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2 

Abstract 21 

 22 

The purpose of this study is to investigate the evolution of O-containing structures of 23 

char during gasification. Mallee wood (4.75-5.60 mm) from Western Australia was 24 

gasified in a fluidised-bed reactor at 600-900 ˚C in O-containing (pure CO2, 15% 25 

H2O-Ar) and non-O-containing atmospheres (15% H2-Ar). X-ray photoelectron 26 

spectroscopy (XPS) was applied to obtain detailed information about the nature of 27 

oxygen bonding with carbon as well as the content of oxygen species in char. The 28 

similar O/C ratio of char from XPS and elemental analysis indicated the relative 29 

chemical uniformity between char surface and char matrix. The deconvolution results 30 

of the O 1s spectra showed that the reactivity of the inherent aromatic C-O structure 31 

was much higher than that of the aromatic C=O structure during gasification. The 32 

amount of aromatic C-O structure left in char during gasification in non-O-containing 33 

atmosphere was lower than that in O-containing atmosphere while the consumption 34 

of aromatic C=O structure was proportional to the progress of gasification, 35 

regardless of the atmosphere. The newly formed C-O structure in char during the 36 

gasification in the O-containing atmosphere was likely to be responsible for the high 37 

gasification reactivity. The well-dispersed alkali earth metallic species could be 38 

carbonated to form CaCO3 and MgCO3 on char surface once the char was exposed 39 

to CO2 at 900 ˚C. 40 

 41 

Keywords: X-ray photoelectron spectroscopy; Oxygen-containing structure; Char 42 

oxygenation; Gasification; Biomass 43 

 44 

 45 
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1. Introduction 46 

 47 

Char gasification is the rate-limiting step for the overall solid fuel gasification 48 

process [1,2]. There are a few important inter-related factors influencing the char 49 

gasification rate [3]. Firstly, the inherent alkali and alkaline earth metallic (AAEM) 50 

species in char can act as excellent catalysts for char gasification [3]. The presence 51 

of highly dispersed AAEM species can significantly speed up the gasification 52 

reaction, affect the properties of pyrolysis products, and have a great impact on the 53 

evolution of the char structure [4-8]. Secondly, the transformation of aromatic ring 54 

systems in char will greatly influence char reactivity during gasification. It has 55 

become clear that the small ring systems (equivalent to 3-5 fused benzene rings) are 56 

preferentially consumed while the large ones (more than 6 fused rings) are 57 

preferentially left and/or formed during gasification, making the residual char more 58 

condensed and hard to gasify [9-13]. Thirdly, the O-containing functional groups in 59 

char will also greatly influence the gasification rate to some extent, especially for the 60 

gasification of the low-rank fuels at low temperature. It is believed that some O-61 

containing structures in char are responsible for enhancing the char gasification rate 62 

[4,9]. For a better understanding of the gasification mechanisms, the changes in char 63 

structure, especially the evolution of O-containing structures, must be quantified 64 

during gasification.  65 

FT-Raman spectroscopy has been demonstrated to be a powerful analytical 66 

method to characterise the evolution of aromatic ring systems in char during 67 

gasification due to its outstanding ability to respond to the non-polar bond vibration 68 

[14-20]. However, only limited information can be obtained from the Raman spectra 69 

about the changes of O-containing structures in char, especially the changes in the 70 
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chemical bonding between oxygen and carbon during gasification. The total Raman 71 

intensity can be used as an indication of the relative amount of the O-containing 72 

functional groups in char that can induce a resonance effect between oxygen and 73 

the aromatic ring to which it is connected [14]. Not all oxygen species in char could 74 

have the resonance effect with the aromatic rings. Fourier transform infrared (FT-IR) 75 

spectroscopy may be responsive to a wide range of O-containing structures in char. 76 

However, FT-IR spectroscopy would have some potential difficulties within the 77 

context of tracing the changes in the O-containing structures during gasification. For 78 

example, the absorption coefficients may vary by a magnitude or more from one type 79 

of O-containing functional group to another. 80 

Therefore, other techniques must be applied to study O-containing functional 81 

groups in char and provide useful information on the evolution of O-containing 82 

structures in char during gasification. X-ray photoelectron spectroscopy (XPS) has 83 

proved to be one of the most powerful tools in detecting the surface structure of 84 

carbonaceous materials [21-24]. Although the validity of XPS analysis is limited to 85 

determining the surface structure of material, its high sensitivity to the chemical 86 

nature of atomic species has made it extensively developed as a useful technique for 87 

identifying the structural features of different types of carbon materials [25,26]. In 88 

addition, the ability to identify elemental bonding states has make it widely used in 89 

determining the organic functional group composition of char through a detailed 90 

analysis of the high-resolution band of each elements [27,28]. Another important 91 

feature of XPS spectroscopy is the unchanged sensitivity of oxygen regardless of its 92 

chemical structures/functionality. This greatly facilitates the relative quantification of 93 

various classes of O-containing structures simply based on the measured peak 94 

areas.  95 
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The purpose of this study is to investigate the effects of gasification temperature 96 

and gasification atmosphere on the evolution of O-containing structures in char. XPS 97 

has been applied to characterise oxygen species in chars produced from the 98 

gasification of mallee wood at 600-900 ˚C in three different atmospheres (pure CO2, 99 

15% H2O-Ar, 15% H2-Ar). The high-resolution O 1s peak of the XPS spectra were 100 

further deconvoluted in order to gain insights into the nature of the bonding between 101 

oxygen and carbon in addition to the determination of the contents of oxygen in char. 102 

Our data provided further insight into the char gasification mechanisms. 103 

 104 

2. Experimental  105 

 106 

2.1 Biomass gasification 107 

 108 

Mallee wood in the size range of 4.75-5.60 mm from Western Australia was used 109 

as the feedstock in this research. The proximate analysis of the sample results in a 110 

0.9% ash yield and 81.6% volatiles yield, and the elemental analysis of the sample 111 

determined 48.2% C, 6.1% H, 0.2% N and 45.5% O (wt%, dry and ash-free basis).  112 

A fluidised-bed quartz reactor [29] was used to carry out the biomass gasification 113 

experiments. Approximately 2 g of biomass (weighed accurately) was pre-loaded 114 

into the feeder. Before feeding, the reactor was heated to the target temperature with 115 

the flow of Ar through the reactor. The feeding of biomass into the reactor 116 

commenced with the help of an electrical vibrator. When the feeding was finished, 117 

the reactor was held for 20 minutes to ensure that all volatiles had been released. 118 

The reaction gas was switched from Ar to the gasifying agent. For gasification in the 119 

steam atmosphere, it was 15% steam balanced with Ar. For gasification in the H2 120 

atmosphere, it was 15% H2 balanced with Ar. For gasification in the CO2 atmosphere, 121 
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pure CO2 was used. After 4 minutes of holding in the gasification atmosphere, the 122 

reactor was lifted out of the furnace and cooled down naturally with Ar flowing into 123 

the reactor instead of the gasifying agents. After each experiment, the collected char 124 

sample was placed in sealed vials and stored in a freezer to avoid further oxidation 125 

by the ambient oxygen. 126 

 127 

2.2 Char characterisation   128 

 129 

XPS spectra were acquired with a Kratos AXIS Ultra DLD XPS spectrometer 130 

equipped with a Al-Kα X-ray monochromator (photon energy 1486.7 eV). XPS 131 

measurements were carried out under ultra-high vacuum conditions (< 2.0×10-10 132 

mbar) at room temperature. The survey scans were taken across the sample with 133 

binding energy from 1400 to 0 eV to determine all elements present in char. A pass 134 

energy of 40 eV was used for the collection of high-resolution spectrum of each of 135 

the selected elements.  136 

Elemental analysis was carried out using a FLASH 200 elemental analyser. Char 137 

sample was firstly ground to powder and then about 2.5 mg (weighed accurately) 138 

sample was loaded into a tin capsule. The tin capsule was folded and placed in the 139 

autosampler for analysis. 140 

 141 

3. Deconvolution and band assignment of the XPS spectra 142 

 143 

Data processing of the acquired XPS spectra of chars was performed using the 144 

CasaXPS peak fitting software. The binding energy of the original XPS spectra was 145 

calibrated with respect to the carbon component of the C 1s peak at 284.5 eV. The 146 

spectra were curve-fitted after linear pre-edge and Shirley background subtraction, 147 
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using mixed Gaussian-Lorentzian bands. The position and assignment of the bands 148 

in the O 1s spectra are briefly summarised in Table 1. 149 

 150 

Table 1 Summary of peak/band assignment. 151 

Spectra  Band position, eV Description  References 

 531.4 Aromatic C=O structure 11,27,30-32 

O 1s 533.4 Aromatic C-O structure 23,27,31-33 

 536.0 Absorbed O2 11,23 

 152 

The curve-fitting of the high-resolution O 1s spectra was taken in the range 153 

between 528.0 and 539.0 eV. The broadening of the O 1s spectra means large 154 

varieties of O-containing structures presented in char. Based on the XPS spectra of 155 

some model compounds [11,30,31], one band at 531.3 eV was assigned to the C=O 156 

(aromatic) functional groups such as benzoquinone-type structure in char. Another 157 

band at 531.6 eV was attributed to the R-(C=O)-C (aromatic) functional groups such 158 

as aromatic ketone or carbonyl structure in char [27,31,32]. It is clear that these two 159 

kinds of O-containing functional groups have very close binding energies and they 160 

cannot be reliably distinguished through the curve-fitting procedure. Therefore, in this 161 

study, the band at 531.4 eV was assigned to all aromatic C=O structures in char. 162 

Since it represents more than one type of structure the band is broader than that for 163 

a pure model compound. 164 

On the high binding energy side, one band at the position 533.2 eV was attributed 165 

to oxygen inside the carbon ring such as epoxide or furan type structure in char 166 

[27,31,33]. Another band at 533.3 eV was assigned to the O-C (aromatic) structure 167 

such as phenol or diphenyl ether [23,31,32]. Moreover, the band located at 533.6 eV 168 

was assigned to the O-(C=O)-C (aromatic) functional group such as carboxyl 169 

structure in char [31]. Similarly, because of the close binding energies among these 170 
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three oxygen-carbon structures and the complexity of O-contaning functional groups 171 

in char, the band at 533.4 eV was assigned to all aromatic C-O structures in char.  172 

In addition to the two main bands assigned above, another weak peak appearing 173 

at 536.0 eV was identified as the absorbed O2 existing on char surface [11,23]. 174 

A typical example of the spectral deconvolution/curve-fitting of the high-resolution 175 

O 1s peak of char using three bands is shown in Fig. 1. Similar success of curve-176 

fitting can also be achieved for all other char samples investigated in this study. 177 

 178 

Fig. 1. Spectral deconvolution of a XPS O 1s peak of char from the gasification of mallee wood at  179 
700 ˚C in 15% H2O balanced with Ar. 180 

 181 

4. Results and discussion  182 

 183 

4.1 Char yield 184 

 185 

The gasification of mallee woody biomass was carried out at different 186 

temperatures ranging from 600 to 900 ˚C in three gasifying agents (pure CO2, 15% 187 

H2O-Ar, 15% H2-Ar). Fig. 2 shows the char yields as a function of gasification 188 

temperature in three gasifying atmospheres. As expected, the char yield decreased 189 
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with increasing temperature because of the enhanced thermal cracking and 190 

gasification reaction. In addition, for different gasification atmospheres, when the 191 

temperature was below 700 ˚C, there was not much difference in the char yield, 192 

indicating that the main reaction was pyrolysis at this stage. However, when the 193 

temperature was higher than 700 ˚C, the gasification reaction became fierce and the 194 

gasification in CO2 proceeded the fastest among the three atmospheres. As 195 

expected, the conversion of char proceeded the slowest during the gasification in H2 196 

atmosphere, confirming that the char-H2 reaction was much slower than the char-197 

H2O and char-CO2 reactions [4,16]. 198 

 199 

Fig. 2. Char yield as a function of gasification temperature for mallee wood in pure CO2, 15% H2O 200 
balanced with Ar and 15% H2 balanced with Ar. 201 

 202 

4.2 Formation of carbonates during the gasification in CO2 at 900 ˚C 203 

 204 

According to our previous studies [15,34], the extensive volatilisation of Ca and 205 

Mg from char matrix during the gasification of Victorian brown coal in CO2 at 900 ˚C 206 

in a fluidised-bed reactor took place because of the formation and aggregation of 207 

carbonates on char surface. Ca and Mg species were present as the carboxyl-bound 208 
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cations, and would retain their high dispersion during fast pyrolysis even at high 209 

temperature (up to 950 ˚C) [6,34]. Once the char was exposed to CO2 at 900 ˚C, the 210 

well-dispersed alkali earth metallic species could be carbonated to form CaCO3 and 211 

MgCO3 on the char surface [34,35,36]. 212 

 213 

 214 

Fig. 3. Effects of acid washing on the XPS spectra of (a) survey scan and (b) high-resolution of O 1s 215 
peak of the char from the gasification of mallee wood at 900 ˚C in pure CO2. 216 

 217 

This result was confirmed by the XPS analysis in this work. Fig. 3 shows the XPS 218 

spectra of the char from the gasification of mallee wood at 900 ˚C in pure CO2. The 219 

high-resolution O 1s spectrum showed a clear peak located at 535.0 eV, which is the 220 
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position for carbonate structures [37]. In order to clarify the nature of this band, the 221 

char was washed with 0.2 M hydrochloric acid to remove the carbonates as well as 222 

the AAEM species on char surface. It can be seen from the survey scan that almost 223 

all Ca and Mg species were removed from the char, and the band in the range of 224 

534.0-536.0 eV in the O 1s high-resolution spectrum disappeared after the acid-225 

washing, indicating the formation of CaCO3 and MgCO3 during gasification in CO2 at 226 

900 ˚C. No clear carbonate peak can be seen in the O 1s high-resolution spectra of 227 

char from the gasification below 900 ˚C in pure CO2. 228 

 229 

4.3 Similarity in O/C ratio between surface and bulk analyses 230 

 231 

In order to identify whether there were some differences in the contents of carbon 232 

and oxygen between the char surface and the char matrix, the results from elemental 233 

analysis were compared with those from XPS analysis. The contents of carbon and 234 

oxygen in char from XPS analysis were obtained by the calculation of total peak 235 

intensity and the relative sensitivity factors of each element. Due to the inability to 236 

detect the H element through the XPS analysis, the O/C ratio of char during 237 

gasification was used to compare the difference between surface and bulk analyses. 238 

As is shown in Fig. 4, the O/C ratio of char obtained both from XPS and elemental 239 

analysis exhibited a decrease with the increasing gasification temperature, indicating 240 

the decline in the oxygen content of char during gasification at high temperature. 241 

More importantly, for a given temperature, the O/C ratios of char from XPS and 242 

elemental analysis were almost the same and the relative difference between these 243 

two analysis results was less than 6%, which means the whole char particle was 244 

chemically uniform and there was not much difference between the surface and char 245 

matrix. Although the XPS analysis cannot detect the H element in char, based on the 246 
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elemental analysis results, the content of H species in char was very little (less than 247 

2%). Therefore, the XPS analysis can still be used as a characterisation method to 248 

indicate the concentration of carbon and oxygen species of the whole char particles 249 

during gasification. 250 

 251 

 252 
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 254 

Fig. 4. The O/C ratios of chars as a function of gasification temperatures for mallee wood in (a) pure 255 
CO2, (b) 15% H2O balanced with Ar and (c) 15% H2 balanced with Ar. 256 

4.4 Relative distribution of chemical components in O 1s spectra 257 

 258 

A clear trend for the changes in O-containing structure can be found through the 259 

deconvolution of O 1s spectra of chars. Fig. 5 illustrates the relative distribution of O-260 

containing structures in O 1s high-resolution spectra. It can be seen that the 261 

distribution of aromatic C-O structures in the O 1s spectra continuously decreased 262 

with increasing gasification temperature, while an increasing trend was shown on the 263 

distribution of aromatic C=O structures in the O 1s spectra with increasing 264 

gasification temperature. The deconvolution result of O 1s spectra can only show the 265 

relative content of O-containing structures, in order to identify the exact amount of O-266 

containing structures left in char during gasification, the absolute quantity of each 267 

chemical component should be calculated, which will be discussed in the following 268 

section. 269 

 270 
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 273 

 274 

 275 

Fig. 5. Distribution of O-containing structure in O 1s spectra obtained by XPS analysis as a function of 276 
gasification temperatures for mallee wood in (a) pure CO2, (b) 15% H2O balanced with Ar and (c) 15% 277 
H2 balanced with Ar. 278 
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4.5 Absolute amount of oxygen species in char during gasification 279 

 280 

The absolute amount refers to the amount of a particular type of XPS-derived O-281 

containing structure in char based on an initial gram of biomass (before gasification 282 

at each temperature). The absolute amounts of O-containing structure in char 283 

obtained by the XPS calculation results and the char yield of mallee wood during 284 

gasification are illustrated in Fig. 6.  285 

  286 

 287 

Fig. 6. Amount of (a) C-O structure and (b) C=O structure left in char after gasification based on per 288 
gram of mallee wood obtained by XPS analysis as a function of gasification temperatures. 289 
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It can be seen that there was a drastic decrease in the aromatic C-O structures in 291 

char with increasing temperature for all three gasification atmospheres, indicating the 292 

high reactivity of aromatic C-O structures during gasification. In addition, a clear 293 

difference appeared for the amount of aromatic C=O structures left in char between 294 

gasification in H2 atmosphere and the O-containing atmosphere (CO2, H2O). The 295 

amounts of C=O structures in char from the gasification in steam and in CO2 296 

continuously decreased with increasing temperature. However, such structure in 297 

chars from the gasification in H2 was almost constant when the gasification 298 

temperature was below 900 ˚C. The char gasification in H2 was quite slow and the 299 

loss of O-containing structure was mainly because of the enhanced thermal cracking, 300 

not the gasification reaction. Therefore, the chemical stability of the aromatic C=O 301 

structures made it more likely to survive during the thermal cracking and some 302 

aromatic C-O structures may transform to the more stable aromatic C=O structures, 303 

resulting in a steady amounts of aromatic C=O structures in char until 900 ˚C where 304 

the gasification become intensified. In contrast, for the char gasification in steam 305 

atmosphere and CO2 atmosphere, the aromatic C=O structures would be 306 

continuously consumed by the gasifying agent, especially with increasing 307 

temperature and thus intensified gasification. 308 

In order to clarify the changes in the O-containing structure with the progress of 309 

gasification, the absolute amounts of aromatic C-O structures and aromatic C=O 310 

structures in char as a function of char yield is shown in Fig. 7. It can be seen that, 311 

with the progress of gasification, the amounts of aromatic C-O structures of char 312 

from gasification in H2 was significantly lower than that from gasification in the 313 

oxidising atmospheres, indicating that the C-O structures was easier to be consumed 314 

in the reducing atmospheres. In addition, as is shown in Fig. 7 (b), the amounts of 315 
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aromatic C=O structures decreased with decreasing char yield and not much 316 

difference can be seen among the three atmospheres, which means that the 317 

consumption of aromatic C=O structures was more likely to be proportional to the 318 

progress of gasification both in the O-containing atmosphere and non-O-containing 319 

atmosphere. Therefore, the steady amounts of aromatic C=O structures in char with 320 

increasing temperature during the gasification in H2 atmosphere was mainly due to 321 

weak gasification reaction at that stage. 322 

 323 

 324 

Fig. 7. Amounts of (a) C-O structure and (b) C=O structure left in char after gasification based on per 325 
gram of mallee wood obtained by XPS analysis as a function of char yield. 326 
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4.6 Oxygenation and de-oxygenation during char gasification 328 

 329 

The gasification of low-rank fuels in O-containing atmospheres (e.g. H2O, CO2) is 330 

an oxygenation process based on our study of the total Raman intensity [4,9]. As 331 

mentioned above, the XPS analysis can also give a direct indication of the amount of 332 

O species in char during gasification, and it will involve all O species not just the O 333 

which have the resonance effect with the aromatic ring to which it is connected.  334 

Fig. 8 illustrates the relative contents of O-containing structure in char with the 335 

progress of gasification. The relative contents refer to the contents of each chemical 336 

component in char based on per actual gram of biomass char (remaining after 337 

gasification). It can be seen that the relative contents of O species of char from 338 

gasification in the O-containing atmospheres were higher than that in the non-O-339 

containing atmosphere with the process of gasification. Therefore, it is hypothesised 340 

that some O derived from the O-containing gasifying agent leads to the oxygenation 341 

of the aromatic ring system in terms of forming some intermediates such as C(CO), 342 

C(OH) and C(O) structures in the char matrix during gasification [9,38-41], 343 

contributing to the high contents of O species of char.  344 

 345 

 346 
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 347 

 348 

 349 

Fig. 8. Relative contents of (a) O species, (b) O with C-O structure and (c) O with C=O structure in 350 
char obtained by XPS analysis as a function of char yield. 351 
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Further information can be obtained from the deconvolution result of the O 1s 352 

spectra. As is shown in Fig. 8 (b) and (c), The contents of aromatic C-O structure of 353 

char gasified in the O-containing atmosphere was much higher than that in the non-354 

O-containing atmosphere with the process of gasification, while not much difference 355 

can be observed for the contents of aromatic C=O structure among the three 356 

atmospheres. All of these indicated that the captured O species from the O-357 

containing gasifying agent were much likely bonded to the char matrix with C-O 358 

structure. Furthermore, considering the high gasification rate of char in steam 359 

atmosphere and in CO2 atmosphere as well as our previous studies [4,9] which 360 

indicated that some kinds of O-containing structures in char were responsible for 361 

enhancing the char gasification rate, the continuously generated C-O structures in 362 

the O-containing atmosphere were most likely to be responsible for promoting the 363 

char gasification reactivity. 364 

 365 

5. Conclusions  366 

 367 

Australia mallee wood was gasified in a fluidised-bed reactor at 600-900 ˚C in O-368 

containing atmosphere (pure CO2, 15% H2O-Ar) and non-O-containing atmosphere 369 

(15% H2-Ar). Our results revealed that the gasification rate of char in steam 370 

atmosphere and CO2 atmosphere was much higher than that in H2 atmosphere. For 371 

the gasification in CO2 at 900 ˚C, CaCO3 and MgCO3 would form on char surface. 372 

The similar O/C ratio of char from XPS and elemental analysis indicated the 373 

chemical similarity between char surface and char matrix. In addition, the aromatic 374 

C-O structure in char was highly reactive so that it can be easily removed or broken 375 

down while the low reactivity of the aromatic C=O structure made it more likely to 376 
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survive during gasification compared with the aromatic C-O structure. The amount of 377 

aromatic C-O structure left in the char during gasification in non-O-containing 378 

atmosphere was lower than that in O-containing atmosphere, especially at low char 379 

yield. In contrast the consumption of aromatic C=O structure was proportional to the 380 

progress of gasification, regardless of the atmosphere. Moreover, the high contents 381 

of O species in chars with the progress of gasification in steam and in CO2 confirmed 382 

the oxygenation of char gasified in the O-containing atmosphere. The newly formed 383 

C-O structure in char during the oxygenation was most likely to be responsible for 384 

the high gasification reactivity of char in the O-containing atmosphere. 385 
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