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Deterministic conversion of uncertain manpower
planning optimization problem

Bo Li, Yuanguo Zhu, Yufei Sun, Grace Aw and Kok Lay Teo

Abstract—Manpower planning is a very important component
of human resource management. However, there are many
indeterminate factors that should be taken into consideration
in manpower planning. For example, the decision of employees
to quit the job is determined by their preference, which is beyond
the control of human resource department. It can be realistically
modeled as a random variable when the historical data of quitting
rate is large enough. Otherwise, it can only be regarded as an
uncertain variable when the historical data is inadequate. In this
paper, we discuss a manpower planning optimization problem for
a manufacturing company with hierarchical system, where the
quitting rate of employees is modeled as an uncertain variable.
First, we formulate a mathematical model for this uncertain
manpower planning optimization problem, where the influence on
the production outputs by employees is taken into consideration.
Second, we present a deterministic conversion method to transfor-
m this uncertain manpower planning optimization problem into
an equivalent deterministic discrete-time optimization problem.
It is further converted into an equivalent linear programming
model with an equality constraint and an inequality constraint.
Finally, we use the real data from Singapore, Denmark and China
to carry out a numerical simulation and make a comparison
with the results obtained based on stochastic model to show the
advantages of our method.

Index Terms—Manpower planning, quitting rate, uncertainty
theory, uncertain variable, linear programming.

I. INTRODUCTION

W ITH the rapid development of economy and increasing
globalization, manpower planning has become a criti-

cal issue for human resource department in today’s competitive
world, especially for the international corporations and large
organizations. It requires to develop an optimal management
strategy to match the requirement of the staffs and the available
positions for achieving specific goals.

However, there are many indeterminate factors that should
be taken into consideration in manpower planning, such as
labor demand, working life and economic environment. At
present, many different stochastic manpower planning models
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have been established and discussed in the literature. For
instance, Chattopadhyay and Gupta [2] developed a stochastic
manpower planning model under the set up, where the survival
rates and the number of workers at different ages are treated
as random variables. Yan et al. [18] discussed two long-term
stochastic demand planning models for air cargo terminal
manpower supply planning in long-term operations, where
the labor demand is described as a random variable. Young
and Vassiliou [23] considered a non-linear stochastic model of
hierarchically structured management staffs in commercial and
industrial organizations, where the promotion of employees is
modeled as a random variable.

However, for most of the related literature, the effect of
the optimal planning strategy on the production outputs has
not been taken into full consideration. In 2016, Sun et al. [16]
constructed a new model of a manpower planning optimization
problem for a manufacturing company with different types of
employees, where the types of workers have direct influence on
the production outputs, and the quitting rate of employees was
assumed as a random variable with known expected value and
variance. Then, the manpower planning optimization problem
was formulated as a stochastic discrete time optimization
model.

When we need to describe a subjective imprecise quan-
tity, the concept of belief degree will be used. In order to
deal with personal belief degrees, an uncertainty theory was
introduced by Liu [10] in 2007 and refined by Liu [14] in
2010 based on normality, duality, subadditivity and product
axioms. After that, uncertainty theory has been investigated
by many researchers. Sheng and Kar [15] provided a new
formula using inverse uncertainty distribution to describe the
moment of uncertain variable. Yao [20] proposed a formula
to calculate the variance of an uncertain variable via the
inverse uncertainty distribution. Yao and Li [22] presented a
kind of uncertain process, called uncertain alternating renewal
process and developed an uncertain renewal theory. Zhu [24]
introduced and dealt with an uncertain optimal control prob-
lem with application to a portfolio selection model. Up to
now, uncertainty theory has become a branch of axiomatic
mathematics and contains many topics, such as uncertain
programming (Gao [8], Liu [13]), uncertain process (Chen [3],
Liu [11]), uncertain finance (Chen and Gao [4], Chen et al. [6])
and uncertain differential equation (Chen and Liu [5], Yao et
al. [21]).

As mentioned above, the quitting rate of employees for a
manufacturing company is usually uncertain in nature, which
should be taken into consideration during the decision making
process in human resource management. Hence, the manpower
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planning optimization problem under uncertain environment
is as important as in stochastic environment. In this paper,
we consider a manpower planning optimization problem for
a manufacturing company with hierarchical system under
uncertain environment, where the quitting rate is modeled as
an uncertain variable. We shall compare our results with those
obtained using the stochastic model proposed in Sun et al. [16].

The rest of this paper is organized as follows. Some basic
concepts in uncertain theory are reviewed in Section II. In
Section III, the manpower planning optimization problem is
formulated as an uncertain discrete time optimization model.
In Section IV, we transform it into a deterministic discrete
time optimization model and propose a method to solve it.
Based on the real data from Singapore, Denmark and China,
a numerical simulation is carried out in Section V. The last
section gives a conclusion.

II. PRELIMINARY

For the formulation and discussion of the manpower plan-
ning optimization problem under uncertain environment, many
basic concepts, such as uncertain variable, uncertainty distri-
bution and uncertain expected value, in uncertainty theory will
be used in Section III. Thus, they will be introduced in this
section.

Let Γ be a nonempty set, and L a σ-algebra over Γ.
Each element Λ ∈ L is called an event. A set function
M defined on the σ-algebra over L is called an uncertain
measure if it satisfies the following axioms: (normality ax-
iom) M{Γ} = 1 for the universal set Γ; (duality axiom)
M{Λ}+M{Λc} = 1 for any event Λ; (subadditivity axiom)
M{

∪∞
i=1 Λi} ≤

∑∞
i=1 M{Λi} for every countable sequence

of events Λ1,Λ2, · · · .
The triplet (Γ,L,M) is called an uncertainty space. A prod-

uct uncertain measure M is defined by Liu [12] to produce an
uncertain measure of compound event: (product axiom) Let
(Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · . Then
the product uncertain measure M is an uncertain measure
satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}, (1)

where Λk are arbitrarily chosen events from Lk for k =
1, 2, · · · , respectively.

For modeling the quantities under uncertain environment,
a concept of uncertain variable is defined by Liu [10] as a
function ξ from an uncertainty space (Γ,L,M) to the set of
real numbers such that for any Borel set of real numbers,
the set {ξ ∈ B} = {γ ∈ Γ | ξ(γ) ∈ B} is an event. In
order to describe uncertain variable in practice, the uncertainty
distribution Φ of an uncertain variable ξ is defined by Φ(x) =
M{ξ ≤ x}, for any real number x.

An uncertain variable ξ is called normal if it has a normal
uncertainty distribution

Φ(x) =

(
1 + exp

(
π(e− x)√

3σ

))−1

, x ∈ ℜ (2)

denoted by ξ ∼ N (e, σ), where e and σ are real numbers with
σ > 0.

To describe the average value of an uncertain variable ξ,
the concept of expected value is defined in Liu [10] as

E[ξ] =

∫ +∞

0

M{ξ ≥ x}dx−
∫ 0

−∞
M{ξ ≤ x}dx (3)

provided that at least one of the two integrals is finite. The
variance of ξ is defined as

V ar[ξ] = E[(ξ − E[ξ])2]. (4)

Let ξ and η be independent uncertain variables with finite
expected values. Then, for any real numbers a and b,

E[aξ + bη] = aE[ξ] + bE[η]. (5)

Remark 1: Uncertainty theory (Liu [10], Liu [14]) is a
branch of mathematics for modeling belief degrees, while
probability theory (Kolmogorov [9]) is for modeling frequen-
cies. The main different is that the product uncertain measure
is the minimum of uncertain measures of uncertain events, i.e.,

M{Λ1 × Λ2} = M{Λ1} ∧M{Λ2},

for uncertain events Λ1 and Λ2. The product probability
measure is the product of probability measures of random
events, i.e.,

Pr{∆1 ×∆2} = Pr{∆1} × Pr{∆2},

for random events ∆1 and ∆2. It implies that uncertain
variables and random variables obey different operational
laws.

III. PROBLEM FORMULATION

Manpower planning consists of putting right number of
employees, right kind of employees at the right place, right
time, doing the right tasks for which they are suited for the
achievement of different goals. The hierarchical system can
be interpreted as a pyramid with lowest rank of job category
at the base, for example, junior production worker. Moving
up to higher levels, there are higher ranks of job categories,
such as senior production worker, supervisor, senior super-
visor, and manager. For each level, there will be personnel
change through recruitment, promotion, dismissal, as well as
employees quitting. The first three activities are regarded as
decision variables because they can be decided by human
resource department. But, the quitting rate is determined by
employees’ preference, which is beyond the control of human
resource department.

In 2016, Sun et al. [16] constructed a stochastic discrete
time optimization model for a manpower planning problem in
stochastic environment, where the quitting rate is considered as
a random variable. The objective is to minimize the expected
human resource cost while maximizing the total expected
production outputs. However, the quitting rate can be realisti-
cally regarded as a random variable only when the historical
data of quitting rate is large enough. This is a fundamental
premise. When the historical data is inadequate, it will be
more appropriate to formulate it as an uncertain variable. In
the following, we consider a manpower planning optimiza-
tion problem for a manufacturing company with hierarchical
system under uncertain environment.
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Let M be the number of staff levels and T be the number
of time periods considered. The initial total number of staff in
the company is N . To formulate the mathematical optimization
model, we introduce the following notations:

xi(t) : the number of staff in level i at the end of period t,
Ri(t) : the recruitment number of staff being recruited to

level i at the end of period t,
Pi(t) : the promotion number of staff being promoted to

level i at the end of period t,
Si(t) : the dismissal number of staff in level i at the end

of period t,
Qi(t) : the quitting number of staff in level i at the end of

period t.

Here, i represents the ith rank of job category.
For i = 1, · · · ,M , Ri(T ) = 0 (there is no recruitment at

the end of the planning horizon), Pi(0) = Si(0) = 0 (at the
beginning of the time horizon the company only recruits, i.e.,
no promotion nor dismissal of staff) and PM+1(t) = 0 (no
staff can be promoted into level M + 1 at the end of period
t), for t = 0, · · · , T . Here, we model the quitting rate Qi(t)
as a normal uncertain variable with excepted value µi and
variance σ2

i . It is assumed that the quitting rates Qi1(t1) and
Qi2(t2) are independent for any different periods t1 and t2
(t1, t2 = 1, · · · , T ) or levels i1 and i2 (i1, i2 = 1, · · · ,M ).

Because the quitting number Qi(t) (t = 1, · · · , T, i =
1, · · · ,M ) is an uncertain variable, the number of staff in
each hierarchy and period can be described by the following
system of uncertain difference equations:

xi(t+ 1) = xi(t) +Ri(t) + Pi(t)− Pi+1(t+ 1)
−Si(t+ 1)−Qi(t+ 1),
t = 0, · · · , T − 1, i = 1, · · · ,M.

(6)

To maintain the company’s normal operation, there should
be enough of workers in each level. This situation is modeled
by the following chance constraints:

M
{
xi(t) ≥ pi

}
≥ qi, t = 1, · · · , T, i = 1, · · · ,M, (7)

where pi is the pre-set minimum number of staff in level i and
qi is the given confidence level in level i with 0 < qi < 1.

The objective of decision maker is to find an optimal strat-
egy of recruitment, promotion and dismissal for minimizing
the expected human resource cost while maximizing the total
expected production outputs at the end of the planning horizon.
Hence, Ri(t), Pi(t), and Si(t) are decision variables, which
are crisp in nature. Then the expected human resource cost
and the expected total production outputs can be formulated
as

g1 = E
[ T−1∑

t=0

M∑
i=1

aixi(t)
]
+

T−1∑
t=0

M∑
i=1

{
bex
i Ri(t) + bin

i Pi(t+ 1)

+ ciSi(t+ 1)
}
, (8)

g2 = E
[ T−1∑

t=0

M∑
i=1

nixi(t)
]
, (9)

respectively, where ai, bex
i , bin

i and ci are the salary cost,
recruitment and training cost of external workers, training cost

of internal workers and dismissal cost per worker per period in
level i, respectively, ni is the number of units that the workers
in level i can produce in each time period.

Obviously, this manpower planning optimization problem
is a bi-objective optimization model. A common method for
solving the bi-objective optimization model is to convert it
into a single objective optimization model by introducing a
weighting parameter, see, for example, Cai et al. [1], Deng et
al. [7] and Sun et al. [16]. Likewise, we minimize the following
function by introducing the weighting parameters ν and 1−ν:

G0 =νg1 − (1− ν)g2

=νE
[ T−1∑

t=0

M∑
i=1

aixi(t)
]
+ ν

T−1∑
t=0

M∑
i=1

{
bex
i Ri(t)

+ bin
i Pi(t+ 1) + ciSi(t+ 1)

}
− (1− ν)E

[ T−1∑
t=0

M∑
i=1

nixi(t)
]
. (10)

Here, we use −(1 − ν) because the original objective is to
maximize the expected total production outputs function g2.
When ν = 1, the decision maker pays all its attention to
minimize the expected human resource cost. Conversely, ν = 0
means that the decision maker just wants to maximize the
expected production outputs. In this paper, we assume that
0 < ν < 1.

Then, we formulate the manpower planning problem under
uncertain environment as the following uncertain discrete time
optimization model, named as Problem P0:

min G0 = νE
[ T−1∑

t=0

M∑
i=1

aixi(t)
]
+ ν

T−1∑
t=0

M∑
i=1

{
bex
i Ri(t)

+ bin
i Pi(t+ 1) + ciSi(t+ 1)

}
− (1− ν)E

[ T−1∑
t=0

M∑
i=1

nixi(t)
]
, (11)

s.t. xi(t+ 1) = xi(t) +Ri(t) + Pi(t)− Pi+1(t+ 1)

− Si(t+ 1)−Qi(t+ 1),

t = 0, · · · , T − 1, i = 1, · · · ,M,

xi(0) = x0
i , i = 1, · · · ,M,

M
{
xi(t) ≥ pi

}
≥ qi, t = 1, · · · , T, i = 1, · · · ,M,

Ri(t), Pi(t), Si(t) ≥ 0, t = 0, · · · , T, i = 1, · · · ,M,
(12)

where 0 < ν < 1.
Remark 2: Although the objective function in Sun et

al. [16] contains the term of quitting cost, it has no influence
on the transformation and optimization processes. Here, we
assume that there is no withdrawal benefit for workers quitting
the job themselves. We note that the summation operation at
discrete time t means the human resource cost and production
outputs during period t+ 1. Hence, the summation operation
over t from 0 to T − 1 includes all the human resource cost
and production outputs.
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Because Ri(t), Pi(t), and Si(t) are decision variables, they
are crisp rather than uncertain in nature. Then it follows from
equations (5), (6) and Theorem 8 in Yang [19] that

E
[ T−1∑

t=0

M∑
i=1

aixi(t)
]
= ∆−

T−1∑
t=0

M∑
i=1

t∑
j=0

aiE[Qi(j+1)], (13)

where the function ∆ represents all crisp items. Thus, we can
swap the order of the expected value operator E and sum-
mation operator. The objective function G0 can be rewritten
as

G0 =ν

T−1∑
t=0

M∑
i=1

{ aiE[xi(t)] + bex
i Ri(t) + bin

i Pi(t+ 1)

+ ciSi(t+ 1)} − (1− ν)
T−1∑
t=0

M∑
i=1

niE[xi(t)]. (14)

IV. DETERMINISTIC TRANSFORMATION

In this section, we first transform Problem P0 into an
equivalent deterministic problem and then present a method
for solving it.

Let zi(t) and wi(t) be new state variables defined by

zi(t) = E[xi(t)], wi(t) = V ar[xi(t)], t = 0, · · · , T,
i = 1, · · · ,M. (15)

It follows from equations (5) and (6) that for t = 0, · · · , T −1
and i = 1, · · · ,M ,

zi(t+ 1) = E[xi(t+ 1)]

= E[xi(t) +Ri(t) + Pi(t)− Pi+1(t+ 1)

− Si(t+ 1)−Qi(t+ 1) ]

= zi(t) +Ri(t) + Pi(t)− Pi+1(t+ 1)

− Si(t+ 1)− µi. (16)

Because the variables xi(t) and Qi(t+ 1) are essentially two
independent normal uncertain variables, for t = 0, · · · , T − 1
and i = 1, · · · ,M , it follows from Theorem 5 in Yao [20]
that√

wi(t+ 1) =
√

V ar[xi(t+ 1)] =
√

wi(t) + σi. (17)

We can find, in equation (16), the decision variables contain
those in the past time t as well as the present time t+ 1. For
achieving the unity of time t, we define

vi(t) = Pi(t+ 1), t = 0, · · · , T − 1, i = 1, · · · ,M, (18)
vM+i(t) = Si(t+ 1), t = 0, · · · , T − 1, i = 1, · · · ,M. (19)

Then we transform Pi(t) and Si(t) from decision variables in-
to state variables with initial condition Pi(0) = Si(0) = 0 and
introduce a new decision variable vi(t), t = 0, · · · , T − 1, i =
1, · · · , 2M . Hence, the decision variables are represented
by Ri(t), vi(t), vM+i(t) with Ri(t), vi(t), vM+i(t) ≥ 0, t =
0, · · · , T − 1, i = 1, · · · ,M .

The objective function (14) becomes

G0 =
T−1∑
t=0

M∑
i=1

[ ( aiν − (1− ν)ni )zi(t) + bex
i Ri(t)

+ bin
i vi(t) + civM+i(t) ]. (20)

Theorem 1: The chance constraints (7) are equivalent to the
following constraints.

zi(t)− pi +Φ−1(1− qi)
√
wi(t) ≥ 0, t = 1, · · · , T,

i = 1, · · · ,M, (21)

where Φ−1 is the inverse uncertainty distribution of normal
uncertain variable with expected value 0 and variance 1.
Proof Because xi(t) is a normal uncertain variable with
expected value zi(t) and variance wi(t), we know that

xi(t)− zi(t)√
wi(t)

, t = 1, · · · , T, i = 1, · · · ,M,

is a normal uncertain variable with expected value 0 and
variance 1. Thus, the chance constraints (7) are equivalent to

M
{xi(t)− zi(t)√

wi(t)
≥ pi − zi(t)√

wi(t)

}
≥ qi,

i.e.,

Φ−1(1− qi) ≥
pi(t)− zi(t)√

wi(t)
,

where Φ−1 is the inverse uncertainty distribution of normal
uncertain variable with expected value 0 and variance 1. Thus,
constraints (7) are equivalent to the constraints (21). The
theorem is proved.

Because state variable wi(t) can be solved directly from
equation (17) with initial value 0, it can be obtained that

wi(t) = t2σ2
i , t = 0, · · · , T, i = 1, · · · ,M. (22)

Combining the state variables but excluding wi(t), for t =
0, · · · , T − 1, the new dynamical system can be written as



z1(t+ 1)
...

zM (t+ 1)
P1(t+ 1)

...
PM (t+ 1)
S1(t+ 1)

...
SM (t+ 1)


=



z1(t) +R1(t) + P1(t)− v2(t)
−vM+1(t)− µ1

...
zM (t) +RM (t) + PM (t)− 0

−v2M (t)− µM

v1(t)
...

vM (t)
vM+1(t)

...
v2M (t)



, (23)

with initial condition [x0
1, · · · , x0

M , 0, · · · , 0]τ ∈ R3M .
Based on the above operators, Problem P0 is equivalent to

the following deterministic discrete time optimization model
(24), named as Problem P1, where 0 < ν < 1.

A. Solving Problem P1

In this section, we convert Problem P1 into a standard linear
programming problem such that it can be solved more easily.

The new state and decision variables can be rewritten in
vector forms:

y(t) = [z1(t), · · · , zM (t), P1(t), · · · , PM (t),

S1(t), · · · , SM (t)]τ , (27)
h(t) = [R1(t), · · · , RM (t), v1(t), · · · , v2M (t)]τ . (28)
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min G0 =

T−1∑
t=0

M∑
i=1

[ ( aiν − (1− ν)ni )zi(t) + bex
i Ri(t) + bin

i vi(t) + civM+i(t) ] (24)

s.t.



z1(t+ 1)
...

zM (t+ 1)
P1(t+ 1)

...
PM (t+ 1)
S1(t+ 1)

...
S2M (t+ 1)


=



z1(t) +R1(t) + P1(t)− v2(t)− vM+1(t)− µ1

...
zM (t) +RM (t) + PM (t)− 0− v2M (t)− µM

v1(t)
...

vM (t)
vM+1(t)

...
v2M (t)


, t = 0, · · · , T − 1,

[z1(0), · · · , zM (0), P1(0), · · · , PM (0), S1(0), · · · , SM (0)]τ = [x0
1, · · · , x0

M , 0, · · · , 0]τ ,

zi(t)− pi +Φ−1(1− qi)
√
wi(t) ≥ 0, t = 1, · · · , T, i = 1, · · · ,M, (25)

Ri(t), vi(t), vM+i(t) ≥ 0, t = 0, · · · , T − 1, i = 1, · · · ,M. (26)

It follows from equations (27) and (28) that equation (24)
can be rewritten as:

G0 =

T−1∑
t=0

( δy(t) + ηh(t) ), (29)

where δ and η are both 3M dimension row vectors given by

δ = [(a1ν − (1− ν)n1), . . . , (aMν − (1− ν)nM ),

0, . . . , 0], (30)

η = [bex
1 , . . . , b

ex
M , bin

1 , . . . , b
in
M , c1, . . . , cM ]. (31)

Let I be an M ×M identity matrix, 0 be an M ×M zero
matrix, Λ be an M ×M matrix defined by

Λ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

 ,

and

α =

I I 0
0 0 0
0 0 0

 ,β =

I −Λ −I
0 I 0
0 0 I

 .

Theorem 2: For t = 1, · · · , T , the state variable y(t) can be
expressed in terms of decision variable h(t) as given below:

y(t) = αty0 +

t−1∑
k=0

(
α(t−1)−kβh(k) +αkζ

)
, (32)

where y(0) = y0 = [x0
1, · · · , x0

M , 0, · · · , 0]τ ∈ R3M and ζ is
a 3M dimensional column vector given by

ζ = [−µ1, · · · ,−µM , 0, · · · , 0 ]τ . (33)

Proof Here, we use the induction method. It is clear that

y(1) = αy0 + βh(0) + ζ.

Suppose that equation (32) is satisfied when t = n. Then,
at t = n+ 1, we have

y(n+ 1) =αy(n) + βh(n) + ζ

=α
[
αny0 +

n−1∑
k=0

(
α(n−1)−kβh(k) +αkζ

) ]
+ βh(n) + ζ

=αn+1y0 +
n∑

k=0

(
αn−kβh(k) +αkζ

)
.

The theorem is proved.
Also, the state constraints (25) can be written in a matrix

form given by

κy(t) ≥ λ(t), t = 1, · · · , T, (34)

where κ is an M×3M matrix, and λ(t) is an M dimensional
column vector defined by

κ =
(
I 0 0

)
(35)

and

λ(t) =

 p1 − Φ−1(1− q1)
√
w1(t)

...
pM − Φ−1(1− qM )

√
wM (t)

 . (36)

For translating the inequality constraints (34) into equality
constraints, we add an auxiliary decision variable to the left
hand side of (34), yielding

κy(t)− θ(t) = λ(t), t = 1, · · · , T, (37)

where θ(t) = [θ1(t), · · · , θM (t)]τ ∈ RM with θi(t) ≥ 0,
i = 1, · · · ,M .

Define

ω = [h(0)τ , · · · ,h(T − 1)τ ,θ(1)τ , · · · ,θ(T )τ ]τ ∈ R4MT .
(38)
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Obviously, we have
ω ≥ 0, (39)

where 0 is a 4MT dimensional column vector.
According to equations (29), (32) and (38), the objective

function G0 can be expressed as a linear function:

G0 = cτω, (40)

where c is a 4MT dimensional column vector defined by

c =[
T−2∑
t=0

δαtβ + η,
T−3∑
t=0

δαtβ + η, · · · , δβ + δαβ + η,

δβ + η,η,0 ]τ . (41)

Substituting equation (32) into equation (37), the constraints
(37) can be expressed as

Aω = b, (42)

where A and b are given below as an MT × 4MT matrix
κβ 0̄ · · · 0̄ −I 0 · · · 0
καβ κβ · · · 0̄ 0 −I · · · 0

...
...

. . .
...

...
...

. . .
...

καT−1β καT−2β · · · κβ 0 0 · · · −I


(43)

and an MT column vector

λ(1)− καy0 − κζ
λ(2)− κα2y0 − κζ − καζ

...

λ(T )− καTy0 −
T−1∑
t=0

καtζ

 , (44)

respectively. Here, 0̄ is an M × 3M zero matrix.
Based on equations (39), (40) and (42), Problem P1 can be

formally stated as a standard linear programming problem as
given in the following:

min cτω (45)
s.t. Aω = b,

ω ≥ 0.

Then, we use the interior-point linear programming solver
SDPT3 (MATLAB platform) proposed in Toh et al. [17] to
solve the converted standard linear programming problem (45).
After obtaining the value of ω∗, the procedures for obtaining
the solution of the original Problem P0 are summarized as
follows:

Step 1: Calculate the values of h(0), · · · ,h(T − 1) by
equation (38);

Step 2: Calculate the values of decision variables of the
original Problem P0 according to equations (18), (19) and (28).

V. NUMERICAL SIMULATION

In this section, we use the same data and parameters, shown
in Tables I and II, as in Sun et al. [16] to carry out a numerical
simulation and make a comparison. All values in Table II are
in US dollars. Also, we choose initial workforce N = 1000,
planning horizon T = 12 months, confidence level qi = 0.8

(i = 1, 2, · · · , 6) and weighting parameter ν = 0.3. Because
the quitting cost per worker is chosen as 0 in Sun et al. [16], the
optimization problem can be modeled as defined in Section III.

Here, we use the interior-point linear programming solver
SDPT3 (MATLAB platform) proposed in Toh et al. [17] to
solve the converted standard linear programming problem.
From the calculation procedure presented in Section IV, the
optimal manpower strategies of recruitment, promotion and
dismissal for three different countries can be calculated. The
obtained solutions are given in Tables III, V and VII. Our
mathematical model for the uncertain manpower planning
optimization problem provides results that realistically reflect
the conditions of each of the countries considered. We choose
three countries (Singapore, Denmark and China) that are
distinct in nature and especially in salaries. One is a developed
country, Denmark, which has relatively stable domestic labor
with relatively high wages. At the other extreme is China,
a developing country with relatively low wages and plenty of
available manpower. The third is Singapore. While a developed
country, Singapore utilizes a huge number of cheap unskilled
foreign labor to keep manpower costs down at the lower levels.
The results of our model demonstrate that the inclusion of the
effect of production outputs produces results that are realistic
and takes into consideration the differences of each country.

Singapore, with relatively cheap and abundant low-skilled
foreign labor, results in an optimal workforce that encourages
recruitment at the lowest two levels as shown in Table III, and
also at the more expensive and skilled managerial levels. It
is cheaper to recruit than promote internal skilled staff at the
managerial levels. Denmark, having the most stable workforce
with relatively higher wages than the other two countries,
achieves workforce stability in a much shorter time than
Singapore and China. From Table V, their human resource
strategy stabilizes after nine months while there are no signs
of workforce stability in Singapore and China. With regards to
recruitment and promotion, the strategy suitable for Denmark
is to recruit at all levels rather than promote internal staff
as the promotion cost is higher than the recruitment cost for
the country. China has a huge number of cheap domestic
workers. Hence, it is hardly surprising that their optimal
workforce recommends recruiting a huge, even excessive,
number of workers at all levels as in Table VII. Their model
does not recommend recruitment or promotion after the initial
recruitment.

The optimal manpower structures in each level for three dif-
ferent countries can be found in Tables IV, VI and VIII, which
are demonstrated in Figures 1, 2 and 3, respectively. From
Tables IV, VI and VIII or Figures 1, 2 and 3, there are more
staff at the end of each period for China than Singapore and
Denmark. This is reasonable because China has abundant and
cheap domestic workforce. The optimal manpower cost and
units of output are $21,339,468.64 and 957,150 for Singapore,
$59,635,567.72 and 952,830 for Denmark, $5,778,962.99 and
1,421,890 for China.

Modeling the quitting rate to better reflect reality results in
more employees in the optimal manpower structure. While
more employees result in higher manpower cost across all
countries, it also leads to higher number of produced outputs.
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TABLE IX
THE UNIT COST OF TWO DIFFERENT MODELS

Country Sun et al. [16] model Our model
Singapore 22.3476 22.2948
Denmark 62.4880 62.5878

China 4.1055 4.0643

Comparing our results with Sun et al. [16], the percent-
age increase in manpower cost is 2.2302%, 2.1731% and
3.4213% for Singapore, Denmark and China, respectively. The
corresponding increase in production output as a result of
the manpower increase is 2.4728%, 2.0103% and 4.4715%.
Table IX illustrates the unit output cost based on our optimal
manpower structure compared to the optimization model in
Sun et al. [16].

Our model, with more stable retention of employees, sees
a lower unit cost for Singapore and China, but a higher unit
output cost for Denmark. This, indeed, reflects more accurately
the real situation, as the manpower cost in Singapore is
approximately four times that of China, while in Denmark,
the manpower cost is approximately ten times that of China.
Thus, unless the quality of the product produced in Denmark
is substantially higher than that of Singapore and China, the
manufacturing industry is unable to compete with that of
Singapore and China.

Our model confirms that for labour intensive companies
producing low value products, it is more profitable to base their
operations in low labour cost countries like China or countries
where the labour cost is relatively lower such as Singapore for
which a large number of low cost foreign workers is used. In
conclusion, for high labour cost countries like Denmark, only
high end products will be compatible and survive.

VI. CONCLUSION

In this paper, we discussed a manpower planning opti-
mization problem for a hierarchical system under uncertain
environment because the quitting rate of employees is usually
uncertain in nature. The manpower planning optimization
problem was formulated as an uncertain discrete time opti-
mization model for minimising the expected human resource
cost while maximizing the expected production outputs. Our
model considered the actual personnel change through recruit-
ment, promotion, dismissal, as well as employees quitting and
took into account the influence of the production outputs of
workers. Then, we transformed it into an equivalent deter-
ministic problem and presented a solution method for solving
it. In order to show the effectiveness and rationality of our
model, we remodeled the practical example considered in Sun
et al. [16] by our method. The obtained results showed that
our model reflects more accurately the real situation than the
stochastic model.
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TABLE I
INITIAL HIERARCHY STRUCTURE, MINIMUM STAFF NUMBER, PRODUCTIVITY, MEAN AND VARIANCE OF QUITTING RATE

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
x0
i 350 250 150 120 80 50

pi 250 170 100 75 50 25
ni 100 120 150 40 60 90
µi 30 20 10 5 3 1
σ2
i 9 6.25 4 0.5625 0.25 0.01

TABLE II
VARIOUS MANPOWER COST OF EACH HIERARCHY LEVEL

Singapore Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
ai 800.00 960.00 1728.00 3110.40 5598.72 11197.44
bex
i 2000.00 2400.00 4320.00 6842.88 12317.18 19035.65
bin
i 2000.00 1056.00 1900.80 3421.44 6158.59 12317.18
ci 800.00 960.00 1728.00 3110.40 5598.72 11197.44

Denmark Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
ai 3206.67 4329.00 5844.15 8181.81 11454.53 16036.35
bex
i 8016.67 10822.50 14610.38 17999.98 25199.97 27261.79
bin
i 8016.67 4761.90 6428.57 8999.99 12599.99 17639.98
ci 3206.67 4329.00 5844.15 8181.81 11454.53 16036.35

China Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
ai 206.00 247.20 321.36 514.18 1079.77 3239.31
bex
i 515.00 618.00 803.40 1131.19 2375.49 5506.82
bin
i 515.00 271.92 353.50 565.59 1187.75 3563.24
ci 206.00 247.20 321.36 514.18 1079.77 3239.31

TABLE III
OPTIMAL HR STRATEGY OF SINGAPORE

Recruitment Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 0 0 0 0 0 0
t=1 0 0 0 0 0 0
t=2 0 0 0 0 0 0
t=3 29 15 0 0 0 0
t=4 32 33 0 0 0 0
t=5 32 33 0 0 0 0
t=6 32 33 0 0 0 0
t=7 32 33 0 0 0 0
t=8 32 33 0 5 0 0
t=9 32 33 0 5 3 0
t=10 32 33 0 5 3 1
t=11 32 21 0 5 3 1
t=12 0 0 0 0 0 0

Promotion Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 0 0 0 0 0 0
t=1 0 0 0 0 0 0
t=2 0 0 0 0 0 0
t=3 0 0 0 0 0 0
t=4 0 0 7 0 0 0
t=5 0 0 11 0 0 0
t=6 0 0 11 0 0 0
t=7 0 0 11 0 0 0
t=8 0 0 11 0 0 0
t=9 0 0 11 0 0 0
t=10 0 0 11 0 0 0
t=11 0 0 11 0 0 0
t=12 0 0 0 0 0 0

Dismissal Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 0 0 0 0 0 0
t=1 0 0 0 0 0 14
t=2 0 0 0 0 0 0
t=3 0 0 0 0 0 0
t=4 0 0 0 0 0 0
t=5 0 0 0 0 0 0
t=6 0 0 0 0 0 0
t=7 0 0 0 0 0 0
t=8 0 0 0 0 0 0
t=9 0 0 0 0 0 0
t=10 0 0 0 0 0 0
t=11 0 0 0 0 0 0
t=12 0 0 0 0 0 0
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TABLE IV
OPTIMAL MANPOWER STRUCTURE OF SINGAPORE

No. of workers Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total
t=0 350 250 150 120 80 50 1000
t=1 320 230 140 115 77 35 917
t=2 290 210 130 110 74 34 848
t=3 260 190 120 105 71 33 779
t=4 259 178 110 100 68 32 747
t=5 261 180 107 95 65 31 739
t=6 263 182 108 90 62 30 735
t=7 265 184 109 85 59 29 731
t=8 267 186 110 80 56 28 727
t=9 269 188 111 80 53 27 728
t=10 271 190 112 80 53 26 732
t=11 273 192 113 80 53 26 737
t=12 275 193 114 80 53 26 741

Fig. 1. Optimal Manpower Structure of Singapore

Fig. 2. Optimal Manpower Structure of Denmark
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TABLE V
OPTIMAL HR STRATEGY OF DENMARK

Recruitment Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 0 0 0 0 0 0
t=1 0 0 0 0 0 0
t=2 0 0 0 0 0 0
t=3 29 7 0 0 0 0
t=4 32 21 7 0 0 0
t=5 32 21 11 0 0 0
t=6 32 21 11 0 0 0
t=7 32 21 11 0 0 0
t=8 32 21 11 5 0 0
t=9 32 21 11 5 3 0
t=10 32 21 11 5 3 1
t=11 32 21 11 5 3 1
t=12 0 0 0 0 0 0

Promotion Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 0 0 0 0 0 0
t=1 0 0 0 0 0 0
t=2 0 0 0 0 0 0
t=3 0 0 0 0 0 0
t=4 0 0 0 0 0 0
t=5 0 0 0 0 0 0
t=6 0 0 0 0 0 0
t=7 0 0 0 0 0 0
t=8 0 0 0 0 0 0
t=9 0 0 0 0 0 0
t=10 0 0 0 0 0 0
t=11 0 0 0 0 0 0
t=12 0 0 0 0 0 0

Dismissal Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 0 0 0 0 0 0
t=1 0 0 0 0 0 14
t=2 0 0 0 0 0 0
t=3 0 0 0 0 0 0
t=4 0 0 0 0 0 0
t=5 0 0 0 0 0 0
t=6 0 0 0 0 0 0
t=7 0 0 0 0 0 0
t=8 0 0 0 0 0 0
t=9 0 0 0 0 0 0
t=10 0 0 0 0 0 0
t=11 0 0 0 0 0 0
t=12 0 0 0 0 0 0

TABLE VI
OPTIMAL MANPOWER STRUCTURE OF DENMARK

No. of workers Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total
t=0 350 250 150 120 80 50 1000
t=1 320 230 140 115 77 35 917
t=2 290 210 130 110 74 34 848
t=3 260 190 120 105 71 33 779
t=4 259 177 110 100 68 32 746
t=5 261 178 107 95 65 31 737
t=6 263 179 108 90 62 30 732
t=7 265 180 109 85 59 29 727
t=8 267 181 110 80 56 28 722
t=9 269 182 111 80 53 27 722
t=10 271 183 112 80 53 26 725
t=11 273 184 113 80 53 26 729
t=12 275 185 114 80 53 26 733

Yufei Sun received the Ph.D. degree from Curtin
University, Perth, Australia, in 2015.

She is currently an associate research fellow with
the School of Mathematical Sciences, Chongqing
Normal University, Chongqing, China. Her research
interests include optimal control, nonlinear program-
ming, financial portfolio optimization.

Grace Aw received the Ph.D. degree from Curtin
University, Perth, Australia, in 2011.

She is currently a senior lecturer with the Depart-
ment of Mathematics and Statistics, Curtin Univer-
sity, Perth, Australia. Her research interests include
risk management, financial portfolio optimization
and actuarial approach.



11

TABLE VII
OPTIMAL HR STRATEGY OF CHINA

Recruitment Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 287 182 88 0 0 0
t=1 0 0 0 0 0 0
t=2 0 0 0 0 0 0
t=3 0 0 0 0 0 0
t=4 0 0 0 0 0 0
t=5 0 0 0 0 0 0
t=6 0 0 0 0 0 0
t=7 0 0 0 0 0 0
t=8 0 0 0 8 0 0
t=9 0 0 0 8 0 0
t=10 0 0 0 8 0 1
t=11 0 0 0 5 0 1
t=12 0 0 0 0 0 0

Promotion Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 0 0 0 0 0 0
t=1 0 0 0 0 0 0
t=2 0 0 0 0 0 0
t=3 0 0 0 0 0 0
t=4 0 0 0 0 0 0
t=5 0 0 0 0 0 0
t=6 0 0 0 0 0 0
t=7 0 0 0 0 0 0
t=8 0 0 0 0 0 0
t=9 0 0 0 0 3 0
t=10 0 0 0 0 3 0
t=11 0 0 0 0 3 0
t=12 0 0 0 0 0 0

Dismissal Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
t=0 0 0 0 0 0 0
t=1 0 0 0 0 0 14
t=2 0 0 0 0 0 0
t=3 0 0 0 0 0 0
t=4 0 0 0 0 0 0
t=5 0 0 0 0 0 0
t=6 0 0 0 0 0 0
t=7 0 0 0 0 0 0
t=8 0 0 0 0 0 0
t=9 0 0 0 0 0 0
t=10 0 0 0 0 0 0
t=11 0 0 0 0 0 0
t=12 0 0 0 0 0 0

TABLE VIII
OPTIMAL MANPOWER STRUCTURE OF CHINA

No. of workers Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total
t=0 350 250 150 120 80 50 1000
t=1 607 412 228 115 77 35 1474
t=2 577 392 218 110 74 34 1405
t=3 547 372 208 105 71 33 1336
t=4 517 352 198 100 68 32 1267
t=5 487 332 188 95 65 31 1198
t=6 457 312 178 90 62 30 1129
t=7 427 292 168 85 59 29 1060
t=8 397 272 158 80 56 28 991
t=9 367 252 148 80 53 27 927
t=10 337 232 138 80 53 26 866
t=11 307 212 128 80 53 26 806
t=12 277 192 118 80 53 26 746
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Fig. 3. Optimal Manpower Structure of China


