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[1] The changing climatic patterns and increasing human population within the Lake
Victoria Basin (LVB), together with overexploitation of water for economic activities call
for assessment of water management for the entire basin. This study focused on the analysis
of a combination of available in situ climate data, Gravity Recovery And Climate
Experiment (GRACE), Tropical Rainfall Measuring Mission (TRMM) observations, and
high resolution Regional Climate simulations during recent decade(s) to assess the water
storage changes within LVB that may be linked to recent climatic variability/changes and
anomalies. We employed trend analysis, principal component analysis (PCA), and
temporal/spatial correlations to explore the associations and covariability among LVB
stored water, rainfall variability, and large-scale forcings associated with El-Nino/Southern
Oscillation (ENSO) and Indian Ocean Dipole (IOD). Potential economic impacts of human
and climate-induced changes in LVB stored water are also explored. Overall, observed in
situ rainfall from lake-shore stations showed a modest increasing trend during the recent
decades. The dominant patterns of rainfall data from the TRMM satellite estimates suggest
that the spatial and temporal distribution of precipitation have not changed much during the
period of 1998-2012 over the basin consistent with in situ observations. However, GRACE-
derived water storage changes over LVB indicate an average decline of 38.2 mm/yr for
2003-2006, likely due to the extension of the Owen Fall/Nalubale dam, and an increase of
4.5 mm/yr over 2007-2013, likely due to two massive rainfalls in 2006-2007 and 2010—
2011. The temporal correlations between rainfall and ENSO/IOD indices during the study
period, based on TRMM and model simulations, suggest significant influence of large-scale
forcing on LVB rainfall, and thus stored water. The contributions of ENSO and IOD on the
amplitude of TRMM-rainfall and GRACE-derived water storage changes, for the period of

2003-2013, are estimated to be ~2.5 cm and ~1.5 cm, respectively.
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1. Introduction

[2] Freshwater, the most fundamental natural resource
for human beings, is required in abundance for drinking,
agriculture, and all forms of socio-economic development.
Its stored potential (surface, groundwater, soil moisture,
ice, etc.) is increasingly facing challenges from climate
change as well as anthropogenic activities. That current
and future climate change is expected to significantly
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impact the freshwater systems including rivers, streams,
and lakes, in terms of flow and direction, timing, volume,
temperature, and its inhabitants has been documented in
numerous publications [e.g., Bates et al., 2008; Palmer
et al., 2008]. Changes in the freshwater system, both in
terms of quality and quantity, resulting from both natural
climate variability (e.g., rainfall patterns) and change, and
other anthropogenic influences such as excessive water
withdrawals and construction of dams for hydropower gen-
eration in the upstream will have significant consequences
on the ecosystem and the people depending on them [e.g.,
Palmer et al., 2008]. The conditions are expected to get
worse for hugely populated basins such as Lake Victoria
Basin (LVB) [see e.g., Hecky et al., 2010].

[3] Lake Victoria, the second largest freshwater body on
Earth, is a source of freshwater and livelihood for more
than 30 million people living around it [Awange and
Ong’ang’a, 2006] and indirectly supports another 340 mil-
lion people along the Nile Basin [Sutcliffe and Parks,
1999] being the source of the White Nile. Lake Victoria
Basin (LVB, Figure 1) constitutes an area of 193,000 km?
and extends over Burundi (7.2%), Kenya (21.5%), Rwanda
(11.4%), Tanzania (44%), and Uganda (15.9%) [Awange
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Figure 1.
and Jorgensen, 2006].

and Ong’ang’a, 2006]. The basin acts as a constant source
of water to the lake through its massive catchment area and
its ability to influence the regions’ seasonal rainfall. In the
last decade, however, the stored waters within LVB have
come under immense pressure from climate change and
anthropogenic factors that resulted in significant fluctua-
tions. However, the lake level remained above average
since the early 1960s [Nicholson, 1998, 1999] till the early
2000s. Discharge estimates from the lake for the period
1950-2005 show that the net balance between recharge and
discharge remained relatively stable over the estimation
period [PPA, 2007]. A decreasing trend in the lake’s level
in the past decade as shown, e.g., by Kull [2006], Riebeek
[2006], Swenson and Wahr [2009], and Awange et al.
[2008a], however, is attributed equally to overabstraction
and natural climate change such as evaporation [PPA,
2007; Sutcliffe and Petersen, 2007 ; Awange et al., 2008b;
Swenson and Wahr, 2009].

[4] Lake Victoria Basin is characterized by modified
equatorial type of climate with substantial rainfall occur-
ring throughout the year, particularly over the lake surface,
to semiarid type characterized by intermittent droughts
over some nearshore regions [e.g., Anyah et al., 2006]. The
seasonal rainfall over the basin is further characterized by a
bimodal cycle, just like most areas of East Africa, and is
controlled mainly by the north-south migration of Inter
Tropical Convergence Zone (ITCZ), a quasi-permanent
trough that occurs over Lake Victoria [e.g., Asnani, 1993]
due to locally induced convection, orographic influence,
and land-lake thermal contrast, which modulates rainfall
pattern over the lake and hinterlands. The large-scale pre-
cipitation over the lake is mainly initiated from the east-
erly/southeasterly (Indian Ocean) monsoon flow that

Lake Victoria Basin and in situ rainfall stations (red) used in the study [Source: Kayombo

transports maritime moisture into the interior of East
Africa. The humid Congo air mass has also been linked to
significant rainfall amounts received over the western and
northwestern parts of the lake [Asnani, 1993]. Large-scale
winds over the Lake Basin are mainly easterly trades most
of the year. Superimposed on this basic flow regime are the
south-easterly (SE) or north-easterly (NE) monsoons that
are mostly driven toward, and often converge over, the
ITCZ location. The strength of the monsoons also depends
on the subtropical anticyclones over the Arabian Sea (Ara-
bian high pressure cell) and southwestern Indian Ocean
(Macarene high pressure cell).

[5] In terms of interannual variability, Lake Victoria
Basin climate is characterized by periodic episodes of
anomalously wet/dry conditions with some of the memora-
ble events including the 1961/1962 and 1997/1998 floods
that left behind a huge trail of damage to property and
infrastructure. The 1961/1962 floods were associated with
a strong zonal SST gradient over the equatorial Indian
Ocean and midtroposphere westerly flow from Tropical
Atlantic [Anyamba, 1984; Anyah and Semazzi, 2006,
2007]. It is noteworthy that 1997/1998 floods coincided
with one of the warmest ENSO episodes (strongest El
Nino) of the last century as well as very strong IOD mode.
Hence, the interannual variability of the Lake Basin is also
closely linked to the SST anomalies over the global ocean
basins [Omondi et al., 2012, 2013].

[6] On the one hand, climate change influences rainfall
and temperature patterns thereby affecting LVB’s stored
water. This is attributed to the fact that more than 80% of
LVB’s water source is derived directly from the seasonal
precipitation [e.g., Awange and Ong’ang’a, 2006] and
almost an equivalent amount of the precipitation is lost to
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evaporation [Yin and Nicholson, 1998; Sewagudde, 2009].
The temperature in the LVB region is projected to increase
by 3-4°C by the end of this century without much change
in the rainfall regime, leading to a significant downward
trend in the Lake’s net Basin supply as a result of enhanced
evaporation [Sewagudde, 2009] as well as increased water
temperatures. Impacts of climate change on LVB have
been reported [e.g., PPA, 2007; Sutcliffe and Petersen,
2007; Swenson and Wahr, 2009 ; Lejju, 2012].

[7]1 On the other hand, on anthropogenic influence on
LVB, Yin and Nicholson [1998] characterized most of the
LVB’s catchment areas as semiarid zones, with exception
of areas close to the lake, and hence the catchments ability
to discharge water into Lake Victoria is expected to
decrease as a result of increased abstraction demand for
agricultural and industrial activities. This, in addition to
declining lake water quantity and quality due to increasing
population will thus have serious impacts on the regional
water requirement, domestic food supplies, and global food
trade [e.g., Geheb and Crean, 2003 ; Awange et al., 2007 ;
Johnson, 2009].

[8] Combined, the impacts of both climate change and
other anthropogenic factors on LVB’s total water storage
(TWS) are having a toll on the economic as well as the
environment of the region. For instance, there are already
signs of declining fish trades [Geheb and Crean, 2003] and
access to freshwater in the LVB leading to environmental
scarcity [e.g., Mwiturubani, 2010; Canter and Ndegwa,
2002]. Change of fish community and loss of phytoplank-
ton [e.g., Geheb and Crean, 2003 ; Hecky et al., 2010] are
some impacts of climate change and anthropogenic influen-
ces on the lakes water quality, questioning the quality and
health of the food. Lake Victoria’s outflow is determined
by the “agreed curve” drawn between Egypt and Uganda,
which also determines the level of hydropower generation.
The current and more alarming anthropogenic stress is the
increasing demand for power as a result of increasing popu-
lation in the basin area [Mutenyo, 2009; PPA, 2007]. The
impact of hydropower plants along the Nile river are found
to be largest during the drought seasons (or years) and is
therefore, expected to put more pressure on the lake with
increasing hydropower plants [e.g., Mutenyo, 2009 ; Hecky
et al., 2010]. Recent studies on climate variability and
change over the LVB and fluctuations of Lake Victoria lev-
els show some worrying scene of drought patterns and
receding lake levels, which are both attributed to natural
climate change and increasing human influence [e.g., Yin
and Nicholson, 1998 ; Awange et al., 2008a, 2008b, 2013;
Swenson and Wahr, 2009; Sewagudde, 2009]. Thus, it is
very important to monitor the basin’s hydrological cycle
using the up-to-date technology and methods to inform the
policy makers and politicians, who plays the most impor-
tant role in managing the regional water resource. All these
poses a significant environment and economic challenge to
the East African region as a whole, leading to various lev-
els of domestic and interstate conflicts [see e.g., Canter and
Ndegwa, 2002].

[o] This contribution examines the changes of total
water storage (surface, groundwater, and soil moisture)
caused by climate variability and extremes over the recent
decade (2003-2013) over LVB and the potential economic
impacts. To achieve this, we employ freely available global

high resolution satellite data sets of Tropical Rainfall
Measuring Mission (TRMM) rainfall estimates and Gravity
Recovery And Climate Experiment (GRACE) time-
variable gravity fields [Tapley et al., 2004a, 2004b] coupled
with outputs from various Regional Climate Models
(RCMs) in addition to analysis of observed in situ rainfall
data over specific stations within the lake’s perimeter to
study trends of climate over the basin.

[10] The rest of the study is organized as follows. Sec-
tion 2 presents a brief overview of the various data sets
used and discusses the methods employed to investigate the
impacts of climate variability and extremes on stored water
potential of LVB. The results are presented and discussed
in section 3 while section 4 concludes the report.

2. Data Sets and Methodology

[11] This section gives a brief overview of the various
data sets employed in this study. These include observed in
situ data, Gravity Recovery And Climate Experiment
(GRACE) and Tropical Rainfall Measuring Mission
(TRMM). Section 2.1 gives brief highlights on each data
set used.

2.1. Rainfall Data (1960-2012)

[12] Monthly observed in situ precipitation data for sta-
tions along Lake Victoria Basin (see Figure 1) were
employed in this analysis. There are a number of other
meteorological stations within the Lake Victoria Basin, but
only those representatives of their climatological zones
with homogeneous anomalies were used. The annual rain-
fall total was computed through accumulation of the
monthly observed data. These data sets were first subjected
to quality control and homogeneity tests [see e.g., Peterson
et al., 1998; Omondi et al., 2012], before being analyzed.
The slopes of linear trends from the annual rainfall total for
the common period 1921-2012 were computed using least-
squares regression analysis while statistical significance
assessed using Student’s ¢ test [Awange et al., 2008b]. Lin-
ear regression model was applied to the accumulated
annual rainfall total for various stations used for the study.

2.2. Tropical Rainfall Measuring Mission (TRMM)

[13] The rainfall measurements employed in this work
are a product derived largely from observations made by
the Tropical Rainfall Measuring Mission (TRMM) [Kum-
merow et al., 2000]. TRMM products have been employed
in a number of studies of African precipitation where they
have been found to be adequate when compared with
ground truth observations [e.g., Nicholson et al., 2003;
Owor et al., 2009]. The product employed in this work is
referred to as the TRMM and Other Precipitation Data Set
(denoted as 3B43), and covers the period 1998-2013. 3B43
provides monthly rainfall (average hourly rate) between
latitudes 50°N/50°S over a 0.25° X 0.25° grid. It is derived
not only from TRMM instruments, but also a number of
other satellites and ground-based rain-gauge data. Over
time, the products produced from the TRMM observations
are updated as the processing techniques and methods for
integrating the different data sets are improved upon. In
this work we use the latest version, number 7, which has
been found to be a significant improvement over the previ-
ous version 6 owing to such changes as the use of

8162



AWANGE ET AL.: IMPACTS OF CLIMATE CHANGE ON WATERS OF LAKE VICTORIA

additional satellites and a superior means of incorporating
rain-gauge information from the Global Precipitation Cli-
matological Centre [Huffmann and Bolvin, 2012 ; Fleming
and Awange, 2013].

2.3. Gravity Recovery And Climate Experiment
(GRACE)

[14] The Gravity Recovery And Climate Experiment
(GRACE) is a United States (National Aeronautics and
Space Administration, NASA) and German (Deutsche Zen-
trum flr Luft-und Raumfahrt, DLR) space mission which
has been providing products that describe the temporal var-
iation of the Earth’s gravity field arising from mass move-
ments within the Earth’s system. Level-2 time-variable
gravity field products of GRACE have been frequently
used to study the Earth’s water storage variations [see e.g.,
Awange et al., 2008 ; Forootan and Kusche, 2012; Foroo-
tan et al., 2012]. This study uses the latest release five
(RLO5) monthly GRACE solutions, provided by the Ger-
man Research Centre for Geosciences (GeoForschungsZen-
trum, GFZ) [Dahle et al., 2012], covering 2003-2013.

[15] For computing monthly total water storage (TWS)
fields over the LVB basin, the following items are
considered:

[16] 1. GRACE level-2 products contain correlated errors
among higher order spherical harmonics, known as the
north-south striping pattern in spatial domain [Kusche,
2007]. In order to remove stripes, we applied the decorrela-
tion filter of DDK3 [Kusche et al., 2009] to the GFZ-RLO05
solutions. The filtered solutions can also be downloaded
from http://icgem.gfz-potsdam.de/ICGEM/TimeSeries.html.
Evaluation of the DDK filter for computing correct water
storage variations is addressed, e.g., in Werth et al. [2009].

[17] 2. Residual gravity field solutions with respect to
the temporal average of 2003—2013 were computed.

[18] 3. The residual coefficients were then convolved
with a basin function, while considering the basin boundary
of Figure 1. For computing the basin function, we assumed
a uniform mass distribution with the value of one inside the
LVB basin and no mass outside the basin (S1 = 1, is a uni-
form mass in the basin). Then, we transformed the uniform
mass into spherical harmonics. The obtained coefficients
are filtered with the same DDK3 filter as was applied for
GRACE products.

[19] 4. In order to account for leakages [see, e.g., Feno-
glio-Marc et al., 2006, 2012], the total surface mass of the
basin was calculated from the basin function coefficients
(S2, synthesized uniform mass in the LVB basin). The ratio
of S1/S2 reflects the effect of the truncation of the spherical
harmonics as well as signal attenuation due to filtering
GRACE products over LVB.

[20] 5. The derived ratio is multiplied by coefficients in
item 2 and the results were transformed into 0.5° X 0.5°
TWS maps within LVB, following Wahr et al. [1998].

2.4. CRU Data

[21] The University of East Anglia Climate Research
Unit (CRU) gridded observational data comprise 1200
monthly observed climate from 1901 to 2000. CRU data
are derived from gauge observations over land areas only
and are interpolated on a regular grid of 0.50° X 0.50°
[Mitchell et al., 2004]. The data sets contain five climatic

variables including precipitation, surface temperature, diur-
nal temperature range (DTR), cloud cover, and vapor pres-
sure. In the present study, we only utilize monthly mean
surface temperature and precipitation to complement the
available station-based observations.

2.5. Regional Climate Simulations

[22] In this study, we present results of simulated rainfall
climatology during the recent decades from four state-of-
the-art high resolution Regional Climate Models (a random
sample from the Coordinated Regional Downscaling
Experiment (CORDEX)) a group of models being used in
CORDEX (http://wcrp-cordex.ipsl.jussieu.fr/). CORDEX
Africa Project (http://start.org/cordex-africa/about/) used
different RCMs to simulate rainfall over the whole Africa
domain. The four RCMs data from the CORDEX archive
used in constructing simulated climatology over the LVB
were WRF, MPI, CRCMS5, and PRECIS. The data is from
1989 to 2008 (20 years). The spatial resolution for RCMs-
CORDEX is 50 km and for our study, data were extracted
for the LVB domain stretching from 31°E to 36°E, and 4°S
to 2°N. Details on these RCMs are explained in Nikulin
etal. [2012].

[23] Given the importance of rainfall in the water bal-
ance of the LVB, in the present study we only concentrate
in comparing the model versus observations (TRMM
3B43-V7 and CRU). We also evaluate how the model sim-
ulates the impact of large-scale forcings on the seasonal
and interannual variability of LVB rainfall (i.e., influence
of IOD and ENSO during the years 2005 and 2006, respec-
tively). In order to understand the 10D and ENSO influ-
ence, we also computed spatial correlations between
Nino3.4 and IOD indices for both model and observed
(TRMM) data. Knowing the temporal pattern of ENSO and
10D from the indices, their contributions were coestimated
considering linear trends as well as the annual and semian-
nual components in the TRMM-derived rainfall and
GRACE-derived TWS changes from 2003 to 2013.

3. Results and Discussions

3.1.

[24] The trend analysis results for precipitation over the
basin are shown in Figure 2. Stations located within the
Lake Victoria Basin generally showed modest increase in
rainfall trends (e.g., see Figures 2a-2d). The increase in
trends shown by these stations is, however, not significant
at 95% confidence level when Student’s ¢ test is applied.
We further employed the statistical method of Principal
Component Analysis (PCA) [Preisendorfer, 1988] to
TRMM data to isolate the dominant spatial and temporal
patterns of rainfall variability over the LVB during the
recent years. We preferred using the TRMM-rainfall esti-
mates here given the more complete spatial coverage, albeit
over a relatively short period. To extract the period with
relatively more rainfall, we summed up the rainfall values
of each monthly grids and showed them with respect to
their corresponding month in Figure 3. Impacts of the EL-
Nino Southern Oscillation phenomenon can be seen, e.g.,
in 2006-2007 and 2011-2012.

[25] Applying PCA to rainfall data of LVB, we found
four dominant EOFs and PCs that are shown in Figure 4.

Rainfall Variability Analysis
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Figure 2.

EOF1 and PC1 (representing 63% of total variance of the
rainfall) show a superposition of the annual and seasonal
variabilities. The amplitude of the signal in some years
such as that of 2007 is amplified as a result of El-Nino.
EOF2 and PC2 representing 13% of total rainfall are also
related to the annual variation with the same dipole struc-
ture of the annual TWS changes in Figure 7. We found a
lag of 1 month between PC2 of TRMM and PC2 of TWS
changes. PC3 shows a summation of interannual changes
and a linear trend over the basin. Considering the structure
of EOF3, which is negative over the northwest and positive
over the southeast, we estimate, respectively, a rainfall rate
of —2.0 and 2.8 mm/yr over them, for the period of 2003—
2013. The derived trends, however, were not statistically
significant. We do not interpret the fourth mode of PCA on
rainfall changes (EOF4 and PC4) here, since the temporal
pattern is quite noisy and they represent only 3% of var-
iance in rainfall.

3.2. Simulated Climatology of LVB (1989-2008)

[26] The observed bimodal rainfall pattern over the LVB
(31.5-34°E; 2.5°S—1°N) is well reproduced by three of the
four CORDEX Regional Climate Models (RCMs) as shown
in Figure 5. However, the MPI RCM captures the bimodal
rainfall regime but underestimates the peaks during MAM
and OND seasons. This level of RCMs differences (uncer-
tainties) in reproducing the LVB spatial and temporal mean
patterns of precipitation presents a challenge in using
numerical (theoretical) modeling techniques to understand
climate-hydrology connections as well as water level/stor-
age variability over LVB. The RCMs inability to reproduce
variability of some peculiar rainfall features of the LVB cli-
mate has been linked to incomplete representation/parame-
terization of localized convective and boundary layer
processes that exert significant influence on the spatiotem-
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Rainfall trends for some stations in the Lake Victoria Basin.

poral distribution of LVB rainfall [Song et al., 2006; Sun
et al., 1999; Anyah et al., 2006; Anyah and Semazzi,
20091].

[27] In Figure 6, the Canadian Regional Climate Model
version 5 (CRCMS), compared to TRMM estimates, over-
estimates over-lake seasonal rainfall amounts for both
MAM and OND seasons. On the other hand, the PRECIS
model as well as the other two models (not shown) consis-
tently simulate drier conditions over the LVB; in some pla-
ces underestimating the rainfall totals by nearly 100% of
the observed (TRMM) seasonal total, especially during the
March—-May (MAM). However, the CRCMS5 captures the
OND seasonal mean rainfall pattern quite well compared to
TRMM, and also consistent with the dominant EOF load-
ings of TRMM in Figure 4. The PRECIS model also repro-
duces the observed spatial distribution of rainfall during
OND although the simulated center of rainfall maximum is
over the northeastern quadrant of the Lake as opposed to

N S [2ed
T T T

Cumulative rainfall

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 3. An overview of the cumulative rainfall, derived
from each month of TRMM data over LVB, for the period
0f2003-2013.
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Figure 4. PCA decomposition of rainfall changes derived from TRMM, over LVB. EOFs are rainfall
anomaly maps and PCs are their corresponding unit-less temporal patterns.

southwestern and western quadrants as in TRMM estimates
and CRCMS5 simulation.

3.3. GRACE Total Water Storage Over LVB

[28] We then employed PCA on TWS to examine
whether the observed and simulated patterns of climate var-
iability discussed in the previous section are consistent
with the water storage variability derived from GRACE
data. As a result, its first two dominant EOFs and PCs are
shown in Figure 7, where EOF1 and PCl1 represent 82% of
total variance in TWS changes and EOF2 and PC2 repre-
sents 14%. EOF1 shows a strong anomaly all over the
basin, while its corresponding PC1 shows the dominant
trend of the basin. Using a linear regression, we found an
average mass decline of 38.2 and increase of 4.5 mm/yr
over the LVB, respectively, for the periods of 2003-2007
and 2007-2013. EOF2 shows a spatial north-south dipole
structure, which as PC2 indicates, corresponds to the

SIMULATED MONTHLY MEAN RAINFALL OVER LAKE VICTORIA BASIN
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Figure 5. Mean annual cycle of precipitation (mm) over
Lake Victoria Basin (31.5-34°E, —2.5°S to 0.5°N).
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Figure 6. Spatial pattern of seasonal mean rainfall (mm) over LVB. (left) March—-May season. (right)

October-December season.

annual changes of TWS over the basin. The TWS decline
of 2003-2007 is attributed to the extension of the Owen
Falls (Nalubale) dam as stated [e.g., Awange et al., 2008a;
Swenson and Wahr, 2009]. The positive rate of 2007-2013
is likely due to the positive impact of El Nino in the years
2007 and 2009/2010. This result is supported by rainfall
analysis of section 3.

3.4. Influence of ENSO and 10D on Interannual
Variability of LVB Rainfall

[29] Some previous studies over equatorial eastern
Africa (including LVB) have shown that local forcings
modulate regional climate by either amplifying or sup-
pressing the anomalies triggered by perturbations in the

large-scale circulations that are propagated through global
teleconnections such as El-Nino/Southern Oscillation and
cast-west sea surface temperature (SST) gradient over
equatorial Indian Ocean (i.e., [OD mode) [Saji et al., 1999;
Indeje et al., 2000; Schreck and Semazzi, 2004; Omondi
et al., 2013; Anyah and Semazzi, 2004, among others].
ENSO and IOD have thus been indicated as significant trig-
gers of some of the past extreme LVB rainfall anomalies
(floods and droughts).

[30] In the present study, we show in Figure 8 the
observed and simulated rainfall anomalies during 2005 and
2006, associated with fairly strong La Nina and El Nino/
I0OD conditions, respectively. Generally, the apparent
ENSO influence on the spatial variability of LVB rainfall is
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Figure 7. PCA decomposition of TWS changes over LVB. EOFs are counted as anomaly maps that
show the spatial distribution of TWS changes within the basin. Corresponding PCs are temporal varia-
tions which are scaled with their standard deviations to be unit-less.

manifest, with more widespread below normal rainfall
amounts during the OND season (2005) and the opposite
during 2006 season (based on 1989-2008 average). Over-
lake rainfall is more depressed during La Nina (2005), but
there is a modest increase during El Nino years (2006 and
2010), although TRMM  estimates show significant
increases over the western and northern quadrants of the
Lake. This feature is clearly reproduced by all the four
CORDEX models, compared to TRMM estimates. Given
the recent improvements in ENSO prediction, with lead
times over 6 months, the apparent link between LVB rain-
fall and ENSO can have very practical application for LVB
water resources availability and governance.

[31] In Figure 9, we show the spatial correlations
between ENSO (Nino3.4 index) and LVB TRMM on the
one hand, and simulated monthly rainfall totals on the other
hand during the OND season. In October (Figure 9, top),
statistically significant correlation between Nino3.4 and
TRMM (3B43-V7) during 1998-2008 is observed over the
western parts of the Lake as well as the northeastern shores
(Winam Gulf and surrounding areas). In contrast, signifi-

cant  values between Nino3.4 and simulated rainfall tend
to be more widespread, especially over the northern sector
of the Lake. Similar correlation patterns are derived from
TRMM during November (Figure 9, middle), but Nino3.4
index correlation with the simulated rainfall show very
weak correlations (r ~ 0), especially over the lake surface.
The spatial correlation pattern in December (Figure 9, bot-
tom) for both TRMM and model are somehow similar to
the pattern in October (Figure 9, top).

[32] A conspicuous similarity in the monthly spatial cor-
relation patterns between 10D and rainfall (Figure 10), and
those shown in Figure 9 is unmistakable. This apparently
implies that cooccurrence of IOD and ENSO events exert
significant influence on LVB rainfall, and hence signifi-
cantly influence climate-sensitive socio-economic activities
(see section 3 over the lake and its hinterland).

[33] In order to estimate the impact of ENSO and 10D
on the variability of rainfall and thus stored water, we
assumed the normalized temporal patterns of the Nino3.4
and IOD indices as known. Then, we coestimated their con-
tributions, beside a linear trend as well as the annual and
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lies (mm) from long-term mean over LVB.

semiannual components, in the variability of TRMM-
rainfall and GRACE-TWS, over 2003-2013. Thus, we
assumed that the dominant temporal behavior of the rainfall
and TWS changes is represented by [a,b.t,c.sin(2nt),
d.cos(2mt), e.sin(4nt),f.cos(4nt), g.E(t—dgyso), h-I(t—
¢10p)), where t is time in year (2003-2013), £ and I,
respectively, contain the normalized ENSO and IOD indi-
ces and ¢pyso and ¢;op are the phase lags in year between
the indices and the rainfall/TWS time series. The contribu-
tions of the components a,b,c,d,e,f,g are coestimated
using a least squares procedure. We found the correlation
between Nino3.4 and IOD indices and rainfall time series
to be maximum when the lag is zero. Therefore, the nor-
malized ENSO E and IOD [ indices without considering
any time lags, i.e., ¢pys0=0@0p=0 are considered for the

E 31.5e 32E 32.5E 33E 33.5E 34E 34.5E 35E 35.5E 36E

(left) Spatial pattern of 2005 (La Nina), and (right) 2006 (El Nino) seasonal rainfall anoma-

rainfall. The estimated coefficients for g and / are summar-
ized in Figure 11. The magnitude of ENSO and IOD over
2003-2013 reached 25 mm whereas the magnitude of the
annual (vVc2+d?) and semiannual components (1/e2+12)
were 70 and 50 mm, respectively. The same procedure was
repeated for TWS time series while considering a lag of
one month for both ENSO and 10D (¢ zys0=®,0p=1/12).
This selection is due to the fact that a delay of around 1-2
months exists between rainfall changes and TWS changes
as was discussed under rainfall variability analysis. The
corresponding coefficients are summarized in Figure 12.
The magnitude of their contribution reached 15 mm, over
the period of 2003-2013. This is relatively less than what
we observed for TRMM-rainfall in Figure 11. Considering
the simple water balance equation, where the derivative of
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Figure 9. Spatial correlation between ENSO (Nino3.4 index) and monthly rainfall over LVB (r = 0.44
significant at 0.05 confidence level). (top) October, (middle) November, and (bottom) December.

TWS is equal to precipitation minus evaporation minus
runoff, when a phenomenon like ENSO happens, the ampli-
tude of precipitation increases. One should, however, also
consider that consequently, the amplitude of evaporation
and runoff will increase and to some extent cancel out a
part of the extra input water.

3.5. Economic Implications of Observed and
Simulated Covariability of LVB Climate and Total
Water Storage

[34] This section provides an overview assessment of the
economic impact of climate change linked to changes in
stored water potential of Lake Victoria Basin as discussed

in section 3. It is important to point out that impact of cli-
matic change on economic activities is systemic, thus quite
complex and cannot be reduced to only monetary metrics
for a single time period. Invariably, the economic impact of
climatic change can be categorized as first-order impact,
and second order impact. The first-order impact can be
noticed right after a major extreme climatic event occurs,
such as drought or floods (e.g., the El Nino rains of 2007,
Figure 3). The second-order impacts are linked to climatic
variations in the LVB that happens over protracted length
of time or erratic happenings such as unpredictable rainy
and dry seasons, which do not correspond to, or altogether
disrupt planned-economic activities. In addition, lingering
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economic effects often happen in an incremental patter
over protracted periods of time.

[35] Equally important, is the need to understand the
complex link between economic and social variables,
which when subjected to climatic change, then engenders
negative outcomes, both in the short and long term. At the
center of economic impact assessment overview is also the
heavy dependence of majority of the LVB population on
certain economic activities, and therefore negative impact
on such activities due to climatic change must be perceived
within this reality. For instance, 80% of the LVB popula-
tion is engaged in small-scale agricultural production and
livestock farming, while fishing directly or indirectly sup-
port the livelihood of about 3 million people [East African
Community Secretariat, 2004; Ntiba et al., 2001; LVBC,

2011]. The population of LVB depends on wood biomass
for 90% of their energy requirement [LVBC, 2007].

[36] It is difficult to arrive at precise monetary figures
when making assessment of economic impact of climatic
change in the LVB. This is because costs extend well
beyond noneconomic sectors in the eco-system, but have
indirect negative bearing on economic activities in the
LVB. Compounding the difficulty of measuring precise
economic impact is the sheer lack of accurate statistical
data of the gross domestic product (GDP) of the LVB.
Lake Victoria Basin Commission (LVBC) officials give
conflicting GDP figures of $30 billion, and 40 billion for
2011 and 2012, respectively in various presentations [see,
Mngube, 2011; Kanangire, 2012]. Knowing the accurate
GDP can be helpful in estimating the economic impact of
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changes in stored water potential of Lake Victoria due to
climate change. We can then know percentage decrease or
increase in GDP that may have resulted from such variabil-
ity. Hence the overview assessment of economic impact
given here is restricted to giving the correlating economic
impact to distinctive climatic events drought, floods, and
erratic seasonal rainfall patterns within spatial dimension.
[37] The major economic sectors that are subjected to
first-order impact of climatic change are: water resources,
ecosystems and fishery, agriculture, energy, transportation,
infrastructure and communications, and public health and
labor productivity. The second-order economic impact of
climatic change are such as lingering food shortages,
energy poverty, malnutrition and impaired learning ability,
and gradual loss of ecosystems that previously supported
economic and social life of inhabitants. The 1997/1998 El
Nino floods (see, Figure 2) caused damage to buildings,
roads, communications systems, crops, and in addition to
costs of treating diseases [Mogaka et al., 2005]. This type
of damage has immediate and lingering future costs. Tak-
ing the costs of replacement of infrastructure, we can assess
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immediate costs for all damaged structures, in addition to
lost value due to impaired infrastructure, cost of treating
diseases, and lost productivity due to diseases and inability
to move and communicate freely.

[38] Likewise, the drought spawned by La Nina between
October 1998 and 2000 led to massive crop and livestock
loss, decreased hydro-electric power station outputs, water
shortage and contamination-related diseases [Mogaka
et al., 2005]. Awange et al. [2007] found a link between
highly variable climate pattern in the LVB to the frequency
and severity of droughts and food insecurity in the region
or parts of it. A commissioned research by United States
Agency for International Development (USAID) conducted
by International Resource Groups [Hecht et al., 2011],
gives some conservative estimates of cost of climate
change for LVB at about § 6.5 billion for the year 2005, in
period in which LVB level dropped [see, Figure 7 and also
Awange et al., 2008a]. This study gives the GDP of the
LVB at around $ 31.4 billion, thus the cost of climate
change impact stands at almost 21% of the region’s GDP
for the single year. Even more surprising result of this study
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is the huge cost of public healthcare, which claims 4.4% of
LVB GDP. Huge costs in healthcare are related to the ele-
vated incident of malaria, diarrheal diseases, and malnutri-
tion, all of which have direct link either to drought or
floods [Wandiga, 2006]. The economic impact overview
assessment here depicts great exposure of the LVB’s eco-
nomic activities to adverse impact of climate change. How-
ever, there is need for accurate data from which reliable
monetary cost of the impact of climate change can be
measured and therefore allowing for cost-effective adapta-
tion mechanisms to be planned and implemented.

4. Conclusions

[39] In this study, decadal water storage changes over
the basin derived from monthly GRACE, TRMM, and
RCM products are analyzed. The PCA results from both
GRACE and TRMM together with in situ data analyzed
showed a slight increase in rainfall and water volume over
Lake Victoria Basin.

[40] Overall our study confirms that there has been a
modest increase in rainfall and stored water over the basin
during the last decade. This is captured by in situ observed
data obtained from lake-shore stations, TRMM and
GRACE satellite remote sensing. TRMM data suggest that
rainfall conditions have not changed much during the study
period (1998-2013) over the basin while GRACE-TWS
indicates average mass decline of 38.2 mm/yr for the
period 2003-2007 and increase of 4.5 mm/yr for 2007—
2013 over the basin. This decline has been attributed to
expansion of the Owen Falls/Nalubale Dam, at Jinja
Uganda in earlier investigations by Awange et al. [2008a,
2008b] and Swenson and Wahr [2009].

[41] Furthermore, the four high-resolution regional cli-
mate model simulations analyzed clearly reproduced the
broad spatial and temporal patterns of precipitation over
the LVB, as well as EI Nino and La Nina linked anomalous
wet and dry conditions during the recent decades. However,
only two (CRCMS5 and PRECIS) of the four RCMs capture
the observed spatial distribution of rainfall over the LVB,
and this is likely to compromise their ability to depict the
correct (GRACE) water stored over the LVB.

[42] The economic impact assessment of LVB depicts
great exposure of the LVB’s economic activities to adverse
impact of climate change, specifically its impact on stored
water.
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