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Abstract

We propose and analyze an interior penalty method for a finite-dimensional
large-scale bounded Nonlinear Complementarity Problem (NCP) arising from
the discretization of a differential double obstacle problem in engineering.
Our approach is to approximate the bounded NCP by a nonlinear algebraic
equation containing a penalty function with a penalty parameter µ > 0.
The penalty equation is shown to be uniquely solvable. We also prove that
the solution to the penalty equation converges to the exact one at the rate
O(µ1/2) as µ → 0. A smooth Newton method is proposed for solving the
penalty equation and it is shown that the linearized system is reducible to
two decoupled subsystems. Numerical experiments, performed on some non-
trivial test examples, demonstrate the computed rate of convergence matches
the theoretical one.

Keywords: Variational inequality, double obstacle problem, nonlinear
complementarity problem, interior penalty method, convergence.

1. Introduction

Double obstacle problems appear in many areas such as physics, engi-
neering, game theory, investment and financial engineering (cf., for example,
[4, 7, 3, 10, 8]). A typical example of double obstacle problems is the following
optimization problem in an infinite-dimensional setting

min
u∈H
F(u) subject to u∗ ≤ u ≤ u∗, (1)
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where H is a partially ordered functional space, F is a functional on H
involving usually differential operators, and u∗ and u∗ are known functions in
a proper function space satisfying u∗ < u∗. In general, an infinite-dimensional
double obstacle problem can be stated as follows.

Problem 1.1. Find a pair (u, v) in a proper function space such that

L(u) + v ≤ 0, u− u∗ ≤ 0, (L(u) + v)(u− u∗) = 0, (2)

u∗ − u ≤ 0, v ≤ 0, v(u∗ − u) = 0, (3)

where L denotes a nonlinear (differential) operator and v is a multiplier.

(A more rigorous statement of the above problem is beyond the scope of
this work and we refer interesting readers to [44].) Mathematically, Problem
1.1 may be the optimality (KKT) conditions (or Euler-Lagrange equations
for unconstrained problems) for (1) via Calculus of Variation in which v
can be regarded as a multiplier. However, Problem 1.1 represents a larger
class of problem than that of the form (1) as it includes double obstacle
problems which may not be formulated as an optimization problem of the
form (1). Problems of this type often appear in financial engineering such
as pricing European and American options under proportional transaction
costs [10, 8, 24, 25, 26].

Problem 1.1 is an infinite-dimensional problem and is not solvable analyt-
ically unless for some trivial cases. Thus, numerical approximations to it are
usually sought in practice. To solve Problem 1.1 numerically, two different
types of methods are needed – schemes for the discretization of (2)–(3) and
methods for solving the discretized problem. Various methods can be found
in the open literature for the discretization of differential LCPs, such as those
in [6, 40, 32, 12, 22, 25, 39]. Application of a proper discretization scheme to
(2)–(3) usually yields the following n-dimensional double obstacle problem.

Problem 1.2. Find x, y ∈ Rn such that

f(x) + y ≤ 0, (4)

x ≤ c, (5)

(x− c)>(f(x) + y) = 0, (6)

and

b− x ≤ 0, (7)

y ≤ 0, (8)

y>(b− x) = 0, (9)
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where f : Rn 7→ Rn and b and c are known n-dimensional vectors satisfying
b < c which define the lower and upper bounds on x.

Without loss of generality, we assume that c = 0 and b < 0, as the general
case can be transformed into this one by a simple translation. In the special
case that there exists a φ(x) : Rn 7→ R such that f(x) = ∇φ(x) (or f is
conservative), it is easy to show that (4)–(9) are the 1st-order optimality
(KKT) conditions for the minimization problem minb≤x≤0 φ(x).

Problem 1.2, containing a set of two complementarity problems, is equiv-
alent to the bounded Nonlinear Complementarity Problem (NCP) discussed
in [16] in which a numerical procedure for the problem is also proposed. Var-
ious other numerical methods have also been developed for complementarity
problems such as those in [14, 21, 27, 9, 30]. Obviously, existing numerical
methods may be used or extended for solving Problem 1.2. However, most
of the existing methods have been developed for generic NCPs and they are
not normally designed for large-scale problems. On the other hand, (4)–(9)
arises from the discretization of (2)–(3) by a discretization scheme which is
usually designed in such a way so that the resulting nonlinear mapping f
has some special properties such as sparsity and strong monotonicity, and
its Jacobian matrix has positive diagonal and non-negative off-diagonal en-
tries and is diagonally dominant. These properties can be exploited in the
computation of approximate solutions to Problem 1.2, particularly when it is
large-scale, as will be commented later in this work. Therefore, it is desirable
to design algorithms for Problem 1.2 which allows full use of these special
properties in computation.

Recently, penalty methods have been used extensively for solving both
finite- and finite-dimensional NCPs arising in classic and financial engineering
[2, 17, 28, 37, 18, 35, 19, 20, 43, 33, 26, 5, 23, 34]. More specifically, a power
penalty method is proposed for Problem 1.2 in [36] in which a penalty term is
used to penalize the infeasible components of an approximation to the relaxed
unconstrained problem. This power penalty method has the merits that it
has an exponential convergence rates, is simple to implement and does not
introduce any new local minima. However, the power penalty methods are
‘exterior’ in the sense that some of the constraints, more specifically some of
(5) and (8), can only be satisfied approximately, not strictly, by the solutions
from these power penalty methods. An empirical interior penalty method
in infinite-dimensions for a linear complementariy problem (LCP) arising in
option pricing is proposed in [28] and a convergence analysis for a similar
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method in an infinite-dimensional functional space setting is conducted in
[42]. Motivated by the logarithmic barrier functions used extensively for
general linear and nonlinear programming problems [15], an interior penalty
method is proposed and analyzed in [38] for an LCP.

In this work, we propose an interior penalty approach to the numerical
solution of Problem 1.2 in which (4)–(9) is approximated by a nonlinear al-
gebraic equation with a penalty term linked to a barrier function often used
for solving nonlinear constrained optimization problem. As demonstrated
in our previous work [38], unlike most of the existing interior methods for
NCPs (cf., for example, [30, 13]), the method we propose in this work does
not require any auxiliary functions such as potential or merit functions. It
is known that the introduction of auxiliary functions in solving NCPs often
results in a global optimization problem even when the original problem is
monotone [21, 41]. In fact, we are able to show that the penalty equation
has a unique solution under some conditions which are usually satisfied by
the discretized forms of (2)–(3) using one of the aforementioned discretiza-
tion schemes. A convergence theory for the approximate solution will also be
established. Moreover, we show that the penalty equation from this method
inherits properties from the original problem such as sparsity and monotonic-
ity. The rest of this paper is organised as follows.

In Section 2 we will formulate the the penalty equation and establish the
unique solvability of the penalty equation. We prove in Section 3 both weak
and strong convergence of the approximate solutions to the exact one. In
Section 4, we will first design a Newton’s method for the penalty equation.
We then show that the linearized system can be decomposed into two de-
coupled subsystems by a block Gaussian elimination and prove their system
matrices are M -matrices. In Section 5, we use some numerical experimental
results to verify the theoretical rate of convergence and to demonstrate the
usefulness of the methods for solving practical problems.

2. The interior penalty method

Let z and function w be defined respectively by

z =

(
x
y

)
and w(z) =

(
f(x) + y
b− x

)
. (10)

Problem 1.2 can then be written as the following unbounded NCP (recall
c = 0):
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Problem 2.1. Find z ∈ R2n such that

w(z) ≤ 0, (11)

z ≤ 0, (12)

z>w(z) = 0. (13)

Interior methods have been used very successfully for solving constrained
optimization problems and an excellent overview of these methods can be
found in [15]. These methods guarantee that a solution from such a method
satisfies the constraints in question strictly. Motivated by the interior penalty
formulation in [38] for an LCP, we propose to use the nonlinear equation
defined below to approximate Problem 2.1.

W (zµ) := w(zµ)− µ./zµ = 0, (14)

where µ is a (small) positive constant. zµ = (x>µ , y
>
µ )> ∈ R2n and u./v denotes

(Hadamard) element by element division of two matrices of the same size
with the exception that u./v = (u/v1, ..., u/zm)> if u is a scalar and v ∈ Rm.
Any negative solution zµ to (14) defines an approximation to the solution
z of Problem 2.1. We expect that zµ → z when µ → +0. Before further
discussion, we first make some assumptions on the mapping f .

A discretization scheme such as any of [32, 12, 22, 25] is designed so that
the nonlinear coefficient matrix of the resulting system is strongly monotone,
but usually not symmetric. Therefore, it is reasonable to make the following
assumptions on the mapping f :

A1. f is strongly monotone, i.e., there exists a constant α > 0, independent
of n, such that

(x1 − x2)>(f(x1)− f(x2)) ≥ α‖x1 − x2‖22, (15)

for any x1, x2 ∈ Rn, where || · ||2 denotes the l2 (Euclidean) norm on
Rm for any positive integer m.

A2. f(x) is continuously differentiable on Rn.

We comment that, in practice, Assumption A1 is usually satisfied by a dis-
cretized system if an appropriate discretization scheme is used, as we have
exampled in [23] using an NCP arising from the discretization of a nonlinear
Black–Scholes equation. Using the above assumptions we are able to show
the following lemma.
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Lemma 2.2. For any given 0 < µ ≤ µ0 with µ0 a positive constant, if
zµ ∈ R2n is a solution to (14) such that zµ < 0, then zµ satisfies

‖zµ‖2 ≤M, (16)

where M > 0 is a constant, independent of µ.

Proof. Let zµ = (x>µ , y
>
µ )>, where xµ, yµ ∈ Rn. Left-multiplying (14) by

(x>µ , 0
>) gives

x>µ f(xµ) + x>µ yµ − µn = 0,

since x>µ (1./xµ) = n. From this equation we obtain

x>µ (f(xµ)− f(0)) + x>µ yµ = µn− x>µ f(0).

Because xµ, yµ < 0, we have x>µ yµ > 0. Thus, using this observation and (15)
we have from the above equation

α‖xµ‖22 ≤ µn+ ‖xµ‖2‖f(0)‖2.

Using the ε-inequality with ε = α, we have from the above estimate

α‖xµ‖22 ≤ µn+
α

2
‖xµ‖22 +

1

2α
‖f(0)‖22

from which we thus have

‖xµ‖22 ≤
2

α

(
µ0n+

1

2α
‖f(0)‖22

)
,

since µ ≤ µ0. Taking the square root on both sides of the above we have
‖xµ‖2 ≤ C1 for some constant C1 > 0, independent of µ.

We now consider yµ. Left-multiplying (14) by (x>µ , y
>
µ ) gives

x>µ f(xµ) + y>µ b− 2µn = 0.

Note that yµ < 0 and b < 0 is a constant. We have from the above equation

(min
i
|bi|)‖yµ‖1 ≤ y>µ b = 2µn− x>µ f(xµ) ≤ 2µ0n+ ‖xµ‖2‖f(xµ)‖2, (17)

where ‖·‖1 denotes the usual l1-norm on Rn. From the first part of this proof
we have ‖xµ‖2 ≤ C1. Also, from Assumption A2 we see that f is continu-
ous which, combined with the boundedness of xµ, implies that ‖f(xµ)‖2 is
bounded uniformly in µ. Thus, we see from (17) that ‖yµ‖1 is also bounded
above by a positive constant. Since all norms on Rn are equivalent, we see
that ‖yµ‖2 ≤ C2 for some positive constant C2, independent of µ. Combining
this with ‖xµ‖2 ≤ C1 obtained above we have (16).
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Using Lemma 2.2, we are able to show that (14) has a unique negative
solution in the following theorem.

Theorem 2.3. For any given µ ∈ (0, µ0], where µ0 is a given positive con-
stant, there exists a unique solution zµ to (14) satisfying zµ < 0.

Proof. Let us first show if the set of solutions to (14) is non-empty, then it
has only one element. For simplicity, we ignore the subscript µ in the rest
of the proof. Suppose both z1 < 0 and z2 are solutions to (14). Then, they
satisfy

w(z1)− w(z2)− µ(1./z1 − 1./z2) = 0.

Left-multiplying the above equation by (z1 − z2)> gives

(z1 − z2)>(w(z1)− w(z2))− µ(z1 − z2)>(1./z1 − 1./z2) = 0. (18)

Let zk = (x>k , y
>
k )> for k = 1, 2. Using the definition of w in (10) we see that

(z1 − z2)>(w(z1)− w(z2)) = (x1 − x2)>(f(x1)− f(x2)) + (x1 − x2)>(y1 − y2)
+ (y1 − y2)>(x1 − x2)
= (x1 − x2)>(f(x1)− f(x2))

≥ α‖x1 − x2‖22 (19)

by (15). Also,

(z1 − z2)>(1./z1 − 1./z2) = (z1,1 − z2,1, ..., z1,n − z2,n)

(
1

z1,1
− 1

z2,1
, ...,

1

z1,n
− 1

z2,n

)>
= −

n∑
i=1

(z1,i − z2,i)2

z1,iz2,i
.

Thus, using this equality and (19), we have from (18)

α||x1 − x2||22 + µ
n∑
i=1

(z1,i − z2,i)2

z1,iz2,i
≤ 0.

Since z1 < 0 and z2 < 0, the above inequality implies that z1 = z2. Therefore,
the solution to (14) is unique.

We now show that (14) has a solution. To prove this, let S = {z ∈ R2n :
−ε−1e < z < −δe}, where e = (1, ..., 1)> ∈ R2n and ε and δ are (small)
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positive constants. Clearly, W : S̄ ⊂ R2n 7→ R2n is continuous, where W is
defined in (14). We now show 0 /∈ W (∂S) when both ε > 0 and δ > 0 are
sufficiently small, where ∂S denotes the boundary of S. This is contained in
the following two cases.
Case 1. We let ∂S1 ⊂ ∂S such that for any z ∈ ∂S1, there is an i ∈ {1, ..., 2n}
such that zi = −δ. If 0 ∈ W (∂S1), then, there exists a z ∈ ∂S1 satisfying

Wk(z) = wk(z) +
µ

δ
= 0, or, wk(z) = −µ/δ (20)

for a feasible k. Since w is continuous by Assumption A2 and z is bounded
uniformly in µ by (16), we have

‖w(z)‖2 ≤ C,

where C denotes a generic positive constant, independent of µ. Clearly, from
(20) we see that w(z) violates the above boundedness of w(z) when δ > 0 is
sufficiently small. Therefore, 0 /∈ W (∂S1).
Case 2. Similarly, we let ∂S2 ⊂ ∂S such that for any z ∈ ∂S2, there is an
i ∈ {1, ..., 2n} such that zi = −ε−1. If 0 ∈ F (∂S2), then, there is an z ∈ S2

with zk = −ε−1 for a feasible k such that Wk(z) == 0. In fact this is not
possible when ε is sufficiently small, as otherwise, z violates (16).

Combining the above two cases we see that when ε and δ are both suffi-
ciently close to +0, 0 /∈ W (∂C). Furthermore, from (10) we have

∇W (z) =

(
∇f(x) In
−In 0

)
+ µdiag((1./z)./z), (21)

where In denotes the n×n identity matrix and 0 is the n×n zero matrix. Since
f(x) is strongly monotone and continuous differentiable by Assumptions A1
and A2, from [29, p.142] we see that ∇f(x) is positive-definite. Thus, for
any u, v ∈ Rn and fixed z < 0, it is easy to see that

(u> v>)∇W (z)

(
u
v

)
= u>∇f(x)u+ µ

n∑
i=1

(
u2i
x2i

+
v2i
y2i

)
≥ C(||u||22 + ||v||22)

for some positive constant C. Therefore, ∇W (z) is positive-definite. Thus, it
is non-singular at any point and the degree of W , defined as sign(det(∇F )),
at any point is non-zero. Therefore, by the Kronecker Theorem, W (z) = 0
has a solution [29, p.161].

Thus we have proved the theorem.
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3. Convergence

While we have shown (14) has a unique negative solution, in this section
we prove the solution converges to that of (11)–(13) when µ→ +0. We first
prove the weak convergence of the solution in the following theorem.

Theorem 3.1. For any µ > 0, the solution zµ < 0 to (14) satisfies the NCP
(11)–(13) as µ→ +0.

Proof. Since zµ < 0 and µ > 0, from (14) we have

w(zµ) = µ./zµ < 0.

Left-multiplying both sides of (14) by z>µ and rearranging the resulting equa-
tion give

z>µ w(zµ) = µz>µ (1./zµ) = 2µn→ 0 (22)

as µ→ +0. Therefore, zµ satisfies (11)–(13) when µ→ +0.

Note that in the proof of Theorem 3.1 we have not explicitly used As-
sumptions A1 and A2. This theorem does not provide any convergence rate
for zµ. However, if we use Assumption A1, we are able to establish the rate
of convergence for zµ. We start this discussion with rewriting (11)–(13) as
the following variational inequality problem.

Let K = {x ∈ Rn : x ≤ 0} and denote K2 = K × K ⊂ R2n. We also use
K̊ and K̊2 to denote the sets of interior points of K and K2 respectively. It is
known (see, for example, [13, 20, 36]) that Problem 1.2 is equivalent to the
following variational inequality problem:

Problem 3.2. Find z∗ ∈ K2 such that, for all z ∈ K2,

(z − z∗)>w(z∗) ≥ 0. (23)

Using this variational inequality, we establish the rate of convergence for
zµ in the following theorem.

Theorem 3.3. Let Assumptions A1 and A2 be fulfilled. For any µ ∈ (0, µ0],
where µ0 is a sufficiently small positive constant, let z∗ ∈ K2 and zµ ∈ K̊2

be the solutions to Problem 3.2 and (14) respectively. Then, there exists a
positive constant C, independent of µ, such that z∗ and zµ satisfy

||z∗ − zµ||2 ≤ C
√
µ. (24)
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Proof. Let z∗ =

(
x∗

y∗

)
and zµ =

(
xµ
yµ

)
, where x∗, y∗ ∈ K and xµ, yµ ∈ K̊.

For simplicity, we assume µ0 � 1, as we are only interested in the behaviour
of wµ when µ→ +0.

Since zµ ∈ K̊2 ⊂ K2, replacing z in (23) with zµ gives

(zµ − z∗)>w(z∗) ≥ 0. (25)

Left-multiplying (14) by (zµ − z∗)>, we have

(zµ − z∗)>w(zµ)− (zµ − z∗)>(µ./zµ) = 0. (26)

Subtracting both sides of (26) from the corresponding sides of (25) yields

(zµ − z∗)>(w(z∗)− w(zµ)) + µ(zµ − z∗)>(1./zµ) ≥ 0.

From this inequality we have

(zµ − z∗)>(w(z∗)− w(zµ)) ≤ µ(zµ − z∗)>(1./zµ)

= µ(2n− (z∗)>)(1./zµ))

≤ 2µn, (27)

since −(z∗)>(1./zµ)) < 0. Therefore, using (19) we have from the above
estimate

α||x∗ − xµ||22 ≤ (zµ − z∗)>(w(z∗)− w(zµ)) ≤ 2µn. (28)

We now establish the rate of convergence for yµ. Without loss of gener-
ality, we assume that x∗ = ((x∗N)>, x>O)> where x∗N ∈ Rm and x∗O ∈ Rn−m

for some non-negative integer m satisfying x∗N < 0 and x∗O = 0. Corre-
spondingly, we also partition y∗, xµ, yµ and f in the same way. From the
complementarity condition (6) (recall c = 0) and (14) we have

fN(x∗) + y∗N = 0, (29)

fN(xµ) + yµ,N − µ./xµ,N = 0. (30)

Taking both side of (29) from the corresponding sides of (30) gives

fN(xµ)− fN(x∗) + yµ,N − y∗N − µ./xµ,N = 0

from which we have

y∗N − yµ,N = fN(xµ)− fN(x∗)− µ./xµ,N . (31)
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Without loss of generality, we now further assume that there is a non-negative
integer m1 such that |xµ,N,i| ≥ µ0 for i = 1, 2, ...,m1 and |xµ,N,i| < µ0 for
i = m1 + 1, ...,m. We then consider these two cases separately below.
Case 1. |xµ,N,i| ≥ µ0 for i = 1, 2, ...,m1.

Let xµ,N1 := (xµ,N,1, ..., xµ,N,m1)
> and other variables can be decomposed

in the same way. Left-multiplying both sides of the first m1 equations of (31)
by (y∗N1

− yµ,N1)
> and noting f is continuously differentiable, we have

‖y∗N1
− yµ,N1‖22 = (y∗N1

− yµ,N1)
>(fN1(xµ)− fN1(x

∗))− µ(y∗N1
− yµ,N1)

>(1./xµ,N1)

≤ C‖y∗N1
− yµ,N1‖2

(
‖x∗ − xµ‖2 + µ

√
n
)

(32)

≤ C‖y∗N1
− yµ,N1‖2

√
nµ,

since ‖µ./xµ,N1‖2 ≤
√
nµ/µ0, where C denotes a generic positive constant,

independent of µ. From this inequality we have

‖y∗N1
− yµ,N1‖ ≤ Cn

√
µ, (33)

In the above deduction we used Cauchy-Schwarz inequality, the mean-value
theorem in calculus and (28).
Case 2. |xµ,N,i| < µ0 for i = m1 + 1, ...,m.

Let xµ,N2 := (xµ,N,m1+1, ..., xµ,N,m)> and other variables and functions can
be decomposed in the same way. In this case,

|bi − xµ,N,i| ≥ |bi| − |xµ,N,i| ≥ min
i
|bi| − µ0, i = m1 + 1, ...,m. (34)

Left-multiplying (14) by (0, ..., y>µ,N2
, 0, ..., 0) we have

y>µ,N2
(bN2 − xµ,N2)− (m−m1)µ = 0

from which, together with (34), we have

(m−m1)µ ≥ (min
i
|bi| − µ0)‖yµ,N2‖1, (35)

where ‖ · ‖1 denotes the usual l1-norm. Since xµ → x∗ as µ → +0 by (28),
we also have bN2 − x∗N2

< 0 when µ0 is sufficiently small. Thus, from (9) we
see that y∗N2

= 0. Combining this with (35) we have

‖y∗N2
− yµ,N2‖1 = ‖yµ,N2‖1 ≤

(m−m1)µ

mini |bi| − µ0

≤ Cnµ.
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Since all norms on a finite-dimensional space are equivalent, we have ‖y∗N2
−

yµ,N2‖2 ≤ Cnµ. Combining this with (33) we have, when µ0 is sufficiently
small,

‖y∗N − yµ,N‖2 ≤ C
√
nµ. (36)

We now consider the convergence of yµ,O. Since bO − x∗O = bO < 0,
from (9) we see that y∗O = 0. Furthermore, it is easy to see from (28) that,
when µ0 is sufficiently small, |xµ,O,i| < µ0 for i = m + 1, ..., n. Therefore,
following the proof of Case 2 above we have that ‖y∗O−yµ,O‖2 ≤ Cnµ. Finally,
combining this with (28) and (36) we obtain (24). Thus, we have proved the
theorem.

4. Newton’s method for (14)

For the solution of (14)in K̊2, we propose the following smooth Newton
algorithm for (14).
Algorithm Newton

Step 1. Choose µ > 0, ε > 0 and δ > 0 sufficiently small and an initial guess
z0 ∈ Rn such that z0 < 0. Let k := 0.

Step 2. Solve the following linear system for pk:

∇W (zk)pk = −W (zk), (37)

where ∇W is given in (21).

Step 3. Set
zk+1 = min{zk + pk,−δe},

where e = (1, 1, ..., 1)> ∈ R2n as defined before in the proof of Theorem
2.3.

Step 4. If

max
{
‖zk+1 − zk‖2,

∣∣w>(zk+1)zk+1 − 2µn
∣∣ } ≤ ε,

then stop. Otherwise, let k := k + 1 and go to Step 2.

Note in each Newton’s iteration, the 2n × 2n linear system (37) needs
to be solved. However, the solution of this 2n × 2n system reduce to the
solution of an n× n linear system as given below.
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To simplify our notation, we introduce, for any u ∈ Rn, a diagonal matrix
D(u) := diag((1./u)./u) = diag(u−21 , u−22 , ..., u−2n ). Using (21), we write (37)
as

∇W (zk)pk =

([
∇f(xk) + µD(xk)

]
pkx + pky

−pkx + µD(yk)pky

)
= −W (zk), (38)

where zk = ((xk)>, (yk)>)> and pk = ((pkx)
>, (pky)

>)>. Decomposing W (zk)
into W (zk) = (W>

x (zk),W>
y (zk))>, we have from the 2nd block of equations

in (38)
pkx = µD(yk)pky +Wx(z

k). (39)

Substituting this into the 1st block of equations in (38) and rearranging the
resulting equation we have[
In + µ(∇f(xk) + µD(xk))D(yk)

]
pky = −

[
In +∇f(xk) + µD(xk)

]
Wx(z

k).
(40)

We can also rewrite (40) as[
D−1(yk) + µ(∇f(xk) + µD(xk))

]
p̄ky = −

[
In +∇f(xk) + µD(xk)

]
Wx(z

k),

(41)

pky = D−1(yk)p̄ky. (42)

Therefore, we may replace Step 2 in Algorithm Newton with

Step 2* Solve (39) and (41)–(42) (or (40)) for pky and pkx and set pk = ((pkx)
>, (pky)

>)>.

The advantage of splitting (40) into (41)–(42) is that the system matrix
of (41) inherits any properties possessed by the Jacobian ∇f , as both D and
D−1 are diagonal matrices with positive diagonal elements. More specifically,
the system matrix of (41) has the following properties.

Theorem 4.1. For any µ > 0 and z = (x>, y>)> ∈ R2n such that zi 6= 0
for i = 1, ..., 2n, the system matrix on the RHS of (41), denoted as A(z, µ),
satisfies the following properties.

1. A(z, µ) is positive definite.

2. If ∇f(x) is irreducibly diagonally dominant with positive diagonal and
non-positive off-diagonal entries, then A(z, µ) is an M-matrix.
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Proof. Since f(x) is strongly monotone and continuous differentiable by As-
sumptions A1 and A2, from [29, p.142] we see that ∇f(x) is positive-definite.
Furthermore, from the definition of D we have that both D(x) and D−1(y)
are diagonal matrices with positive diagonal entries. Therefore, A(z, µ) is
positive definite.

We now show A is an M -matrix. Note that both D(x) and D−1(y) are di-
agonal matrices with positive diagonal elements. When ∇f(x) is irreducibly
diagonally dominant, it is obvious that A(z, µ) is also irreducibly diagonally
dominant. By, [31], A(z, µ) is an M -matrix.

We comment that in practice ∇f is usually a sparse M -matrix as many
discretization schemes such as those in [40, 32, 12, 1, 22, 26] are designed to
guarantee this property is satisfied by f in (4). Theorem 4.1, particularly
Item 2, has computational implication. Note that (41) is usually large-scale,
particularly when the infinite-dimensional 2)–(3) is defined in multiple spatial
or state dimensions, so that methods such as Gaussian Elimination or LU
decomposition are computationally very expensive. Thus, Item 2 of Theorem
4.1 allows us to use iterative methods for large-scale sparse linear systems
such as the preconditioned conjugate gradient type methods to solve (41)
efficiently.

5. Numerical experiments

In this section we apply our numerical methods to two test problems
with respectively a symmetric and an un-symmetric system matrices. The
parameters in Step 1 of Algorithm Newton are chosen to be ε = 10−10 and
δ = 10−14. All experiments were carried out under Matlab environment.

In the following numerical experiments, we will estimate the rates of
convergence of our method by solving each of the problems using a sequence
of µ obtained by halving the previous value of µ. From Theorem 3.3 we
see that, theoretically, the ratio of the errors corresponding to µ and µ/2
is approximately ‖z∗ − zµ‖2/‖z∗ − zµ/2‖2 ≈

√
2. However, from Algorithm

Newton we see that, in computation, |zµ,i| ≥ δ for all feasible i and thus from
the first inequality in (27) and (19) we have

α‖x∗−xµ‖22 ≤
Cµ

δ
(‖x∗−xµ‖22+‖y∗−yµ‖22)1/2 ≤

Cµ

δ
(‖x∗−xµ‖2+‖y∗−yµ‖2)

(43)

14



where C denotes a generic positive constant, independent of µ and δ. Using
(32) and following the proof for the error bound on ‖y∗− yµ‖2, we can easily
show that

‖y∗ − yµ‖2 ≤ C(‖x∗ − xµ‖2 + µ). (44)

Combining this inequality and (43) and using the ε-inequality with ε = α we
have

α‖x∗ − xµ‖22 ≤
Cµ

δ
(‖x∗ − xµ‖2 + µ) ≤ Cµ2

αδ2
+
α

2
‖x∗ − xµ‖22 +

Cµ2

δ
.

From the above inequality and after some manipulation, we obtain ‖x∗ −
xµ‖2 ≤ C

δ
µ. Combining this and (44) we also have ‖y∗− yµ‖2 ≤ C

δ
µ for some

positive constant C. Thus, we may expect that the ratio ‖z∗ − zµ‖2/‖z∗ −
zµ/2‖2 ≈ µ/(µ/2) = 2. In computation, the ratio ‖z∗ − zµ‖2/‖z∗ − zµ/2‖2 is

bounded below by
√

2 and above by 2, as will be seen in the following tests.

Test 1. Problem 1.1 with the following nonlinear operator and functions:

L(u) = −∇2u+ u3 − g, u∗ = −s− t, u∗ = 6[(s− 0.5)2 + (t− 0.5)2],

g = 4π sin(2πs)(1− 5 cos(4πt)) + sin(2πs)3(1− cos(4πt))3

for (s, t) ∈ Ω = (0, 1)×(0, 1) satisfying u = 0 on the boundary of Ω. The test
problem, originally proposed in [11] with a different function g, is used in [36]
and the unconstrained problem has the exact solution uunc = sin(2πs)[1 −
cos(4πt)].

To solve this problem numerically, we first partition Ω into a uniform
mesh with nodes (si, tj) = (ih, jh) for i, j = 0, 1, ..., N for a positive integer
N , where h = 1/N . Then, the central-finite difference scheme and the a
one-point quadrature rule on the mesh are used to discretize the operator
L and the given bounds. The resulting complementarity problem is of the
form (4)–(9) with f(x) = Ax+x. ∗x. ∗x− q, where A is an n×n symmetric
and positive-definite matrix and .∗ denotes the element-by-element matrix
multiplication (used in Matlab). The coefficient matrices A, b, c and q are
the discretized forms of −∇2, u∗, u

∗ and g using the schemes with the natural
order of the nodes. Note that in this case n = (N − 1)× (N − 1) in Problem
1.2 which is the total number of interior nodes of the mesh. For this test, we
choose N = 50. Since A is symmetric and positive-definite, Problem 1.2 is
the KKT conditions of a constrained optimization problem as given in [36].

The finite-dimensional complementarity problem is first transformed into
one with c = 0 in Problem 1.2 and then the corresponding penalty equation
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Figure 1: Computed errors and their ratios for Test 1.

(14) is solved. Since the exact solution is unknown, we use the numerical
solution from this method with µ = 10−14 as the ’exact’ or reference solu-
tion. Using this reference solution, we compute the errors in l2-norm in the
numerical solutions for µ = 10−2/2m,m = 0, 1, ..., 24 and calculate the ratios
of the errors from two consecutive values of µ. Our calculation shows that
the ratio is initially 1.64. It increases to 2 as µ decreases and becomes stable
around 2. This is in line our analysis earlier in this section. The computed
errors and ratios are plotted in Figure 1 in log-log form from which we see
that the computed rates of convergence are mostly of the order O(µ). To
further demonstrate the correctness of the numerical solution, we plot the
numerical solution (u, v) to Problem 1.1, along with the lower and upper
bounds u∗ and u∗ in Figure 2.

Test 2. Problem 1.1 with the following operator and functions:

L(u) = −∇2u+
∂u

∂s
+
∂u

∂t
− g,

u∗ = 0.7− 10 ∗ ((s− 0.7)2 + (t− 0.3)2), u∗ = 0.2 + |x− 0.25|+ |y − 0.75|,
g = 5[6st(2− s2 − t2) + (1− 3s2)(t− t3) + (1− 3t2)(s− s3)]

for (s, t) ∈ Ω := (0, 1)2 satisfying u = 0 on the boundary of Ω. The exact
solution to the unconstrained problem L(u) = 0 is uunc = 5(s− s3)(t− t3).
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Figure 2: Computed constrained solution u and multiplier v for Test 1.

This is an infinite-dimensional LCP in which L consists of a 2nd order
(diffusion) operator and a first-order (convection) one. To solve this infinite-
dimensional problem numerically, we first choose the same uniform mesh with
51× 51 nodes as used for Test 1 above. The conventional central difference
scheme and upwind difference scheme are used to approximate the diffusion
and convection terms in L(u) respectively [25, 22, 26]. All other terms are
approximated by their respective values at a mesh node. This discretization
method results in a bounded LCP of the form (4)–(9) with f(x) = Ax − q,
where A is an n × n unsymmetric matrix with n = 492. As for Test 1, the
matrices A, b, c and q in Problem 1.2 are discretized forms of −∇2, u∗, u

∗ and
g. It is easy to verify numerically that A is a positive-definite matrix. Unlike
the case in Test 1, A is unsymmetric and may not be the KKT condition of
a constrained optimization problem.

Again, since c 6= 0, we first transform Problem 1.2 into one with c = 0
and then consider the solution of (14). To compute the error in the solution
to (14), we need the exact solution which is unknown. As in Test 1, we use
the numerical solution with µ = 10−14 as the ‘exact’ or reference solution
and solve (14) using µ = 10−2/2m for m = 0, 1, ..., 24. The computed errors
for the sequence of µ and the ratios of the errors from two consecutive values
of µ are plotted in Figure 3 in log-log form from which we see that the ratio
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Figure 3: Computed errors and their ratios for Test 2.

is in between
√

2 and 2. In fact, the computed results show that the ratio is
initially 1.54 when µ ≈ 10−2/2 and increases to 2 as µ deceases from 10−2 to
10−2/219 and becomes stable when µ further decreases.

To gauge the influence of the size n of the problem on the rate of conver-
gence, we have discretized the continuous problem using the uniform meshes
with N = 25, 50, 100 and 150. Correspondingly, n = 576, 2401, 9801 and
22201. We also use the numerical solutions of the discretized problems with
µ = 10−14 as the reference solutions and compute errors of the numerical solu-
tions of each of the discretized systems using µ = 10−3/2m for m = 0, 1, ..., 24
. The ratios of the errors in Matlab log-log form are plotted in Figure 4. From
these results we see that n does affect the computed ratios, particularly when
µ is away from 10−14. This shows that n does affect the rate of convergence.
However, when µ approaches 10−14, the ratio converges to 2. Nevertheless,
all the computed ratios are above the theoretical one

√
2.

To demonstrate the effectiveness of the method further, we plot the com-
puted solution u and v, along with u∗ and u∗ in Figure 5. Figure 5(a) shows
clearly that both of the constraints are satisfied by the computed u. Fig-
ure 5(b) demonstrates that multiplier v is non-zero when the lower bound
constraint becomes active and zero when it is inactive.
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Figure 5: Computed constrained solution u and multiplier v for Test 2.
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6. Conclusions

In this work we have developed am interior penalty method for a large-
scale, bounded NCP arising from the discretization of a double obstacle
problem in engineering. The unique solvability of the penalty equation in
the interior of the feasible region has been proved and a convergence the-
ory for the approximate solution has been established. We have proposed a
smooth Newton method for the nonlinear penalty equation and showed that
the linearized system can be decomposed into two decoupled subsystems of
which the coefficient matrices are both M -matrices. Numerical experiments
using non-trivial differential double obstacle problems have been carried out.
Numerical results presented have demonstrated that the computed rates of
convergence are consistent with the theoretical one and that the method pro-
vide a efficient and accurate computational for double obstacle problems in
both classic and financial engineering.
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