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Abstract:
Locally weighted partial least square (LW-PLS) model has been commonly used to develop adaptive soft sensors
and process monitoring for numerous industries which include pharmaceutical, petrochemical, semiconductor,
wastewater treatment system and biochemical. The advantages of LW-PLS model are its ability to deal with a
large number of input variables, collinearity among the variables and outliers. Nevertheless, since most indus-
trial processes are highly nonlinear, a traditional LW-PLS which is based on a linear model becomes incapable
of handling nonlinear processes. Hence, an improved LW-PLS model is required to enhance the adaptive soft
sensors in dealing with data nonlinearity. In this work, Kernel function which has nonlinear features was in-
corporated into LW-PLS model and this proposed model is named locally weighted kernel partial least square
(LW-KPLS). Comparisons between LW-PLS and LW-KPLS models in terms of predictive performance and their
computational loads were carried out by evaluating both models using data generated from a simulated plant.
From the results, it is apparent that in terms of predictive performance LW-KPLS is superior compared to LW-
PLS. However, it is found that computational load of LW-KPLS is higher than LW-PLS. After adapting ensemble
method with LW-KPLS, computational loads of both models were found to be comparable. These indicate that
LW-KPLS performs better than LW-PLS in nonlinear process applications. In addition, evaluation on localiza-
tion parameter in both LW-PLS and LW-KPLS is also carried out.
Keywords: adaptive soft sensors, algorithm, just-in-time, kernel function, locally weighted partial least square,
mathematical model
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1 Introduction

Soft sensors have been actively used in various industrial applications to estimate product quality or other im-
portant variables when real time measurements are not available or online measurements are associated with
long-time delay and/or difficult or expensive to be regularly carried out. According to the industrial question-
naire surveys on soft sensor applications in chemical process industries reported by [1] and [2], notice that soft
sensors have been favorably applied in major unit operations such as distillation columns and reaction systems
in numerous industrial process plants. These plants consist of semiconductor, steel-making, pharmaceutical,
refinery and petrochemical processing industries. The survey’s results are illustrated in Table 1 including the
industrial applications of physical, data driven and hybrid (grey-box) models based soft sensors. Physical mod-
els (Phys), also called first principle models, are developed by using physicochemical knowledge of the process.
Meanwhile, data-driven models include Multiple Linear Regression (MLR), Partial least square (PLS), Artificial
Neural Network (ANN), Just-in-time (JIT) and other linear regressions (O.L.) are formulated from recorded his-
torical operational data from the process plants. Grey-box models (Grey) are hybrid models between physical
and data-driven models.

Table 1: Survey on the industrial applications of soft sensor [1, 2].

Process Methods
Phys MLR PLS O.L. ANN JIT Grey Total

Wan Sieng Yeo is the corresponding author.
© 2017 Walter de Gruyter GmbH, Berlin/Boston.
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Distilla-
tion

20 256 41 6 0 5 3 331

Reaction 5 32 43 0 0 5 1 86
Polymeri-
sation

0 4 8 0 3 0 5 20

Others 0 1 1 0 0 0 0 2
Total 25 293 93 6 3 10 9 439

It can also be seen in Table 1 that majority of industrial soft sensors are based on data-driven models. Among
these data-driven models, MLR and PLS models are the most widely used ones. MLR models are popularly em-
ployed in industrial applications due to its simplicity in model development [2–5]. Nevertheless, these models
are over-fitted and inaccurate when dealing with high-dimensional data and unable to cope with collinearity
between process variables. Since process data from modern process plants exhibit high collinearity and involve
large numbers of variables, PLS models are more preferable choices for these cases. Researchers, through com-
parative studies, have also indicated that overall PLS models perform better than MLR and PCR models in
terms of predictive performances [2, 6].

In spite of the successful and wide application of soft sensors, the soft sensors involved some practical diffi-
culties. Traditional soft sensors or so called the offline soft sensors such as PLS, MLR, and ANN were developed
using plant historical data in offline modes before their implementations. The predictive performance of these
kind of soft sensor will gradually deteriorate after a period of time due to changes in process characteristics
and the state of plants, such as catalyst deactivation and sensor and process drifts due to fouling, equipment
ageing, clogging and wear, and changes of raw materials [2, 7, 8]. In a survey that was carried out by industrial
engineers, most of the engineers indicated that the major problem with soft sensors is the deterioration of the
accuracy caused by changes in process conditions [1, 2].

Hence, from practical point of view, to deal with process changes and keep its good performance, a soft
sensor should be updated routinely since the process characteristics change. Therefore, the development of
adaptive soft sensors becomes essential. Algorithms used to develop adaptive soft sensors have been introduced
and they can be found in the literature. Some of the algorithms have also been successfully executed in industrial
applications such as Correlation-based JIT (CoJIT) and locally weighted kernel partial least square (LW-PLS)
based adaptive soft sensor models [2, 6, 9, 10]. Nevertheless, CoJIT based adaptive soft sensors cannot deal
with outliers and it is difficult to obtain its tuning parameter by trial-and-error [2, 7]. In comparison with CoJIT,
LW-PLS can be suitable alternative approach as it can cope with outliers [6, 11] as well as collinearity and
nonlinearity among process variables [2]. On the other hand, linear PLS regression in LW-PLS may not function
well when processes behave highly nonlinear characteristics [12–14]. Thus, an improved algorithm for LW-PLS
based adaptive soft sensors which is capable of dealing with highly nonlinear data is required.

To address this issue, several nonlinear versions of PLS such as quadratic PLS (QPLS), spline PLS (SPLS),
neural network PLS (NNPLS) and kernel PLS (KPLS) models have been proposed. QPLS, SPLS and NNPLS
which are internal nonlinear PLS (NPLS) models make use of nonlinear functions (e. g. simple polynomial
transformation of observed data) to define relationship between latent variables (not directly observed vari-
ables) [15–17]. However, predefined form of quadratic function in QPLS algorithms has restricted its flexibility
to develop nonlinear model [13, 18–20]. Although SPLS and NNPLS algorithms provide flexibility to capture
nonlinearity relationships for variables, these methods may lead to local minima or obtain over-fitted model
[18, 19, 21]. Different from the abovementioned internal NPLS models, KPLS model which was first introduced
by [22] maps observed variables into a high-dimensional feature space using kernel function before linear PLS
models are built in this new feature space. Compared to other NPLS models, Kernel-based techniques include
KPLS model does not involve nonlinear optimization strategy [14] and KPLS model only needs linear algebra
which is simple as a linear PLS regression [3, 23]. Moreover, different types of Kernels like polynomial Kernel,
Gaussian Kernel, Sigmoid Kernel, exponential Kernel and Fourier Kernel functions [18] allow KPLS to han-
dle different forms of nonlinearities [24]. Due to these advantages, KPLS had been used to capture nonlinear
information from chemical processes by [14, 25, 26], and [23] for process monitoring as well as [27] for fault
detection. In addition [3, 28], and [29] adopted KPLS to develop soft sensors for nonlinear process while [12]
used modified KPLS for general modelling. On the other hand, Kernel functions was incorporated into Locally
Weighted based algorithm to handle nonlinear problem by [30] for soft sensing and [31] for process monitoring.

It is to be noted that researchers have not paid enough attention to implement KPLS for soft sensor devel-
opment compared to other applications such as process monitoring and fault detection. Meanwhile,

LW-PLS is unable to deal with highly nonlinear process data and an improved approach for LW-KPLS algo-
rithm has not been found yet. To address these reach gaps, this paper proposed LW-KPLS to develop adaptive
soft sensors in order to capture highly nonlinear relationships in process variables. Subsequently, better pro-
cess sensing can be conducted and this means better process control and optimisation to assist process plants in
reaching their operational excellence which conclusively leads to more sustainable and profitable operations.
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2 Algorithms

In this section, formulation of LW-PLS model used to develop adaptive soft sensors is briefly reviewed and
followed by description of KPLS model. Next, a brief overview on distance based similarity measure for LW-PLS
and LW-KPLS algorithm is presented. Then, parameter optimization and measurement of quality prediction
are also presented.

2.1 Locally weighted partial least square

Since LW regression reveals problematic when the number of input variables are more than the neighbours
samples [32], LW-PLS has been found to be a suitable alternative when dealing with higher dimensionality of
variables (a large number of input variables) and outliers [6, 11] as well as collinearity among the variables
[2]. Up to date, LW-PLS based soft sensors have been applied to various industries such as biochemical, semi-
conductor, petrochemical, and pharmaceutical processing. This indicates that LW-PLS has become a popular
algorithm in developing soft sensors [2, 4–6, 32, 33].

LW-PLS is a just-in-time based algorithm where a local PLS model is constructed based on similarity be-
tween a query (new data) and sample dataset [2, 34]. The formulation of LW-PLS algorithm which is taken
from [6] is presented here. Input and output variables, 𝑥 and 𝑦 for n number of sample can be denoted as eqs
(1) and (2) where 𝑀 and 𝐿 are numbers of 𝑥 and 𝑦, respectively. These 𝑥 and 𝑦 are stored in a sample database.
Similarity index, 𝜔u� between a query, 𝑋u� and the nth historical data, 𝑋u� are calculated to construct a local PLS
model when an output prediction, 〠𝑦u� is required for 𝑋u�. A well explanation on this LW-PLS model can be found
in [5, 33] and [35].

𝑥u� = [𝑥u�1, 𝑥u�2, ..., 𝑥u�u�]u� (1)

𝑦u� = [𝑦u�1, 𝑦u�2, ..., 𝑦u�u�]u� (2)

The predicted output,
∧
𝑦u� is calculated through:

1. Determine the number of latent variables 𝐾 and set 𝑘 = 1.

2. Calculate a similarity matrix Ω using eq. (3).

3. Calculate 𝑋u�, 𝑌u�, and 𝑋u�,u� using eqs (4)–(8) where 1u� is a vector of ones.

4. Set
.
̂𝑦u� = [

−
𝑦1,

−
𝑦2, ...,

−
𝑦u�]u�.

5. Derive the kth latent variable of 𝑋u� using eq. (9) where 𝑤u� is the eigenvector of 𝑋u�
u� Ω𝑌u�𝑌u�

u� Ω𝑋u�, which corre-
sponds to the maximum eigenvalue, and it is derived as eq. (10).

6. Derive the kth loading vector of 𝑋u� and the kth regression coefficient vector using eqs (11) and (12) respec-
tively.

7. Derive the kth latent variable of 𝑋u� using eq. (13).

8. Replace
∧
𝑦u� with

∧
𝑦u� +𝑡u�,u�𝑞u�.

9. If k = K, then finish prediction. Otherwise, set as eqs (14)–(16).

10. Set k = k + 1 and go to Step 5.

Ω = 𝑑𝑖𝑔 {𝜔1, 𝜔2, ..., 𝜔u�} (3)

𝑋u� = 𝑋 − 1u� [
−
𝑋1,

−
𝑋2, ...,

−
𝑋u�] (4)

𝑌u� = 𝑌 − 1u� [
−
𝑌1,

−
𝑌2, ...,

−
𝑌u�] (5)
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𝑋u�,u� = 𝑋u� − 1u�[
−
𝑋1,

−
𝑋2, ...,

−
𝑋u�]

u�
(6)

𝑋u� =

u�
∑
u�=1

𝜔u�𝑋u�u�

u�
∑
u�=1

𝜔u�

(7)

𝑌u� =

u�
∑
u�=1

𝜔u�𝑌u�u�

u�
∑
u�=1

𝜔u�

(8)

𝑡u� = 𝑋u�𝑤u� (9)

𝑤u� =
𝑋u�

u� Ω𝑌u�

∥𝑋u�
u� Ω𝑌u�∥

(10)

𝑝u� =
𝑋u�

u� Ω𝑡u�

𝑡u�
u� Ω𝑡u�

(11)

𝑞u� =
𝑌u�

u� Ω𝑡u�

𝑡u�
u� Ω𝑡u�

(12)

𝑡u�,u� = 𝑋u�
u�,u�𝑤u� (13)

𝑋u�+1 = 𝑋u� − 𝑡u�𝑝u�
u� (14)

𝑌u�+1 = 𝑌u� − 𝑡u�𝑞u�
u� (15)

𝑋u�,u�+1 = 𝑋u�,u� − 𝑡u�,u�𝑝u� (16)

2.2 Kernel partial least square

Kernel methods have been actively applied to solve nonlinear problem due to better performance in most real-
world applications [26]. Hence, Kernel functions were incorporated into PLS model to enhance the predictive
performance of PLS in dealing with nonlinear data. KPLS first maps original observed data into a high dimen-
sional feature space and then linear PLS models are constructed in the feature space. Initially, it is assumed that
there is a nonlinear transformation of independent variables, 𝑥u�, 𝑖 = 1, 2, …, 𝑛 into feature space 𝐹 and it can be

represented using eq. (17) where it is also assumed that
u�
∑
u�=1

𝜑(𝑥u�) = 0. 𝜑 (𝑥u�) is a nonlinear mapping function

that projects the input vectors from the original space to 𝐹. On the other hand, the dimensionality of the feature
space F is arbitrarily large, and can be infinite. The order of matrix 𝜑 (𝑥) is n× S where i-th row is the vector 𝜑 (𝑥u�)
in the S-dimensional feature space F. By means of the introduction of the kernel trick, 𝜑(𝑥u�)u�𝜑 (𝑥u�) = 𝐾(𝑥u�, 𝑥u�),
one can prevent both performing explicit nonlinear mapping and computing dot products in the feature space.
Steps for KPLS model from [12] are shown as follows:

Let K is the number of latent variables (i = 1, 2, …, K) and the below steps are repeated.
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1. Initialise, set 𝐾u� = K, 𝑌u� = 𝑌, set 𝑢u� equal to any column of 𝑌u�.

2. Compute the score vector using eq. (18).

3. Compute the loading vector of 𝑌u� using eq. (19).

4. Compute the score vector of 𝑌u� using eq. (20).

5. If 𝑢u� converges, then go to Step 6, else return to Step 2.

6. Calculate the residual of 𝜑 (𝑋) and 𝑌 using eqs (21) and (22).

7. Then, i = i + 1, and go to Step 2.

𝜙 ∶ 𝑥u� ∈ 𝑅u� → 𝜑 (𝑥u�) ∈ 𝐹 (17)

𝜙 (𝑋) ∶ 𝑡u� =
𝐾𝑢u�

√𝑢u�
u�𝐾u�𝑢u�

(18)

𝑞u� =
𝑌u�𝑡u�

∥𝑡u�
u�𝑡u�∥

(19)

𝑢u� =
𝑌u�𝑞u�
𝑞u�

u�𝑞u�
(20)

𝐾u�+1 = (𝐼 − 𝑡u�𝑡u�
u�/𝑡u�

u�𝑡u�)𝐾u�(𝐼 − 𝑡u�𝑡u�
u�/𝑡u�

u�𝑡u�) (21)

𝑌u�+1 = (𝐼 − 𝑡u�𝑡u�
u�/𝑡u�

u�𝑡u�)𝑌u� (22)

The regression coefficient, 𝑏 in KPLS is determined from eq. (23) after all the Klatent variables are extracted. In
eq. (23), 𝑇 = [𝑡1, 𝑡2, ..., 𝑡u�] and 𝑈 = [𝑢1, 𝑢2, ..., 𝑢u�] are the score matrix. Hence, when the number of test data is
𝑛u�, the prediction on training data and test data can be made as eqs (24) and (25) respectively: In both of these
equations, 𝜑u�u�u�u� is the matrix of the mapped test data and 𝐾u�u�u�u� is the 𝑛u� × 𝑛 test kernel matrix whose elements
are 𝐾u�u�u�u�(𝑖, 𝑗) = 𝐾(𝑥u�, 𝑥u�), where 𝑥u� is the i-th test vector and 𝑥u� is the j-th training vector.

𝑏 = 𝜙u�𝑈(𝑇u�𝐾𝑈)−1𝑇u�𝑌 (23)

∧
𝑌

u�u�u�u�u�
= 𝜙𝑏 = 𝐾𝑈(𝑇u�𝐾𝑈)−1𝑇𝑌 (24)

∧
𝑌

u�u�u�u�
= 𝜙u�u�u�u�𝑏 = 𝐾u�u�u�u�𝑈(𝑇u�𝐾𝑈)−1𝑇u�𝑌 (25)

Mean centering of the data should be done before performing KPLS [36]. The kernel matrices Kand 𝐾u�u�u�u� are
substituted with �̃� and �̃�u�u�u�u�. They can be represented by eqs (26) and (27) where 1 is an n-dimensional identity
matrix, 1u� and 1u�u�

, are vectors whose elements are all ones, with length 𝑛 and 𝑛u�, respectively.

�̃� = (𝐼 − 1
𝑛
1u�1

u�
u�) 𝐾 (𝐼 − 1

𝑛
1u�1

u�
u�) (26)

�̃�u�u�u�u� = (𝐾u�u�u�u� − 1
𝑛
1u�u�

1u�
u�𝐾)(𝐼 − 1

𝑛
1u�1

u�
u�) (27)
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2.3 Similarity measure

Prediction quality of LW-PLS is significantly affected by definition of similarity [6]. Thus, the similarity has to
be well designated. In this study, Euclidean distance, which is a widely used similarity measure is employed
since it is easier to implement [3, 7, 37, 38]. The Euclidean distance based similarity index, 𝜔u� is calculated based
on distance between 𝑥u� and 𝑥u�. The similarity index from [39] is shown in the eqs (28) and (29) where 𝜙 is a
localization parameter, 𝜎u� is standard deviation of 𝑑u� (𝑛 = 1, 2, …, 𝑁). The similarity index reduces dramatically
when 𝜙 is a small value and slowly when 𝜙 is a big value. In order to tackle nonlinear relationship between
input and output variables, small value of 𝜙 is required. If the value of 𝜙 is too small, sensitivity of LW-PLS
towards noise is then increased [4]. On the other hand, predictive performance of LW-PLS is same as PLS when
𝜙 equals to infinite [32, 34]. Hence, proper setting of 𝜙 is needed to ensure the prediction accuracy of LW-PLS
is superior to PLS.

𝜔u� = exp(−
𝑑u�

𝜙𝜎u�
) (28)

𝑑u� = √(𝑥u� − 𝑥u�)u� (𝑥u� − 𝑥u�) (29)

2.4 Locally weighted kernel partial least square

Although LW-PLS can achieve good performance in industrial applications, it still may not fulfill the prediction
accuracy requirement for highly nonlinear processes. In this study, LW-KPLS is introduced to handle this issue.
First, original variables are mapped into high dimensional space using Kernel function and then locally weight
models are built using the same procedure as LW-PLS. Similar to the procedure of LW-PLS, before constructing
locally weighted model, this new high dimension feature variable vectors, 𝜑 (𝑥) should also be weighted-mean
centered. It is assumed that simplicity is fulfilled and then LW-KPLS can be formulated as below.

Since original variables are mapped into a kernel-defined feature space, correlations between mapped input
variables and predicted output variables are required to be identified. This can be done by performing dual
KPLS discrimination to measure the projection direction in the kernel-defined feature space that contains the
maximum amount of variance in the data. This discrimination is done by obtaining a dual representation of a
scaled version of projection direction, 𝐵 that moved a Kernel matrix, 𝑉. According to [40], it can be calculated
by eq. (25). The detail explanation on eq. (30) and matlab coding for eq. (30) can be found in [40].

The predicted output,
∧
𝑦u� is calculated through the following procedure:

1. Determine Kernel matrices for input variables, 𝑉 and query, 𝑉u� where they are mapped into higher dimen-
sion feature space using selected Kernel function.

2. Conduct mean centering on the 𝑉 and 𝑉u� using eqs (26) and (27).

3. Perform dual kernel partial least square discrimination to obtain B using eq. (30).

4. Compute re-scaled query, and input variable matrices, 𝑉u�, and V using eqs (31) and (32).

5. Determine the number of latent variables 𝐾 and set 𝑘 = 1.

6. Calculate a similarity matrix Ω using eqs (3), (28) and (29).

7. Calculate 𝑋u�, 𝑌u�, and 𝑋u�,u� using eqs (4)–(8).

8. Set ̂𝑦u� = [
−
𝑦1,

−
𝑦2, ...,

−
𝑦u�]u�.

9. Derive the kth latent variable of 𝑋u� using eqs (9) and (10).

10. Derive the kth loading vector of 𝑋u� and the kth regression coefficient vector using eqs (11) and (12).

11. Derive the kth latent variable of 𝑋u� using eq. (13).

12. Replace
∧
𝑦u� with

∧
𝑦u� +𝑡u�,u�𝑞u� where 𝑡u�,u� is the kth latent variable of 𝑋u�.

13. If 𝑘 = K, then finish prediction. Otherwise, set eqs (14)–(16).
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14. Set 𝑘 = 𝑘 + 1 and go to Step 9.

𝐵 = 𝑌𝑌′ 𝑉𝛽with the normalisation,𝛽 =
𝛽

∥𝛽∥
(30)

𝑋u� = 𝑉u�𝐵 (31)

𝑋 = 𝑉𝐵 (32)

2.5 Parameter optimization and measurement of quality prediction

Optimized parameter is required to be tuned in order to find a well performing model. From above Subsections
Section 2.1 and Section 2.4, it can be noticed that both LW-PLS and LW-KPLS involve some similar optimized
parameters which are localization parameter, 𝜙, number of latent variables, 𝐾, and number of sample, 𝑁. Be-
sides, LW-KPLS needs another optimized parameter which is Kernel parameter.

In this study, 𝐾, 𝑁, and 𝜙 are fixed to proper values while Kernel parameter is set by trial and error exper-
iments. Since 𝑁 is not a sensitive parameter for both algorithms, it is specified as a same proper value in case
study. Normally, the first few latent variables which are so called principal components of PLS based algorithms
can sufficiently describe the main feature of data [30]. Furthermore, same value of K is applied in case study
in order to compare both algorithms fairly. Meanwhile, considering different values of 𝜙 in both algorithms do
not change the results as 𝜙 is only useful when choosing related samples for query sample in both algorithms
[30]. Hence, 𝜙 is also fixed as same value for both algorithms in case study. On the other hand, Kernel parameter
which is a very sensitive parameter for both algorithms to be tuned in order to obtain smallest error of dataset
which include training and test set. Table 2 summarises all the parameters used in both algorithms.

Table 2: Parameters used in the algorithms.

Algorithm Used parameters

LW-PLS u�, K, N
LW-KPLS u�, K, N, Kernel parameter

In order to measure and compare prediction accuracy of the models, an over-fitting model, which is called
as “the error of the test set is not the smallest” is used. There is a possible network where the error of the training
set is smallest, however the error of test set is large [41]. This form of network is unsteady when it is utilized to
predict an unknown samples. To prevent these situations, a new evaluation criterion of network, the error of
approximation, 𝐸u� is used. The description of this criterion that is taken from [42] is given in eqs (33) and (34)
where 𝑅𝑀𝑆𝐸1 and 𝑅𝑀𝑆𝐸2 are root mean square errors of the training and the test sets. 𝑅𝑀𝑆𝐸1 and 𝑅𝑀𝑆𝐸2 are
used to evaluate the ability of a model to fit data and predictive power [28]. Equation of root mean square error
(RMSE) is shown in eq. (34) where 𝑁, 𝑁1 and 𝑁2 are the total number of samples, the number of training and
test sets, respectively. Meanwhile, 𝑦u� and

∧
𝑦u� are the real and estimated values of output. According to [41] and

[42], smaller 𝐸u� indicates that more models are close to the real nature of the dataset. Hence, the effects of both
training and test sets are examined using this evaluation criterion [41].

𝐸u� = (
𝑁1
𝑁

) 𝑅𝑀𝑆𝐸1 + (
𝑁2
𝑁

) 𝑅𝑀𝑆𝐸2 + ∣𝑅𝑀𝑆𝐸1 − 𝑅𝑀𝑆𝐸2∣ (33)

𝑅𝑀𝑆𝐸 =

√
√√√
⎷

u�
∑
u�=1

(𝑦u� −
∧
𝑦u�)

2

𝑁
(34)
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3 Methodology

A case study is used to demonstrate the performance of LW-KPLS and the obtained results are compared with
LW-PLS. In this section, splitting data and setting of parameters that are utilised for both algorithms in this
case study are presented. Then, the details of this case study is briefed and followed by explanation on the
configuration of computer.

3.1 Splitting data and parameters setting

A total of 10,000 dataset is split into training and test sets. Hence, for the case study, 75 % of the dataset are
selected as training data and another 25 % of dataset are used as test data. Hence, in the case study, N, 𝑁1 and
𝑁2 are set as 10,000, 7500 and 2500 respectively. Meanwhile, K and 𝜙 for both algorithms are adjusted as 1 and
0.001 respectively in the case study. Table 3 illustrates the values of these used parameters for both algorithms.
Besides, polynomial kernel function 𝑘(𝑋u�, 𝑋u�) = −(𝑏𝑋′

u�𝑋u� + 𝑏)u� where 𝑏 is Kernel parameter is chosen to be
incorporated into LW-KPLS in the case study.

Table 3: Values of used parameters for both algorithms.

Used parameters Values

N 10,000
N1 7,500
N2 2,500
K 1
u� 0.1

3.2 Case study

A case study of nonlinear processes are used to evaluate predictive performance of LW-KPLS and LW-PLS
algorithms. This case study is adopted from [43] which is simulated dataset from a biological network that arises
in eukaryotic cell cycle regulation. Process description of this case study is presented in the below subsections.

3.2.1 Case study: Eukaryotic cell cycle regulation

This process is a biochemical reaction that involves cyclin-dependent kinase and their associated proteins,
which are included in cell cycle to control frog egg development. There are three key species in this biochemical
reaction which are free cyclin, the M-phase promoting factor (MPF) and other regulatory enzymes. MPF is het-
erodimer which is formed by the proteins Cdc2 and cyclin. It controls the transition from interphase to mitosis
of the cell cycle. In this study, it is assumed that this Cdc2-cyclin regulatory system operates as a spontaneous
oscillator in early embryos. The detailed description of this process is given in [43].

In this study, the predictive output variables used to estimate product quality is a dimensionless concentra-
tion of total cyclin which is denoted as v. This output variable is measured using a dimensionless concentration
of active MPF, u. Table 4 shows input and output variables for the case study.

Table 4: Input and output variables for the case study.

Output variables Variable description
v Dimensionless concentration of total cyclin
Input variables Variable description
u Dimensionless concentration of active MPF

The configuration of the computer is stated as below:
Operating System: Window 10 (64 bit); CPU: 2.20 GHz Intel core M3-6Y30 (same performance as i-5 6200U)

CPU processor, 4.0 GB of RAM, 128GB SSD storage. The version of Matlab is 2015a.
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4 Results and discussion

In this section, application results of LW-PLS and LW-KPLS to the case study are reported. For this case study,
predictive performance of both algorithms are compared and discussed. Meanwhile, evaluation on localization
parameter that is used in LW-PLS and LW-KPLS models is also carried out.

4.1 Case study

In this case study, the prediction results of LW-PLS and LW-KPLS for the training and test data are summarised
in Table 5. Notice that LW-PLS obtained same RMSE for both training and test data where 𝑅𝑀𝑆𝐸1 and 𝑅𝑀𝑆𝐸2
are 0.0713 with 𝐸u�, central processing unit (CPU) running time for both training and test data, CPU1 and CPU2
are 0.074, 8 sec and 3 sec respectively. LW-KPLS shows better predictive ability for both training and test data
where 𝑅𝑀𝑆𝐸1, 𝑅𝑀𝑆𝐸2 and 𝐸u� are 0.0692, 0.0697, and 0.0698 respectively. However, its CPU1 and CPU2 are
513 sec and 142 sec respectively. With the help of Kernel function, the 𝑅𝑀𝑆𝐸1, 𝑅𝑀𝑆𝐸2 and 𝐸u� of LW-KPLS are
improved by about 2.94 %, 2.31 % and 5.67 % respectively, in comparison with LW-PLS. These results show
clearly that LW-KPLS performs better in this nonlinear process. Figure 1 and Figure 2 present prediction results
for training and test data of case study using LW-PLS and LW-KPLS. However, computational load for LW-KPLS
is much higher than LW-PLS. The strategic to overcome this problem is illustrated in Subsection Section 4.2.

Figure 1: Prediction results for training data of the case study using LW-PLS and LW-KPLS.
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Figure 2: Prediction results for testing data of the case study using LW-PLS and LW-KPLS.

Table 5: Summary of prediction results of LW-PLS based and LW-KPLS based soft sensors for the case study.

Models LW-PLS LW-KPLS %

u�u�u�u�1 0.0713 0.0692 (b=51) 2.94
u�u�u�u�2 0.0713 0.0697 (b=54) 2.31
u�u� 0.0740 0.0698 5.67
CPU1 (sec) 8 513 >100
CPU2 (sec) 3 142 >100

4.2 Computational loads

Ensemble method is applied to LW-KPLS in order to reduce its computational load. Both training and test data
are separated into several same dimension data sets and these sets are run using LW-KPLS simultaneously.
Then, the obtained CPU times and prediction performance of LW-KPLS in different number of sets for the case
study is shown in Table 6. From Table 6, notice that CPU1 is higher than CPU2 as 𝑁1 is much higher than 𝑁2
(Please refer to Table 3). It can be seen from Table 6 that CPU1 is reduced from 513 sec to 48 sec while CPU2 is
decreased from 142 sec to 10 sec after divided the dataset into 4 sets. Only 4 sets of results are presented since no
significant improvement for the further division of dataset. Meanwhile, 𝑅𝑀𝑆𝐸1, 𝑅𝑀𝑆𝐸2, and 𝐸u� stated in Table
6 are plotted in Figure 3. Figure 3 shows the error lines for training and test data of the case study obtained by
LW-PLS and different number of sets for LW-KPLS. As can be seen in Figure 3, 𝑅𝑀𝑆𝐸2 and 𝐸u� for LW-KPLS are
increasing while 𝑅𝑀𝑆𝐸1 is decreasing when the number of set is getting higher. Compared to LW-PLS, 𝑅𝑀𝑆𝐸1,
𝑅𝑀𝑆𝐸2 and 𝐸u� for LW-KPLS are still lower. From the above results, LW-KPLS performs better than LW-PLS
in term of prediction performance for nonlinear processes. Although LW-KPLS using ensemble method that
divided data into 4 sets of data has slightly higher computational loads than LW-PLS, it is still comparable.

10
Brought to you by | Curtin University Library

Authenticated
Download Date | 4/9/18 3:31 AM

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Yeo et al.

Figure 3: The error lines for training and test data of the case study obtained by LW-PLS and different sets of LW-KPLS.

Table 6: CPU time and prediction performance of LW-KPLS in different sets for the case study.

Number of set 1 2 3 4

u�u�u�u�1 0.0692 (b=51) 0.0690 (b=53) 0.0689 (b=49) 0.0690 (b=44)
u�u�u�u�2 0.0697 (b=54) 0.0697 (b=53) 0.0703 (b=59) 0.0706 (b=51)
u�u� 0.0698 0.0699 0.0706 0.0710
CPU1 (sec) 513 135 64 48
CPU2 (sec) 142 34 19 10

4.3 Evaluation on localization parameter

The localization parameter, 𝜙 in eq. (23) is a tuning parameter that is obtained to minimise the RMSE of data set
in the model development [35]. It is used to determine similarity index, 𝜔u� for LW-PLS and LW-KPLS models.
𝜔u� reduces in an exponential manner and closes to zero when the distance from query increases. Moreover, 𝜔u�
reduces steeply when 𝜙 becomes small while 𝜔u� decreases gradually when 𝜙 is large.

On the other hand, accordingly to [4], 𝜙 is also used to identify the nonlinearity of the soft sensors; the soft
sensor can deal with process nonlinearity when 𝜙 is small and the soft sensor becomes overfitting when 𝜙 is
too small. As mentioned earlier in Subsection Section 3.1, this parameter which is to be used in this work is set
as 0.1.

In this subsection, different values of 𝜙, which are 0.0005, 0.001, 0.1, 0.15 and 0.2 are examined. These 𝜙 values
are chosen to be observed since nonlinear process requires small value of 𝜙 [5]. Both LW-PLS and LW-KPLS are
applied to the case study using these different values of 𝜙. Then, the 𝐸u� values for LW-PLS and LW-KPLS are
determined and the results are illustrated in Table 7.

Table 7: u�u� values for LW-PLS and LW-KPLS in different sets for the case study using different values of u�.

LW-PLS LW-KPLS
u� Number of set

1 2 3 4
0.0005 0.1653 0.1613 0.1064 0.1474 0.1291
0.001 0.1368 0.0775 0.0956 0.1066 0.1356
0.1 0.0740 0.0698 0.0699 0.0706 0.0710
0.15 0.0736 0.0707 0.0708 0.0712 0.0714
0.2 0.0751 0.0720 0.0719 0.0720 0.0722

As shown in Table 7, all of the 𝐸u� values for LW-KPLS in different sets are lower than LW-PLS. This indicates
that LW-KPLS with the 𝜙 values of 0.005, 0.001. 0.1, 0.15 and 0.2 performs better than LW-PLS in dealing with
nonlinear processes. In comparison of different values of 𝜙, it is found that LW-KPLS with 𝜙 value of 0.1 ob-
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tained the lowest values of 𝐸u� in each set. Hence, based on the fine-tuning of 𝜙, it was found that the optimum
value is 0.1.

5 Conclusions

In this research, a novel algorithm, namely LW-KPLS which utilise Euclidean distance measure was used to
develop adaptive soft sensors in order to solve nonlinear problem in chemical process plants. By using a case
study of nonlinear processes, estimation accuracy of LW-PLS and LW-KPLS were demonstrated. Results demon-
strated that the prediction performance of the proposed approach, LW-KPLS is superior to LW-PLS when deal-
ing with nonlinear processes. However, this approach assumes that the process data are complete. Hence, future
work can focus on addressing the missing data problem.
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