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and the Antiapoptotic Protein Bcl-2
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Abstract

Significance: B cell lymphoma-2 (Bcl-2) was discovered over three decades ago and is the prototype anti-
apoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. First
identified as a consequence of chromosomal translocation (t 14:18) in human lymphoma, subsequent studies
have revealed mutations and/or gene copy number alterations as well as posttranslational modifications of Bcl-2
in a variety of human cancers. The canonical function of Bcl-2 is linked to its ability to inhibit mitochondrial
membrane permeabilization, thereby regulating apoptosome assembly and activation by blocking the cytosolic
translocation of death amplification factors. Of note, the identification of specific domains within the Bcl-2
family of proteins (Bcl-2 homology domains; BH domains) has not only provided a mechanistic insight into the
various interactions between the member proteins but has also been the impetus behind the design and de-
velopment of small molecule inhibitors and BH3 mimetics for clinical use.
Recent Advances: Aside from its role in maintaining mitochondrial integrity, recent evidence provides testi-
mony to a novel facet in the biology of Bcl-2 that involves an intricate cross talk with cellular redox state. Bcl-2
overexpression modulates mitochondrial redox metabolism to create a ‘‘pro-oxidant’’ milieu, conducive for cell
survival. However, under states of oxidative stress, overexpression of Bcl-2 functions as a redox sink to prevent
excessive buildup of reactive oxygen species, thereby inhibiting execution signals. Emerging evidence indicates
various redox-dependent transcriptional changes and posttranslational modifications with different functional
outcomes.
Critical Issues: Understanding the complex interplay between Bcl-2 and the cellular redox milieu from the
standpoint of cell fate signaling remains vital for a better understanding of pathological states associated with
altered redox metabolism and/or aberrant Bcl-2 expression.
Future Directions: Based on its canonical functions, Bcl-2 has emerged as a potential druggable target. Small
molecule inhibitors of Bcl-2 and/or other family members with similar function, as well as BH3 mimetics, are
showing promise in the clinic. The emerging evidence for the noncanonical activity linked to cellular redox
metabolism provides a novel avenue for the design and development of diagnostic and therapeutic strategies
against cancers refractory to conventional chemotherapy by the overexpression of this prosurvival protein.
Antioxid. Redox Signal. 00, 000–000.
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Introduction

B cell lymphoma 2: the founding member
of a functionally disparate family

Bcell lymphoma 2 (Bcl-2) is the prototypical Bcl-family
protein and a major regulator of cell death. Bcl-2 was

discovered following the cloning of leukemic cells bearing
the t(14;18) (q32;q21) chromosome translocation (175). Sub-
sequent chromosome mapping identified BCL2 as a putative
gene involved in the pathogenesis of B cell and follicular
lymphomas (174). McDonnell et al. (115) demonstrated that
this interchromosomal translocation resulted in the over-
expression of Bcl-2 and extended the life span of B cells.

Bcl-2 is primarily localized in the mitochondria (67),
however, its localization has also be extended to the nucleus
and endoplasmic reticulum (ER). Functionally, Bcl-2 is
characterized as an antiapoptotic protein due to its role in
inhibiting proapoptotic proteins; these include the Bcl-2
family members Bak and Bax (28). On apoptotic stimula-
tion, death receptor- or drug-induced, a cascade of caspase
activation results in the induction of mitochondrial outer
membrane permeabilization (MOMP). In the case of death
receptor signaling, direct executioner caspase activation is
induced in certain cell types where the death initiating sig-
naling complex is efficiently formed (Type 1 or extrinsic
pathway); however, in other cell types, the initiator caspase
activation is relatively weak to autonomously engage the
executioner caspase(s), and therefore, the signal is routed
through the mitochondria for efficient death execution (Type
2 or intrinsic signaling). The latter is also the preferred mode
of execution triggered on exposure of cells to DNA damaging
agents, c-irradiation, as well as other forms of chemotherapy.
Importantly, the recruitment of mitochondria is a function of
the proapoptotic members of the Bcl-2 family that, on apo-
ptotic stimulation, translocate to the mitochondria forming
oligomeric complexes (40) that compromise the permeability
of the outer membrane (15), thereby facilitating the egress of
death amplification factors such as cytochrome c (83), Smac/

direct IAP binding protein with low pI (DIABLO) (1), and
apoptosis inducing factor (75). The antiapoptotic members of
the Bcl-2 family, in particular Bcl-2 and Bcl-xL, prevent
MOMP by competing with and inhibiting the oligomerization
of the proapoptotic members, such as Bax and Bak (117, 135,
190). As such, the apoptosis inhibitory function of Bcl-2 is
strongly associated with the Type 2 death signaling pathway
(Fig. 1).

Bcl-2 expression has also been shown to regulate autop-
hagy, a process of self- consumption induced on starvation or
other stress states. Autophagy has emerged as a central player
in the removal of damaged organelles as well as a source of
nutrients for cells under starvation, hence the association with
a prosurvival phenotype. Autophagy has also been linked to
cell death signaling in response to certain noxious stimuli.
Interestingly, being a survival promoting protein, Bcl-2 has
also been shown to have a critical role in regulating autop-
hagy (97). Pattingre et al. demonstrated the antiautophagic
role of Bcl-2, promoting cell survival, which was depen-
dent on its interaction with Beclin1 (139). This interaction
utilized the BH1 and BH2 domains of Bcl-2. Beclin1 ex-
pression is low to absent in many cancer cells, leading to loss
of autophagy and promotion of cell survival. Cancer cells
expressing Beclin1 exhibited higher levels of LC3-induced
autophagy, which was inhibited upon overexpression of Bcl-
2. The expression of Bcl-2 mutants (G145A/W188A) re-
sulted in the loss of Bcl-2:Beclin1 interaction, as well as the
initiation of cellular autophagy. Interestingly, this was only
observed when Bcl-2 was localized to the ER, not the mito-
chondria (139). The interaction was also found to be depen-
dent on JNK1-mediated phosphorylation of Thr69, Ser70,
and Ser87. This starvation-dependent phosphorylation re-
sulted in a dissociation of Beclin1 from Bcl-2 and the in-
duction of autophagy (182) (Fig. 2). The inhibitory effect of
Bcl-2 on apoptosis and autophagy lends credence to the hy-
pothesis that apoptosis and autophagy work in tandem to
regulate processes involved in cellular transformation and its
progression.

FIG. 1. Schematic of type 1 and
type 2 death receptor pathways.
Type 1 (bold black line) FAS
(CD95) death signaling pathway
signals independent of the intrinsic
pathway. Following FAS ligand
binding, signals are transduced
through FADD-mediated caspase-8
activation and caspase-3/7 activa-
tion for cells to go under apoptosis.
Type 2 (bold gray line) death sig-
naling through FAS is directed
through caspase-8-mediated Bid
activation. Bcl-2 is the primary in-
hibitor of antiapoptosis in type 2
signaling. Bad/Bax can direct apo-
ptosis by the release of cytochrome
c, and the activation of Apaf-1 and
caspase-9. Dotted lines indicate no
pathway involvement. Bcl-2, B cell
lymphoma 2. To see this illustration
in color, the reader is referred to the
web version of this article at www
.liebertpub.com/ars
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Expression in cancer and mutational landscape. Genomic
alterations in BCL2 are common in a variety of cancers. Data
sets obtained from The Cancer Genome Atlas (TCGA) ac-
cessed by cBioPortal (24, 53) revealed a high percentage of
copy number alterations across the majority of cancers sur-
veyed. In this regard, gene amplifications and deletions are
the primary alterations (Fig. 3A). Unsurprisingly, amplifi-
cations and mutations occurred with higher frequencies in B
cell lymphomas. The expression of BCL2 mRNA was also
determined by accessing the same data sets across 21 cancer
types. Bcl-2 is not a ubiquitously expressed protein and there
seems to be no correlation between organ systems and Bcl-2
expression in cancers, although hematopoietic and lymphoid
malignancies were consistently high (Fig. 3B). Although
BCL2 expression was low in carcinomas of the bladder and
testicular cancer, it still holds promising predictive power for
outcomes in patients (35, 44). Interestingly, the lowest ex-
pression was found in hepatocellular carcinoma, where nu-
merous studies have implicated its role as delaying the
progression of carcinogenesis by delaying cell cycle pro-
gression (148, 177).

The mutational landscape of BCL2 extends to both he-
matopoietic and nonhematopoietic tumors. To assist the in-
terpretation of the likely impact of these mutations on Bcl-2
function, we have prepared a putative Bcl-2 homodimer
model, based on the crystal structure complex of Bcl-2 with a

Bax BH3 peptide (PDB 2XA0) (86), the solution structure of
Bcl-xL in its p53-bound conformation (PDB 2ME8) (50), and
the crystal structure of the Bcl-xL domain-swapped homo-
dimer (PDB 2B48) (131) (Fig. 3C). Characteristic gain of
copy number and expression in diffuse large B cell lym-
phoma has been associated with R129H missense mutation.
In the putative Bcl-2 homodimer, Arg129 appears to facilitate
BH2 domain swapping; R129H may facilitate this more ef-
ficiently. The G128E mutation was identified in stomach
cancer, although was not associated with a variation in copy
number. This residue is on the Bcl-2 surface and is not in-
volved in interactions; therefore, the influence of the Gly128
mutation on Bcl-2 function is unclear from the structure.

Numerous G47S mutations have been identified in stom-
ach cancer. Gly47 is located in the large unstructured loop
region between the BH4 and BH3 domains and occurs at
the dimer interface in the domain-swapped homodimer;
G47S would likely enhance homodimer stability. Mutations
in melanoma include T96I and A224 V. Thr96 is located at
the dimer interface; T96I will likely enhance homodimer
stability. Ala224 is located in the TM region of Bcl-2;
A224 V will likely embed in the membrane more efficiently.
A more comprehensive overview of the mutational landscape
is accessible from the TCGA. Further probing of the func-
tional relevance of mutations in BCL2 is required for the
significance in various disease contexts.

FIG. 2. Schematic of Bcl-2 role in apoptosis and autophagy. Bcl-2 localized to the ER directly interacts with Beclin 1 to inhibit
autophagy. Starvation induced JNK1 activation leads to phosphorylation of Thr69, Ser70, and Ser87 of Bcl-2 disrupting the
interaction with Beclin1 to induce autophagy. Interaction between the BH3 domains of Beclin1 and Bcl-2 results in the inhibition
of autophagy. BNIP3 can interrupt the interaction between Bcl-2 and Beclin1 under conditions of hypoxia-induced ROS inducing
autophagy. The autophagy pathway consists of nucleation, autophagosome assembly followed by fusion with the lysosome to result
in the formation of an autolysosome. Bad/Bax forms heterodimers with Bcl-2 causing its inactivation and the initiation of apoptosis.
BH, Bcl-2 homology domains; BNIP3, Bcl-2/adenovirus E1B 19-kDa protein-interacting protein 3; JNKs, c-Jun N-terminal
kinases. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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FIG. 3. BCL2 gene expression, mutational landscape, and copy number variations in cancer. (A) TCGA data sets
retrieved from cBioPortal indicate copy number and mutation alterations across 21 cancer types. Deletions (red), amplifications
(blue), mutations (green), and multiple alterations (yellow) are shown as their alteration frequency in cancers sorted from high
BCL2 mRNA expression to low BCL2 mRNA expression. (B) BCL2 mRNA expression across 21 cancer types from TCGA data
sets retrieved from cBioPortal. (C) Putative homodimer structure of Bcl-2 bound to Bax BH3 peptide with mutations highlighted.
Color guide: blue - Bcl-2 molecule 1; green - Bcl-2 molecule 2; yellow - Bax BH3 peptides; violet - mutations identified in
TCGA (not visible/highlighted: Gly47 in Bcl-2 molecule 1, Gly128 in either Bcl-2 molecule). TCGA, The Cancer Genome
Atlas. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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Structural knowledge of Bcl-2 and its interactions with
peptides and small molecule inhibitors. The structure of
Bcl-2 family proteins has been extensively characterized by
X-ray crystallography and NMR spectroscopy, and in the
majority of cases, structural details of interactions with other
proteins and prospective inhibitors are known. Bcl-2 family

proteins are characterized by the presence of one or more
BH domains. The BH3 domain is the most highly conserved,
being present in all members of the Bcl-2 antiapoptotic mul-
tidomain, proapoptotic multidomain, and BH3-only domain
members (Fig. 4). The antiapoptotic members contain all BH1-
BH4 domains, except MCL-1 (induced myeloid leukemia cell
differentiation protein) and A1, which lack the BH4 motif.
Bcl-2 itself features four BH domains (in sequence order,
BH4, BH3, BH1, and BH2), which facilitate protein/protein
interactions with proteins from and outside of the Bcl-2 family.
The majority of the family proteins, excluding some of the
BH3-only members (Bad, Bmf, Bid, Puma, and Noxa),
possess a TM domain that is critical for homo- and hetero-
oligomerization at the mitochondrial membrane (135, 191).

The structure of Bcl-2 was first determined by NMR
spectroscopy using a Bcl-2 construct, in which the loop
between the BH4 and BH3 motifs was replaced by the
equivalently located and shorter loop from the related protein
Bcl-xL (146). This construct has been used to provide the
majority of Bcl-2 structures (Table 1). The overall structural
similarity of Bcl-2 to Bcl-xL, the native (119) and peptide-
bound (147, 161) structures of which were already known at
the time, was revealed and provided the first indications as to
the different peptide binding specificities of the two proteins.

The structure of Bcl-2 has since been resolved with a
small range of peptide interactors, including fragments from
naturally occurring proteins as well as designed peptides
(Table 1). In all cases, binding is achieved via an a-helix
(13, 74, 86) or a-helix-like (25) structure interacting with a
groove formed by the BH3, BH1, and BH2 domains (Fig. 5).
Furthermore, peptides are oriented within the groove in the
same way in all structures, with the N-terminal oriented

FIG. 4. Schematic view of Bcl-2 family proteins. To see
this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars

Table 1. Experimentally Determined Bcl-2 Structures

PDB IDa Method Resolution (Å)
Resolved portion

of structureb Bound moleculesc Reference

1G5 M NMR N/A 3-34, 92-207 None (146)
1GJH NMR N/A 3-34, 92-207 None (146)
1YSW NMR N/A 3-34, 92-207 2-phenethylbenzothiazole analog

of Compound 1
(134)d

2O21 NMR N/A 3-34, 92-207 2-phenethylbenzothiazole analog
of Compound 1

(18)d

2O22 NMR N/A 3-34, 92-207 Compound 1b (18)d

2O2F NMR N/A 3-34, 92-207 Compound 43a (18)d

2 W3L X-ray 2.10 9-35, 92–203 Phenylpyrazole 2 (149)
2XA0 X-ray 2.70 10–31, 92–206 Bax BH3 peptide (86)
4AQ3 X-ray 2.40 9-31, 92–203 Compound 18 (141)
4IEH X-ray 2.10 9-31, 92–204 Compound 6 (173)
4LVT X-ray 2.05 9-32, 92–204 Navitoclax (ABT-263) (167)d

4LXD X-ray 1.90 6-33, 92–204 Compound 2 (167)d

4MAN X-ray 2.07 8-29, 92–204 Indole analog of compound 2 (167)d

5AGW X-ray 2.69 8-31, 92–204 a/b-1 (25)
5AGX X-ray 2.24 8-32, 92–204 a/b-1-LIN (25)
5FCG X-ray 2.10 6-34, 92–203 Peptide from HBx protein (74)
5JSN X-ray 2.10 7-32, 87–207 aBCL2 peptide (13)d

aAll structures obtained from Bcl-2:Bcl-x(L) chimera except 2XA0, 5FCG, and 5JSN, which were determined from full-length Bcl-2.
bAll structures have been determined from the Bcl-2 construct in which the BH4-BH3 loop of Bcl-2 replaced with shorter loop from Bcl-

xL, except PDB 5JSN. In the NMR structures, the structure resolved is continuous; the replaced loop is largely not resolved in X-ray.
cTo avoid long systematic names, compounds are named according to their designation in their original publication; see the original

publication cited in the corresponding row of the Reference column for specific compound details.
dThis study also reports ligand complexes with Bcl-xL; see the respective publication for further details.
Bcl-2, B cell lymphoma 2; BH, Bcl-2 homology domains; N/A, not applicable.
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toward the BH1 domain and the C-terminal oriented toward
the BH2 domain; peptide binding to Bcl-xL also displays the
same directionality in all cases (7, 49, 93, 94, 132). Peptide
binding to Bcl-2 appears largely mediated by a series of up
to five hydrophobic residues (typically branched-chain amino
acids) on one face of the peptide helix interacting with hy-
drophobic pockets along the Bcl-2 binding groove; this feature
is present in all peptides cocrystallized with Bcl-2, both nat-
urally derived and designed peptides. Three hydrophobic
pockets of Bcl-2 with which peptides interact may be defined:
a large pocket formed largely by BH1-derived residues (herein
referred to as the ‘‘BH1 pocket’’; Leu119, Val133, Leu137,
Ala149, and Phe153), a smaller pocket formed from near the
end of the BH3 domain (herein referred to as the ‘‘near-BH3
pocket’’; Phe104, Tyr108, and Phe112), and a second large
pocket formed from residues from the BH3, BH1, and BH2
domains (herein referred to as the ‘‘BH2-incorporating pock-
et’’; Ala100, Phe104, Trp144, Val148, Phe198, Leu201, and
Tyr202). Peptides engaging all three pockets generally bind,

from N to C terminal, the BH1 pocket with the most N-
terminal hydrophobic residues (1–2 residues), the near-BH3
pocket with the middle hydrophobic residue, and then, the
BH2-incorporating pocket with the final hydrophobic residues
(1–2 residues). The HBx-derived peptide primarily engages
the BH1 pocket, while the aBCL2 peptide uses a single leucine
to engage the BH1 and near-BH3 pockets. In addition, a range
of supporting hydrogen bonds are present in each structure,
however, just two are present in all structures (except the HBx
complex); these are the interactions of an acidic residue
(typically aspartate) between the hydrophobic residues en-
gaging the BH1 and BH2-incorporating pockets with Asn143
and Arg146 of Bcl-2. As the majority of hydrogen bonds in the
peptide complexes with Bcl-2 are solvent exposed, these may
be transient in typical cellular conditions. These hydrogen
bonds are not replicated in any of the small molecules struc-
turally characterized in complex with Bcl-2.

The structure of Bcl-2 has also been extensively character-
ized in complex with prospective small molecule inhibitors

FIG. 5. Overview of the structural basis of Bcl-2 recognition of peptides. (A) Bcl-2 in complex with Bax BH3 peptide
(PDB 2XA0). Bcl-2 shown as a surface, with the BH4 (blue), BH3 (magenta), BH1 (yellow), and BH2 (green) motifs
highlighted. Bax BH3 peptide shown in cartoon view, colored as a blue to red rainbow from the N to the C terminus. (B)
Electrostatic potential surface of Bcl-2 in complex with Bax BH3 peptide (yellow). Hydrophobic residues of the Bax BH3
peptide interacting with Bcl-2 shown as transparent spheres. Electrostatic potential shown as a red-white-blue gradient, from
negative (red) to neutral (white) to positive (blue). (C) The three major binding sites within the Bcl-2 binding groove. (D)
Hydrogen bonding interactions observed in the Bax BH3 complex with Bcl-2. Asn143 and Arg146 of Bcl-2, and Asp68 of Bax
BH3 labeled in italics and underlined to indicate that these residues are involved in hydrogen bonds replicated in the majority
of peptide complexes with Bcl-2. Electrostatic potential calculated using the PDB2PQR/APBS web server; figures generated in
PyMOL. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars

6 POHL ET AL.

D
ow

nl
oa

de
d 

by
 C

ur
tin

 U
ni

ve
rs

ity
 o

f 
T

ec
hn

ol
og

y 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



(Table 1) (18, 134, 141, 149, 167, 173). Due to the similarities
between the Bcl-2 and Bcl-xL binding pockets, many of these
inhibitors have also been structurally characterized in com-
plex with Bcl-xL; achieving selectivity for Bcl-2 over Bcl-xL
is a major challenge in the design of clinically useful Bcl-2
inhibitors (8). Inhibitors structurally characterized in com-
plex with Bcl-2 typically engage Bcl-2 in a remarkably
similar way to the peptides, featuring long structures capable
of binding to all three of the major pockets of the Bcl-2
binding groove; this also gives the majority of inhibitors
molecular weights well over 500 Da, outside the typical
range for small molecule drugs (103). Most inhibitors fea-
ture a small hydrophobic group, typically a single aromatic
ring, bound to the BH1 pocket, a relatively straight structure
comprising two rings connected in series, followed by a sul-
fonamide, lying between the BH1 and BH2-incorporating
pockets, and a large flexible hydrophobic group interacting
with the BH2-incorporating pocket (Fig. 6); these molecular
features are largely carried over from the prototypical Bcl-2
inhibitor, ABT-737 (discussed in further detail in section IV: A
Brief Overview of Bcl-2 Inhibitors: Past, Present, and Future).
An exception to this is phenylpyrazole 2 (149), which does
not engage the BH2-incorporating pocket; despite this, phe-
nylpyrazole 2 exhibits*10-fold selectivity for Bcl-2 over Bcl-
xL, although its overall potency is eclipsed by ABT-737.
Further modification of phenylpyrazole 2 yielded compound
18 (141), which does extend to the BH2-incorporating pocket
and displays overall greater structural similarity to ABT-737.

Reactive oxygen species and their role in cell signaling

Reactive oxygen species (ROS) collectively refer to
oxygen-derived (O2) free radical and nonradical species (31).
Radical ROS include superoxide anion (O2

.-), hydroxyl
radical (HO�), peroxyl radical (ROO�), and alkoxyl radical
(RO�) (61). Nonradical ROS include hydrogen peroxide
(H2O2) and peroxynitrite (ONOO-) (153, 172). A tight bal-
ance between intracellular ROS and ROS regulating systems
is critical for maintaining cellular homeostasis (38). There-
fore, excessive generation of ROS or deficient antioxidant
capacity alters cellular redox state with profound effects on

cell growth, proliferation, and survival. Homeostatic levels of
ROS are maintained by both enzymatic and nonenzymatic
antioxidants. A depletion or overexpression of these antiox-
idants can alter cell fate. For example, overexpression of
antioxidant enzyme SOD2 can protect cells from tumor ne-
crosis factor (TNF)-induced apoptosis (110). This protected
the cell from H2O2-induced cell death and promoted cell sur-
vival. On the contrary, SOD1 has been shown to be a potential
therapeutic target in some cancers (56). These contrasting roles
for similar antioxidant enzymes demonstrate that the tight
balance of ROS levels can determine whether cells will survive
or undergo apoptosis. The dogmatic view that any increase in
intracellular ROS is linked to cell injury and death has been
challenged by substantial experimental evidence attributing a
secondary messenger function to a mild increase in ROS or a
‘‘pro-oxidant’’ milieu. Alterations in the cellular redox me-
tabolism is linked to aging (105) as well as a host of patho-
logical states, such as cancer (102), Alzheimer’s disease (112),
Parkinson’s disease (29), diabetes (71), atherosclerosis (62),
nonalcoholic fatty liver disease (17), and asthma (43).

Intracellular sources of ROS. The mitochondrion serves
as an important source of intracellular ROS [elegantly re-
viewed in (30)], mainly generating O2

.- from Complex I
(NADH dehydrogenase) (60) and Complex III (cytochrome c
reductase) (120), when electrons derived from NADH or
FADH2 leak out on to and reduce molecular oxygen (121). The
mitochondrial O2

.- levels are regulated by the action of man-
ganese superoxide dismutase (MnSOD) in the inner matrix
that generates H2O2 in the process (118). H2O2 in turn can be
scavenged by catalase, glutathione peroxidases, and peroxir-
edoxins (85). A second important site of O2

.- generation, best
exemplified in phagocytic cells, is the NADPH oxidase (NOX)
family of enzymes. NOX enzymes are made up of six subunits:
a Rho guanosine triphosphatase (GTPase) and five phagocytic
oxidase subunits (gp91, p22phox, p40phox, p47phox, and
p67phox) (91). Additional sources of ROS include O2

.- from
xanthine oxidases (88), cyclooxygenases or prostaglandin-
endoperoxide synthase (PTGS) (55), the cytochrome P450
enzyme family (14), and nonheme lipoxygenases (21).

FIG. 6. Structural determinants of small molecule interactions with Bcl-2. (A) Bcl-2 in complex with navitoclax
(ABT-263) (PDB 4LVT). (B) Overlay of all small molecules structurally characterized in complex with Bcl-2, highlighting
key molecular features present in the majority of ligands. To see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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ROS as signaling molecules. It is now widely accepted
that ROS function as important signaling molecules, impli-
cated in nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-jB), mitogen-activated protein kinase (MAPK),
Keap1-Nrf2-ARE, PI3K-Akt, Notch, and Wnt signaling
pathways (20, 192). The various functional consequences of an
altered redox milieu have been associated with a critical bal-
ance between the two major ROS molecules, O2

.- and H2O2

(34, 145, 156). Whereas an overwhelming increase in either of
these species results in cell injury and death, a tilt in the ratio in
favor of O2

.- confers a survival advantage, while a significant
shift toward H2O2 creates a permissive environment for death
execution (84, 144). For example, H2O2 is known to suppress
Wnt/b-catenin signaling, an important survival and growth
pathway, through a variety of mechanisms, including targeting
the interaction between nucleoredoxin and disheveled (Dvl)
(52) and via oxidative modification of the zinc-coordinating
cysteines of tankyrase resulting in its inactivation (78). Inter-
estingly, ROS-mediated Wnt signaling regulation of BCL2
involving GSK3b/b-catenin has been reported on chronic ex-
posure to Cr(VI) compounds (166). NF-jB signaling is closely
linked to the transcriptional regulation of Bcl-2(22). Further-
more, Nrf2-ARE signaling can also regulate BCL2 transcrip-
tion through the antioxidant response elements (ARE) located
within the BCL2 promoter under conditions of oxidative stress
(129). Interestingly, there is evidence of considerable cross
talk between Nrf2 and NF-jB (181). For a more detailed ac-
count of the disparate functional outcomes on changes in in-
tracellular ROS, please refer to these two comprehensive
reviews (153, 154).

The cross talk between cellular redox status and Bcl-2

Apart from the role of Bcl-2 as a major regulator of apo-
ptosis and cell fate, there is convincing experimental evi-
dence to indicate a close interplay between cellular redox
status and Bcl-2 expression. Of note, there are reported
observations supporting both a pro-oxidant activity and an

antioxidant activity of Bcl-2 (68, 197). Not only does the
expression of Bcl-2 impact intracellular redox milieu but also
a reciprocal regulation of Bcl-2 expression and/or function
has been associated with intracellular ROS (26). For exam-
ple, Bcl-2 has been shown to modulate intracellular ROS
through increased catalase and glutathione peroxidase/re-
ductase expression (46), as well as increased total levels of
NADPH and reduced glutathione (GSH) (47). On the flip side
of it, there is emerging and significant evidence that Bcl-2
expression impacts mitochondrial ROS metabolism to stim-
ulate O2

.- production, through increased COX activity,
thereby creating a pro-oxidant environment that favors cell
survival (26, 145).

The mRNA expression of BCL2 is also tightly correlated
with the expression of genes involved in ROS detoxification
and production (Fig. 7). Many peroxidase elimination en-
zymes, such as peroxiredoxins, and other redox proteins, such
as thioredoxins, exhibit a strong negative correlation with
BCL2. This relationship may be due to an intrinsic mecha-
nism through which cellular redox levels are in a constant
pro-oxidant state, facilitating cancer cell survival. This pro-
oxidant environment has been established as critical for the
stability and antiapoptotic function of Bcl-2 (107). This hy-
pothesis is also supported by a strong positive correlation
between O2

.- producing enzymes NADPH oxidases, NOX2
and NOX4. Interesting to note is the strong negative corre-
lation between BCL2 and SOD1 across 18 of the 21 cancers
surveyed, while SOD2 only exhibits a negative correlation in
tumors with higher expression of BCL2. SOD3, the extra-
cellular superoxide dismutase, was found to be positively
correlated with Bcl-2 expression. The negative correlation of
BCL2 with SOD1 in multiple cancers supports the notion that
Bcl-2 may also function to maintain the pro-oxidant intra-
cellular milieu necessary for cell survival (107). These data
suggest that the expression of BCL2 is strongly correlated
with the expression of many antioxidant enzymes and the
tight interplay between regulating intracellular redox levels
plays an important role in cell fate, especially in the context

FIG. 7. Correlation be-
tween BCL2 and antioxidant
genes. Cancers were sorted
from Bcl-2 high to low mean
mRNA expression as ob-
tained from TCGA data sets.
Correlations (Spearman’s q)
are indicated as red-white-
blue gradient (positive-none-
negative). To see this illus-
tration in color, the reader is
referred to the web version
of this article at www
.liebertpub.com/ars
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of carcinogenesis. A list of key publications in terms of Bcl-2
and the regulation of Bcl-2 by ROS have been described in
Table 2.

Bcl-2 serves as a protector against oxidative insult. The
protective role of Bcl-2 on an overt oxidative stress was
originally discovered after Bcl-2-overexpressing cells
demonstrated increased resistance to H2O2 and menadione-
induced cell death (68). Subsequently, contradicting evi-
dence has emerged to suggest that Bcl-2-mediated cellular
protection from H2O2 was both independent (3) and depen-
dent (73) on NF-jB activation. The latter study indicated that
Bcl-2 induces constitutively active NF-jB signaling, result-
ing in the upregulation of c-glutamylcysteine ligase, the first
enzyme in the biosynthetic pathway of GSH (73). Tran-
scriptional regulation of BCL2 by NF-jB is now well char-
acterized (22, 63). Bcl-2 is able to provide protection against
other oxidizing species, including potassium cyanide, tert-
butyl hydroperoxide (165), and c-irradiation (122, 196).

The protective role of Bcl-2 also includes safeguarding
against nitric oxide (NO)-induced apoptosis (116). Bcl-2-
overexpressing murine macrophages exposed to NO donors,
S-nitrosoglutathione (GSNO) and spermine-NO, and activa-
tors of inducible NO, lipopolysaccharide and interferon-c,
demonstrated apoptotic resistance to that of their neo control
cells (116). While it has often been hypothesized that the
mechanism by which Bcl-2 protects against oxidative insult
is an intrinsic antioxidant property (68, 69, 95, 157), current
evidence suggests that the antioxidant activity of Bcl-2 is

merely a secondary effect (36, 54). Bcl-2 may be thought of
as an ‘‘antioxidant-by-proxy’’ when in complex with GSH
(197); this is discussed in detail in the following section
(Mitochondrial-Dependent Regulation of Cellular Redox by
Bcl-2). Cox and Hampton (36) demonstrated that Bcl-2 was
able to protect cells against apoptotic (<200 lM), but not
necrotic (>200 lM), doses of H2O2. These cells also showed
no difference in the levels of GAPDH and peroxiredoxin 2
oxidation, while exhibiting evidence of increased micro-
nuclei formation and genomic instability. This suggests that
the antiapoptotic and pro-oncogenic role of Bcl-2 is through
preventing the elimination of cells damaged by oxidation
(36). Besides the apparent antioxidant activity of Bcl-2, re-
cent evidence also suggests that Bcl-2 promotes cell survival
by providing a pro-oxidant environment capable of sup-
porting tumorigenesis (26, 170, 189).

Mitochondrial-dependent regulation of cellular redox by
Bcl-2. Mitochondrial metabolism and its redox environ-
ment are highly dependent on Bcl-2 and GSH (111). In this
respect, Bcl-2 regulates the mitochondrial pool of GSH and
may act as a redox sensor. GSH may be displaced from Bcl-2
via competitive binding of BH3-only proteins (e.g., Bim) and
BH3 mimetics (e.g., ABT-737) and induces mitochondrial
dysfunction, oxidative stress, and cell death (197). Recently,
it was demonstrated that Bcl-2 and 2-oxoglutarate carrier
(OGC), a glutathione transport molecule, directly interact in
the presence of GSH. This suggests that Bcl-2 and OGC
participate in the transport of GSH to increase the glutathione

Table 2. List of Milestone Publications for Bcl-2 and Its Interplay with Reactive Oxygen Species

Key publications in the interplay between Bcl-2 and ROS

Authors Year Journal Publications

Tsujimoto et al. (175) 1984 Science Cloning of the chromosome breakpoint of neoplastic
B cells with the t(14;18) chromosome translocation

Hockenbery et al. (67) 1990 Nature Bcl-2 is an inner mitochondrial membrane protein that
blocks programmed cell death

Hockenbery et al. (68) 1993 Cell Bcl-2 functions in an antioxidant pathway to prevent apoptosis
Oltvai et al. (135) 1993 Cell Bcl-2 heterodimerizes in vivo with a conserved homolog,

Bax, that accelerates programmed cell death
Yin et al. (191) 1994 Nature BH1 and BH2 domains of Bcl-2 are required for inhibition

of apoptosis and heterodimerization with Bax
Muchmore et al. (119) 1996 Nature X-ray and NMR structure of human Bcl-xL, an inhibitor

of programmed cell death
Petros et al. (146) 2001 PNAS Solution structure of the antiapoptotic protein bcl-2
HIldeman et al. (66) 2003 PNAS Control of Bcl-2 expression by reactive oxygen species
Clement et al. (33) 2003 Cell Death and

Differentiation
Decrease in intracellular superoxide sensitizes Bcl-2-

overexpressing tumor cells to receptor and drug-induced
apoptosis independent of the mitochondria

Oltersdorf et al. (134) 2005 Nature An inhibitor of Bcl-2 family proteins induces regression
of solid tumours

Cox and Hampton (36) 2007 Carcinogenesis Bcl-2 over-expression promotes genomic instability by
inhibiting apoptosis of cells exposed to hydrogen peroxide

Chen and Pervaiz (26) 2007 Cell Death and
Differentiation

Bcl-2 induces pro-oxidant state by engaging mitochondrial
respiration in tumor cells

Chen and Pervaiz (27) 2010 Cell Death and
Differentiation

Involvement of cytochrome c oxidase subunits Va and Vb
in the regulation of cancer cell metabolism by Bcl-2

Velaithan et al. (178) 2011 Blood The small GTPase Rac1 is a novel binding partner of Bcl-2
and stabilizes its antiapoptotic activity

Low et al. (107) 2014 Blood Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration
of PP2A-B56delta stabilizes its antiapoptotic activity

GTPase, guanosine triphosphatase; PP2A, protein phosphatase 2, ROS, reactive oxygen species.
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mitochondrial pool, and a mechanism through which the
mitochondria are protected from oxidative stress (184). It has
been shown that Bcl-2 overexpression relocalized GSH to the
nucleus, altering nuclear redox and blocking caspase acti-
vation to promote cell survival (179). Glutathione homeo-
stasis regulated by Bcl-2 has been shown in MCF-7 breast
cancer cells, where Bcl-2 overexpression increases glutathi-
one content, although this was found to be independent of
changes in gene expression related to glutathione synthesis.
The inhibition of glutathione synthesis was able to overcome
Bcl-2-induced cisplatin resistance (160).

The mechanisms by which Bcl-2 regulates mitochondrial
respiration are vital for the understanding and interpretation
of the overall cellular redox environment (106). Bcl-2 ex-
pression has been linked to the activity of cytochrome c ox-
idase (COX), the rate-limiting enzyme in mitochondrial
electron transport chain (ETC), and thus vital in the regula-
tion of mitochondrial respiration (26). Leukemic lympho-
blastic cells (CEM cell line) overexpressing Bcl-2 exhibited
higher levels of mitochondrial O2

.-, oxygen consumption,
and higher COX activity, while the opposite was seen after
the introduction of siRNA directed at BCL2 (26, 27). It
should be pointed out that the effect of Bcl-2 on mitochon-
drial COX activity and oxygen consumption is dependent on
the redox milieu of the mitochondria. In this regard, under
states of normoxia, Bcl-2 upregulates mitochondrial respi-
ration and COX activity through increased import and as-
sembly of COX subunits Va and Vb (27).

Evidence also suggests a possible interaction between Bcl-2
and COX Va, and higher expression of Bcl-2 promoted the
mitochondrial translocation of COX Va. On the contrary, dur-
ing states of overt oxidative stress induced on pharmaco-
logically inhibition of mitochondrial ETC complexes, Bcl-2
overexpression elicited a negative effect on mitochondrial res-
piration and COX activity. The latter is corroborated by a recent
report demonstrating that conditional BCL2 knockout in murine
pancreatic b cells exhibited increased superoxide dismutase
(SOD) activity, increased mitochondrial respiration, and ulti-
mately, cell death (2). The regulatory effect of Bcl-2 on mito-
chondrial respiration has also been reported in neuronal cells
(77), in SOD1G93A mouse models of amyotrophic lateral scle-
rosis (138), rat ascites hepatoma (165), and hepatocytes (176).

Bcl-2-dependent increase in mitochondrial O2
.- levels was

also associated with the downstream activation of signal
transducer and activator of transcription 3 (STAT3), which
was mediated through a function of Rac1 (79). Over-
expression of Bcl-2 induced phosphorylation of STAT3 on
Tyr705, which was mediated by increased O2

.-. Furthermore,
constitutively active mutants of STAT3 increased mito-
chondrial O2

.- production (79). This study demonstrates the
numerous signaling pathways that Bcl-2 can influence in
regulating mitochondrial redox metabolism.

Bcl-2 family members have also been shown to mediate
the switch between mitochondrial fusion and fission, which
in turn suggests an influence of the family on mitochondrial
metabolism and bioenergetics (183). Mammalian proteins
Drp-1 and Fis-1 have been shown to be crucial in mito-
chondrial fission, while Mfn1/2 and OPA1 have been shown
to play a role in fusion events. Bcl-2 family members Bax and
Bak are required for mitochondrial fusion, where Bax inter-
acts directly with Mfn2 (80). Bax has also been shown to
colocalize with both Drp1 and Mfn2 during apoptosis and

promotes mitochondrial fragmentation (164). Mammalian
Bcl-2 is yet to be identified in having a role in either profusion
or fission events (159), although it has also been described in
the Caenorhabditis elegans homologue CED-9 (108). The
study by Lu et al. found that CED-9 interacts with DRP-1 to
promote mitochondrial fission. One could then speculate that
Bcl-2 may function as a receptor for DRP-1 in a mammalian
system to promote changes in mitochondrial dynamics and
metabolism, although this is yet to be proven (159).

Taken together, it appears that the regulation of mito-
chondrial ROS extends into a variety of cellular contexts, and
therefore, an alternative therapeutic strategy against refrac-
tory cancers could be to target key players involved in the
regulation of mitochondrial metabolism to favorably modu-
late the cellular redox milieu for death execution (142).

Oxidative stress induced transcriptional regulation of BCL2.
Early studies assessing the relationship between oxidative
stress and BCL2 expression indicated that acute oxidative
stress induced by bright light in retinal rod receptor cells
and cyclosporin A in human endothelial cells reduced BCL2
expression (104). Later studies in t(14;18) lymphoma cells
revealed that BCL2 expression is tightly linked to NF-jB
activation by the presence of cyclic AMP response element
(CRE) and Sp1 binding sites (63). In prostate cancer cells, the
overexpression of p50/p65 subunits of NF-jB increased ex-
pression of BCL2, and likewise, stimulation with TNF-a re-
sulted in an increase in BCL2 promoter activity (22). In U937
cells, NF-jB has also been implicated in ROS-induced up-
regulation of BCL2 (37). BCL2 transcriptional regulation has
also been linked to Sonic hedgehog signaling through gli-1
and Wnt/b-catenin signaling by Wnt3a stimulation in oste-
oblast progenitor cells (5).

ROS have been shown to regulate BCL2 gene expression
indirectly, through which variations in cellular ROS levels
lead to both an increase or decrease in BCL2 gene expression
depending on the cell context. Hildeman et al. (66) demon-
strated that the addition of antioxidant manganese (III) tet-
rakis (4-benzoic acid)porphyrin (MnTBAP) to T cells in vivo
significantly increased BCL2 gene expression, although did
not regulate other Bcl-2 family members, including Bcl-xL,
Bad, and BimEL. MnTBAP also decreased intracellular ROS
levels and inhibited death execution. ROS production was
shown to be upstream of BCL2 downregulation and to involve
a Bim-independent mechanism. These results were mirrored
by retroviral expression of catalase, which increased BCL2
expression and rescued cells from oxidative stress-induced
cell death (66). Similarly, H2O2 induced downregulation
of Bcl-2 protein and gene expression, while concurrently
upregulating Bax in cardiac myocytes (113). While the ma-
jority of studies have found that BCL2 was downregulated
when exposed to oxidative stress, Kaufmann et al. found
that aged rats had increased BCL2 expression in the hippo-
campus and cerebellum, which was a consequence of oxi-
dative stress (81).

Bcl-2 regulation through oxidative stress was also dem-
onstrated in hippocampal neurons, where the addition of
H2O2 and glucose oxidase resulted in a decrease in BCL2 gene
and protein expression (150). The downregulation of Bcl-2 and
concurrent increase in oxidative stress-induced apoptosis were
able to be rescued through the addition of N-acetylcysteine
(NAC), which subsequently increased Bcl-2 expression (151).
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Transcriptional regulation of BCL2 is partly controlled by
cyclic AMP response element binding protein (CREB) (185).
Oxidative insult through H2O2 or glucose oxidase decreased
CREB activity on the BCL2 promoter, which was reversed in
the presence of NAC and manganese (III) tetrakis (1-methyl-
4-pyridyl) porphyrin (MnTMPyP) (150). In rat liver, the in-
duction of oxidative stress with triiodothyronine (T3) re-
sulted in increased Bcl-2 expression, which was abrogated
with the addition of a-tocopherol (vitamin E) (48). These
studies demonstrate that Bcl-2 not only regulates the cellular
redox milieu but oxidative stress itself can reciprocally reg-
ulate Bcl-2 expression as well.

Posttranslational modifications of Bcl-2 mediated by oxi-
dative stress. The regulation of apoptosis by Bcl-2 has
been shown to be mediated through various kinases, ligands,
and oxidative stress signals due to changes in the expression
and function of antioxidant enzymes. The regulation of Bcl-2
by posttranslational modification induced by oxidative stress
is summarized in Figure 8. Bcl-2 suppression of apoptosis
is partly facilitated through its direct interaction with extra-
cellular signal-related kinase (ERK) 1/2 (109). This interac-
tion can be regulated through oxidative stress, through which
increased H2O2 induces Bcl-2 cysteine oxidation and the
disruption of the ERK1/2-Bcl-2 complex. Mutagenesis in-
dicated that the key residues regulating this interaction were

Cys158 and Cys229. Cys158 is located adjacent to the Bcl-2
BH1 domain and is buried in both the monomeric and puta-
tive dimer forms (Fig. 2C) of the protein, although may be-
come exposed during the conformational change that would
be required to achieve dimer formation; Cys229 is suggested
to be located within the Bcl-2 transmembrane helix. A
C158A and C229A double mutant was resistant to oxidation,
as well as H2O2-induced ubiquitination and subsequent deg-
radation (109). The degradation of Bcl-2 through the
ubiquitin-mediated pathway is also regulated by TNF-a-
induced oxidative stress. H2O2 and TNF-a-induced oxidative
stress resulted in degradation of Bcl-2, which was linked to
the dephosphorylation of Ser87. The resultant dephosphor-
ylation after TNF-a stimulation was demonstrated to be
protein phosphatase 2 (PP2A) and PP2B independent (16).
H2O2 has also been shown to regulate PKC-mediated Bcl-2
phosphorylation through a phospholipase Cc1-dependent
(PLC-c1) mechanism. Plcg1 null cells exhibited reduced
viability and reduced Bcl-2 phosphorylation, following an
insult with low levels of H2O2 (10).

Furthermore, c-Jun N-terminal kinase ( JNK) activa-
tion can induce apoptosis through phosphorylation and in-
activation of Bcl-2 (188). In response to menadione-induced
oxidative stress, JNK phosphorylation and degradation of
Bcl-2 were increased, but could be blocked on addition of
NAC (193). Contrary to this study, Kelkel et al. demonstrated

FIG. 8. Schematic of post-translational modifications of Bcl-2 due to oxidative stress. Posttranslational modifications of Bcl-2
occur under an insult of oxidative stress. Depletion or inhibition of SOD1 can initiate nitration of T289 on PP2A’s B56d subunit,
preventing binding to the A/C subunits and the generation of the holo-enzyme. This prevents dephosphorylation of Ser70 of Bcl-2,
stabilizing its antiapoptotic ability. Hydrogen peroxide can stabilize Bcl-2 through PKM2-mediated phosphorylation of T69, as well
as causing its degradation through the ubiquitin-mediated pathway. PLC-c1 mediates hydrogen peroxide resistance allowing
phosphorylation of key residues by PKC and stabilization, while the opposite can also occur where hydrogen peroxide can stimulate
dephosphorylation of Bcl-2. During cellular stress and starvation, JNK1 has also been shown to phosphorylate Bcl-2 at T69/S70/
S87. Bcl-2 interacts with GSH and OGC to regulate the mitochondrial pool of GSH. GSH, glutathione; H2O2, hydrogen peroxide;
NO, nitric oxide; ONOO-, peroxinitrite; OGC, 2-oxoglutarate carrier; PLC-c1, phospholipase Cc1-dependent; PPA2, protein
phosphatase 2. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/ars
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that JNK activation and phosphorylation of Bcl-2 were in-
dependent, via the addition of the ROS-inducing agent diallyl
tetrasulfide to U937 human histiocytic lymphoma cells (82).
These opposing results suggest that redox-dependent post-
translational modifications of Bcl-2 are highly dependent on
the level of ROS. High levels of H2O2 primarily result in
oxidation of Bcl-2 and degradation, while low levels initiate
phosphorylation and stabilization of Bcl-2.

Functionally, ROS-mediated Bcl-2 phosphorylation has
been linked to cell cycle transitions (39). The expression
of phosphomimetic, gain-of-function Bcl-2 mutants (S70E
and T69E/S70E/S87E) reduced intracellular ROS and in-
hibited G1/S cell cycle progression. The reduced G1/S phase
progression was overridden by the addition of H2O2, through
the downregulation of p27 and increased activation of Cdk2.
Decreased ROS were attributed to increased SOD1 and cata-
lase expression, which resulted in an antioxidant intracellular
milieu on expression of the Bcl-2 phosphomimetics (39).

The relationship between the members of the SOD family
and Bcl-2 has been explored in a number of cellular contexts.
In spinal cord mitochondria, mutant SOD1 (G93A) and wild-
type Bcl-2 have been shown to interact in the mitochondria,
where they promote structural abnormalities and mitochon-
drial dysfunction. The mutant SOD1 causes a conformational
change in Bcl-2, resulting in the exposure of the BH3 do-
main, which promotes mitochondrial toxicity (140). Low
et al. (107) demonstrated that the stability and antiapoptotic
function of Bcl-2 were enhanced in a pro-oxidant environ-
ment. Specifically, reducing SOD1 activity either by phar-
macological means or siRNA directed at SOD1 increased
phosphorylation of Bcl-2 at Ser70 (pSer70). Increased levels
of ONOO-, as a result of increased O2

.-, induced selective
nitration of Tyr289 of the B56d subunit of PP2A. ONOO--
induced nitration of PP2A at Tyr289 prevented the assembly
of the holoenzyme involving the regulatory B subunit and the
core A-C subunits. Importantly, SOD1 expression and Bcl-2
pSer70 were found to be negatively correlated in vivo; high
Bcl-2 p70 could predict a poor patient prognosis. Further-
more, in vitro studies showed an association between high
levels of Bcl-2 pSer70 and chemoresistance. This suggests
the possibility for the use of redox modulators as chemo-
sensitizers in the treatment of lymphomas (107). The study by
Low et al. provided mechanistic insight to observations
published previously by Zhao et al., demonstrating that Bcl-2
pSer70 was required for protection against oxidative stress,
which was abolished through the activation of PP2A (194).

Liang et al. (100) recently demonstrated that under H2O2-
induced oxidative stress, Bcl-2 is stabilized through phos-
phorylation of Thr69 (pThr69) by pyruvate kinase M2
isoform (PKM2), promoting tumorigenesis in glioma cells.
Oxidative stress induces mitochondrial translocation and a
potential conformational change in PKM2, resulting in the
phosphorylation of Bcl-2 at Thr69. This potential confor-
mational change may be facilitated through the ATPase ac-
tivity of HSP90a1 and permits the binding of PKM2 to Bcl-2.
pThr69 prevents ubiquitination by a Cul3-based ubiquitin
E3 ligase, thus preventing its degradation. This HSP90a1-
PKM2-Bcl-2 axis is crucial in stabilizing the antiapoptotic
function of Bcl-2 and driving tumorigenesis (100).

The Bcl-2:Beclin1 interaction has been demonstrated to be
potentially redox dependent. Bcl-2/adenovirus E1B 19-kDa
protein-interacting protein 3 (BNIP3) is a proapoptotic pro-

tein, whose expression is regulated by HIF-1a. It functions as
a redox sensor during times of prolonged hypoxia-induced
oxidative stress. Dimerization of BNIP3 was shown to be
sensitive to H2O2-induced oxidative stress (87). Hypoxia-
induced BNIP3 expression has been demonstrated to disrupt
the interaction between Bcl-2 and Beclin 1 to induce autop-
hagy (12). These studies show that apoptosis and autophagy
are clearly linked to specific Bcl-2 binding partners in various
cellular components. To that end, S-nitrosylation of Bcl-2
negatively regulates autophagy; nitrosylation of Cys158 and
Cys229 stabilizes the interaction between Bcl-2 and Beclin1,
thereby inhibiting Beclin1 activity and as a result decreas-
ing autophagic flux (187). This effect is reversed on addition
of ABT-737, aminoguanidine (NO inhibitor), and a redox-
inactive Bcl-2 double-mutant (C158A/C299A). Interestingly,
these cysteine residues were previously shown to be prone to
H2O2-induced oxidation (109).

Furthermore, S-nitrosylation of Bcl-2 was previously dem-
onstrated to inhibit its ubiquitin-mediated proteasomal degra-
dation. This NO-mediated effect was independent of Ser87
phosphorylation and decreased cellular apoptosis (9). These
studies highlight the importance of NO-driven signaling and
Bcl-2 in the regulation of autophagic and apoptotic signal-
ing. NO has also been demonstrated to increase carbonylation
of Bcl-2 (19), and IL-1b-induced NO production increased
Bcl-2 carbonylation, which preceded its downregulation.
The downregulation of Bcl-2 coincided with an increase in
NO-mediated DNA fragmentation (19). This is contrary to
the previously mentioned studies where NO was associated
with resistance to apoptosis, suggesting that the regula-
tion of cell fate by NO is dependent on the precise post-
translational modification of Bcl-2.

Bcl-2 and peroxide eliminating enzymes. A study by
Gouaze et al. (58) demonstrated that glutathione peroxidase-1
(GPx1) overexpressing cells were resistant to CD95-induced
apoptosis. T47D cells overexpressing GPx1 exhibited lower
levels of ROS and Bcl-2. Similarly, Clement et al. (33)
showed that Bcl-2 overexpression blocked CD95-induced
cell death, which was restored on NOX inhibition or over-
expression of dominant-negative Rac1, decreasing overall
levels of O2

.-. To that end, Rac1 has also been demonstrated
to increase O2

.- and inhibit apoptosis in melanoma and
bladder carcinoma cells (143). Further studies provided evi-
dence for an interaction between Bcl-2 and Rac1 in leukemic
cells that increased intracellular O2

.-, thus creating a pro-
oxidant environment that favors cell survival and/or inhibits
apoptotic execution (178). Synthetic BH3 peptides and BH3
mimetics were able to block the interaction of Rac1 and Bcl-
2, decrease O2

.- production, and sensitize human leukemia
cells to chemotherapeutics. Previously, it was also demon-
strated that Rac1 was needed for the phosphorylation of Bcl-2
by the JNK/stress-activated protein kinase ( JNK/SAPKb)
p54-SAPKb (114).

Peroxiredoxins are functional antioxidant enzymes that
control intracellular peroxide levels. BCL2 mRNA expression
has been shown to exhibit a primarily negative correla-
tion with the five peroxiredoxins (PRDX1, PRDX3, PRDX4,
PRDX5, and PRDX6) in a wide range of primary tumor
samples. In lung cancer either a weak or negative correlation
is observed (Fig. 7). In A549 lung cancer cells with gefitinib
resistance (A549/GR), shRNA knockdown of PRDX2 resulted
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in a decrease in Bcl-2 expression and concurrent increase in
peroxide levels in the cell, culminating in cell death (89). The
change in correlation in gefitinib-resistant cells can be hy-
pothesized to be directly due to JNK/ROS activation, both of
which were altered compared to the A549 cells. H2O2 also
protected cardiomyocytes from oxidative stress-induced apo-
ptosis, which was associated with an increase in Bcl-2. H2O2-
induced oxidative stress caused a decrease in the level of both
Prx2 and Bcl-2, showing a strong correlation between intra-
cellular peroxide levels and Bcl-2 expression (195). Bcl-2
expression has also been shown to be associated with members
of the thioredoxin family. The use of antisense BCL2 therapy
in neuroblastoma cells demonstrated that decreasing levels of
Bcl-2 were associated with increasing levels of thioredoxin.
This seems to be consistent across a range of tumors (Fig. 7)
and may involve a cellular compensatory mechanism when
cells are undergoing oxidative stress (99).

Redox-dependent regulation of Bcl-2 in viral infec-
tion. Intracellular regulation of cellular redox has been
shown to be an important factor in viral establishment, rep-
lication, and progression (11). A pro-oxidant environment
has been demonstrated during infection with influenza (64),
human immunodeficiency virus (HIV) (65), and hepatitis C
(57). Bcl-2 has been demonstrated to influence cellular redox
and alter viral replication in various settings. During influ-
enza A replication, cellular levels of GSH are decreased,
resulting in a pro-oxidant environment. Cells overexpressing
Bcl-2 exhibited higher levels of GSH and produced less virus
(126). Influenza A infection has also been shown to increase
ROS in an NOX-4-dependent manner (6). Mechanistically,
viral activation in Bcl-2+ cells induced p38MAPK-mediated
phosphorylation of Bcl-2 at Thr56 and Ser87, resulting in

cell death. siRNA-mediated knockdown of BCL2 resulted in
increased influenza A replication and viral ribonucleoprotein
(vRNP) export (125). In asymptomatic HIV-infected pa-
tients, H2O2 production was increased in monocytes with
parallel downregulation in thioredoxin and Bcl-2. These re-
ductions were suggested to be a result of significantly in-
creased oxidative stress (45). These studies highlight the
importance of redox regulation in altering Bcl-2-mediated
cell fate in viral infections. The role of Bcl-2 in viral infec-
tions and its interaction with viral proteins is comprehen-
sively reviewed by Alibek et al. (4) Redox in viral infections
have previously been reviewed elsewhere (101, 123, 168).

A brief overview of Bcl-2 inhibitors: past, present,
and future

As the discovery and development of Bcl-2 inhibitors have
been recently comprehensively reviewed (8, 98), this section
focuses primarily on molecules that have been or are cur-
rently under investigation through clinical trials (Fig. 9).

Oblimersen is an antisense oligonucleotide targeted to the
BCL2 mRNA, thus preventing Bcl-2 protein expression (41).
It was the first molecule against Bcl-2 to be investigated
clinically. Oblimersen has been extensively investigated in
clinical trials in a wide variety of solid tumors and blood
cancers, and in combination with a wide variety of cancer
therapeutics, however, its use as a single agent or in combi-
nation have not been approved for any clinical indication
(51). The related molecule SPC2996 has also been investi-
gated in clinical trials, which failed to demonstrate effective
downregulation of Bcl-2 expression (42). Oblimersen was
demonstrated in PC3 cells to increase the oxidation of nuclear
DNA, measured by 8-hydroxy-2¢-deoxyguanosine staining,

FIG. 9. 2D structures of
small molecule Bcl-2 in-
hibitors. (A) ABT-737. (B)
Navitoclax (ABT-263). (C)
Venetoclax (ABT-199). (D)
Obatoclax. (E) Representative
molecule from the patent de-
scribing the production of
S55746-related molecules. (F)
(-)-Gossypol (AT-101).
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suggesting that cell death was due to an ROS-dependent
mechanism (90).

ABT-737, which is generally regarded as the prototypical
small molecule Bcl-2 family protein inhibitor, was first re-
ported in 2005 (134). ABT-737 was discovered through a
SAR by NMR (structure-activity relationship by nuclear
magnetic resonance) approach, through which small organic
‘‘fragment’’ molecules (<200 Da) were assessed for weak/
moderate binding to Bcl-2 via NMR approaches (primarily
saturation transfer difference spectroscopy and heteronuclear
single quantum coherence spectroscopy), and subsequently
‘‘assembled’’ to generate molecules capable of tightly bind-
ing to Bcl-2. ABT-737 targets the hydrophobic peptide-
binding groove of Bcl-family proteins nonselectively. The
lack of oral bioavailability of ABT-737 has limited its clinical
development, instead prompting the development of alter-
natives. Hepatocellular carcinoma (HCC) cells with high
Bcl-2 expression demonstrated resistance to ABT-737 by
suppressing the ROS-JNK pathway. In HCC cells expressing
low levels of Bcl-2, apoptosis was induced after treatment
with ABT-737 through increased ROS levels and activation
of the ROS-JNK pathway (128). This study demonstrates that
high levels of Bcl-2 can determine the effectiveness of ABT-
737 in a ROS-dependent mechanism.

Navitoclax (ABT-263) is an orally bioavailable analog of
ABT-737 that has progressed to Phase II clinical trials. Na-
vitoclax features three modifications relative to ABT-737: (i)
replacement of the nitro group with a triflyl group; (ii) re-
placement of the dimethylamine with a morpholine group;
and (iii) replacement of the 4-chlorobiphenyl group with a
1-(4-chlorophenyl)-4,4-dimethyl-cyclohexene group (137).
These modifications enhance oral bioavailability relative to
ABT-737, while maintaining protein binding and cellular
efficacy. Navitoclax elicits thrombocytopenia as a result of
Bcl-xL inhibition (32, 158, 186), which limits its tolerated
dose and has delayed its clinical development; nonetheless,
trials involving navitoclax or combinations thereof are on-
going, largely against blood cancers.

Venetoclax (ABT-199, GDC-0199) is a Bcl-2-selective
inhibitor derived from navitoclax, currently approved for
the treatment of chronic lymphocytic leukemia. Venetoclax
features three modifications relative to navitoclax: (i) re-
placement of the triflyl group with a nitro group (as in ABT-
737); (ii) substitution of the para-aminobenzamide motif
with a 1H-pyrrolo[2,3-b]pyridine-5-yloxy group; (iii) re-
placement of the morpholine and thiophenol arms with a
methyl-tetrahydropyran group. Venetoclax retains the oral
bioavailability of navitoclax, but is over 100-fold more se-
lective for Bcl-2 over Bcl-xL, thus averting thrombocytope-
nia induced by navitoclax (167). Current clinical trials
involving venetoclax are largely focused on broadening
its application to include a wider variety of blood cancers,
and involve both therapeutic combinations and venetoclax
monotherapy (98).

Obatoclax (GX15-070) is a nonselective Bcl-2 family
protein inhibitor, initially identified for its ability to inhibit
Mcl-1 (127). Obatoclax features a comparatively simple
scaffold compared to ABT-737 and related molecules;
combined with its nonselectivity, this suggests that obatoclax
may only interact with part of the binding groove present
in Bcl-2 family proteins. Obatoclax has been evaluated for
childhood cancers (both blood cancers and solid tumors),

blood cancers in adults, and lung cancers in adults. Phase I
studies indicated that the drug was well tolerated in patients
with blood cancers (162), solid tumors (76), and exhibited
modest single-agent activity (130). Obatoclax has been dem-
onstrated to induce cell death in oral squamous cell carci-
noma cells through a mitochondrial-dependent oxidative
stress-induced mechanism (171). However, Phase II studies
have generally failed to demonstrate its clinical useful-
ness (59, 136, 163). Its further development was discontinued
in 2013.

S55746 (BCL-201, Servier-1) is an inhibitor developed by
Servier selective for Bcl-2, built on the previously reported
low-affinity, but highly Bcl-2-selective, phenylpyrazole
molecule series (149). Preliminary results from a clinical
trial of S55746 in patients with relapsed or refractory non-
Hodgkin lymphoma suggest that S55746 monotherapy is
safe, tolerable, and efficacious (92). Servier has previously
reported S44563, a dual Bcl-2/Bcl-xL inhibitor, an analog of
ABT-737 with conformational restriction on the phenylpi-
perazine region (124). Given this molecule’s high similar-
ity to ABT-737, it may also exhibit similarly poor oral
bioavailability, which may have prompted the identifica-
tion of alternative scaffolds and the ultimate development of
S55746.

(-)-Gossypol (AT-101), a terpenoid phenol derived from
the cotton plant, has been shown to act as a weak inhibitor of
Bcl-2 and Bcl-xL (133). In addition to acting as a BH3 mi-
metic, AT-101 also appears to impair DNA repair mediated
by APE1, a redox-active enzyme that is a known binding
partner for Bcl-2 (152, 155). Unlike ABT-737 and related
molecules, which directly prevent peptide binding to Bcl-2,
(-)-gossypol induces a conformational change in Bcl-2 from
an antiapoptotic to a proapoptotic state (96). (-)-Gossypol
was evaluated in combination with androgen deprivation
therapy for the treatment of castration-sensitive metastatic
prostate cancer in a Phase II clinical trial (169); the results
suggested this combination was not worth further develop-
ment. (-)-Gossypol has also been evaluated for the treatment
of progressive or recurrent glioblastoma multiforme; the
majority of patients (62.5%) exhibited disease progression in
the trial (72). (-)-Gossypol has been demonstrated to poten-
tiate cell death induced by temozolomide (180); a Phase I
clinical trial investigating this combination in the treatment
of glioblastoma multiforme has been completed, but results
are not currently available (23).

APG-1252 is a dual selective Bcl-2/Bcl-xL inhibitor cur-
rently under development by Ascentage Pharma Group.
Limited details of this molecule have been made publicly
available, however, as of this writing, recruitment is currently
underway for a clinical trial of APG-1252 in patients with
small-cell lung cancer and other solid tumors (70).

Perspective

It has been more than 30 years since the discovery of Bcl-2
and its association with drug resistance and aggressive he-
matopoietic malignancies. Over the years, the structural and
functional biology of this remarkable protein has been un-
raveled. These pursuits have resulted in the discovery of a
number of related proteins with opposing biological activities
and grouped under a broader family, the Bcl-2 family. It is
now well established that the balance between the pro- and

14 POHL ET AL.

D
ow

nl
oa

de
d 

by
 C

ur
tin

 U
ni

ve
rs

ity
 o

f 
T

ec
hn

ol
og

y 
fr

om
 w

w
w

.li
eb

er
tp

ub
.c

om
 a

t 0
3/

12
/1

8.
 F

or
 p

er
so

na
l u

se
 o

nl
y.

 



antiapoptotic members of the family is critical in cell fate
decisions, which is a function of physical interactions be-
tween proteins from within and outside of the family. While
the canonical antiapoptotic activity of Bcl-2 is associated
with its ability to prevent MOMP by sequestering Bax and
Bak from oligomerizing at the mitochondria, recent evidence
also points to a redox-dependent regulation of cell fate by
Bcl-2, which appears to involve its post-translational modi-
fication. Furthermore, the altered gene expression and mu-
tational landscape in a host of human cancer, not limited to
hematopoietic malignancies, underscore the importance of
Bcl-2 as an important ‘‘pro-oncogenic’’ protein.

Based on its interacting domains, there has been a continu-
ous focus on developing small molecule inhibitors to overcome
chemotherapy resistance induced on Bcl-2 overexpression.
Bcl-2 expression has been used as a biomarker for patient re-
sponse to chemotherapy. Could we now extend this to patient
profiles of Bcl-2 expression in terms of ROS high and ROS
low, and would this have a stronger predictive power?

There is a large body of evidence that directly links Bcl-2
and cellular redox. Earlier observations suggested an anti-
oxidant role for Bcl-2, however, more recent work indicates
a remarkable dichotomy when it comes to Bcl-2 and its ef-
fects on cellular redox metabolism. These divergent effects
appear to be a function of cellular redox status itself. As such,
the effect might differ under states of normoxia, hypoxia,
and oxidative stress. To complicate matters further, the
same ROS can have seemingly opposite effects on the anti-
apoptotic activity of Bcl-2. H2O2 in one context can cause
degradation through oxidation of cysteines and promote cell
death, and on the other hand can cause increased stability and
promote cell survival. Similarly, the effect of an increase in
NO and its reaction product with O2

.-, OONO-, could be
associated with carbonylation or S-NO modification. Inter-
estingly, an altered redox milieu impacts post-translational
state of Bcl-2, such as its phosphorylation, which could have
different functional consequences depending on whether the
phosphorylation is multisite (inhibits its activity) or monosite
as with serine 70 (stabilizes its activity). Based on these
outcomes, it is imperative to clearly delineate the mecha-
nisms behind the opposing effects of an altered redox state on
Bcl-2 biology, particularly from the standpoint of its role in
promoting chemotherapy resistance in cancer. This is even
more important as many clinically approved drugs induce
increases in intracellular ROS, which could fuel the process
of carcinogenesis and its progression by promoting Bcl-2
stability.

A number of promising small molecules are being devel-
oped and are undergoing clinical evaluation, however, se-
lectivity remains a major issue. The early generation of Bcl-2
inhibitors, based on BH3 domain interaction, did not
show the level of stringency in terms of targeting the specific
antiapoptotic protein within the family. More recent ap-
proaches, such as in the case of venetoclax, appear to have
addressed this issue. One possible scenario still needs atten-
tion: the reciprocal upregulation of another antiapoptotic
member on specific inhibition of one. For example, is it
possible that specific inhibition of Bcl-2 might activate
the compensatory upregulation of Mcl-1 or Bcl-xL? Future
strategies could also leverage on the noncanonical function of
Bcl-2 in terms of regulating cellular redox status. In this re-
spect, one might envision the potential application of mo-

dalities that favorably tailor the cellular redox milieu for
death execution as well as overcome the inhibitory effect on
putative tumor suppressors, such as the phosphatase PP2A.
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Abbreviations Used

Bcl-2¼B cell lymphoma 2
BH¼Bcl-2 homology domains

BNIP3¼Bcl-2/adenovirus E1B 19-kDa
protein-interacting protein 3

COX¼ cytochrome c oxidase
CREB¼ cyclic AMP response binding protein

ER¼ endoplasmic reticulum
ERK¼ extracellular signal-regulated kinases
ETC¼ electron transport chain

GPx1¼ glutathione peroxidase-1
GSH¼ reduced glutathione

GTPase¼ guanosine trisphosphate
HCC¼ hepatocellular carcinoma
HIV¼ human immunodeficiency virus

H2O2¼ hydrogen peroxide
JNKs¼ c-Jun N-terminal kinases

MAPK¼mitogen-activated protein kinase
MCL-1¼ induced myeloid leukemia cell

differentiation protein
MnTBAP¼manganese (III) tetrakis (4-benzoic

acid) porphyrin
MOMP¼mitochondrial outer membrane permeabilization

NAC¼N-acetylcysteine
NF-jB¼ nuclear factor kappa-light-chain-enhancer

of activated B cells
NO¼ nitric oxide

NOX¼NADPH oxidase
O2

.-¼ superoxide anion
OGC¼ 2-oxyglutarate carrier

ONOO-¼ peroxynitrite
PKM2¼ pyruvate kinase M2 isoform

PLC-c1¼ phospholipase Cc1-dependent
PP2A¼ protein phosphatase 2
ROS¼ reactive oxygen species
SOD¼ superoxide dismutase

STAT3¼ signal transducer and activator of transcription 3
TCGA¼The Cancer Genome Atlas

TNF¼ tumor necrosis factor
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