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Abstract

In this paper, we consider estimation problems involving a class of nonlinear
systems characterized by two non-standard attributes: (i) such systems evolve
over multiple stages; and (ii) the dynamics in each stage involve unknown time-
delays and unknown system parameters. These unknown quantities are to be
estimated such that a least-squares error function between the system output
and a set of noisy measurement data from a real plant is minimized. We first
present the classical parameter estimation formulation, where the expectation of
the error function is regarded as the cost function. However, in practice, there
exists uncertainty in the distribution of the measurement data. The optimal
parameter estimate should be able to withstand this uncertainty. Accordingly,
we propose a new parameter estimation formulation, in which the cost function
is the variance of the error function and the constraint indicates an allowable
sacrifice from the optimal expectation value of the classical parameter estima-
tion problem. For these two estimation problems, we show that the gradients of
their cost functions and the constraint function with respect to the time-delays
and system parameters can be computed through solving a set of auxiliary time-
delay systems in conjunction with the governing multistage time-delay system,
simultaneously. On this basis, we develop gradient-based optimization algo-
rithms to determine the unknown time-delays and system parameters. Finally,
we consider two example problems to illustrate the effectiveness and applicabil-
ity of our proposed algorithms.

Keywords: Multistage system; time-delay system; parameter estimation;
robust parameter estimation; nonlinear optimization

1. Introduction

A dynamic system that evolves over multiple stages is referred to as a multi-
stage system. The system is called a multistage time-delay system if time-delays
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appear in any of the stages of the multistage system. Both multistage system
and multistage time-delay system are encountered in various real-world appli-
cations, such as population models [1], production-inventory systems [2], and
fermentation processes [3, 4].

In solving a real-world problem, the first step is to construct a dynamic
system to model the behaviour of the real plant. Clearly, some of the parame-
ters, which may include time-delays, are required to be estimated. This process
is known as parameter estimation, which is a key step in the construction of
reliable dynamic models in science and engineering problems [5]. A parame-
ter estimation problem is usually formulated as an optimization problem, in
which a cost function quantifying the difference between the output of the con-
structed dynamic model and the measured output data from a real plant is
minimized. There are many results, both in theory and algorithms, available
in the literature for parameter estimation problems involving nonlinear systems
with a single stage and no time-delays; see, for example [6, 7, 8]. However, for
nonlinear multistage systems, they contain both discrete and continuous charac-
teristics [9], and hence are much harder to handle. A gradient-based algorithm
to compute the optimal parameters for a class of multistage systems without
path constraints is developed in [10], and it is extended to a class of multi-
stage systems with path constraints in [11]. A hybrid stochastic-deterministic
method is proposed to optimize the parameters for a class of multistage sys-
tems in [12]. More recently, parameter estimation problems involving nonlinear
multistage systems, which arise in the study of fermentation processes, are in-
vestigated in [13, 14, 15]. However, all the results mentioned above do not take
into account the effect of time-delays that exist in the multistage systems.

Time-delays are commonly encountered in various engineering systems, such
as chemical processes, mechanical systems, network control systems and eco-
nomic systems [16]. It is well known that time-delays can degrade system per-
formance [17]. Therefore, the effect of time-delays must not be ignored dur-
ing the construction of the system model. As a result, parameter estimation
for time-delay systems has attracted a considerable interest amongst research-
es over the past decades; see, for example [18, 19, 20, 21]. Many computation
methods, such as finite-dimensional approximation scheme [22], steepest-descent
algorithm [23], modified least-squares technique [24] and particle swarm opti-
mization [25], have been developed. Recently, a new algorithm for estimating
unknown time-delays in a nonlinear dynamic system is developed in [26]. This
algorithm is extended to cater for nonlinear systems that contain unknown sys-
tem parameters as well as unknown time-delays in [27]. However, these parame-
ter estimation algorithms are only designed for time-delay systems with a single
stage. More recently, a gradient-based optimization algorithm is developed to
solve parameter estimation problem involving nonlinear multistage systems with
unknown time-delays as well as unknown system parameters in [28]. However,
the measured output data from the real plant are assumed to be exact in [28].
This is, of course, an idealistic assumption, as the measurement of the output
from the real plant can never be obtained with a perfect precision. In practice,
there exists uncertainty in the distribution of the measurement data. The opti-



mal parameter estimate should be able to withstand the uncertainty, i.e., it is
robust against the uncertainty. As a result, by minimizing the weighted sum of
mean and variance of a least-squares error between actual and predicted system
output, parameter estimation for nonlinear time-delay systems with noisy out-
put measurements is investigated in [29, 30]. However, there are two limitations
in [29, 30]: (i) it does not provide quantitative information showing the sac-
rifice of the obtained expectation value from the optimal expectation value of
the classical parameter estimation problem; and (ii) the parameter estimation
method is only applicable to time-delay systems with a single stage.

In this paper, we propose a new formulation of the parameter estimation
which is free of these drawbacks. To be more specific, we consider a general
nonlinear multistage system with multiple time-delays and multiple system pa-
rameters. Robust time-delays and system parameters are to be estimated such
that a least-squares error function between the system output and a set of noisy
measurement data from the real plant is minimized. It is to be achieved in two
stages. We first present the classical parameter estimation formulation, in which
the cost function is the expectation of the error function. Then, based on the so-
lution obtained, we propose a new formulation for finding robust time-delays and
system parameters, where the cost function is the variance of the error function
and the constraint explicitly specifies the allowable sacrifice in the expectation
value of the error function. For these two estimation problems, we transform
them into equivalent nonlinear optimization problems. Furthermore, we show
that the gradients of the corresponding cost and constraint functions with re-
spect to time-delays and system parameters can be computed through solving
the original multistage time-delay system and a set of auxiliary systems forward
in time, simultaneously. On this basis, gradient-based optimization methods
are developed to solve these two estimation problems. Note that, unlike the
method reported in [29, 30], our new methods are applicable to a much larger
array of problems, not restricted to single-stage parameter estimation problem-
s. Finally, two example problems are considered to test the performance of our
new approaches.

The rest of the paper is organized as follows. Section 2 gives two parameter
estimation problems. Section 3 presents the equivalent nonlinear optimization
problems. The computational algorithms for the equivalent optimization prob-
lems are provided in Section 4. Numerical examples are discussed in Section 5.
Finally, Section 6 provides some concluding remarks.

2. Problem formulation

Consider the following multistage time-delay system with N stages and m
time-delays:

2(t) = filt,z(t), 2t —ar),...,x(t —am), ()t € (ti_1,t:),i=1,2,..., N, (la)
z(ti+) = z(t;—), i=0,1,...,N, (1b)
‘T(t) = (b(tv C)v t<0, (1C)



where z(t) € R™ is the state vector; ¢ € RY is the parameter vector; «;,
7 =1,2,...,m, are time-delays; t;, © = 1,2,..., N, are given switching times;
x(t;+) is the state immediately after the switching time ¢;; x(¢;—) is the state
immediately before the switching time ¢;; and f*: R x R™ x R"™ x R — R"
and ¢ : Rx RY — R are given functions. Here, the switching times in (1a)-(1b)
are assumed to be pre-assigned such that

O=to<ti <---<tn=T,

where T is the terminal time. For system (1), it begins in stage 1 at time ¢ = 0,
then switches to stage 2 at time ¢ = ¢;, and so on. We also assume that there
are no state jumps at the switching times; see condition (1b).

The system output y(t) € R? of system (1) is given by

y(t) = g(t, =(t),¢), t=0, (2)
where g : R x R® x R¥ — R? is a given function.
In system (1), both time-delays «j, 7 = 1,2, ..., m, and the parameter vector

¢ are unknown, requiring to be estimated. Now, define
D= {(a1,q9,...,am) €R™:a; <a; <bj, j=1,2,...,m},

where a; and b; are the lower and upper bounds of the jth time-delay. Any
vector o € D is called an admissible time-delay vector. Furthermore, define

Z:={(C.G- ) ER e <G < dp, k=1,2,... 0},

where ¢ and dj are the lower and upper bounds of the kth system parameter
in (. Any vector ¢ € Z is called an admissible parameter vector. Accordingly,
any pair («, () € D x Z is called an admissible delay-parameter pair.

We assume throughout this paper that the following conditions are satisfied.

Assumption 1. The functions f*, i = 1,2,...,N, and g are continuously
differentiable. Moreover, the function ¢ is twice continuously differentiable.

Assumption 2. There exists a positive real number L > 0 such that for all
t e [tifl,ti], 1=1,2,...,N, xd ER”,j:O,l,...,m, andCGZ,

£t 2 2t 2™, O < LA+ [l2°] + 2t + - + [l2™]),
where || - || denotes the Euclidean norm.

Assumptions 1 and 2 ensure that system (1) admits a unique continuous
solution corresponding to each delay-parameter pair (a, () € D x Z [31]. We
denote this solution by x(-|a, ().

Let y(-|a, ¢) denote the system output obtained by substituting z(-|a, ¢)
and ¢ into (2). Our aim is to estimate the unknown time-delays and system
parameters by comparing the system output with some measurement data of
the real plant at a set of sample times

0<n<m< <7, <T.



Let ' denote the measurement data at time t = 7;. Obviously, these measure-
ment data are generally imprecise due to measurement noise. Here, we assume
that the measurement data, ', [ = 1,2,...,p, are random vectors, where the
corresponding mean vector (of dimension pg) and covariance matrix (of dimen-
sion pg X pq) can be obtained. The following least-squares error function is used
to measure the difference between the system output and the measurement data:

P
J(, Q) =D ly(mle, Q) — 1%, (3)

=1
Note that J(-,-) is a function containing random vectors ', I = 1,2,...,p.

Now, we present the classical parameter estimation problem, which is denoted
by Problem A, given below.

Problem A. Given system (1), choose an admissible delay-parameter pair (o, () €
D x Z such that the cost function

Gl (Oé, C) = E{J(a7 <)}
is minimized, where E{-} denotes the expectation.

Problem A is a dynamic optimization problem in which the time-delays and
system parameters in system (1) are to be optimized. In case that the distri-
bution of the measurement data is known exactly, the optimal delay-parameter
pair can be obtained by solving Problem A. However, in practice, we do not
know the distribution of the measurement data exactly. There exists uncertain-
ty in the distribution of measurement data. Therefore, it is important to find
the optimal delay-parameter pair which is robust against the uncertainty. To
this end, we take the variance of the least-squares error function (3), which mea-
sures how far the random error functions are spread out from their expectation
value, as the cost function. Moreover, we impose the the following constraint
to ensure that the expectation value is within the allowable sacrifice from the
optimal expectation value of Problem A:

E{J(a,¢)} < (1 + B)E(@", (), (4)

where (a*, ¢ *) is the optimal delay-parameter pair of Problem A; and 8 > 0 is a
weighting factor specifying the allowable sacrifice of the expectation value from
the optimal expectation value of Problem A. Thus, our parameter estimation
problem, which takes robustness into account, can be stated as follows.

Problem B. Given system (1), choose an admissible delay-parameter pair (o, () €
D x Z such that the variance of the least-squares error function

Ga(a, ¢) = Var{J(a, ()}

is minimized subject to constraint (4), where Var{-} denotes variance.



Problem B is a constrained optimization problem involving a nonlinear mul-
tistage system with time-delays and system parameters. In particular, con-
straint (4) quantitatively specifies the discrepancy between the delay-parameter
pair and the optimal delay-parameter pair of Problem A. This is quite differ-
ent from the parameter estimation formulation in [29, 30], in which the cost
function is the weighted sum of mean and variance of the least-squares error
function. Furthermore, the optimization algorithms reported in [27, 29, 30] are
only designed for parameter estimation problems involving time-delay system
with a single stage. Therefore, new approaches are needed to solve Problem A
and Problem B. For this, we need to transform Problem A and Problem B into
equivalent optimization problems.

3. Problem transformation

In what follows, we shall omit the arguments « and ¢ in the output y(-|a, ()
for brevity. Then, the least-squares error function (3) can be written as follows.

(y(n) — 3" (y(n) — 4"

M=

J(a7 <) =

l

I
-

[
NE

y(m) Ty(m) = 2> ym) o+ > 6H
=1 =1

l

Il
-

Thus,
Gi(a, () =E{J(a, ()}
=Sy Tym) -2y "B + BT 6)
=1 1=1 1=1

and

Ga(a, Q) = Var{J(a, ()} = 4Var{ iy(Tl)Tgl} + Var{ i(gl)Tgl}

=1

where Cov{-,-} denotes covariance. Note that

Var{ lz_p;y(fz)Tﬁl}

Z Z Cov{y(m) "4, y(m) 9"}

=2 ym)Ty(m), (7)



where '™ = [y17] is a ¢ x ¢ matrix whose (2, 7)th element is defined as

75" = Cov{g,, 4;}. (8)

Moreover,

Cor Y- u(n) T Y00} = 3o Do ulm) " Contit, (7))

=1 =1 T

N
Il

s
I

A

y(m) TAMT1Y, (9)

[
NE
NE

N
Il

-
I

s

T

where 19 is a column vector of all ones in RY; and Ab" = [/\ﬁf] is a ¢ X ¢ matrix
whose (2, 7)th element is defined as

Lr Al ar\2
/\ZJ - COV{yZ, (yj) } (10)
Substituting (7) and (9) into (6) gives

iy TFlr 4izy(n)TAl,r1q

1r=1 =1 r=1

vl S "

=1

Ga(a,¢) =4

M‘@

l

Since the last terms on the right-hand side of (5) and (11) are independent of
decision vectors a and (, Problem A and Problem B are, respectively, equivalent
to the following problems:

Problem C. Given system (1), choose an admissible delay-parameter pair (a, () €
D x Z to minimize

Q)= _ym) yn)—2> y(n) "B{H'}, (12)
=1 =1
where y(-) = y(-a, ¢).

Problem D. Given system (1), choose an admissible delay-parameter pair («, () €
D x Z to minimize

PP P
=4> > y(n) T y(r) = 4> 0> y(n) TAL1 (13)
=1 r=1 =1 r=1
subject to the constraint
Gi(,Q) < (1+8)G1 (a7, (), (14)

where y(-) = y(-|e, O); B> 0; and (&*,C*) is the optimal solution of Problem C.

Note that constraint (14) is to specify the discrepancy between the optimal
delay-parameter pair of Problem D and that of Problem C.



4. Computational algorithms

Problems C and D can be regarded as nonlinear dynamic optimization prob-
lems with decision vectors o and (. It is well known that gradient-based op-
timization methods, e.g., sequential quadratic programming (SQP) algorith-
m [32], are effective methods for solving nonlinear dynamic optimization prob-
lems [33]. However, such methods require the gradients of the cost function
(and the gradients of the constraint functions, if applicable). But since the cost
functions in Problem C and Problem D, and the constraint function in Prob-
lem D are implicit (rather than explicit) functions of the decision vectors o and
¢, it is not obvious how to determine their gradients. In this section, we will de-
termine these required gradients and develop computational algorithms to solve
Problem C and Problem D.

Let

fi(t|a7<) = fi(tvx(t)vx(t - 041), s 7:C(t - am)v()a (15)
do(t.¢) .

(o) =4 ot M= (16)

filtla, ¢), ifte€ (ti—1,t;] for some i € {1,2,...,N}.

Clearly, for almost all ¢ € R, we have &(t|a, ¢) = x(t|a, ¢). In the following, we
will use 937 to denote partial differentiation with respect to x(t — o).

Foreach j =1,2,...,m and a given (a, () € Dx Z, we consider the following
auxiliary time-delay system:

() - L0y +Zaf W9z,

~0F(t]a Q)

857J X(t—Oéj|O[,<), te (tiflati)a 7;:1527"'7]\]7 (173,)

with the intermediate conditions
= (ti+) == (t;—), i=0,1,...,N, (17b)

and the initial condition ‘
=(t)=0, t<O0. (17¢)

Let =7 (-|a, ¢) be the unique continuous solution of auxiliary system (17) cor-
responding to each delay-parameter pair («, () € D x Z. We have the following
result.

Theorem 1. For each (o,() € D X Z,

da(tla, ¢) _

P i (tle,¢), te€ (—o00,T), j=1,2,...,m. (18)



Proof. Since («,() is fixed throughout this proof, we write z(-) instead of
x(+|a, €) for brevity.
First, note that
Ox(t) 0

Bo, = aTj{aﬁ(tC)} —0, t<o0. (19)

Thus, 0z (-|a, {)/0a; satisfies the initial condition (17c).
Now, by (1),

1—1 t, t _
2(t) = 6(0,0) + 3 / F(sla, C)ds + / Fi(sla, O)ds,
=17 t—1 i

ti—1

tE(ti_l,ti), 1=1,2,...,N, (20)

where fi(-|a, () is as defined in (15). It can be shown that for each fixed ¢ €
(—o00, T, z(t|e, ¢) is a continuously differentiable function of o, j = 1,...,m
(see [28]). Hence, by using Leibniz’s rule to differentiate (20) with respect to
oy, we obtain

dx(t) = [ [Of (sl Q) Da(s) | = Of (s, C) Da(s — )
9o, _Z/t”{ or oo +; oF Py

1=1

of(slane) [0 (slan) u(s)
- 6,%‘7 X(S_Oé-]'a’é-)}ds—i_/til { A 80lj

" Af (s|ev, ¢) Bz (s — o Ofi(sla
L 3ol orte ) féJj’C)X(S—ajla,C)}ds,
1=1 J x

where x(:|a, () is as defined in (16). Differentiating the above equation with
respect to time yields

d [0x(t) (’“)fi(t|a,§) 0x(t) u (’“)fi(t|a,§) oz(t — ;)
E{ Be; }_ or oa; T o B,

_ Of'(t|a, )
977

Furthermore, by (1b), it is obvious that

J=1

X(t_aj|a7<)at€(tiflati)vi:172a"'7N' (21)

Oz(tit) _ 0olti) o N (22)
6aj 60éj

Equations (19),(21), and (22) show that 0z(-|, {)/d«; is the solution of auxil-
iary system (17), as required. O

On the basis of Theorem 1, we obtain the following result which gives the
gradients of Hy and Hs with respect to «.



Theorem 2. Let («,() € D x Z. Then, for j=1,2,...,m

8H1(a7<) _ . 89(77’:17(7—”0"()7():'
de - 2;@l(o‘a<)—r O h‘](7—1|o‘a<)7 (23)
8H2(a7<) _ . 89(Tlv'r(7'l|a7<)a<):'
) PGl LN
where
SDZ(O‘=C) = g(Tlvx(Tl|O‘7C)7<)) _E{gl}; (25)
and
Z{w 9(7r, 2(1r ], €), €) — AbT 19} (26)

Proof. Differentiate H; and H» with respect to a; and then applying (18)
and the symmetry of Tb". [

From Theorem 2, we can see that the gradients of H; and Hs with respect to
time-delays can be computed by solving a set of auxiliary systems (17) together
with system (1), simultaneously. Next, we will investigate the gradients of H;
and Hy with respect to system parameters. To this end, for each £k =1,2,... v
and a given (a,() € D x Z, we consider the following auxiliary time-delay
system:

\ifk(t) (9][ (t|04 C )+ Z afzatljy 6 (t —a,)

ox
of'(t
+M, te(tiii,t), i=1,2,...,N, (27a)
Gy,
with the intermediate conditions
UF(ti4+) = ¥*(t;—), i=0,1,...,N, (27h)
and the initial condition
0o(t
Ur(t) = il ’C), t <0. (27¢)
¢,

Let W¥(-|a, ¢) be the solution of system (27) corresponding to each delay-
parameter pair (a, () € D x Z. Then, we have the following result.

Theorem 3. For each (o,() € D x Z,

ax(t|a7<) :\I}k(t|agc)7 te (_00711]7 k:1,27,v
OC;

Proof. The proof is similar to that given for Theorem 1. [
On the basis of Theorem 3, we present the gradients of H; and Hs with
respect to ¢ in the following theorem.

10



Theorem 4. Let (o,() € D x Z. Then, for k=1,2,..., v,

aHl(a7<) inl(a,C)T{ag(Tl’x(Tl)’C) \I/k(ﬂ) + ag(Tlvx(Tl)7<) (28)
=1

8<k — Ox 8<k ’
aH?(a7<) _ - l T ag(Tlvx(Tl)7<) k 89(Tl7x(7_l)7C)

l

1

where z(-) = x(-]a,¢); WF() = U*(|a,C); and ¢! (a,¢) and Y'(a, () are as
defined in (25) and (26), respectively.

Proof. The proof is similar to that given for Theorem 2. [
Based on Theorems 2 and 4, we now present the following algorithm for
solving Problem C:

Algorithm 1. Step 1. Choose an initial delay-parameter pair («, () € D x Z.
Step 2. Compute Hi (o, () according to (12).

Step 3. Compute 0H;(c,()/0a;, 7 = 1,2,...,m, and 0H1(«,()/0Ck, k =
1,2,...,v, using (23) and (28), respectively.

Step 4. If (, ¢) is optimal, then (a,¢) — (&*,(*) and stop. Otherwise, use the
gradient information obtained in Step 3 to compute a descent direction.

Step 5. Perform a line search along this direction to obtain a new pair (o, (") €
Dx Z.

Step 6. Set (o/,{’) — («,¢) and return to Step 2.

Remark 1. Theorems 2 and 4 present the gradients of expectation and variance
of the error function (8) with respect to each delay-parameter pair. Thus, if we
additionally compute Ha (o, ), OHs(,C) /0y, j =1,2,...,m, and OHa(w, )/,
k=1,2,...,v, in Steps 2 and 3, then Algorithm 1 can be used to solve the pa-
rameter estimation problem, in which the cost function is the weighted sum of
expectation and variance of the error function and dynamic system is a mul-
tistage time-delay system. This extension of Algorithm 1 is called Extended
Algorithm 1 in the sequel. In particular, if such parameter estimation problem
involves only single-stage time-delay systems as the one in [29, 30], then the
Eztended Algorithm 1 is reduced to the algorithm reported in [29, 30].

Based on the obtained optimal delay-parameter pair (a*, 5 *) in Algorithm 1,
we present the following algorithm for solving Problem D:

Algorithm 2. Step 1. Set a weighting factor g > 0 and choose an initial delay-
parameter pair (a, () € D x Z.

Step 2. Compute Ha(a, () and the constraint function according to (13) and
(14).

Step 3. Compute 0H1 (e, ()/0a;, 0Ha(e, ) /0, j =1,2,...,m,and 0H: (e, ()/OCk,
OHz(,()/0Ck, k=1,2,...,v, using (23), (24), (28) and (29), respectively.

Step 4. If (o, ¢) is optimal, then stop. Otherwise, use the gradient information
obtained in Step 3 to compute a descent direction.

Step 5. Perform a line search along this direction to obtain a new pair (o, (") €

11



Dx Z.
Step 6. Set («”,¢") = (a, () and return to Step 2.

Remark 2. In Algorithm 1 and Algorithm 2, the gradients are computed in
a unified manner in the sense that the multistage time-delay system (1), the
auziliary systems (17) and (27) are solved simultaneously forward in time. This
makes the algorithms very convenient to be implemented.

Remark 3. In Algorithm 1 and Algorithm 2, Steps 4 and 5 can be implemented
using a standard nonlinear programming method such as SQP or the conjugate
gradient method [32].

5. Numerical examples

In this section, we solve two numerical examples using our proposed compu-
tational algorithms in Section 4. Example 1 is a parameter estimation problem
for a single-stage time-delay system first considered in [30]. Example 2 is a time-
delay estimation problem for a multistage time-delay system. To solve these
problems, we wrote a Fortran program that implemented Algorithm 1, Extend-
ed Algorithm 1 and Algorithm 2 with the optimization software NLPQLP [34],
which is a Fortran implementation of SQP algorithm. This program invokes
the differential equation software LSODA [35] to solve the expanded multistage
time-delay systems. Lagrange interpolation [36] is used when LSODA requires
the value of the state at an intermediate time between two adjacent knot points.

5.1. Example 1

Consider a continuously-stirred tank reactor in [30]. The reaction dynamics
are described by the following single-stage time-delay system:

1(t) = G (8) = (1= 21 () exp [ 225 | + (¢ - ), 0
1) = o)~ (1~ ma(@) exp [ 22 ] ), ’

with initial conditions
ai(t) =1, z2(t)=1,2, t<0, (30b)

where x1 is the dimensionless concentration of reactant; xs is the dimensionless
temperature of the reactor; and «, (7, and (o are unknown model parameters
to be estimated.

As in [30], the system output is given by

y(t) = 10zo(t), t>0.

The least-squares error function is

20 20
TG, G) = {u(n) =9} = {1022(n) — '}, (31)
=1 =1

12



where ¢ is a random variable representing the output measurement at the Ith
sample time; and 7; is the [th sample time given by

1
n=gl, 1=12..,2.

Based on the discussion in Section 3, the classical parameter estimation
problem can be reformulated as follows: given system (30), choose «, (1, and (2

to minimize
20

o6, 6) = Y {y(n)? = 2y(m)E(3'}}. (32)

=1
From (5), we note that

20

Gr(e,G1,G) = Y {y(m)? — 29(m)E("} + ()} |- (33)

=1

Accordingly, our parameter estimation problem can be reformulated as follows:
given system (30), choose «, (1, and (s such that

20 20

Hy(o, 1, G) =4) > {y(Tz)y(Tr)Fl’T - y(Tz)A“} (34)

1=1r=1

is minimized subject to the constraint

Gi(e, C1,G) < (1+ B)G1 (&, ¢, G,

where Tb" = Cov{g!, 9"}, AV = Cov{g’, (§")%}, B > 0, and &*, (, and (5 are
the optimal parameter estimates of the classical parameter estimation problem.

As in [30], consider the output trajectory of system (30) corresponding to
the nominal parameter estimates

(Ot, <17 CQ) = (2a -2, _g)

This output trajectory is known as reference trajectory. To generate the output
data for numerical experiments, we randomly perturbed the reference trajectory
using independent normal random variables. The sample points obtained are
shown in Figure 1. Moreover, the noisy measurement outputs take the following

form:
l

J'=o+> pr, 1=1,2,...,20, (35)

=1
where o; and py are independent random variables. Here, o; follows a gamma
distribution with parameters 10 and 7'/10, where 7' is the Ith sample point
in Figure 1, and py = p¢ — E{p¢}, where p; follows a beta distribution with
parameters 2 and 5. By using (35), we generate 100 random data at each sample
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Figure 1: Reference output trajectory (black line) and corresponding perturbed sample points
(blue stars) for Example 1.

time as the observed data. For the observed data, the mean and covariance
matrices in (32)-(34) are computed by statistic method.

Using our Fortran program, we first solve the classical parameter estimation
problem and obtain the optimal parameter estimates. For notation simplicity,
these optimal parameter estimates are denoted as for f = 0. Then, we solve
our parameter estimation problem for = 0.001,0.002,...,1.0. The optimal
parameter estimates for 5 = 0, 0.001, ..., 0.009, 0.01, ..., 0.03 are listed in
Table 1. Note that the optimal parameter estimates for § > 0.03 are same as
the ones for # = 0.03. This indicates that the maximal allowable sacrifice of
the expectation value is 3% of the optimal expectation value of the classical
parameter estimation problem. For comparison, we also consider the parameter
estimation formulation in [29, 30], that is, given system (30), choose «, (1, and
(2 to minimize

(1= p1)Hi(a, (1, C2) + BrHa (o, (1, C2), (36)

where 8 € [0, 1] is a weighting factor. This estimation problem is solved for 51 =
0,0.01,...,1.0 using our Fortran program, in which the Extended Algorithm 1
is involved and it is reduced to the algorithm report in [29, 30]. The optimal
parameter estimates for g1 = 0,0.04,0.08,0.1,...,1.0 are also listed in Table 1.
From Table 1, we can see that the optimal parameter estimates for § = 0 and
B = 0.03 of the classical and our estimation formulations are, respectively, same
as the ones for f; = 0 and 8; = 1.0 of the estimation formulation in [29, 30].
The output trajectories corresponding to the optimal parameter estimates in
Table 1 are shown in Figure 2. From Figure 2, we can see that these output
trajectories (red lines) converge to the reference output trajectory (black line)
as the values of 8 and Sy decease. Note that, due to the uncertain nature of
the output measurements, the optimal output trajectory for 5 = 5 = 0 is not
identical with the reference output trajectory.
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(a) Optimal parameter estimates (Algorithm 1 (b) Optimal parameter estimates (Algorithm
or 2). in [29, 30]).

Figure 2: Output trajectories corresponding to the optimal parameter estimates in Table 1.

Error Mean
Error Variance
Error Mean
Error Variance

. 521
0 0.005 0.01 0.015 0.02 0.025 0.03

(a) Optimal parameter estimates (Algorithm 1 (b) Optimal parameter estimates (Algorithm
or 2). in [29, 30]).

Figure 3: Means and variances of the least-squares errors for 100,000 output realizations
generated according to (35).
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Table 1: Optimal parameter estimates for Example 1.

Optimal parameter estimates Optimal parameter estimates
(Algorithm 1 or 2) (Algorithm in [29, 30))

B o GG B o GG

0 1.9245 -2.1298 -2.5687 0 1.9245 -2.1298 -2.5687
0.001 19189 -2.0895 -2.5232 0.04 1.9100 -2.0227 -2.4570
0.002 19160 -2.0678 -2.5010 0.08 1.9019 -1.9638 -2.4016
0.003 19135 -2.0493 -2.4826 0.1 1.8990 -1.9443 -2.3834
0.004 19113 -2.0324 -2.4662 0.2 1.8907 -1.8893 -2.3323
0.005 1.9092 -2.01656 -2.4511 0.3 1.8866 -1.8638 -2.3086
0.006 1.9071 -2.0015 -2.4368 0.4 1.8841 -1.8491 -2.2949
0.007 1.9051 -1.9871 -2.4233 0.5 1.8825 -1.8396 -2.2860
0.008 19032 -1.9733 -2.4103 0.6 1.8813 -1.8329 -2.2798
0.009 19013 -1.9599 -2.3979 0.7 1.8805 -1.8280 -2.2751
0.01 1.8994 -1.9469 -2.3858 0.8 1.8798 -1.8242 -2.2715
0.02 1.8817 -1.8351 -2.2818 0.9 1.8793 -1.8211 -2.2687
0.03 1.8788 -1.8187 -2.2664 1.0 1.8788 -1.8187 -2.2664

To investigate solution robustness, we generate 100,000 realizations of the
noisy measurement outputs 4¢, [ = 1,2, ..., 20. For each realization, we compute
the least-squares error (31) corresponding to the optimal parameter estimates
for 5 =0, 0.001, ..., 0.03 of the classical and our estimation formulations. For
comparison, we also compute the least-squares error (31) corresponding to the
optimal parameter estimates for 1 = 0, 0.01, ..., 1.0 of the estimation formu-
lation in [29, 30]. Figure 3 shows the means and variances of the least-squares
errors for 100000 output realizations. From Figure 3, we can see that the dashed
red curves (error variances) are much steeper than the solid blue curves (error
means) near S = $; = 0. This shows the advantages of both our estimation
formulation and the estimation formulation in [29, 30]: the solution robustness
increases significantly at the expense of a negligible cost to the error mean. It
is important to note that the value of § in our estimation formulation provides
useful quantitative information on the allowable sacrifice of the expectation val-
ue from the optimal expectation value of the classical parameter estimation
problem. On the other hand, the estimation formulation in [29, 30] does not
provide such important information.

The obtained optimal parameter estimates by our program are based on the
output distribution specified by (35). We now investigate how these optimal
parameter estimates perform when the actual distribution differs from the as-
sumed distribution. Thus, instead of (35), we now suppose that the output
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(a) Optimal parameter estimates (Algorithm 1 (b) Optimal parameter estimates (Algorithm
or 2). in [29, 30]).

Figure 4: Mean variations of the least-squares error for 100,000 output realizations with
respect to e.

distribution is given by

l
gl:&l‘FZPL l:1527"'7205 (37)
=1

where &; and p; are independent random variables. Here, py is as defined in (35)
and &; follows a gamma distribution with parameters 10 and (' +¢€)/10, where
€ is a small parameter. The parameter € ensures that ¢; differs from o; in (35).
For each e = 0,0.1,...,1.0, we generated 100000 realizations of the output data
according to (37) and calculated the means of the least-squares error according
to the optimal parameter estimates for § = 0,0.004,0.008,0.03 of the classi-
cal and our estimation formulations. For comparison, we also calculated the
means of the least-squares error according to the optimal parameter estimates
for 1 = 0,0.05,0.1,1.0 of the estimation formulation in [29, 30]. These mean
changes with respect to € are all plotted in Figure 4. Note that, as expected, the
error means of both the estimation formulations corresponding to the optimal
parameter estimates for 5 > 0 and $; > 0 vary more slowly than the ones corre-
sponding to the optimal parameter estimates for § = 81 = 0 do. This shows that
both our estimation formulation and the estimation formulation in [29, 30] are
robust facing uncertainty in the output distribution. In particular, compared
with the estimation formulation in [29, 30], our parameter estimation formula-
tion provides explicit information on the allowable sacrifice of the expectation
value from the optimal expectation value of the classical parameter estimation
problem.
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5.2. Example 2
Consider the following multistage time-delay system with 2 stages and 2

time-delays:
j’:l (t) = —0.7$1(f — 041) — 3.5$2(f) + 2$2(f — ag)
+0.1 tanh(z(¢)), t €(0,1.0), (38a)
xg(t) = O7I1(t) - 67$2(t> — sin(xg(t — O[Q)),
#1(t) = —4z1(t — o) + 0.522(t) + 0.2 sin(ao(t))
+t2 + 8, t € (1.0,1.5), (38b)
x.g (t) = 47I1(t) - 56$2(t> + 0.5 sin(xl (t — O[Q)),

with initial conditions
x1(t) =6, x(t)=t*+2, t<0, (38c)

where a1 and as are unknown time-delays that need to be estimated. We
assume that both «; and ag lie within the interval [0.01, 2].
The system output is given by

y(t) = z1(t), t>0.

Thus, the least-squares error function is
P 2
J(an,a2) = faa(n) = 3|, (39)
1=1

where p is the number of sample times; 7; is the [th sample time; and ¢! is a
random variable representing the output measurement at the [th sample time.
We choose p =10 and

7 = 0.15] — 0.075, 1=1,2,...,10.

Based on the discussion in Section 3, the classical parameter estimation problem
can be reformulated as follows: given multistage system (38), choose a; and s

to minimize
10

Hy(on,00) =) {y(n)2 - 2y(n)E{gjl}}, (40)

I=1
subject to bounds a1, as € [0.01,2]. Accordingly,

10

Grlar,az) = Y {y(n)? - 2y(m)E('} + E{(5)?}}. (41)

=1

Furthermore, our estimation problem can be reformulated as follows: given
system (38), choose a; and as such that

10 10

(a1, 02) =430 > {y(m)y(r)T = y(r)A"" | (42)

=1 r=1
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is minimized subject to
Giar, az) < (1+ B)G1(a7,a3),

and ag,as € [0.01,2], where I'™" = Cov{g!, 9"}, Ab" = Cov{g, (§")%}, B > 0,
and &} and &3 are the optimal solutions of the classical parameter estimation
problem.

6 T
*
55T 4
5l
*
* *
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. *
= 4
35
3 *
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5 L
0 0.5 1 15

Figure 5: Reference output trajectory (black line) and corresponding perturbed sample points
(blue stars) for Example 2.

To generate the reference trajectory, we simulate the multistage system (38)
with a3 = 0.2 and as = 0.8. Moreover, the output data at sample times are
obtained by adding independent normal variables to the values on the reference
trajectory. The sample output data at the sample times are shown as in Figure 5.
Now, suppose that the noisy measurement outputs take the following form:

l

P'=o+Y pe, 1=1,2,...,10, (43)
=1

where o7 and py are independent random variables. In addition, we assume that
o follows a gamma distribution with parameters 6 and '/6, where ' is the
{th sample point in Figure 5. We also assume that py = py — E{ps}, where py
follows a beta distribution with parameters 2 and 5. By using (43), we generate
200 random data at each sample time as the observed data. For the observed
data, the mean and covariance matrices in (40)-(42) are computed by statistic
method.

We first solve the classical parameter estimation problem using our Fortran
program and obtain the optimal time-delay estimates. For notation simplici-
ty, we also denote the optimal time-delay estimates as for 8 = 0. Then, we
solve our parameter estimation problem for 8 = 0.01,0.02,...,1.0. The optimal
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time-delay estimates for g = 0,0.01,...,0.09,0.1,...,0.3 are listed in Table 2.
Note that the optimal time-delay estimates for 8 > 0.3 are same as the ones for
B = 0.3. This indicates that the maximal allowable sacrifice of the expectation
value is 30% of the optimal expectation value of the classical parameter esti-
mation problem. Like the estimation formulation in [29, 30], we also consider
the parameter estimation formulation, in which the cost function is the weight-
ed sum of expectation and variance of the error function (39), that is, given
multistage system (38), choose ay and s to minimize

(1= B1)Hi(on, a2) + BrHz(ar, az) (44)

subject to constraints oy, as € [0.01,2], where 81 € [0, 1] is a weighting factor.
This estimation problem is solved for 81 = 0.01,...,1.0 using our Fortran pro-
gram, where the Extended Algorithm 1 is involved. Note that, however, the
algorithm reported in [29, 30] cannot be used to solve this estimation problem
involving multistage time-delay system (38). The optimal time-delay estimates
for 1 = 0,0.04,0.07,0.1,...,1.0 using this estimation formulation are also list-
ed in Table 2. From Table 2, we can see that the optimal time-delay estimates
for = 0 and B = 0.3 using the classical and our estimation formulations are,
respectively, same as the ones for 53 = 0 and $; = 1.0 using this estimation
formulation. The output trajectories corresponding to the optimal time-delay
estimates in Table 2 are shown in Figure 6. From Figure 6, we can see that
the output trajectories (red lines) converge to the reference output trajectory
(black line) as the values of 8 and §; decease.

y(
y(

0 05 1 15 0 05 1 15
t t

(a) Optimal time-delay estimates (Algorithm 1 (b) Optimal time-delay estimates (Extended
or 2). Algorithm 1).

Figure 6: Output trajectories corresponding to the optimal time-delay estimates in Table 2.

To investigate solution robustness, we generate 100,000 realizations of the
noisy measurement outputs 3¢, I = 1,2, ..., 10. For each realization, we compute
the least-squares error (39) corresponding to the optimal time-delay estimates
for g = 0,0.01,...,0.3 and B; = 0,0.01,...,1.0. Figure 7 shows the means
and variances of the least-squares error for 100,000 output realizations. From
Figure 7, we can see that the dashed red curves (error variances) are much
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Table 2: Optimal time-delay estimates for Example 2.

Optimal time-delay estimates Optimal time-delay estimates

(Algorithm 1 or 2) (Extended Algorithm 1)

p of a3 A of a3
0 0.1863 0.8368 0 0.1863 0.8368
0.01 0.1866 1.0874 0.04 0.1775 1.2512
0.02 0.1828 1.1777 0.07 0.1466 1.3305
0.03 0.1800 1.2388 0.1 0.1681 1.4004
0.04 0.1777 1.2867 0.2 0.1660 1.4891
0.05 0.1758 1.3267 0.3 0.1619 1.5378
0.06 0.1742 1.3613 0.4 0.1666 1.5606
0.07 0.1728 1.3920 0.5 0.1675 1.5748
0.08 0.1716 1.4196 0.6 0.1666 1.5801
0.09 0.1705 1.4447 0.7 0.1659 1.5800
0.1 0.1697 1.4679 0.8 0.1674 1.5867
0.2  0.1709 1.5893 0.9 0.1705 1.5855
0.3 0.1651 1.5949 1.0 0.1651 1.5949

steeper than the solid blue curves (error means) near 5 = 1 = 0. This shows
the solutions of both our estimation formulation and the estimation formulation
using cost function (44) are robust. Note that an additional benefit of our
estimation formulation is that it explicitly specifies the allowable sacrifice from
the optimal expectation value of the classical parameter estimation problem.
Now, suppose that the output distribution is given by

l
gl:&l‘FZPL l:1527"'7105 (45)
=1

where ; and p; are independent random variables. Here, py is as defined in (43)
and &; follows a gamma distribution with parameters 6 and (7' + ¢)/6, where €
is a small parameter. The parameter € ensures that ¢; differs from o; in (43).
For each € = 0,0.1,...,1, we generated 100000 realizations of the output data
according to (45) and calculated the means of the least-squares errors according
to the optimal time-delay estimates for § = 0,0.05,0.09,0.3 of the classical
and our estimation formulations. For comparison, we also calculated the means
of the least-squares errors according to the optimal time-delay estimates for
81 = 0,0.07,0.2,1.0 of the estimation formulation using cost function (44).
These mean changes with respect to the parameter e are plotted in Figure 8.
From Figure 8, we see that the bigger the values of 5 and 5, are, the slower the
changes of the error means. This indicates that the robustness of the optimal
time-delay estimates increases as the values of $ and [(; increase when facing
distribution uncertainty.
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(a) Optimal time-delay estimates (Algorithm 1
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Figure 7: Means and variances of the least-squares errors for 100,000 output realizations
generated according to (43).

6. Conclusions

This paper has studied the parameter estimation problem in which the goal
is to choose the robust optimal estimates for unknown time-delays and system
parameter in multistage time-delay systems. This parameter estimation prob-
lem is an extension of the one formulated in [29,30] with two important differ-
ences: (i) it involves multistage time-delay system, not restricted to single-stage
time-delay system; and (ii) it explicitly specifies the allowable sacrifice in the
expectation value from the optimal expectation value of the classical parameter
estimation problem. Numerical examples in Section 5 show that our parameter
estimation approach is capable of solving parameter estimation problems with
multiple stages and multiple time-delays, and, compared with the classical pa-
rameter estimation, it is able to withstand the uncertainty in the distribution
of measurement data. Nevertheless, one of the limitations of the new parame-
ter estimation method proposed in this paper is that it relies on the statistical
distribution of the noisy measurement output. Future work will focus on ex-
tending this method to the case where the statistical distribution is unavailable
and to consider the optimal parameter estimates which are robust with respect
to statistical distribution.
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