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Abstract 

The failure of glass windows in terrorist bombing attacks and accidental explosion 

incidents has been cited as one of the major causes to the vast casualties. Many 

studies have been carried out to investigate the response and vulnerability of glass 

windows against blast loadings. These include laboratory and field tests that have 

been carried out to experimentally study glass window performance under explosion 

scenarios; and development of analytical and numerical models to analyze and predict 

glass window responses. This article reviews literatures on the studies of the response 

of glass window systems to blast loadings. Over 100 papers and documents that are 

available in open literature are reviewed. The background and history of the studies 

on the topic is also briefed. Understandings about the dynamic material properties of 

glass and available material models are summarized. Popularly used analysis methods 

and design standards for monolithic and laminated glass windows are outlined, and 

their accuracies are discussed. Recent studies including analytical solution, numerical 

simulation and experimental investigations on glass window systems are summarized. 

Mitigation measures for blast resistant windows are also briefly discussed.  
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1. Introduction 

      Glass is a popular material that has been widely used for windows and façade in 

many structures. It is also very brittle and fragile compared to most of other building 
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materials such as structural steel and concrete. As such traditional glass windows are 

very vulnerable to extreme loads such as blast. Post-event investigations of terrorist 

bombing attacks and accidental explosions have cited the majority of human 

casualties were mainly by the shattered glass windows [1-3]. For example, the 

accidental gas explosion in Texas in 1986 fractured glass windows in a radius of 800 

meters. Significant number of casualties was due to flying glass shards from fractured 

windows. More recently, the Jakarta terrorist bombing attack on the Australian 

Embassy in 2004 (Figure 1a) did not cause any major structural damage but shattered 

glass windows in buildings within 500 meters. 9 people were killed and over 150 

were injured, most of whom were victims inside the buildings and hurt by glass 

fragments. Similarly in the Norway attack in 2011 (Figure 1b), the blast pressure from 

the car bomb smashed nearly all the glass windows of the Oslo executive government 

building. 209 out of the 325 injuries were associated with glass lacerations. To better 

design of glass windows for protection of people in possible terrorist bombing attack 

and accidental explosion, a thorough understanding of the behavior of glass windows 

subjected to blast loading is needed. 

  

a) Jakarta bombing, 2004 
(Courtesy: Xinhua 
Photo/Ainiwaer) 

b) Shattered glass windows in 
Norway attack, 2011 (Courtesy: 

Heidi Wideroe) 
Figure 1 Window failures in bombing attacks 

      The concept of laminated safety glass was first introduced by French chemist 

Edouard Benedictus in 1903 which was later patented in 1909 [4]. Investigations on 
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the vulnerability of glass windows subjected to blast loading date back to World War 

II [5]. A large number of field blast tests were conducted primarily on monolithic 

glass windows targeting at mitigating fragment hazard during wartime. Minimum 

charge weight and stand-off distance were obtained for the breakage threshold of 

monolithic glass pane. Equivalent static and dynamic analysis methods with single 

degree of freedom (SDOF) simplification were developed to predict glass breakage. 

With the aid of finite element method the analysis on the response of glass windows 

was advanced in the 1980’s [6, 7]. Substantial research was carried out by the US 

Navy in this period to investigate the blast resistant capacity of monolithic glass 

windows against accidental explosions. Field testing data on monolithic glass 

windows was incorporated with analytical and numerical results. Design codes such 

as TM 5-1300 [8] (later known as UFC 3-340-02 [9]) and ASTM F2248-09 [10] were 

drafted to guide analysis and design of monolithic glass windows.  

      The study of laminated glass response to air blast load has been carried out since it 

was firstly introduced in automobile industry and then used as protective structural 

glazing. The concept of laminated glass was first introduced in the 1940s by applying 

an additional plastic film to the back of a glass pane to improve window performance 

[11]. The Irish terrorism attacks on British barracks in UK during 1980s and 1990s 

boosted the investigation on blast loading resistance capacities of laminated glass. 

Many field blast tests were conducted by the UK government departments to 

investigate glass window vulnerability to terrorist attacks. Empirical design 

procedures defining the minimum stand-off distance to prevent window failure as 

well as fragility curves were drafted [12]. However, only limited window sizes were 

tested. Due to the non-linear relationship between window response and blast loading 

it was later realized that interpolating empirical data to windows of other dimensions 
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and blast loading scenarios other than tested could lead to enormous errors. Numerical 

methods and analytical solutions have been intensively used to study the response of 

laminated glass windows ever since. Nevertheless, it should be noted that due to the 

lack of dynamic material properties, most previous numerical and analytical models 

adopted an elastic model for glass and a viscoelastic model for interlayer with their 

static material properties. Under blast loading, the strain rates that glass and interlayer 

experience could be more than 100s
-1

. Material strength and response at such high 

strain rates could be very different from those under static loadings. Therefore, this 

simplification might lead to inaccurate predictions of window responses. Reliable 

analysis on the response of laminated glass windows with accurate material properties 

is badly needed. 

      This paper reviews the up-to-date understandings about the dynamic material 

properties of construction glass materials. Recent development of dynamic material 

models for annealed glass is reviewed. The response of monolithic glass windows 

under blast loading, and the fragment characteristics from shattered glass pane under 

blast are discussed. Recent experimental investigations on the dynamic material 

properties of PVB (Polyvinyl butyral) and SGP (SentryGlas
®

Plus) interlayer materials 

are summarized. Numerical and experimental investigations on laminated glass 

window responses to blast loads are discussed. Available mitigation measures for 

blast resistant window systems are also reviewed. 

2. Glass Material  

2.1 Material properties 

2.1.1 Glass categories 

Glass is an amorphous solid material which is often transparent. It is also a complex 

material. Variation in its chemical compositions results in diversified material 



 

5 

 

characteristics. Glass is produced by heating a mixture of raw minerals above a 

transition point. The molten glass is floated on top of molten tin after which it is 

slowly cooled to room temperature without being quenched in an annealing lehr [13] 

(Figure 2). Window glass normally adopts soda-lime glass (with about 72% mass 

proportions of silicone dioxide also known as ‘silica’), while sodium borosilicate 

glass with higher ratio of silicone dioxide (approximately 81%) has better temperature 

and shock resistance which is often used for reagent. Other silicate glass include fused 

quartz, lead oxide glass, aluminosliciate glass, etc. which exhibit unique 

characteristics respectively but barely used for construction glazing. 

 
Figure 2 Glass production process 

 
Figure 3 Parabolic stress distribution across fully-tempered glass pane  

      Window glass for building and construction purposes is more popularly 

categorized according to its manufacturing process. The standard float process 

produces annealed glass, which is economic but low in strength and breaks into 

jagged shards. Heating and quickly cooling annealed glass produces heat-strengthened 

glass which has higher tensile strength as a result of surface compression (typically 

Tensile 

core 

Compressive shell 
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40MPa). Similarly to annealed glass, heat-strengthened glass breaks into large pieces 

of jagged shards. Heating annealed glass up to about 700°C, and then immediately 

cooling it produces fully (thermally) tempered glass. The tempering process 

introduces compressive stress to pane surface and tensile stress in pane center. The 

stress distribution across glass pane can be represented by a parabola [14] (Figure 3). 

Like heat-strengthened glass, typical tempered glass has a surface compression of 

about 100MPa. The introduced surface compression leads to the flexural strength in 

tempered glass four to five times higher than that in annealed glass. Because of the 

stored elastic energy during the tempering process, once a crack reaches the tensile 

core, continuous cracking can be triggered in tempered glass pane which shatters into 

numerous small and fine cubicles. Due to this feature tempered glass is entitled as 

‘safety glass’ which is widely installed to mitigate laceration hazards. However, under 

high-rate dynamic loading the propagation of cracks within tempered glass may not 

necessarily reaches the surface but stay in the tensile core [15]. In other words, only 

the central layer of the tempered glass would break into small cubicles, and the entire 

pane would remain intact until it further ruptures into large pieces. Field blast tests on 

monolithic tempered glass observed that tempered glass could also break into large 

pieces of fragments with sharp edges [16, 17], which could also impose significant 

threats to people in the surrounding area. The fragment hazards mitigation effect of 

tempered glass is therefore not necessarily always achievable when subjected to blast 

load. Proper assessment of the tempered glass fragment threats is therefore also 

needed. Considering the described manufacturing process, the stress distributions in 

heat strengthened and tempered glass are not necessarily uniform. Studies on glass 

mechanical properties are therefore usually performed on annealed glass only.  

2.1.2 Glass static properties 
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      The behavior of annealed glass under static loading is brittle and linear elastic till 

fracture. The theoretical tensile strength of glass material can be up to 21GPa [18]. 

Nevertheless, architectural annealed glass normally fails at around a stress level of 

100MPa or even lower due to the existence of surface flaws which are also known as 

Griffith flaw [19]. Griffith presumed that glass fractures initiate at these flaws [19]. A 

normal distribution [20] or a Weibull distribution with single or two parameters is 

normally used to represent the uncertainties in glass strength [21, 22]. The measured 

static strengths of annealed glass vary significantly. The European glazing standard 

prEN 13474-3 [23] reports the measured glass  fracture strengths from over 700 ring-

on-ring tests varying from 30MPa to 120MPa. The split tensile strength tested on 

15mm x 15mm (diameter x length) annealed glass cylinder was only about 20MPa 

[24]. The significant variation is not only because of the different types of tensile 

strengths measured, i.e., bi-flexural, split-tensile, etc. but is mainly attributed to the 

surface conditions of the different tested glass panes. The strength of a glass pane 

heavily depends on the position and direction of flaws on its surface. A reduction in 

both the mean strength and standard deviation will be found with an increased number 

of flaws due to weathering or abrasion to the tested glass pane [25].  

2.1.3 Glass dynamic properties 

      Glass behaves differently under dynamic loading. The fracture process and 

densification behavior of soda-lime (annealed) glass under shock loading were 

intensively investigated through plate impact test [26-28]. The influence of surface 

flaws becomes less prominent at high strain rates especially for glass under 

compression. This is because under shock loading there is not sufficient time for glass 

to crack at the pre-existing flaws. Instead bulk damage would be triggered by high 

intensity stress as shown in Figure 4. Loading rate has also been found to have a 
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significant influence on glass strength. This is because the roots of surface flaws on 

glass are subjected to stress corrosion from moisture and the pre-existing cracks take 

time to develop. Analytical study using Brown’s equation [29] shows that glass 

strength could increase as much as three times under dynamic loading. Some 

laboratory tests were reported to experimentally prove the dynamic increase effect on 

glass material strength [30, 31]. More systematic studies were recently carried out 

using Split-Hopkinson Pressure Bar to quantify the strain rate effect on architectural 

annealed glass [24]. The dynamic increase factors (DIF) for both compressive and 

split-tensile strengths at various strain rates were obtained from laboratory testing data 

[24]. Bi-linear relations between glass compressive and tensile DIFs and strain rates 

were derived (Figure 5). Some design codes recommend including the strain rate 

effect of glass material in the design analysis. For instance, British code [32] suggests 

a characteristic strength of 80MPa for glass window design against blast loading, 

while that for quasi-static loading is 45MPa, implying a dynamic strength increment 

of about 1.78 times. It is worth noting that despite the recent studies mentioned above 

[24], the dynamic increase effect on annealed glass used in building constructions is 

in general under investigated. Considering the large variations found on glass static 

strength, more dynamic tests are needed to better describe the glass dynamic material 

properties. 

 

a) High-speed camera images of glass cylinders under dynamic split-tension [31] 



 

9 

 

  

b) Failure states of glass specimens [24] 

 

c) Scanning electron microscopic images of failed specimen [33] 

Figure 4 Dynamic tests on glass specimens 

10
-5

10
-3

10
-1

10
1

10
3

0

1

2

3

4

5

 C
o

m
p

re
s
s
iv

e
 D

IF

Strain rate (s
-1
)

 Zhang et al. [24]

 Zhang et al. [47]

 Holmquist et al. [30]

 Peroni et al. [31]

 Trend line

 
10

-5
10

-3
10

-1
10

1
10

3

0

1

2

3
 Zhang et al. [24]

 Nie et al. [33]

 Nie et al. [46]

 Trend line

T
e

n
s
ile

 D
IF

Strain rate (s
-1
)  

a) Compressive DIF vs. strain rates b) Tensile DIF vs. strain rates 

Figure 5 Glass compressive and tensile dynamic increment factors vs. strain rates [24] 

2.2 Glass material models 

      To predict glass pane response with analytical and/or numerical approaches, 

several glass material models are available. Glass failure prediction model (GFPM) by 

Quasi-static ε =644s
-1
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Beason and his co-workers [21] is one of the most widely adopted models when 

designing glass windows under quasi-static loading. This is a statistical model based 

on the assumption that surface flaws (size and orientation) determine the glass 

cracking strength. The parameters of the Weibull model are determined from best 

fitting the testing data on glass panels. Many standards employ GFPM in their designs 

of glass window systems [34]. However, the generality and validity of the parameters 

in GFPM have often been questioned. Some modifications and improved model have 

been proposed by different researchers [35, 36]. On the other hand, many European 

standards such as prEN 13474-1 [37] adopt a deterministic model which precedes the 

statistical method (GFPM). The failure of glass pane is based on the allowable tensile 

strength of glass. The influence of surface condition and loading duration are also 

considered.  

      With the overwhelming usage of glass failure prediction model in analyzing glass 

window behavior under quasi-static loading as well as the understanding that under 

such loading glass behaves basically linear elastic till failure, also because of a lack of 

glass dynamic material model, in analyzing glass window dynamic response, a linear 

elastic model with static material properties had been often adopted in modelling glass 

material for many years [38-41]. With more recent understandings and testing results 

available on glass dynamic material properties, some dynamic material models for 

glass have been developed and utilized. In general, these models can be categorized 

into three levels, micro-level model [42], explicit crack development model [43] and 

marco-level model [44, 45]. The micro-level model is beneficial in investigating 

shock wave propagation in glass and equation of state (EOS). The explicit crack 

development model shows competency in predicting crack initiation and extension. 
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However, considering computational efficiency, these two approaches become less 

suitable for studying full-scale glass window response.  

      The macro-level models are generally continuum models. Grujicic et al. [44] 

formulated a continuum model based on flaw distribution on pane surface in 

analyzing glass pane response under ballistic impact (Figure 6a). The concept of 

shielding zone was introduced as glass damage propagates through the thick glass 

armor. Johnson-Holmquist Ceramic (JH2) model [45] is another popularly used 

macro-level model which considers glass strain-rate effect, material damage and also 

confinement effect. Material constants for float glass [30] were determined in early 

1990s through laboratory tests on limited number of glass specimens, which may not 

necessarily reveal glass dynamic material properties. Moreover, the original material 

constants were found not suitable for modelling architectural annealed glass as the 

compressive and tensile strengths tested on float glass were over 1GPa and 100MPa, 

respectively [30]. Both the compressive and tensile strengths are much higher than 

those experimental results on architectural annealed glass [24]. The discrepancy is 

believed to be attributed to differences in sample surface conditions. As pointed out 

by Nie et al. [33, 46] glass strength exceeding 1GPa were normally produced by 

submersing the specimen in acid fluid or going through fine polish to blunt out 

surface cracks. This could be suitable for transparent armor for military purpose but is 

not a process in producing construction glass panels. Modifications to material 

constants of JH2 model were recently conducted since more testing data on annealed 

glass dynamic material properties become available (strength and EOS) [24, 27, 47-

49]. The strength model, dynamic increase factor and also EOS were modified (Figure 

6b) [47]. Intensive verifications proved the accuracy of modified material constants 

for JH2 and they are capable of properly predicting the response of glass window 
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under shock and impact loads [47]. It should be pointed out that JH2 model was 

initially developed to simulate glass ballistic performance; the tensile region in the 

strength model was not properly described. Moreover, there is still a lack of testing 

data on the hydro-tension of glass material. Further refinement on construction glass 

material properties that can be used in JH2 model is therefore still needed.  
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a) Cumulative glass failure [44] b) Glass strength model of JH2 [47] 

Figure 6 Popularly used glass material models 

3. Monolithic Glass Windows 

Monolithic glass windows with annealed glass have been widely used in constructions 

for decades. To improve window performance, heat-strengthened glass and fully 

tempered glass are more and more popularly used to substitute traditional annealed 

glass because of their higher strengths. To reduce the threat from ejecting glass 

fragments, fully tempered glass are often preferable. The behavior of monolithic glass 

windows under blast loading and the corresponding glass fragment characteristics are 

outlined in this section. 

3.1 Monolithic pane response 

3.1.1 Analytical and numerical studies 

      Analytical study on predicting glass pane response generally adopts SDOF 

method [6, 50, 51]. Based on the assumption that glass pane could deform several 
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times of its thickness until failure, non-linear large deflection theory by Timoshenko 

[52] on thin plate was widely employed by considering both flexural response and 

membrane effect of glass pane. Load-deflection relation was derived with 

incorporation of Poisson’s ratio of 0.3 for glass [52]. The difficulties were arisen from 

accurately depicting pane resistance function. Modifications were basically made to 

the contribution of membrane effect which heavily depended on the level of glass 

pane planner movement.  

      With the development of finite element method, numerical method was used to 

assist the assessment of glass pane response. Pane stress and central deflection were 

assessed for monolithic glass pane subjected to lateral pressure. Load-deflection 

curves and load-stress relations for glass panes of different sizes and thicknesses were 

derived by Moore [7, 53] (Figure 7).  

      Moore’s load-resistance curves were thoroughly adopted by Meyers into his 

SDOF analysis on monolithic glass window response under blast loading [50]. The 

failure of glass pane was defined by pane central deflection which results in a 

maximum tensile stress till failure.  
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Figure 7 Non-dimensional load-deflection relationships for tempered glass [53] 

3.1.2 Design guides 

      UFC 3-340-02 [9] and ASTM E1300 [34] both facilitate with analysis and design 

of monolithic glass windows. UFC 3-340-02 provides a special section outlining 

design requirements for blast resistant monolithic tempered glass windows. The UFC 

code utilizes SDOF method, which basically follows Meyers’s analysis [50], to 

analyze window response under blast loading. However, no damping is considered in 

the UFC code, while Meyer considered a 5% global damping in the analysis, which 

tends to be slightly more conservative in the quasi-static region. Design charts with 

different combinations of glass dimensions and thicknesses are provided in UFC code 

to determine the blast resistant capacity of monolithic tempered glass windows. For 

instance, Figure 8a shows the blast resistance capacity of a 3/8 inch (appr. 10mm) 

thick and span ratio (long side/short side) = 1.25 tempered glass pane. For a glass 

pane of defined short side length (b), the peak pressure and load duration that the 

window capable of resisting can be determined with the chart. Wise verse, for a 

specific designed blast load (peak pressure and duration of blast pressure) the 

maximum pane dimension (short side length, b) can be determined. The ASTM 
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standard provides similar design charts with different combinations of window 

dimensions and thicknesses. For a 6mm thick glass pane of certain pane width (short 

side) and length (long side), the 3-second equivalent blast load that can be resisted by 

the windows can be found through the chart (Figure 8b). Glass type factor is utilized 

to consider glass pane fabricated with different types of glass. For a window with 

heat-strengthened or fully-tempered glass, a glass type factor should be applied to 

amplify the blast load found in the chart. In ASTM code, the glass pane is simply 

supported and free to slip in plane. Fully-clamped boundary condition is not 

considered. It should also be noted that UFC code requires glass pane to be simply 

supported on four sides, while ASTM standard can be applied to glass pane either 

simply supported or free to slip in plane and not necessarily on four sides but on two 

or three sides only.  

 
a) UFC 3-340-02 peak blast pressure capacity for tempered glass pane 

(pane length a/width b=1.25, pane thickness t=3/8 inch, about 9.53 
mm)  

     Ruptured glass panel 

     Intact glass panel 
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b)  ASTM E1300 non-factored load chart for 6mm annealed glass with four 
sides simply supported 

Figure 8 Design guidelines for monolithic glass windows by UFC [9] and ASTM [34] 

3.1.3 Experimental investigations 

      The above design methods based on non-linear plate theory have been popularly 

used in design practice for monolithic glazing. However, these methods are not 

necessarily always accurate. Table 1 lists the recorded peak reflected pressure (Pr), 

duration of blast pressure (td), and window post-test status for a group of 10mm thick 

monolithic tempered glass panels of dimension 1.5m x 1.2m in recent full-scale field 

blast tests [17]. As shown in Figure 8a when applying UFC standard to this set of test 

data (48inch = 1.22m, 3/8inch = 9.53mm), it can be observed that UFC code 

conservatively predicts all tested panels as ‘Rupture’ despite Pane 5-1-1 survived a 

much higher applied blast load in the field test. The conservative estimation by UFC 

code is mainly because the failure of glass window in UFC code is judged by glass 

tensile strength. However, as mentioned above recent laboratory tests revealed that 

glass dynamic tensile strength will be amplified considerably under high strain rate 

loading. Using the static failure strength of tempered glass is likely to underestimate 
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the dynamic glass strength. Therefore, it is necessary to incorporate glass dynamic 

strength in design code so as to get more accurate predictions.  

      Moreover, some recent field blast test on 1.5m x 1.2m monolithic tempered glass 

windows found that the tested glass windows fractured in two unique failure modes, 

i.e. spherical failure and planer failure pattern (Figure 9a) [17]. Similar observation 

was also reported by Morison [54]. Analysis on glass window response found that the 

failure mode of monolithic pane was highly related to the ratio of loading duration 

over natural period of glass pane. Spherical failure which is related to the predominant 

flexural response mode tends to occur when the loading duration is large, while planar 

failure which is related primarily to shear failure mode is more likely to happen when 

the loading duration is short. Design methods based on SDOF analysis, such as UFC 

3-340-02 consider the flexural response of glass pane because the equivalent SDOF 

system is derived according to the static deflection shape of the structure. Under blast 

loading with large amplitude and short duration window response and damage are 

very likely governed by shear failure mode. Since the equivalent SDOF system in the 

design guides is derived with flexural response assumption, shear failure mode cannot 

be captured. Therefore, the capability of such design codes in estimating glass 

window response to impulsive loading is not good. For instance, in Table 1 the failure 

patterns of Pane 9-1-1, 12-1-1, 10-1-2 and 11-1-2 in the field blast tests were 

categorized according to high-speed camera images. Despite the design chart from 

UFC 3-340-02 (Figure 8a) can be used to predict the failure of tested panels, it could 

not distinguish window failure modes. More field blast tests are still needed to better 

evaluate the accuracy of the available design chart in the impulsive region with even 

higher blast pressure and shorter blast duration. It is also worth noting that the 

monolithic glass panel is very brittle. It normally fractures at very early stage of the 
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positive blast pressure. Table 1 also gives tc, the time corresponding to the fracture of 

glass panel captured by high speed camera in the tests.  

Pane No. Pr (kPa/psi) 
td 

(ms) 

tc 

(ms) 
Status Failure type 

  5-1-1   72.9/10.6 7.4 - Intact - 

   5-2-1* 516.1/74.8 2.1 - Rupture - 

  9-1-1 220.0/31.9 3.3 1.3 Rupture Planar 

12-1-1 141.5/20.5 6.5 1.5 Rupture Planar 

10-1-2 130.1/18.9 5.8 2.5 Rupture Spherical 

11-1-2   84.7/12.3 7.0 2.0 Rupture Spherical 
                 * Window failure type is not available for Pane No. 5-2-1  

Table 1 Summary of test results on monolithic tempered glass windows [17] 

  
a) Monolithic tempered glass windows [17] 

 
b) Monolithic annealed glass windows [55] 

Figure 9 Field blast tests on monolithic tempered [17] and annealed glass windows [55]  

      A large amount of field blast tests and shock tube tests have been conducted over 

the past decades [5, 56-58], but the amount of testing results available for public 

assessment is still limited due to security concerns. Meyers et al. [57] reported their 

shock tube testing results on monolithic tempered glass window of squared and 

rectangular shapes. The recorded air pressures in the chamber lasted over 150ms, 
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which might be similar to gas explosion but are beyond the scope of blast wave from 

high explosives. Weissman et al. [58] carried out field blast tests on monolithic 

annealed glass windows. The windows were arranged either face-on or side-on the 

direction of blast wave. Window frames made of wood and aluminums were assessed. 

Empirical design criteria were proposed in terms of the maximum overpressure 

capacity of glass pane obtained in the blast tests. Peak reflected pressure and glass 

failure state were reported; however other details such as pressure time history, glass 

pane response history etc. were not documented. A few more field tests on monolithic 

glass windows are recently reported. Zhang et al. [17] performed full-scale blast test 

on monolithic tempered glass windows. Glass window deformation-to-fracture 

processes were monitored in detail using high-resolution high-speed cameras. Ge et 

al. [55] carried out field blast tests on monolithic annealed glass windows to 

investigate fragment behavior. Many commercial blast tests have also been carried 

out. But these tests are only to validate particular mitigation products and 

methodologies or to evaluate their efficiencies. There is in general still a lack of 

testing data on the performance of monolithic glass windows available for public 

access. 

3.2 Fragment characteristics 

3.2.1 Design codes and assessment tools 

      Properly evaluating and quantifying glass fragment threat from a shattered 

monolithic glass window has always been a major concern and challenge. GSA TS-01 

[59] classifies glass fragment threat based on fragment splash distances into the 

occupied space. As shown in Figure 10, after a blast incident if the glazing does not 

break or cracks but retained by the frame the hazard level is rated as ‘none’. When 

fragments enter the space within 1m (3.3ft) distance from the window or splashed 
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from 1m (3.3ft) to 3m (10ft) range, they are categorized as ‘very low’ and ‘low’ 

hazards respectively. If the glass shards are propelled into the room flying at height 

lower than 0.6m (2ft) at 3m (10ft) distance, the hazard level is ‘medium’, and the rest 

is rated as ‘high’ hazard. Similar assessment criteria are also provided by British 

Glazing Hazard Guide Criteria [60], ASTM F 1642 [61] and ISO 16933 [62]. These 

guides do not take into consideration of the fragment velocity, size, and shape in 

defining the hazards criteria. Many government agencies such as TNO of Netherlands 

[63] and US Army Tech Center and US Army Corps of Engineers Protective Design 

Center are in the process of developing their hazard assessment tools to evaluate 

ejecting glass fragment threats subjected to blast loading. For example, TNO carried 

out a series of shock tube tests on monolithic glass windows and monitored glass 

fragment velocities and sizes. Empirical relation between fragment velocity and 

reflected impulse was derived and implemented to its fragment hazard prediction 

module. Since the number of windows tested was limited, the accuracy of this module 

to predict fragment characteristics from windows of other thicknesses, dimensions 

and subjected to other combinations of explosive weights and stand-off distances is 

not known. Due to security concern, these available hazard assessment tools are 

generally only accessible to military and government agencies and not available for 

public access. Comparison and evaluation of the accuracies of different hazard 

assessment tools in predicting glass fragment hazards are therefore not possible. 

Reliable analytical and numerical models for predicting glass fragmentation process, 

fragment size, shape and velocity are not available yet. The current practice is still 

based primarily on empirical relations established from limited testing data to 

generate fragment hazard module. More experimental studies of glass windows of 

various dimensions subjected to different blast scenarios are still needed to enrich the 
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available pool of testing data so as to provide more reliable fragment hazard 

assessment tools.  

 

Figure 10 GSA performance conditions for window system response [59] 

3.2.2 Analytical and numerical studies 

      Analytical solutions and numerical simulations have also been employed in 

analyzing glass window fragmentation process. Based on strain energy coupled with 

damage, Zhang et al. [64] formulated an analytical model for predicting fragment size 

and ejection velocity. The fragment ejection velocity was related to strain rate which 

was regarded suitable to investigate dynamic fragmentation process. Ge et al. [55] 

derived semi-analytical solutions to estimate glass fragment velocity and splash 

distance (Figure 11). The derivation was also based on energy principles, and the 

constants involved in the formula were determined by their field blast test on 

monolithic annealed glass. Numerical methods were widely used to simulate glass 

window responses to blast and impact loads [38, 65-68]. However successful 

numerical models in simulating glass fragmentation are very limited. The existing 

numerical approaches have inherited difficulties in predicting structural 

fragmentations. The SDOF approach can only predict the overall window responses. 

The finite element method employs an erosion criterion to erode away elements to 
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avoid element tangling, which results in loss of fractured glass mass and also violates 

the principle of energy conservation. The meshless method and discrete element 

method avoid erosion, but the particle sizes and weak sections that will lead to 

structure breakage are pre-determined. Therefore, all these methods do not necessarily 

lead to reliable predictions of fragment size, launching velocity and distance. Despite 

some new numerical methods are available to simulate glass pane fracture and 

fragmentation process, such as X-FEM, SPH, DDA etc., successful applications of 

numerical approaches in reliably predicting glass fragmentation are still rare in the 

literature. Evaluations and understandings on glass fragment properties are therefore 

still heavily based on experimental investigations. 

 
Figure 11 Theoretical and experimental studies on annealed glass fragment splash distance [55] 

3.2.3 Experimental investigation 

      Many experimental investigations on glass fragment characteristics were reported 

over the years. For instance, Doormaal et al. [63] tested 8mm thick annealed glass 

windows and provided the relationships of the maximum fragment velocity and blast 

reflected pressure and impulse. Locke and Unikowski [69] carried out pendulum 

impact tests on glass windows. Fragment distribution was investigated by collecting 

glass fragments splashed on the ground. More systematic experimental investigations 

on annealed glass windows were reported by Fletcher [70] and Iverson [51], who 
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respectively studied fragment characteristics and the related fragment velocity, mass, 

spatial density with blast reflected pressure, and also assessed biological impact from 

ejecting window fragments. It was concluded that, as expected, the splash distance 

and fragment ejecting velocity are proportional to the magnitude of reflected blast 

pressure and impulse. 

     Fragment threats from fully tempered glass windows are generally ignored because 

under static or low-speed impact tempered glass pane normally shatters into numerous 

small and fine cubicles which impose limited threats. However, under blast loading 

this is not necessarily true. As discussed in Section 2, under blast loading fully 

tempered glass could still break into large and jagged pieces which impose 

considerable fragment threats to residents. The concern was experimentally proofed 

by recent field blast test [71]. Bogosian and Avanessian also carried out full-scale 

field tests to evaluate the blunt trauma lethality of monolithic tempered glass [72]. As 

shown in Figure 12a, large and jagged fragments resulted in serious blunt trauma in 

residents behind monolithic tempered glass windows. The fragments characteristics 

such as ejected fragment mass, fragment size, shape, number, spatial density, and 

launching velocity were systematically studied by Zhang et al. based on their field 

blast tests [71]. It was found that pane failure pattern would influence fragment shape, 

where more sharp and slender fragments were produced with spherical failure while 

more round and squared fragments were generated with planar failure (Figure 12b). It 

is also worth noting that negative pressure was found to significantly influence 

fragment ejecting velocity and splash distribution, which led to glass fragments 

propelled and splashed in front of windows. More experiments are still needed to 

augment the testing database for better understanding of glass fragment characteristics 

under blast loading. 
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a) Blunt trauma lethality of tempered glass [72] 

  

b) Large pieces of squared and slender fragments from tempered glass windows 

[71] 

Figure 12 Glass fragments from monolithic tempered glass panes 

4. Laminated Glass Windows 

Laminated glass is widely used for blast resistant glazing to mitigate the hazards from 

ejecting glass fragments. Laminated glass window is made of two or more layers of 

glass panes laminated together with one or multiple plies of polymer interlayers. The 

aim of laminated glass is to hold shattered glass shards together and deforms with its 

substantial ductility as a continuous membrane to dissipate the imposed energy 

(Figure 13). Before analyzing laminated pane response, it is necessary to properly 

understand interlayer dynamic material properties.  

1 inch 
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Figure 13 Role of interlayer in laminated glass 

4.1 Interlayer material properties 

      Commonly used interlayer materials include polyvinyl butyral (PVB), ionoplast 

polymer and ethylene acetate (EVA). Each of these polymer materials has specific 

transition temperature range for engineering applications, and the mechanical 

properties of different material also vary largely [73]. Furthermore, recent laboratory 

tests found the dynamic material behaviors of many interlayer materials differ from 

their static behaviors. The mechanical properties of two most commonly used 

interlayer materials for laminated glass, PVB and ionoplast polymer are outlined in 

the following section.  

4.1.1 PVB 

      PVB is a polymer material with outstanding mechanical properties which has been 

primarily used as interlayer material for laminated glass. The mechanical behavior of 

PVB has been proven to be complicated, which is highly nonlinear, time-dependent, 

and being capable of undergoing substantial extension.  

      The behavior of PVB at small-strain was intensively investigated for the analysis 

of pre-glass crack response of laminated glass pane. A viscoelastic model with a 

generalized Maxwell series is generally introduced to account for the time-dependent 

shear modulus [74-76] (Figure 14a). The influence of temperature is considered with 

Williams-Landel-Ferry equation to shift shear modulus of different temperatures [76].  

 Interlayer 
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a) Modulus vs. frequency at 20°C [76] b) PVB stress-strain curves [77] 

Figure 14 Mechanical properties of PVB 

      The mechanical behavior of PVB at large strain was studied at both quasi-static 

and dynamic states [54, 76-80]. Laboratory tests reveal that PVB shows viscoelastic 

material properties at low strain rates and is loading rate dependent. The dynamic 

tensile behavior of PVB was recently investigated up to a strain rate of over 1360s
-1

 

[77]. Dynamic tensile tests found the dynamic material properties of PVB differ 

significantly from its quasi-static behavior, which show elasto-plastic like stress-strain 

curves with a steep initial rise in stress followed by a decrease in modulus. The 

dynamic response of PVB is also characterized with time-dependence. As shown in 

Figure 14b, the initial modulus, ‘yield stress’, and failure stress will be amplified at 

increased strain rates. As strain rate increases PVB becomes less ductile. It can 

therefore be found that the simplification of using PVB static properties to analyze 

laminated glass response under blast load will lead to significant inaccuracy; 

especially the ductility of interlayer is to be overestimated. Instead of employing a 

viscoelastic model with PVB static material properties, recently some researchers 

used strain-rate dependent elastic plastic material model or bi-linear elastic model for 

PVB interlayer when modeling laminated glass response under blast and impact 

loadings [38, 65]. In general, good numerical results were reported when modeling 

the forced vibration of the laminated glass windows.  
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4.1.2 Ionoplast  

      Commonly used ionoplast material such as SGP (SentryGlas®Plus produced by 

DuPont) has been developed and introduced as interlayer material for laminated glass 

to improve its post-glass breakage behavior. Compared to traditional PVB interlayer 

which is soft and ductile (with failure strain of about 200%), SGP offers higher 

tearing strength, better rigidity, and larger failure strain.  

      The mechanical properties of SGP at different strain rates were investigated 

through laboratory tests [80-82]. As shown in Figure 15b, under uniaxial tensile 

loading SGP exhibits elasto-plastic like material properties, which are also strain-rate 

sensitive. The ‘yield stress’, initial modulus, failure strength will increase with strain 

rates, but the ductility diminishes quickly under elevated strain rates from about 400% 

at quasi-static state to only 150% at a strain rate of 2000s
-1

 [82].  
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a) High speed tensile test [80] c) SGP stress-strain curves [82] 

Figure 15 High speed tensile test and SGP engineering stress-strain curves 

      For both PVB and SGP, albeit the elasto-plastic like behavior that can be observed 

from the stress-strain curves (Figure 14b and Figure 15b), many researchers 

mentioned the recoveries of deformation in the tested specimens after unloading [76, 

77, 83], indicating the viscoelastic nature of such materials. In this case, if unloading 

response of a laminated pane needs to be considered, simply using an elasto-plastic 
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material model for either PVB or SPG may not be appropriate, which will lead to 

incorrect prediction of laminated pane behaviors. On the contrary, plastic 

deformations were reported by some researchers on PVB [78, 80]. Nevertheless, it 

should be noted that plastic behavior of material can only be characterized if the 

remaining strain during unloading is measured [73]. There is still a lack of testing data 

on the unloading behavior of the above polymer materials. To the authors’ 

knowledge, such testing technique is still not available for high-rate dynamic 

unloading. Therefore, the observed viscoelastic or plastic behavior of these polymer 

materials still needs further investigation. Without testing data on unloading phase, 

proper modeling of the dynamic unloading behavior of these polymer materials is still 

not feasible. Testing results on EVA at high strain rates cannot be found in literature. 

Testings are required to reveal its mechanical behaviour at various strain rates. 

4.2 Numerical and analytical studies 

      The deformation-to-failure process of laminated glass windows under lateral 

loading is normally described in five phases [38, 73] (Figure 16): (1) glass plies 

deform elastically; (2) the outer glass ply breaks; (3) the inner glass ply cracks; (4) the 

interlayer deforms as a membrane; and (5) the interlayer fails by reaching its failure 

strength or by cutting of glass shards.  

 

Figure 16 Schematic deformation-to-failure process of laminated glass [73] 
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      The behaviour of PVB laminated glass pane before glass cracks have been 

extensively studied by some researchers [40, 54, 74]. A major dispute was on the 

amount of shear force that can be transferred through the polymer interlayer in the 

composite laminated panel. Minor differences were found in pane deflection and 

principal stress between laminated glass pane and monolithic glass of the same 

thickness [40]. When strain rate effect is considered for interlayer, the tensile stress on 

the outer glass ply was marginally higher than that of an equivalent monolithic glass 

pane [74]. As Morison summarized and commented that regardless of the stress 

distribution in the interlayer, the failure probability of laminated glass pane hardly 

alters [83].  

      The response of laminated glass pane after glass crack is major concerns when 

studying the laminated glass window vulnerability under blast loading. Numerical 

methods have been intensively used to model laminated glass windows. Larcher et al. 

evaluated the applicability of three dimensional (3D) finite element model, shell 

element model, and smear model in modelling laminated glass [38]. It was concluded 

that the detailed finite element model with solid element could give best prediction of 

laminated glass response after glass cracks. The other two methods yield reasonable 

predictions before glass ply breaks. Many detailed 3D models of laminated glass 

windows have been built in the past [38-41, 65, 67, 84, 85]. It should be noted that 

similar to the case in modelling monolithic glazing, accurately simulate glass ply 

breakage for laminated glass windows is still a challenge. Traditional methods such as 

FEM suffer inherited difficulties in properly predicting glass cracking. Moreover, the 

large deformation of the interlayer material could result in element distortion in finite 

element model. The Poisson’s ratio of PVB is approaching 0.5, which could lead to 

singularity problem as well. Careful modelling and proper verification of numerical 
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models should be made when using numerical methods. Some numerical models 

using discrete element method (DEM) and smooth particle hydrodynamics (SPH) 

method were also generated for laminated glass panes in the past few years [86-88]. 

With recent understanding of dynamic properties of glass and interlayer material, a 

few numerical models adopt dynamic material models instead of static material 

properties [65, 67].  

      With the wide application of numerical methods, the failure modes of laminated 

panes under blast loadings with different combinations of pressure and impulse were 

examined. The influencing factors such as glass thickness, PVB thickness, glass 

strength variation, boundary condition, and pane size were systematically studied. 

Many Pressure-Impulse diagrams were generated by different researchers [65, 67, 

84]. It is worth noting that the pressure and impulse asymptotes of P-I curves from 

different authors vary, especially for the impulsive region (Figure 17). This is mainly 

because of different laminated pane failure criteria adopted, such as a maximum in-

plane strain [89], rupture of interlayer [65, 67], and/or maximum pane central 

deflection. Current design practise based on SDOF method normally uses the ratio of 

central deflection over window short span to assess the window failure. Quasi-static 

waterbag tests found 7.52mm laminated glass pane (1.52mm thick interlayer) fails 

with a deflection over span ratio of 27.8% [25]. In blast tests, laminated glass 

windows were found not failed at deflection ratios up to 32%. 
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Figure 17 Comparison of P-I diagrams with field testing data for 1.5m x 1.2m laminated glass window 

      If a laminated glass pane could survive the positive phase of a blast loading, the 

rebound could still be critical. Teich and Gebbeken [90] conducted parametric 

analysis using SDOF model to study the effect of negative overpressure on window 

response. It was found that with certain combinations of scaled distance and structure 

natural period, inclusion of negative pressure could lead to structure central deflection 

up to an order of magnitude higher than that under the positive phase. Krauthammer 

and Altenberg [91] also simplified a monolithic glass pane into a SDOF model. Their 

results showed the possibility for the glass pane to survive the positive blast pressure 

but rupture during rebound as a result of negative overpressure. For laminated glass 

windows, on rebound the pane will exhibit an initial elastic recovery of deformation 

followed by a slack stage with the cracked glass shards snap. Re-loading and further 

stretching could occur under the effect of negative pressure. Interaction between blast 

wave and cracked laminated glass pane makes the slack stage super-critically damped 

[25]. Reliable numerical or analytical studies on the response of laminated glass 

window during rebound are not found in the literature. As mentioned in Section 4.1, 

this is mainly due to the lack of testing data on unloading behaviour of interlayer 
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materials at high strain rates. Current understandings are heavily relying on 

interpretation of high-speed camera images in blast tests. 

4.3 Design codes 

      Major design guides such as UFC 3-340-02 [9] and Glazing Hazard Guide [12] by 

Security Facilities Executives (SFE) simplify the window structure to a SDOF system. 

Both guides employ large deflection theory to treat the pre-crack behaviour of 

laminated glass. After glass cracks, the window can be idealized as a flexible 

membrane. The equivalent load-mass factors and the resistance functions are obtained 

by analytical approach or based on testing data [92]. The accuracies of estimations 

from these SDOF models differ. Variation was mainly arisen from different resistance 

functions. As shown in Figure 18, the resistance function determined from quasi-static 

waterbag test varies significantly from that derived using dynamic material properties 

of PVB interlayer. SFE’s design guideline utilizes the static resistance function [12]. 

Through carrying out dynamic tests Morison derived a very different resistance 

function [54]. Zhang et al. [93] compared and evaluated the accuracies of the two 

design standards in estimating laminated glass window responses under low and large 

level blast loads. Under low level impulsive load, the two standards were found to 

give good predictions of panel responses obtained in laboratory pendulum airbag 

impact tests. This is because the two resistance-curves define similar window 

resistance when window deflection is small. However, under high level blast load 

when panel central deflection is large, UFC code yields much larger deflection than 

SFE’s guideline because much less resistance are defined by UFC code when window 

deflection level is large. The prediction of UFC code with the dynamic resistance 

function was found more reliable as compared to the field testing result on laminated 

glass windows than that of the SFE with the static resistance function. The variation 
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of the two design standards in predicting laminated glass window response is also due 

to the difficulty in accounting for the residual resistance of progressively cracked 

glass. The load-mass factor adopted for the SDOF model may therefore not be a 

constant value as in classic theory [94].  

  

a) Quasi-static waterbag test [92] b) Different resistance functions for 

laminated glass 

Figure 18 Quasi-static waterbag test [92] and different resistance-deflection functions  

      Apart from the above two design guides, ASTM F2248 [10] (in practice with 

E1300 [34]) and UFC 4-010-01 [95] are also facilitated with blast resistant glazing 

design. ASTM F2248 specifies an equivalent 3-second design load (Figure 19) to use 

with ASTM E1300 to determine the thickness of laminated glass windows. Glass 

failure prediction model with failure probability of 0.008 is used for glass, and the 

glass pane is designed to ‘break safely’. The maximum central deflection of the 

laminated pane is calculated using Vallabhan-Wang nonlinear plate method and an 

equivalent effective pane thickness. UFC 4-010-01 provides no specific analysis 

guidelines for glass windows to resist blast loads but recommends referring to ASTM 

F2248.  

0 50 100 150 200 250 300 350 400

0

20

40

60

80

100

120

 

 

 Cormie

 Morison

re
s
is

ta
n
c
e

 (
k
P

a
)

deflection (mm)



 

34 

 

 

Figure 19 Determination of 3-second equivalent blast load by ASTM F2248 [10] 

4.4 Experimental investigation 

      Many laboratory and field blast tests were reported in the literature on laminated 

glass window responses to impulsive and blast loading [84, 93, 96]. For instance, 

Kranzer et al. [96] tested 7.52mm laminated glass windows subjected to small-scale 

explosions. Hooper et al. [84] conducted full-scale blast test on 7.52mm laminated 

glass windows with interlayer and boundary failures. Zhang et al. [93] carried out 

pendulum airbag impact test and field blast test to evaluate the accuracies of available 

design standards and popularly used SDOF methods. Testing results and analysis 

show ASTM code tends to largely underestimate laminated pane response. UFC 3-

340-02 and other SDOF-based approach [12] give reliable predictions when the 

deflection level is relatively small. Under strong blast loading which results in large 

pane deflection, most SDOF models underestimate pane response due to the adoption 

of static resistance function in most analyses. As mentioned above the progressive 

cracking of glass plies leads to the change of load-mass factors for SDOF analysis. 

Morison [54] coupled the load-mass factors of SDOF model with different pane 
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deflection levels. The modified method was found to give better prediction. However, 

due to the irregular cracking pattern of glass plies under different blast loads, it 

sometimes overestimates laminated pane response.  

      Some observations from laboratory and field blast tests are worth mentioning. 

Firstly, according to previous field blast tests some researchers pointed out that glass 

delamination from PVB interlayer is hardly a potential threat, because only very few 

fractured glass shards delaminated at pane corners were reported [84]. Secondly, a 

thicker glass pane contributes to better blast resistance of the laminated glass pane. 

This is because of the significant increase in pane flexural stiffness and inertia 

resistance when using a thicker glass pane. Nevertheless, it should also be noted that a 

laminated pane with thick glass could lead to larger reaction to window frame and 

substructure. To achieve better blast performance, strengthening window frame and 

substructure is normally required for laminated pane with thicker glass panes. Thirdly, 

the effect of interlayer thickness on laminated pane maximum deflection is not 

significant. Similar levels of maximum central deflections were recorded on 

laminated glass panes with different thicknesses of interlayers [93], indicating 

increasing the interlayer thickness does not significantly contribute to glass pane 

stiffness. However, a thicker interlayer helps to reduce interlayer rupture when 

subjected to blast loading.  
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a) Glass crack only [96] b) PVB rupture [93] 

  
c) Boundary failure [93] d) Boundary failure [84]  

Figure 20 Different failure modes of laminated glass window in blast tests 

      The restrain from window frame is another concern when designing laminated 

glass windows. Laminated glass pane is embedded in window frames with and 

without gaskets in the bite. Structural silicone is commonly used to add bonding 

strength. Providing the window frame is properly designed, the reaction forces 

perpendicular to the plane of glass pane can be estimated using SDOF analysis [25]. 

Some recent shock tube test and field blast test reported the measured perpendicular 

forces. The researchers either glued strain gauges to the steel frame [84] or employed 

tri-axial load cell on window frame to track reaction force directly [97]. Different 

from monolithic glass window, after glass plies crack the deformation of laminated 

pane and the substantial membrane effect tend to pull the cracked laminated glass 

panel out of the frame. As evidenced in Figure 20c and d, under air blast wave the 

entire shattered laminated panes were totally pulled out of the window frame and 

propelled into the testing cube. Interlayer tearing was not found on any of these glass 

panes with pull-out failure. A sufficient bite depth and anchorage from the window 

frame is therefore needed when designing laminated glass windows. Experimental 

quantification of the in-plane reaction is still not documented. Some UK testing data 

indicate that for a 1.55m x 1.25m laminated pane a 30mm bite is required to reliably 
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anchor the panel into the frame [25]. By evaluating most recent laboratory and field 

tests on laminated glass windows, Zhang et al. [98] studied the effect of frame restrain 

effect with various bite depth subjected to different blast loading scenarios. Increasing 

bite depth was found to greatly improve the frame restraint to laminated glass pane 

against pull-out failure. Applying structural silicone resin to the gap between steel 

frame and the glass pane help to improve the bonding and mitigate pull-out failure. 

However, there is still no systematic study yet on the effectiveness of silicone resin.  

5. Mitigation retrofit 

      Different techniques and materials are available to improve glass window’s blast 

resistant capability. General practices include replacing low strength-annealed glass 

with high-strength heat-strengthened glass or fully tempered glass, strengthening 

window frame and mullion, apply security film, and installing catch system, etc. Lin 

et al. [99] conducted an intensive review on available window strengthening 

techniques. With better understanding about the response and failure of glass 

windows, more mitigation methods have been proposed in recent years. Some 

selected mitigation retrofits are discussed herein. 

5.1 Security film 

      Applying security film to the interior surface of glass windows is a 

straightforward retrofit especially for existing windows. Security film is normally 

made of polyester between 0.2mm to 0.4mm thick, which will hold the shattered glass 

shards in a manner like laminated glass to reduce the hazards of flying glass shards 

[99]. For easy application, daylight film can be installed on glass pane without any 

attachment to window frame or mullions. It is quick, unobtrusive, and relatively 

inexpensive. However, in a blast incident the shattered glass shards might be hold 

together by the film and fly entirely towards the residence inside [72] (Figure 21b). 
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The potential of laceration by jagged glass shards could be reduced, but the heavy 

flying pane would pose significant threats. Improvement can be made by extending 

the film edge into the bite of frame (wet-glazed film in Figure 21a) so as to strengthen 

glass pane against shear failure near the frames, or anchor the extended film to 

window frame or other attachment devices, such as bolted to the walls (mechanically 

anchored film in Figure 21a). Applying security film can be an effective retrofit for 

minimizing the hazard from fractured glass windows. Proper design is required to 

achieve the desired blast resistant capacity. 

Daylight film 

 
 

Wet-glazed film 

 
 

Mechanically anchored film 

 
 

a) Retrofit measures with security films [100] b) Field test on daylight film [72] 

Figure 21 Security film and field validation test 

5.2 Catch system 

      Catch systems have been normally introduced to work along with security filmed 

glass or laminated glass in order to provide more robust blast resistant window 

systems. The catch systems generally include catch bars and blast curtain, which are 

installed behind glass panes. The catch system will restrain the excessive deformation 

of the glass pane or stop the ejecting glass pane from flying towards the occupied 

area. A few catch systems have been proven effective against higher blast pressures 

because they enable pressure venting after glass detached from window frame. Some 

blast curtain or catch membrane can also be used with monolithic glass windows. A 
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general problem with catch system is the proper anchorage and installation into the 

wall because very large constraining force will be required for these catching 

members.  

  

a) Catcher cable system [101] c) Catch bar [100] 

Figure 22 Catch systems for filmed glass or laminated glass windows 

5.3 Interlayer achor 

            Mitigating the pull-out failure on laminated pane, interlayer anchorage 

measures such as fixture bars and fixture bolts were introduced to anchor the extended 

PVB strips to the window frames [100]. Field blast test were carried out to examine 

the performance of these anchorage measures. The effectiveness of these interlayer 

anchorage measure under different blast scenarios were evaluated and compared with 

field blast test results (Figure 23) [98]. The studies found that if properly designed, 

interlayer anchors will greatly reduce the vulnerability of laminated glass windows 

with pull-out failure. But under large-scale blast load, interlayer rupture or tearing 

from the fixture bolts and fixture bars might still occur. The applicability of interlayer 

anchor is therefore also limited to small and medium level blast scenarios. 
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a) Anchorage bars b) Anchorage bolts 

Figure 23 The effectiveness of interlayer anchorage systems under blast load from 90kg TNT detonated at 

10m stand-off distance [98] 

5.4 Other strengthening measures 

      Some new mitigation retrofits and concepts have been introduced in recent years. 

For instance, Trawinski et al. [100] developed a damping chamber window frame 

system (Figure 24). The system includes two glass units separated by a damping 

chamber. The imposed energy will be consumed by the vibration of the two glass 

units. If the outer glass unit breaks by air blast wave, pressure will vent through the 

chamber, thus mitigate the loading on the inner glass pane.  

Joint failure 

Bar yielding 

PVB 

rupture 

PVB tearing 
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Figure 24 Damping Chamber window frame system [100] 

      Based on parametric study it was found that the blast resistant capacity of a 

laminated pane with a pinned boundary performed better than that with a fully fixed 

boundary. A more flexible ‘sliding boundary’ was also proposed by Zhang et al. [98]. 

The concept is to allow glass pane have certain transitional movement in the direction 

of blast wave. The movement of the glass pane would absorb blast loading energy and 

hence mitigate damage. Field validation test proofed the laminated glass pane with a 

sliding boundary performed better than that with a conventional fully fixed boundary 

(Figure 25). Similar retrofit concept was reported in UK practise, where a punched 

window was held by a yielding support [102] (Figure 26). 

 
a) Schematic view of sliding boundary system 

  

a) Sliding boundary  b) Fully fixed boundary  

Figure 25 Laminated glass windows with sliding boundary [98] 
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a) Numerical analysis b) Field validation test 

Figure 26 Yielding supports for punched windows [102] 

      Other mitigation measures such as cable supported glazing with energy dissipation 

connectors [103, 104] are also available in recent years. Their effectiveness was 

evaluated with numerical studies and/or field tests. However, most of these tests were 

only case by case. Their effectiveness when applied to windows of other dimensions 

and blast loads of other scenarios is not fully understood. 

6. Summary 

This paper presents a review of the blast resistant window systems. The history of 

studies on glass window response to blast loading is briefed. Fundamental knowledge 

and recent understandings about glass dynamic material properties as well as 

available material models for annealed glass are summarized. Analysis and design 

methods for monolithic glass windows are outlined. The characteristics of glass 

fragments produced by air blast wave are discussed. The up-to-date study about the 

laminated glass window behaviour under blast loading is reviewed. Recent numerical 

models and analytical solutions on the response of laminated glass windows are 

summarized and discussed. Available field blast tests and laboratory tests are also 

outlined. The accuracies and popularly used design guidelines are assessed. Blast 

resistant mitigation retrofits are also outlined and their effectiveness discussed.  
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