et al., 2005; Shellnutt et al., 707 

2012). On the other hand, sulfide ore in the Fule deposit occurs as stratiform to 708 

lentiform shapes or as veins along the bedding-planes, locally associated with 709 

the Mile-Shizong-Shuicheng regional fault system and the Faben anticline (Figs. 710 

1b, 2-3). These structures were activated during the Indosinian Orogeny (Lu et 711 

al., 2015), which suggests that the Fule deposit was most likely formed during 712 

the Indosinian period (257-200 Ma: Carter et al., 2001; Enkelmann et al., 2007; 713 

Reid et al., 2007; Lepvrier et al., 2008; Pullen et al., 2008). Furthermore, 714 

according to the Pb model ages, Si et al. (2006) considered that the Fule 715 

deposit was probably formed during late Triassic to early Jurassic (~225-198 716 

Ma). This age broadly matches the dates of the nearby Pb-Zn deposits (245-717 

192 Ma) (Guan and Li, 1999; Li et al., 2007; Lin et al., 2010; Mao et al., 2012; 718 

Zhou et al., 2013a, 2013b, 2015; Zhang et al., 2015), native Cu deposits (230-719 

225 Ma) (Zhu et al., 2007) and Carlin-like Au deposits (235-204 Ma) (Chen et 720 

al., 2015). Hence, the Fule and nearby deposits were formed between 250-200 721 
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Ma, and were most likely related to the ELIP and the Indosinian Orogeny that 722 

occurred after eruption of the Emeishan basalts. 723 

6.4 Ore genesis 724 

Sulfide ore in the Fule deposit has a spatial association with the Emeishan 725 

basalts (Figs. 1b, 2-3), which led some researchers to classify it as a distal 726 

magmatic-hydrothermal type (Xie, 1963). Other geological evidence linking 727 

mineralization to Emeishan magmatism includes the occurrence of hidden Pb-728 

Zn veins in the basalts at Xuanwei County, NE Yunnan Province (Liu and Lin, 729 

1999). On the other hand, sulfide ore in the Fule deposit occurs in stratiform to 730 

lentiform shapes or veins (Figs. 3-4) that are clearly stratabound. This led other 731 

researchers to classify it as a Sedimentary Exhalative-type (SEDEX) or a 732 

stratabound-type of deposit (Si et al., 2006). However, the Fule sulfide ore is 733 

hosted by middle Permian carbonate rocks, which are different from clastic 734 

rocks that host sulfide ore of SEDEX-type (Leach et al., 2005). In addition, 735 

based on the evidence of Cd isotopes, the Fule deposit was considered to be 736 

a Mississippi Valley-type (MVT) deposit (Zhu et al., 2017). Traditionally, typical 737 

MVT deposits are related to basin fluids that are characterized by low 738 

temperatures (50-200 °C) and high salinities (10-30 wt. % NaCl equiv.) and 739 

have no genetic association with magmatic activity (Leach et al., 2005, 2010). 740 

However, the study of fluid inclusions in sphalerite suggests that the ore-forming 741 

fluids in the Fule deposit are characterized by low-medium temperatures (120-742 

260 °C) and low salinities (4-10 wt. % NaCl equiv.) (Si et al., 2006; Li ZL, 743 
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unpublished data). In addition, the occurrence of abundant Cu and Ni sulfide 744 

minerals (Figs. 6g, i, k, m, r-t and 7g-h, j, l-s), and the evidence of O (Fig. 10) 745 

and Pb isotopes (Figs. 13-14) imply that the formation of sulfide ore in the Fule 746 

deposit was associated with the ELIP. Furthermore, these features are similar 747 

to those of the unique SYG-type Huize Pb-Zn deposit (Zhou et al., 2001; Huang 748 

et al., 2004; Li et al., 2007) (Table 4). Moreover, the sulfide ore in the Fule 749 

deposit is of higher grades (up to 60 wt. % Zn + Pb, av. 15-20 wt. %) than those 750 

of MVT deposits (usually < 10. Wt. % Zn + Pb). Hence, we propose that the 751 

Fule deposit is not a typical MVT deposit and represents a new unique SYG-752 

type of deposit that is between MVT and magmatic hydrothermal deposits. 753 

6.5 Ore formation process and relationship with the ELIP 754 

Pirajno (2000) established indirect links with sediment-hosted deposits (such 755 

as MVT and SEDEX-type) and mantle plumes. The thermal simulation indicates 756 

that the basalts of the EILP begin to release metal-bearing fluids at ~5-10 Ma 757 

after it erupting and this process can last over ~50 Ma (Xu et al., 2014). On the 758 

other hand, if we consider that the Pb-Zn deposits in the ELIP formed as a 759 

consequence of Indosinian tectonism (~257-200 Ma: Carter et al., 2001; 760 

Lepvrier et al., 2004; Enkelmann et al., 2007; Reid et al., 2007; Pullen et al., 761 

2008), then it makes sense that magmatic fluids related to the Emeishan event 762 

could pass through the carbonate rocks and be involved in the mineralization. 763 

Furthermore, metal-bearing fluids (including thermal flux and volatiles) 764 

generated by Emeishan magmatism have been shown to be involved in the 765 
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formation of the Fule deposit, as evidenced by field data (Figs. 1-8), fluids 766 

compositions (Figs. 10, 12, 15-16), and in situ S (Figs. 9, 11-12) and Pb (Figs. 767 

13-14) isotopes. In addition, hydrothermal fluids responsible for carbonate-768 

hosted base metal deposits in the Irish Pb-Zn ore district was considered to be 769 

driven by mantle heat (Davidheiser-Kroll et al., 2014). Hence, sulfide ore in the 770 

Fule deposit has a genetic relationship with Emeishan magmatism. 771 

Between 263-259 Ma, during the eruption of the Emeishan basalts (Shellnutt, 772 

2014), fluids were provided (thermal flux + volatiles) and there was an elevated 773 

background geothermal gradient, both of which facilitated and enhanced the 774 

mobilization and extraction of ore-forming elements from Proterozoic 775 

metamorphic rocks in the basement and Paleozoic sedimentary rocks (Fig. 776 

17a). Following eruption of the Emeishan basalts, these metal-bearing mixed 777 

(mantle and metamorphic) fluids (initial δ13Cfluid = +2‰, δ18Ofluid = +6‰) were 778 

driven upward along regional faults (including the Mile-Shizong-Shuicheng fault 779 

and its subsidiaries; Fig. 1a) during the early Indosinian Orogeny (257-250 Ma) 780 

(Fig. 17b). These fluids were then released into structural units (such as the 781 

Faben anticline) when the overall tectonic regime changed from compression 782 

to extension between 250-200 Ma (Fig. 17c) (Carter et al., 2001; Reid et al., 783 

2007; Lepvrier et al., 2008; Lu et al., 2015; Qiu et al., 2016). The fluids were 784 

then trapped by evaporitic salt and sedimentary organic-bearing units within the 785 

platform carbonate sequences at the structurally-controlled depositional sites 786 

(Fig. 17c). This process resulted in the formation of S2- from multiple S 787 
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reservoirs via TSR and the extraction of some metals from ore-hosting strata 788 

through W/R interaction (as evidenced by C-O-S and Pb isotopes), and then 789 

resulted in the precipitation of hydrothermal minerals (Fig. 17c). Importantly 790 

during ore formation, the Emeishan basalts also acted as an impermeable and 791 

protective layer (Figs. 1b, 2-3, 17) and even acted as ore-hosting rocks, which 792 

enabled the massive accumulation of Cu, Pb-Zn, and even Au ores in the 793 

western Yangtze Block (Fig. 1b). 794 

 795 

7. Conclusions 796 

(a) Bulk C-O isotopic data suggest that the source of C in the Fule Pb-Zn 797 

deposit was limestone, whereas the O isotope signature is related to W/R 798 

interaction between mixed (mantle and metamorphic) fluids and limestone. W/R 799 

interaction and CO2 degassing are two crucial processes for calcite 800 

precipitation.  801 

(b) Both in situ and bulk S isotopic data indicate a mixed S source from multiple 802 

reservoirs and that TSR played a crucial role in the formation of S2-. Both 803 

equilibrium and dynamic fractionation controlled the variation in S isotopes.  804 

(c) In situ Pb isotopic data imply a well-mixed Pb source that includes basalts, 805 

sedimentary rocks and Proterozoic basement rocks. 806 

(d) The Fule Pb-Zn deposit thus represents a new unique SYG-type of deposit 807 

that is between MVT and magmatic hydrothermal deposits. 808 

 809 
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 1171 

Figure captions 1172 

Fig. 1 a: Regional geological setting of SW China, highlighting the general study 1173 

area; b: Geological sketch map of the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn 1174 

metallogenic province (modified from Liu and Lin, 1999), which shows the 1175 

distribution of Pb-Zn deposits, native Cu deposits, strata, faults and igneous 1176 

rocks. 1177 

 1178 

Fig. 2 Geological sketch map of the Fule district (modified from Liu and Lin, 1179 

1999), showing the distribution of Pb-Zn deposits, strata, faults and Emeishan 1180 

basalts. 1181 

 1182 

Fig. 3 A-B cross-section through the Fule district (modified from Liu and Lin, 1183 
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1999), revealing the distribution of ore bodies, faults and strata, and the spatial 1184 

relationship between sulfide ores and basalts. 1185 

 1186 

Fig. 4. Field photographs of the Fule deposit; a: F6 reverse fault plane with 1187 

chloritization; b: post-ore dolomite/calcite (Dol/Cal) veins fill fractures in 1188 

dolostone; c: sphalerite (Sp) and galena (Gn) occur as massive aggregates that 1189 

are filled by Dol/Cal crumbs, and carbonate breccias are cemented by Dol/Cal 1190 

veins; d: Dol/Cal occur as crumbs and fill fractures in massive Sp and Gn 1191 

aggregates; e: massive Sp and Gn aggregates are filled/cemented by Dol/Cal 1192 

veins; f: massive Sp and Gn, and carbonate breccias are filled/cemented by 1193 

Dol/Cal veins; g: breccias of sulfide ore and carbonate are cemented by Dol/Cal 1194 

crumb aggregates; h: interbedded sulfide veins are filled/cemented by Dol/Cal 1195 

veins or veinlets; h-n: massive Sp and Gn are filled/cemented by Dol/Cal veins; 1196 

o: massive Sp and Gn; p: Dol/Cal veins fill fractures in the wall rocks or cement 1197 

carbonate breccias, and Sp and Gn occur as speckles or single crystals that 1198 

are irregularly distributed in the wall rocks; q-r: massive Sp and/or Gn are 1199 

filled/cemented by Dol/Cal veins; t: post-ore Dol/Cal veins fill fractures in the 1200 

wall rocks or cement the carbonate breccias. 1201 

 1202 

Fig. 5 Photographs of hand specimens from the Fule deposit; a: dense massive 1203 

sulfide ore, sphalerite (Sp) coexists with galena (Gn); b-d: interbedded sulfide 1204 

veins between calcite/dolomite (Cal/Dol) millimeter-scale veinlets; e: massive 1205 
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Sp and Gn are filled/cemented by Cal/Dol crumbs, veinlets or veins; f: sulfide 1206 

ore breccias are cemented by Cal/Dol aggregates; g-h: Sp and Gn occur as 1207 

speckles or single crystals that are either densely or sparsely distributed in 1208 

dolostone, which is filled by Cal/Dol veins; i-j: Sp and Gn occur as speckles or 1209 

single crystals that are distributed in Cal/Dol aggregates, which are filled by 1210 

barren Cal/Dol veins; these barren veins and sulfide veins together form veined 1211 

ore; k: Gn occurs as massive aggregates; l-m: massive Sp and Gn are filled by 1212 

Cal/Dol fragments or veinlets; n: Cal/Dol fragments fill fractures in the massive 1213 

Sp and Gn ores or host disseminated Sp; o-q: massive Sp and Gn are filled by 1214 

Cal/Dol fragments or veinlets; r-t: barren Cal/Dol, speckles or single crystals of 1215 

Sp and/or Gn-bearing Cal/Dol and sulfide veins form veined ore. 1216 

 1217 

Fig. 6 The textural and structural features of sulfide minerals in the Fule deposit 1218 

under the microscope; a: sphalerite-I (Sp-I) coexists with galena-I (Gn-I), and 1219 

forms veined aggregates; calcite/dolomite-I (Cal/Dol-I) forms veined 1220 

aggregates and is interbedded with sulfide veins; post-ore Cal/Dol-III fills 1221 

fractures in the sulfide veins; b-c: barren Cal/Dol-II, disseminated sulfide-1222 

bearing Dol-I, and Sp-I and Gn-I veins form veined ore; d: massive Sp-II and 1223 

Gn-II are filled by Cal/Dol veins; e: Sp-II occurs as euhedral to anhedral fine-1224 

grained crystals and coexist with Gn-II; f: Gn-II forms subhedral medium-1225 

grained crystals that enclose Sp-I and coexist with Sp-II; g: Sp-I forms granular 1226 

crystals that are filled by Cal/Dol-II, Gn-II, and tetrahedrite (Ttr); h: granular Sp-1227 
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II coexists with granular Py-II, both of which are enclosed by Dol-II; i: 1228 

Chalcopyrite (Ccp) occurs as within Sp-I; j: Sp-II forms a euhedral fine-grained 1229 

crystal that is enclosed by Dol-II and Cal-II; k: anhedral Sp-I coexists with Py-I 1230 

and Ttr, all of which are cemented by Cal/Dol-II; i: Gn-II forms a subhedral fine-1231 

grained crystal that encloses Sp-I and coexists with Sp-II; m: fine-grained Sp-I 1232 

crystal coexists with Ttr and is enclosed by coarse-grained Gn-II crystal; n: fine-1233 

grain cataclastic Py-II crystals coexist with Cal/Dol-II, both of which fill fractures 1234 

in the Sp-I; o: Sp-II forms a subhedral fine-grained crystal and is enclosed by 1235 

Dol-II; p: Sp-II coexists with Gn-II and Cal/Dol-II; q: Sp-I is filled by Gn-II and 1236 

Cal/Dol-II; r: Gn-II encloses Py-I and coexists with Sp-II, and Py-II replaces Ccp, 1237 

all of which are filled/cemented by Cal/Dol-II; s: Ccp occurs within Sp-II that 1238 

forms an embayment texture with Cal/Dol-II; t: Ccp coexists with Ttr and Sp-II, 1239 

all of which are filled or enclosed by Cal/Dol-II. 1240 

 1241 

Fig. 7 The texture and structure of hydrothermal minerals in the Fule deposit 1242 

under the scanning electron microscope (SEM); a: Sphalerite-I (Sp-I) present 1243 

as euhedral-subhedral fine- to medium-grained crystals that coexist with 1244 

galena-I (GnI), all of which are filled or enclosed by dolomite-I (Dol-I) that forms 1245 

a solid-solution with calcite-I (Cal-I); b: Sp-I occurs as a medium-grained crystal 1246 

and forms embayment texture with Dol-I that encloses Cal-I solid-solution; c: 1247 

Py-II encloses Gn-I and coexists with Sp-II, both of which form embayment 1248 

texture with Cal-II; e: Py-I and Gn-I are enclosed by Dol-II that fills a fracture in 1249 
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the Sp-I; f: apatite is enclosed by Dol-III that fills a fracture in Gn-II; g: Gn-II and 1250 

Ttr fill a fracture in Sp-I; h: Ttr occurs as a fine-grained crystal that coexists with 1251 

fine-grained Sp-I, all of which are enclosed by coarse-grained Gn-II that 1252 

coexists with Sp-II; i: Sp-II occurs as a euhedral fine-grained crystal that is 1253 

cemented or enclosed by Dol-II; j: Gn-II encloses Ttr and coexists with Sp-II; k: 1254 

solid-solution texture of Dol-II and Cal-II; l: Gn-II encloses Sp-I and coexists with 1255 

Ttr and Sp-II; m: Gn-II coexists with Ttr and Dol-II, of which the latter encloses 1256 

Gn-I; n: Dol-II coexists with Gn-II that encloses Py-I and Ttr; o: Ttr encloses Gn-1257 

I and coexists with Gn-II and Dol-II, of which the latter forms a solid-solution 1258 

texture with Cal-II; p: Gn-II coexists with Ttr and Sp-II; q: Sp-I coexists with Gn-1259 

I and Ttr; r: Gn-II forms embayment texture with Sp-II and coexists with Ttr; s: 1260 

Ttr occurs as aggregate veinlets along the rim of polydymite (Pld); millerite (Mil) 1261 

occurs as a micro-vein aggregate within Pld; pentlandite (Ptl) is a euhedral fine-1262 

grained crystal within Pld; Gn-I coexists with Ptl; all of them are enclosed by 1263 

Dol-II that encloses Cal-II solid-solution; t: Gn-II forms fine veinlets and fills 1264 

fractures in Sp-I. 1265 

 1266 

Fig. 8 Mineral paragenesis in the Fule Pb-Zn deposit (data are sourced from Si 1267 

et al., 2006 and this paper) 1268 

 1269 

Fig. 9 The area selected for in situ S isotope analysis that has homogeneous 1270 

isotopic compositions (including 32S, 34S, 75As and 63Cu32S). 1271 
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 1272 

Fig. 10 Plot of δ13C vs. δ18O; C-O isotopic data for mantle, marine carbonate 1273 

rocks and sedimentary organic matters are sourced from Taylor et al. (1967), 1274 

Demény et al. (1998), Veizer and Hoefs (1976) and Hoefs (2009). 1275 

 1276 

Fig. 11 In situ δ34S values in sphalerite and paragenetic pyrite, showing the in 1277 

situ δ34S values for sphalerite and pyrite crystals, and their cores and rims. 1278 

 1279 

Fig. 12 a: A comparison of in situ and bulk S isotopic compositions for sulfide 1280 

minerals formed at generations I and II; b: Histogram of in situ and bulk S 1281 

isotopic data; c: A comparison between mantle-derived S, seawater, evaporates 1282 

and data from nearby Pb-Zn deposits. 1283 

 1284 

Fig. 13 Plot of 207Pb/204Pb vs. 206Pb/204Pb that shows the field of late Permian 1285 

Emeishan basalts, late Ediacaran-middle Permian sedimentary rocks and 1286 

Proterozoic metamorphic rocks, and the Pb evolution curves of U, O, M and L 1287 

(after Zartman and Doe, 1981); Upper Crust (U), Orogen Belt (O), Mantle (M) 1288 

and Lower Crust (L). Whole-rock Pb isotopic data are taken from Huang et al. 1289 

(2004), Li et al. (2007), Yan et al. (2007), Zhou et al. (2013a, 2014a) and Bao 1290 

et al. (2017). 1291 

 1292 

Fig. 14 Plots of 207Pb/204Pb vs. 206Pb/204Pb (a) and 208Pb/204Pb vs. 206Pb/204Pb 1293 
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(b) that display the gradually incremental increase in Pb isotopic ratios from 1294 

galena-I (early phase) to galena-II (late phase). 1295 

 1296 

Fig. 15 Diagram of δ13C vs. δ18O for calcite precipitated by W/R interaction with 1297 

different R/W ratios and temperatures (400-50°C) for either HCO3
- or H2CO3 as 1298 

the dominant C species (after Zheng and Hoefs, 1993), showing the position of 1299 

calcite-II. Initial fluids: δ13C = +2‰, δ18O = +6‰. Δ =δi
rock – δf

rock; I: Δ13C = +0.2‰, 1300 

Δ18O = +2‰; II: Δ13C = +1‰, Δ18O = +6‰; III: Δ13C = +2‰, Δ18O = +10‰. 1301 

 1302 

Fig. 16 Plots of δ13C vs. δ18O for calcite precipitated by CO2 degassing with 1303 

H2CO3 (a) or HCO3
- (b) as the dominant C species (after Zheng, 1990), showing 1304 

the position of calcite-II. The batch (solid line) and Rayleigh (dashed line) 1305 

degassing precipitation models change with temperature (400-50°C) and mol 1306 

fraction of C in the degassed CO2 (0.1 to 0.4) (after Zheng, 1990). The initial 1307 

δ13Cfluid and δ18Ofluid values were taken as +2‰ and +6‰, respectively. 1308 

 1309 

Fig. 17 A sketch of the metallogenic model favoured for the carbonate-hosted 1310 

Pb-Zn deposits in the ELIP; a: 263-259 Ma, the eruption of the Emeishan 1311 

basalts (Shellnutt, 2014) provided fluids and elevated background geothermal 1312 

gradient, which facilitated and enhanced the mobilization and extraction of ore-1313 

forming elements from Proterozoic metamorphic rocks and Paleozoic 1314 

sedimentary rocks; b: 257-250 Ma, metal-bearing mantle and metamorphic 1315 
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fluids were driven upward along regional faults during the early Indosinian 1316 

Orogeny (Carter et al., 2001; Reid et al., 2007; Hu et al., 2017); c: 250-200 (-1317 

156 Ma), the ore-forming fluids were released into structural units when the 1318 

overall tectonic regime changed from compression to extension between 250-1319 

200 Ma (Carter et al., 2001; Lepvrier et al., 2008; Zhou et al., 2013b), where 1320 

they were trapped by the evaporitic salt and sedimentary organic-bearing units 1321 

within the platform carbonate sequence at structurally-controlled depositional 1322 

sites. This process resulted in the formation of S2- from multiple S reservoirs via 1323 

TSR and the extraction of some metals from ore-hosting rocks through W/R 1324 

interaction, which then caused the precipitation of hydrothermal minerals. 1325 





































Table 1  

C-O isotopic compositions of calcite and limestone in the Fule deposit 

No. Locations Mineral δ13CPDB/‰ δ18OSMOW/‰ δ13CCO2/‰a δ18OH2O/‰b 

FL14-2 

Nos.108, 904 and 

74 ore bodies 

Calcite-II +2.94 +16.84 +3.33 +7.81 

FL14-23 Calcite-II +2.93 +19.92 +3.32 +10.89 

FL14-44 Calcite-II +3.01 +18.15 +3.40 +9.12 

FL14-64 Calcite-II +2.96 +19.77 +3.35 +10.74 

FL14-8 Calcite-II +2.67 +16.86 +3.06 +7.83 

FL14-68 Calcite-II +2.57 +16.83 +2.96 +7.80 

FL14-36 Calcite-II +2.92 +18.25 +3.31 +9.22 

FL14-D1 

The mining area 

periphery 

Limestone +1.85 +23.61   

FL14-D2 Limestone +1.58 +22.08   

FL14-D3 Limestone +2.18 +21.85   

FL14-D4 Limestone +2.63 +24.01   

a 1000lnα (CO2 - Calcite) = -2.4612 + 7.663 × 103 / (t + 273.15) - 2.988 × 106 / (t + 273.15)2 (Bottinga, 1968); 

b 1000lnα (Calcite - H2O) = 2.78 × 106 / (t + 273.15)2 - 3.39 (O’Neil et al., 1969) 

t = 180-210 °C (average 200 °C), based on temperature analysis of fluid inclusion in sphalerite-II (Li ZL unpublished data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Table 2 

In situ and bulk S isotopic compositions of sulfide minerals in the Fule deposit 

No. Locations Mineral δ34SCDT/‰ Method 

FL14-3-01 Core Pyrite-I +18.7 

In situ 

analysis 

FL14-3-02 Core Pyrite-I +19.3 

FL14-10-01 Core Pyrite-I +17.7 

FL14-10-02 Core Pyrite-I +17.8 

FL14-25-01 Core Pyrite-I +19.3 

FL14-25-02 Core Pyrite-I +19.4 

FL14-60-01 Core Pyrite-I +17.5 

FL14-60-02 Core Pyrite-I +18.0 

FL14-60-03 Rim Pyrite-I +13.8 

FL14-60-04 Rim Pyrite-I +13.2 

FL14-65-01 Rim Pyrite-II +10.4 

FL14-65-02 Rim Pyrite-II +10.3 

FL14-65-03 Rim Sphalerite-II +9.8 

FL14-65-04 Rim Sphalerite-II +10.1 

FL14-65-05 Core Sphalerite-II +16.5 

FL14-65-06 Core Sphalerite-II +16.9 

FL14-95-01 Rim Pyrite-I +13.4 

FL14-95-02 Rim Pyrite-I +12.8 

FL14-95-03 Rim Sphalerite-I +12.5 

FL14-95-04 Core Sphalerite-I +23.1 

FL14-13  Galena-II +11.86 

Bulk 

analysis 

FL14-24  Galena-II +10.49 

FL14-58  Galena-II +10.04 

FL14-75  Galena-II +10.66 

FLC-0-1  Sphalerite-II +15.02 

FLC-0-3  Sphalerite-II +15.10 

FLC-0-5  Sphalerite-II +14.21 

FLC-0-8  Sphalerite-I +14.16 

FLC-0-9  Sphalerite-I +15.16 

FLC-0-16  Sphalerite-I +16.43 

 

 

 

 

 

 



Table 3 

In situ Pb isotopic compositions of galena in the Fule deposit 

No. Mineral 206Pb/204Pb 1s 207Pb/204Pb 1s 208Pb/204Pb 1s 

FL14-17-01 Galena-I 18.588 0.003 15.721 0.003 38.678 0.01 

FL14-17-02 Galena-I 18.589 0.003 15.724 0.003 38.679 0.007 

FL14-17-03 Galena-I 18.585 0.002 15.718 0.002 38.664 0.007 

FL14-17-04 Galena-I 18.580 0.002 15.717 0.002 38.664 0.006 

FL14-17-05 Galena-I 18.577 0.002 15.713 0.002 38.659 0.008 

FL14-17-06 Galena-I 18.581 0.003 15.720 0.003 38.677 0.008 

FL14-17-07 Galena-I 18.585 0.002 15.723 0.002 38.682 0.005 

FL14-17-08 Galena-I 18.586 0.002 15.721 0.002 38.672 0.006 

FL14-25-01 Galena-I 18.582 0.002 15.718 0.002 38.664 0.005 

FL14-25-02 Galena-I 18.585 0.002 15.724 0.002 38.681 0.005 

FL14-25-03 Galena-I 18.580 0.002 15.719 0.002 38.668 0.005 

FL14-25-04 Galena-I 18.582 0.002 15.721 0.002 38.673 0.006 

FL14-25-05 Galena-I 18.580 0.002 15.720 0.002 38.682 0.006 

FL14-25-06 Galena-I 18.579 0.002 15.716 0.002 38.666 0.007 

FL14-25-07 Galena-I 18.588 0.003 15.728 0.003 38.695 0.009 

FL14-25-08 Galena-I 18.587 0.002 15.722 0.002 38.683 0.007 

FL14-40-01 Galena-I 18.581 0.003 15.715 0.003 38.611 0.008 

FL14-40-02 Galena-I 18.584 0.003 15.720 0.003 38.621 0.007 

FL14-40-03 Galena-I 18.589 0.002 15.723 0.002 38.637 0.007 

FL14-40-04 Galena-I 18.585 0.002 15.719 0.002 38.628 0.006 

FL14-40-05 Galena-I 18.573 0.002 15.711 0.002 38.592 0.006 

FL14-40-06 Galena-I 18.577 0.003 15.720 0.003 38.615 0.007 

FL14-40-07 Galena-I 18.589 0.002 15.721 0.002 38.632 0.006 

FL14-40-08 Galena-I 18.596 0.002 15.723 0.003 38.646 0.007 

FL14-59-01 Galena-I 18.598 0.002 15.723 0.003 38.648 0.007 

FL14-59-02 Galena-I 18.585 0.002 15.711 0.002 38.609 0.007 

FL14-59-03 Galena-I 18.589 0.002 15.717 0.002 38.621 0.006 

FL14-59-04 Galena-I 18.588 0.002 15.719 0.002 38.620 0.006 

FL14-59-05 Galena-I 18.575 0.002 15.718 0.002 38.609 0.005 

FL14-59-06 Galena-I 18.572 0.002 15.716 0.002 38.598 0.006 

FL14-59-07 Galena-I 18.578 0.003 15.713 0.003 38.597 0.008 

FL14-59-08 Galena-I 18.580 0.002 15.712 0.002 38.601 0.006 

FL14-75-01 Galena-II 18.606 0.003 15.723 0.003 38.667 0.008 

FL14-75-02 Galena-II 18.614 0.002 15.718 0.002 38.718 0.007 

FL14-75-03 Galena-II 18.615 0.002 15.717 0.002 38.713 0.006 

FL14-75-04 Galena-II 18.610 0.002 15.715 0.002 38.698 0.006 

FL14-75-05 Galena-II 18.615 0.002 15.722 0.002 38.715 0.006 

FL14-75-06 Galena-II 18.616 0.002 15.727 0.002 38.727 0.006 

FL14-75-07 Galena-II 18.609 0.003 15.724 0.003 38.714 0.007 

FL14-75-08 Galena-II 18.606 0.002 15.713 0.002 38.689 0.006 



FL14-95-01 Galena-II 18.606 0.002 15.712 0.002 38.688 0.006 

FL14-95-02 Galena-II 18.617 0.002 15.723 0.002 38.713 0.007 

FL14-95-03 Galena-II 18.614 0.002 15.725 0.002 38.714 0.005 

FL14-95-04 Galena-II 18.602 0.002 15.722 0.002 38.703 0.005 

FL14-95-05 Galena-II 18.598 0.002 15.721 0.002 38.706 0.006 

FL14-95-06 Galena-II 18.605 0.002 15.725 0.002 38.706 0.006 

FL14-95-07 Galena-II 18.601 0.002 15.716 0.002 38.682 0.007 

FL14-95-08 Galena-II 18.595 0.002 15.714 0.002 38.681 0.006 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 

A comparison between the Fule, Huize and typical MVT deposits 

Characteristics Huize (typical SYG-type) MVT Fule 

Grade 
Pb + Zn: 25-35 wt. %, 

Zn/(Zn + Pb): 0.9± 

Pb + Zn: av. <10 wt. %, 
Zn/(Zn + Pb): 0.8± 

Pb + Zn: av. 15-20 wt. %, 
Zn/(Zn + Pb): 0.9± 

Tonnage 
Pb + Zn metal reserves: 
single ore body ~1 Mt, total > 
7 Mt 

Pb + Zn metal reserves: 
single ore body < 1 Mt 

Pb + Zn metal reserves: 
single ore body ~0.5 Mt, 
total > 1 Mt 

Acreage 
The SYG province covers 
170, 000 km2 

Hundreds of square 
kilometers 

The SYG province covers 
170, 000 km2 

Host rocks 
Early Carboniferous 
coarse-grained dolostone 

Cambrian to Carboniferous 
carbonate rocks 

Middle Permian dolostone 

Depth of 
Mineralization 

>2000 m <1500 m <400 m 

Tectonic setting 
Western Yangtze Block, 
controlled by NE reverse 
fault-fold tectonic system 

Typically located within 
extensional zones inboard of 
orogenic belts 

Western Yangtze Block, 
controlled by NE reverse 
fault-fold tectonic system 

Relation with 
magmatic activity 

Genetically associated with 
late Permian Emeishan 
basalts 

Generally has no genetic 
association with magmatic 
activity 

Genetically associated with 
late Permian Emeishan 
basalts 

Ore-controlled 

factors 

Controlled by thrust 
fault-fold structure and 
lithology 

Mainly controlled by 
structure and lithology 

Controlled by fault-fold 
structure and lithology 

Age ~225 Ma 
From Proterozoic to 
Cretaceous 

250-200 Ma 

Ore texture and 
structure 

Mainly exhibiting massive 
structures, and fine-, 
medium- and coarse-grained 
textures 

Exhibiting disseminated, fine 
granular, branched, colloidal 
and massive structures and 
colloidal, skeleton 
coarse-crystalline textures 

Mainly exhibiting massive 
structures, and fine-, 
medium- and coarse-grained 
textures 

Mineral 
compositions 

Sphalerite, galena, pyrite and 
calcite 

Sphalerite, galena, pyrite, 
barite, fluorite, calcite and 
dolomite. 

Sphalerite, galena, pyrite, 
chalcopyrite, tetrahedrite, 
millerite, polydymite, 
pentlandite, calcite and 
dolomite 

Fluid inclusions 
<10 wt. % NaCl equiv.; 
Cl−-Na+-Ca2+-Mg2+-SO4

2−; 

150-300°C 

10-30wt. % NaCl equiv.; 
Cl−-Na+-Ca2+-K+-Mg2+; 

50-200°C 

4-10 wt. % NaCl equiv.; 
Cl−-Na+-Ca2+-Mg2+-SO4

2−; 

120-260°C 

Associated metals Ag, Cu, Ge, Ga, Cd and In Ag 
Ag, Cu, Ni, Cd, Ge, Ga and 
In 

O isotopes 

Generated from W/R 
interaction between 
mantle/metamorphic fluids 
and carbonate rocks 

Sourced from carbonate 
rocks 

Generated from W/R 
interaction between 
/metamorphic fluids and 
carbonate rocks 

S isotopes 
+11-+17‰, sourced from 
multiple S reservoirs 

+10-+25‰, sourced from 
evaporates within 
sedimentary strata 

+9-+23‰, sourced from 
multiple S reservoirs 

Pb isotopes 
Normal and uniform Pb 
isotopes, sourced from a 
well-mixed source 

Complicated Pb isotopic 
ratios and regional zonation 

Normal and uniform Pb 
isotopes, sourced from a 
well-mixed source 

Precipitation of 
sulfide 

Fluid mixing + sulfate 
reduction 

Reduced S, local sulfate 
reduction, or metal and 
reduced S-mixing 

Fluid mixing + sulfate 
reduction 

Tectonic setting 
Changed from compression 
to extension 

Extensional basin 
Changed from compression 
to extension 

References 
Zhou et al., 2001; Li et al., 
2007; Huang et al., 2010 
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