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Abstract 

Objective: HIV-associated sensory neuropathy (HIV-SN) remains common in HIV+ individuals 

receiving anti-retroviral therapy (ART), even though neurotoxic anti-retroviral drugs (e.g. 

stavudine) have been phased out of use. Accumulating evidence indicates that the 

neuropathy is immune-mediated. We hypothesise that chemokines produced locally in the 

skin promote migration of macrophages and T-cells into the tissue, damaging cutaneous 

nerves causing HIV-SN.  

Design: We assessed chemokine receptor expression on infiltrating CD14+ and CD3+ cells 

around cutaneous nerves in standardised skin biopsies from HIV-SN+ patients (n=5), HIV-SN- 

patients (n=9) and healthy controls (n=4).  

Methods: The AIDS Clinical Trials Group Brief Peripheral Neuropathy Screen was used to 

assess Indonesian HIV+ patients receiving ART without stavudine (case definition: bilateral 

presence of at least one symptom and at least one sign of neuropathy). Distal leg skin 

biopsies were stained to visualise chemokine receptors; CCR2, CCR5, CXCR3, CXCR4, 

CX3CR1, infiltrating CD3+ and CD14+ cells and protein-gene-product 9.5 on nerves, using 

immunohistochemistry and 4-colour confocal microscopy. 

Results: Intraepidermal nerve fibre density was variable in patients without HIV-SN and 

generally lower in those with HIV-SN.  CX3CR1 was more evident on CD14+ cells whereas 

CCR2, CCR5, CXCR3 and CXCR4 were more common on CD3+ cells. Expression of CX3CR1, 

CCR2 and CCR5 was more common in HIV-SN+ patients than those without HIV-SN. CXCR3 

and CXCR4 were upregulated in all HIV+ patients, compared with healthy controls. 

Conclusion: Inflammatory macrophages expressing CX3CR1 and T-cells expressing CCR2 and 

CCR5 may participate in peripheral nerve damage leading to HIV-SN in HIV+ patients treated 

without stavudine. Further characterisation of these cells is warranted.  (250 words). 
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Introduction 

 

HIV-associated sensory neuropathy (HIV-SN) is a common neurologic manifestation of HIV 

and its treatment. Historically, neuropathy has been described in about 30% of treatment-

naïve patients with advanced HIV disease [1, 2], and about 60% of patients on anti-retroviral 

therapy (ART) regimens that included zalcitabine, didanosine or stavudine [3, 4]. It is now 

accepted that these drugs are neurotoxic. Despite patients now starting treatment earlier 

and without known neurotoxic antiretroviral agents, HIV-SN remains a problem [5-7].  

A pathological hallmark of HIV-SN is distal degeneration of long axons in a “dying back” 

pattern, which is associated with reduced intraepidermal nerve fibre density (IENFD), nerve 

fibre swelling, and mononuclear cell infiltration [8, 9]. HIV-infected and uninfected activated 

macrophages can infiltrate peripheral nerves, dorsal root ganglia (DRG) [10] and/or tissues 

adjacent to peripheral nerves, and release cytokines such as Tumour Necrosis Factor alpha 

(TNF-α), Interferon-gamma (IFN-γ) and Interleukin (IL)-1 and/or IL-17, which can cause 

axonal degeneration [11]. TNF-α injected into rat sciatic nerve stimulated neuropathic pain 

behaviour [12] and TNF-α mRNA levels were increased in peripheral nerve tissue from AIDS 

patients [13]. Furthermore, genetic association studies have linked polymorphisms and 

haplotypes from TNF and surrounding genes with increased risk of HIV-SN in Africans [14], 

Asians and Caucasians [15].  

Chemokines produced in cutaneous tissues can bind to their receptors expressed on 

neuronal and inflammatory cells, initiating damage to the nerves. CCR5 and CXCR4 are co-

receptors supporting HIV-1 entry [16].  CCR1, CCR2, CCR4, CCR5, CXCR4 and CX3CR1 are 

expressed on subpopulations of sensory neurons and their axons [17, 18]. CCR2, CCR5 and 

CXCR4 are upregulated in primary sensory neurons and adjacent non-neuronal cells 

following peripheral nerve injury in animal models [19, 20]. HIV-1 envelope glycoprotein 120 

(gp120) may bind CCR5 and/or CXCR4 on nerve cells causing direct axonal damage [21], but 

there is no evidence of HIV infecting peripheral nerves in humans. In primary DRG cultures, 

gp120 mediated neuronal toxicity via TNF-α/TNF receptor (TNFR)-1 signalling [22]. CXCR4 

and CCR5 ligation by CXCL12 and CCL5 (respectively) mimicked neurotoxicity induced by 

gp120 [22]. Administration of gp120 into rat sciatic nerve, upregulated CCL2/CCR2 and 
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triggered hypernociception [23]. CCR2 expression was upregulated on primary sensory 

neurons and Schwann cells after peripheral nerve injury [24], and CCR2-knockout mice 

showed reduced pain behaviour following partial ligation of sciatic nerves [25]. CX3CL1 can 

recruit macrophage expressing CX3CR1. CX3CR1 was upregulated on spinal microglia and 

DRG glial satellite cells following peripheral nerve injury [26], and CX3CR1-deficient mice 

showed reduced neuropathic pain behaviour [27]. 

There is a reasonable consensus linking HIV-SN with a reduced IENFD [28, 29], but no 

studies have addressed whether HIV-SN is associated with critical chemokine signalling 

pathways. Here we present evidence on the ex vivo expression of chemokine receptors on 

infiltrating CD14+ and CD3+ cells around nerves in skin biopsies from HIV+ patients exposed 

to modern ART regimens that excluded the known neurotoxic agents. We believe we are 

the first to investigate chemokine signalling pathways and IENFD in this context. These 

results will enhance the knowledge of the underlying pathogenesis of HIV-SN in the modern 

era of HIV care.  
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Materials and Methods 

Patients and controls  

HIV+ patients treated at Cipto Mangunkusumo Hospital, Jakarta, Indonesia, were screened 

for SN using the AIDS Clinical Trials Group Brief Peripheral Neuropathy Screen (ACTG-BPNS), 

a validated tool based on detection of clinical signs (reduced/absent ankle reflexes or 

absent/diminished vibration sense) and symptoms (pain, aching, burning, pins and needles, 

or numbness) of neuropathy [30]. We used the standard ACTG-BPNS case definition for HIV-

SN: bilateral presence of at least one clinical sign and at least one symptom. Patients had 

received antiretroviral therapy for at least 12 months (median: 4.7 years [range: 1 – 12]) and 

had never received stavudine.  Biopsies from 14 HIV+ participants (HIV-SN+ n=5, HIV-SN- 

n=9) were used. Control biopsies were obtained from Asian volunteers from Jakarta (male, 

n=1) and Curtin University, Australia (females, n=3).  All donors are described in 

Supplementary Table 1. The study was approved by the Ethics Committee of the Faculty of 

Medicine, University of Indonesia (579/UN2.F1/ETIK/2014) and validated by Curtin 

University (HR210-2015). All participants gave written informed consent. 

Sample collection and preservation  

Local anaesthetic was injected and 3mm punch skin biopsies were collected ~10cm above 

the lateral malleolous on the distal leg, under sterile conditions. Biopsies were placed in 4% 

Paraformaldehyde-Lysine-Periodate fixative for 12-24 hours at 4oC before transfer to 

glycerol-based cryoprotectant (20% glycerol, 20% 0.4M Sorrenson’s Phosphate Buffer and 

60% dH2O) for storage at -20oC. Biopsies were cut perpendicular to the epidermal surface on 

a freeze cryostat sliding microtome (Microm HM550; Thermo Scientific, Waltham, MA) set 

at 50µM, placed into antifreeze (33% glycerol, 33% ethylene glycol and 10% 2x phosphate 

buffer and dH2O) and stored at -20oC for immunochemistry (IHC).  

Immunochemical staining  

Staining was performed in 24-well plates. Sections were bleached with 0.25% potassium 

permanganate (15 minutes, room temperature), washed with 1mL Tris-buffered saline (TBS) 

containing 0.1% Triton-X, and treated with 5% oxalic acid (2 minutes). Sections were then 
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blocked with Image-iT FX Signal Enhancer (Invitrogen, Carlsbad, CA) for 30 minutes. This 

solution was removed before the addition of primary antibodies.  

To identify chemokine receptors on CD14+ cells, sections were treated (overnight, 4°C) with 

mouse-monoclonal IgG antibodies against CCR2, CCR5, CXCR3 or CXCR4 (5µg/ml; R&D 

Systems, Minneapolis, MN) or CX3CR1 (10µg/ml; Biolegend, San Diego, CA), biotinylated 

polyclonal sheep IgG anti-CD14 (R&D systems, Minneapolis, MN) and polyclonal rabbit IgG 

anti-protein-gene-product 9.5 (PGP9.5; 2µg/ml) to detect nerves (Abcam, Cambridge, MA). 

Sections were washed five times with TBS, followed by six 1-hour washes before adding 

secondary antibodies; goat anti-mouse IgG FITC (20µg/ml), donkey anti-rabbit IgG Dylight 

(5µg/ml; Abcam) and AlexaFluor® fluorochrome streptavidin (20µg/ml; Invitrogen). 

Secondary antibodies were diluted in 2% donkey, goat and human serum and applied 

overnight at 4˚C.  

To identify chemokine receptors on CD3+ cells, sections were treated (overnight, 4°C) with 

polyclonal goat IgG against CCR2, CCR5, CXCR4 (20µg/ml) or CXCR3 (10µg/ml), mouse-

polyclonal IgG anti-CD3 (10µg/ml; Novus Biologicals, Littleton, CO) and anti PGP9.5 (as 

above). Sections were washed as described above and treated with biotinylated donkey 

anti-goat IgG (20µg/ml; Abcam). Sections were blocked with 1% goat serum for 30 minutes 

before addition of AlexaFluor® fluorochrome streptavidin (20µg/ml; Invitrogen), goat anti-

mouse IgG FITC (20µg/ml) and donkey anti-rabbit IgG (5µg/ml; Abcam). Secondary 

antibodies were diluted in 1% goat serum and 2% donkey serum, and applied overnight at 

4°C. Stained sections were washed 6 times, incubated with 4’,6-diamidino2-phylindole, 

diyhdrochloride (10 minutes) (Invitrogen), washed twice with TBS, mounted using Shandon 

Immumount (Thermo Fisher Scientific, Waltham, MA) and coverslips (#1.5, Proscitech, 

Queensland, Australia) before viewing. One section stained only with secondary antibodies 

was included in each run as a negative control.  

 

Visualisation of sections using confocal microscopy  

Images were acquired using an inverted Nikon A1+ confocal microscope with NIS-Elements 

confocal software (Nikon Instruments, Tokyo, Japan). Images were collected at digital scan 



 7 

resolution 0.62µm/pixel, pixel dwell 4.8 with 1024 resolution using a 20x Plan Apo dry 

objective (N.A. 0.75). Sequential laser scanning was performed using four lasers; 405nm 

(450/50 filter), 488nm (525/50 filter), 561nm (595/50 filter) and 640nm (700/75 filter) to 

view nuclei, chemokine receptors, nerve fibres and CD14+ or CD3+ cells respectively. The 

position of the top and bottom of the image was recorded before multiple images were 

taken in a z-series, collected according to Nyquist criteria.  Equivalent thresholds were 

applied across images to visualise nerves (white), chemokine receptors (red) and CD14+ or 

CD3+ (green). Chemokine receptors co-located with either CD14+ or CD3+ cells appeared 

yellow. 

 

Intraepidermal nerve fibre density (IENFD)  

NIS-Elements Advanced Research software (Nikon Instruments, Tokyo, Japan) was used to 

acquire three 0.5mm2 sections per biopsy (only 2 samples were available for one 

participant). Sections were coded and nerve fibres were counted by six investigators using 

standardised rules for IENFD quantification [31]. In brief, single IENF crossing the dermal-

epidermal junction are counted with secondary branching excluded from quantification. The 

average count across the three sections per biopsy was multiplied by 2 to generate IENFD 

per mm2 area of skin for each participant (Supplementary Figure 1). 

We computed Light’s κ for exact agreement (0 tolerance) between the six raters, treating 

rating as a weighted variable and using squared distance. A bootstrap 95% confidence 

interval (n = 1000 resamples) was calculated using the bias-corrected and accelerated 

bootstrap method. The analysis yielded a Light’s κ = 0.79 (95%CI: 0.61 to 0.91); the point 

estimate indicating strong inter-rater agreement, with the confidence interval indicating 

moderate to strong agreement [32].  
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Results 

Intraepidermal nerve fibre density was generally reduced in HIV-SN+ patients  

HIV-SN+ (n=5) and HIV-SN- (n=9) patients were matched for age, height, time on ART and 

CD4+ T cell counts (Supplementary Table 1). Healthy controls (HC, n=4) were also matched 

with the patients by age and height. All donors were of South East Asian ancestry. Figure 1 

shows confocal images from two HC (panels A and B), two HIV-SN- patients (panels C and D) 

and two HIV-SN+ patients (panels E and F) selected to represent the range seen in each 

group. Median (range) IENFD per square mm field were 11.2 (5.8 – 15.2), 5.8 (1.3 – 14.0) 

and 3.0 (0.8 – 9.7) in HC, HIV-SN- and HIV-SN+ groups, respectively. The IENFD tended to be 

reduced in HIV-SN+ patients compared with HC, but the study was not powered to find a 

significant difference (Supplementary Tables 1, 2, Supplementary Figure 1). A reduction in 

the length of nerve fibres within the epidermis of HIV-SN+ patients was common. CD14+ 

macrophages were visible in sections from HIV+ patients. Many were adjacent to blood 

vessels, scattered within cutaneous tissue or adjacent nerve fibres. 

 

CX3CR1 was expressed on CD14+ cells adjacent to peripheral nerves in HIV-SN+ patients 

Sections were stained to visualise expression of CX3CR1 on infiltrating CD14+ cells (Figure 1). 

CX3CR1 expression was extremely rare in the three sections from HC (panels A and B). They 

were also rare in sections from three HIV-SN- patients (e.g. panels C and D). Few CX3CR1+ 

cells were seen in two of three sections from HIV-SN+ patients (panels E and F). In all 

sections from HIV-SN+ patients, CX3CR1 was co-located with CD14 (yellow arrows) and was 

closely associated with the subepidermal nerve plexi (Figure 1, panels E and F). This is 

consistent with a role for the receptor in HIV-SN. 

 

CCR2 is upregulated in HIV-SN+ skin and predominantly expressed by CD3+ cells 

Sections were stained to visualise CCR2 on infiltrating CD14+ or CD3+ cells (Figure 2). Very 

few CCR2+ cells were evident in HC (e.g. panels A and B). Two of eight stained sections from 

HIV-SN- cases displayed detectable CCR2+ cells (e.g. panel D), whereas all seven sections 
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from five HIV-SN+ cases displayed CCR2 expression (e.g. panels E and F). The HIV-SN- patient 

expressing CCR2 most clearly (patient 11; not shown) had the lowest IENFD and a case 

review uncovered a history of Stevens Johnson Syndrome – an inflammation of the skin. The 

patient was excluded from further IHC. Most CCR2 was co-located with CD3 (panels D and F, 

yellow arrows). CD14+ cells were visible but rarely expressed CCR2 (panels A, C, E).  

 

CCR5 is upregulated and associated with peripheral nerves in HIV-SN+ skin sections  

Sections were also stained to visualise expression of CCR5 on infiltrating CD14+ or CD3+ cells 

(Figure 3). CCR5+ cells were very rare in HC (panels A and B). Isolated positive cells were 

seen in two of five samples from HIV-SN- (panels C and D) and five of five samples from HIV-

SN+ patients, with some cells located close to nerve fibres (panels E and F). CCR5 was co-

located with CD3 (yellow arrows, panels D and F), but not CD14 (panels A, C and E).   

 

CXCR3 was expressed by scattered CD3+ cells in all HIV+ patients  

CXCR3+ cells were visible in blood vessels present in some sections from all groups. CXCR3+ 

cells located closely with CD14+ cells but the two markers did not co-stain (Figure 4: panels 

A, C, E). In addition, variable numbers of CD3+ CXCR3+ cells were seen scattered in the 

tissues, so that some were adjacent to nerves in all eight sections from HIV-SN- and three 

sections from HIV-SN+ patients. Fewer positive cells were seen in samples from HC, so 

expression of this marker may be a consequence of HIV infection. 

 

CXCR4+ CD3+ cells were seen along the epidermis and the dermis in HIV+ patients 

CXCR4+ cells were seen in some but not all sections from HC (Figure 5. panels A and B). 

CXCR4 was expressed in all six sections from HIV-SN- patients (panels C and D) and three 

HIV-SN+ patients (panels E and F) and was distributed along the epidermis (panel C and F) or 

adjacent to blood vessels (panel E). Some larger cells expressed CXCR4 without CD14+ (panel 

E). CXCR4 was expressed on a subset of CD3+ cells in the dermis (panels D and F). This may 

reflect HIV disease rather than HIV-SN.  
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Discussion 

We have developed a protocol that identifies cells and receptors that could contribute to 

the damage of small nerve fibres and form the basis of HIV-SN. The compilation of images 

into z-series allowed us to follow individual nerves as if they were distributed in the tissue in 

just two dimensions. Counts made by multiple observers blinded to the disease phenotype 

provide reliable quantification of IENFD (Supplementary Figure 1). The median IENFD at the 

distal leg of normal controls was 11.2 per mm2. This is consistent with an earlier study with 

the reference range of 13.8+6.7 per mm2 [33]. IENFD was generally reduced in HIV-SN+ 

patients and variable in those without HIV-SN. The wide range of nerve fibre densities in 

HIV-SN- patients may reflect early lesions not detected by the ACTG-BPNS. A recent 

longitudinal study of 150 Thai HIV+ individuals found IENFD measurements did not 

distinguish individuals with HIV-SN or signal the onset of neuropathic signs/symptoms [34]. 

However, IENFD decreases with increasing age [35]. Here all donors were 25 to 47 years old 

so any effect from age is likely to be minimal. We were also unable to assess associations 

with genotype [14, 36], but all participants were of South East Asian descent.  

 

In addition to a reduction in the number of nerves in the epidermis, our methods 

demonstrate a reduction in cutaneous nerve fibre length in adults with HIV-SN (Figure 1, 

panels E) and in some HIV-SN- cases (Figure 1, panel C). It is unlikely that the loss of nerves 

reflects direct infection by HIV [9]. However, HIV-infected macrophages may have a primary 

role in nerve damage or may accumulate in response to debris from destroyed axons [37]. 

Our results show CD14+ macrophages were visible in all sections. These CD14+ macrophages 

may release pro-inflammatory cytokines causing axonal and DRG neuronal injury [38, 39]. A 

recent study has linked the loss of IENFD and increased recruitment of macrophages to DRG 

in Simian Immunodeficiency Virus-infected macaques [40]. We show macrophages adjacent 

to blood vessels, scattered within cutaneous tissues and adjacent to nerve fibres. This 

distribution is consistent with their extravasation and migration towards the nerves, a 

pattern observed in other chronic inflammatory neuropathies [41]. However, these CD14+ 

macrophages did not express CCR2, CCR5, CXCR3 or CXCR4 but did express CX3CR1.  
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CX3CR1+ monocyte/macrophage are expressed in low levels and are recruited in healing  

tissues [42]. CX3CL1/CX3CR1 signalling is implicated in the development of neuropathic pain 

in animal models [27, 43-45]. Our results show CX3CR1 was minimally expressed, but 

CX3CR1+ CD14+ macrophages were seen near the residual nerves in sections from HIV-SN+ 

patients. This supports a study showing increased expression of CX3CR1 by macrophages in 

the sciatic nerve proximal to a site of mechanical injury and in the corresponding DRG [26]. 

Furthermore in a spinal nerve ligation model, CX3CR1 expression was upregulated in spinal 

microglia, whilst membrane-bound levels of CX3CL1 were reduced [43]. The cleavage of 

CX3CL1 after nerve injury may initiate activation of the low affinity purinergic P2X7 

receptor, leading to the release of the lysosomal cysteine protease cathepsin S from 

microglia. This may mediate neural–glial interaction and neuropathic pain behavior [46]. 

Accordingly, the gene encoding the P2X7 receptor, P2X7R, lies in a region of linkage 

disequilibrium with upstream genes P2X4R and CAMKK2 and single nucleotide 

polymorphisms and haplotypes within this block of genes were associated with HIV-SN in 

South Africans HIV+ individuals [47]. Other studies suggest  downstream mechanisms of 

CX3CR1 via p38 mitogen-activated protein kinases [43] or extracellular signal-regulated 

protein kinase 5 [48] may activate microglia after nerve injury. Blockade or knockout of 

CX3CR1 impaired neuropathic pain behaviours and reduced hypersensitivity to thermal 

stimuli following peripheral nerve injury in animal models [27, 43, 44]. These considerations 

support our evidence that CX3CR1 could have a role in HIV-SN. 

  

Our results show CCR2, CCR5, CXCR3 and CXCR4 were co-localised with CD3 but not CD14. 

T-lymphocytes were observed in nerves obtained from patients with inflammatory 

neuropathies [49]. An immunocytochemical study investigating mononuclear cells in sural 

nerve biopsies from 42 HIV- and HIV+ patients with various types of peripheral neuropathy 

found that 72% of infiltrating mononuclear cells were CD3+ [50]. T-cell infiltration into the 

spinal dorsal horn after nerve injury was also implicated in the development of pain-like 

hypersensitivity in rats [51]. CCR2 is critical in recruiting T-cells in responses to axonal injury 

of the central nervous system [52]. CCL2/CCR2 expression were upregulated by primary 

sensory neurons and Schwann cells after a sciatic nerve constriction injury [24]. CCL2/CCR2 

was also upregulated by gp120 injected into rat sciatic nerve. This paralleled the 
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development of mechanical hypernociception [23]. Accordingly, we found CCR2 was 

upregulated and expressed in five of five HIV-SN+ skin sections.   

 

CCR5 and CXCR4 are co-receptors for HIV.  CXCR4 was expressed in all HIV+ skin sections 

whilst CCR5 was more evident in skin sections from patients with SN, with some positive 

cells located near nerve fibres. In a study of chemokine receptors in HIV/gp120-induced 

neurotoxicity based on mixed neuronal/glial cerebrocortical cultures, gp120 utilized CCR5, 

CXCR4 or both to cause neurotoxicity [53]. Interestingly, CCL4 and CCL5 (ligands of CCR5) 

can inhibit gp120-induced neuronal death, whilst CXCL12 (the ligand of CXCR4) could alone, 

be neurotoxic. Moreover, CCR5 ligands could inhibit CXCR4/CXCL12-induced neurotoxicity 

[53]. Hence our finding linking CCR5 with HIV-SN may place the receptor in a complex 

cascade. For example; the binding of gp120 to CXCR4 on Schwann cells can cause the 

release of CCL5. CCL5 can stimulate the production of TNF–α by neuronal cells in DRG, 

leading to TNFR1-mediated neurotoxicity [22]. 

 

CXCR3 co-localized with CD3 in all HIV+ patients. CXCR3 plays role in the adaptive immune 

response to inflammation and viral infection [54]. Some CXCR3+ cells were located near 

damaged nerves. In patients with diabetic neuropathy, quantitative polymerase chain 

reaction and flow cytometric analyses showed that CXCR3+ CD8+ T-cells were recruited and 

infiltrated into affected tissues [55]. CXCR3 ligands, CXCL9, CXCL10 and CXCL11, released 

from Schwann cells can further recruit CXCR3+ CD8+ T-cell into sites of peripheral 

neuropathy [56]. Furthermore, Schwann cells can stimulate CD8+ T-cells to release TNF–α 

and Programmed death-ligand 1 (PD-1) leading to neuronal apoptosis [55]. In foetal 

neuronal cultures, ligation of CXCR3 and CXCL10 can increase intracellular calcium, which in 

turn increases membrane permeability and cytochrome c release. This activates caspase‐9 

which activates caspase‐3, ultimately leading to neuronal apoptosis [56]. Caspase 3-

dependent neuronal apoptosis cascades have been demonstrated in studies of gp120-

induced neurotoxicity [22, 57].  

 



 13 

Our study has some limitations. First, tissue samples were small, and sampling error remains 

a possible issue as we did not scan the entire biopsy. Second, we used one validated but 

simple clinical tool to distinguish patients with structural changes to the cutaneous nerves 

(HIV-SN+) from those without (HIV-SN-).  We cannot exclude the possibility that some of our 

“SN free” HIV+ patients may have had early, sub-clinical peripheral nerve lesions that were 

not detected by this tool. Third, the presence of chemokine receptors in skin tissues does 

not prove that their signalling is critical. However, we have linked CD14+ macrophages 

expressing CX3CR1, and CD3+ T-cells expressing CCR2 and/or CCR5 with HIV-SN in skin 

sections from HIV+ individuals. The cells may have a role in the loss of nerves (evident from 

the IENFD) or may impact upon nerve function creating the characteristic signs and 

symptoms of HIV-SN (numbness, tingling, pain, reduced vibration sense, etc.). Expression of 

CXCR3 and CXCR4 was linked with HIV disease as these receptors were found in all sections 

from patients. Further investigation is needed with longitudinal studies including samples 

collected during earlier phases of HIV-SN. 
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Figure 1. Representative confocal images showing expression of CX3CR1 and CD14 in skin from two 

HC (A, B), HIV-SN- (C, D) and HIV-SN+ (E, F) patients. Abundant thin intraepidermal nerve fibres run 

from the dermis innervating the basement membrane and epidermis in HC skin section. The median 

nerve count (IEFND) was 11.2 [range: 5.8 – 15.2] fibres per mm2 skin area. IENFD was variable in HIV-

SN- sections (5.8 [1.3 – 14.0]) and slightly lower in HIV-SN+ (3.0 [0.8 – 9.7]). CX3CR1 was rare in HC 

skin sections and minimally expressed skin sections from patients. However, CX3CR1 expression was 

closely associated with epidermal nerves in HIV-SN+ sections, and co-localised with CD14+ cells (E, F; 

yellow arrows). The white line represents 100m. 

 

Figure 2. Representative confocal images showing expression of CCR2 with CD14 (left) or CD3 

(right) in skin from HC (A, B), HIV-SN- (C, D) and HIV-SN+ (E, F) patients. CCR2 expression was rare 

in HC. Two of eight stained sections from HIV-SN- patients had detectable CCR2+ cells, whereas seven 

of seven sections from five HIV-SN+ cases displayed CCR2. Some CCR2+ cells were located close to 

nerves. CCR2 was rarely expressed on CD14+ cells (E), but was seen on CD3+ cells (D, F; yellow arrows).  

 

Figure 3. Representative confocal images showing expression of CCR5 with CD14 (left) or CD3 

(right) in skin from HC (A, B), HIV-SN- (C, D) and HIV-SN+ (E, F) patients. CCR5+ cells were rare in 

sections from HC (A, B), but expression was up-regulated in sections from HIV+ patients; HIV-SN- (two 

of five) and HIV-SN+ (six of six). CCR5 was predominantly co-localised with CD3 (D, F; yellow arrows). 

Some CCR5+ cells were located close to nerve fibres in sections from HIV-SN+ patients (E, F). 

  

Figure 4. Representative confocal images showing expression of CXCR3 with CD14 (left) or CD3 

(right) in skin from HC (A, B), HIV-SN- (C, D) and HIV-SN+ (E, F) patients. CXCR3 was rare in HC, mostly 

surrounding dermal blood vessels. CXCR3 was highly expressed in sections from all HIV+ patients, 

and most commonly co-located with CD3 (D, F; yellow arrows). An expanded red box (E) highlights 

the close proximity of CD14+ (green) and CXCR3+ (red) cells on the nerve. A yellow box (F) shows the 

co-localisation of CD3 and CXCR3 (yellow) adhering to a cutaneous nerve in a HIV-SN+ section.  

 

Figure 5. Representative confocal images showing expression of CXCR4 with CD14 (left) or CD3 

(right) in skin from HC (A, B), HIV-SN- (C, D) and HIV-SN+ (E, F) patients.  CXCR4 was upregulated in 

the epidermis and the dermis of HIV+ patients, with mixed patterns of expression (C, D, E, F). CXCR4 

was rarely expressed on CD14+ cells (A, C, E) but was seen on CD3+ cells (D, F; yellow arrows).  
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SUPPLEMENTS 

Table 1; Characteristics of patients and healthy controls (HC) 

Donor BPNSTa Gender 
Age 

(years) 

Height 

(cm) 

Time on ART 

(years) 

Last CD4 count 

(cell/uL) 

IEFNDb 

(per mm2) 

Patient 1 HIV-SN+ Female 33 158 7 406 1.6 

Patient 2 HIV-SN+ Female 33 167 7.5 729 9.7 

Patient 3 HIV-SN+ Male 34 175 5 714 3.0 

Patient 4 HIV-SN+ Male 47 167 6.8 284 4.6 

Patient 5 HIV-SN+ Male 45 167 3.5 300 0.8 

Patient 6 HIV-SN- Male 38 179 8.7 626 6.7 

Patient 7 HIV-SN- Female 41 150 1 435 6.6 

Patient 8 HIV-SN- Male 35 165 12 693 5.4 

Patient 9 HIV-SN- Female 32 165 3.6 385 9.0 

Patient 10 HIV-SN- Male 44 171 2.8 84 4.0 

Patient 11 HIV-SN- Male 36 168 1 566 1.3 

Patient 12 HIV-SN- Male 25 165 1.6 653 14.0 

Patient 13 HIV-SN- Male 34 166 2.2 386 5.2 

Patient 14  HIV-SN- Female 41 150 1 448 5.8 

HC1 - Female 28 158 - - - 

HC2 - Female 33 162 - - 11.2 

HC3 - Female 33 151 - - 15.2 

HC4 - Male 37 169 - - 5.8 

 

a  Brief Peripheral Neuropathy Screening Tool 

b Inter Epithelial Nerve Fibre Density 

 

 

 

 

 

 

 



 

Table 2; Summary of donor characteristics 

(BPNST) 
N value 

 

Male 

(n) 

Age 

(years) 

Height 

(cm) 

Time on ART 

(years) 

Last CD4  

(cell/uL) 

IEFND 

(per mm2) 

HIV-SN+ 

HIV-SN- 

HC 

5 

9 

4 

3 

6 

1 

p=1.0a  

34 (33-47) 

36 (25-44) 

33 (28-37) 

p=0.84b 

167 (158-175) 

165 (150-179) 

160 (151-169) 

p=0.50 b 

6.8 (3.5-7.5) 

2.2 (1.0-12) 

n/a 

p=0.14 b 

406 (284-729) 

448 (84-693) 

n/a 

p=1.0 b 

3.0 (0.8 – 9.7) 

5.8 (1.3 – 14.0) 

11.2 (5.8 – 15.2) 

p=0.19 b 

 

Results are presented as median (range); n/a  not applicable 

a Fisher's exact test (HIV-SN+ versus HIV-SN-),  b Mann-Whitney test (HIV-SN+ versus HIV-SN-)   

 

 

 

Figure 1. Mean intraepidermal nerve fibre count for each patient as determined by each rater  
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