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A Lyapunov-type theorem is developed to study well-posedness and almost surely K∞-exponential sta-
bility of dynamical systems driven by Lévy processes. Sufficient conditions imposed by the theorem,
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1. Introduction

Well-posedness (existence and uniqueness of the solution) and stability of stochastic differential
equations (SDEs), which model dynamical systems under stochastic loads, have been extensively
studied (e.g., (H. Deng, Krstic, & Williams, 2001; Do, 2015, 2016; Khasminskii, 1980; Liu, 2006;
X. Mao, 2007) on SDEs driven by diffuses (Brownian motions), (Applebaum, 2009; Applebaum
& Siakalli, 2009; W. Mao, You, & Mao, 2016; X. Mao, 1999; X. Mao, Yin, & Yuan, 2007; Teel,
Subbaramana, & Sferlazza, 2014; Zhu, 2014) on SDEs driven by diffuses and jumps, (Antunes,
Hespanha, & Silvestre, 2010, 2012, 2013a, 2013b, 2014; F. Deng, Luo, & Mao, 2012; Hespanha &
Teel, 2006; Teel et al., 2014) on impulsive SDEs driven by renewal processes, which can be viewed
as SDEs driven by diffuses and jumps via the Lévy-Itô decomposition (Applebaum, 2009, Theorem
2.4.16)). To study local/global well-posedness of SDEs, different Lipschitz and growth conditions are
imposed on the system functions. Because one type of stability does not usually imply the other(s)
in a stochastic setting (X. Mao, 2007), different criteria are proposed to guarantee different types
of stability. Stability in moment and almost sure (a.s.) stability (sometime referred to as stability
in probability) are often considered. Motivated by the fact that Lyapunov’s direct method has been
extensively used for deterministic dynamical system (Khalil, 2002), this method is also the most
powerful tool to investigate stability in moment and a.s. stability of SDEs.
There are excessive and excellent results on Lyapunov sufficient conditions to ensure exponen-

tial stability in moment and a.s asymptotic stability of both SDEs driven by diffuses and jumps
(Applebaum, 2009; Applebaum & Siakalli, 2009; W. Mao et al., 2016; X. Mao, 1999; X. Mao et al.,
2007; Teel et al., 2014; Zhu, 2014) and impulsive SDEs driven by renewal processes (Antunes et
al., 2010, 2012, 2013a, 2013b, 2014; F. Deng et al., 2012; Hespanha & Teel, 2006; Nane & Ni, 2017;
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Teel et al., 2014). These conditions are analogous to those developed for deterministic differential
equations, see (Khalil, 2002, Chapter 4), where an infinite generator should be used instead of the
normal time derivative of a Lyapunov function. On the other hand, there are several results on a.s.
exponential stability of SDEs driven by diffuses and jumps. In (Applebaum, 2009; Applebaum &
Siakalli, 2009), an important exponential martingale inequality is derived and the result on global
a.s. exponential stability of SDES driven by diffuses in (X. Mao, 2007, Theorem 3.3) is generalized
to SDEs driven by diffuses and jumps, where a negative logarithm condition on the jump term
in the infinite generator of a Lyapunov function plus usual Lyapunov sufficient conditions are im-
posed, see (Applebaum & Siakalli, 2009, Theorem 3.1), whose proof is the most interesting due to
the use of the exponential martingale inequality that they derived. However, the negative logarithm
condition on the jump term in the infinite generator creates difficulty in applying (Applebaum &
Siakalli, 2009, Theorem 3.1) to control design because the control is not able to change the above
jump term in the infinite generator. In (W. Mao et al., 2016), the result on a.s. exponential stabil-
ity of SDEs driven by diffuses and jumps is derived under a growth condition on the jump term,
see (W. Mao et al., 2016, Theorem 3.2). This condition also creates difficulty in its application to
control design. In (X. Mao et al., 2007), a linear growth condition is imposed on the jump term to
prove a.s. exponential stability for SDEs with Markovian switching (or hybrid SDEs), see (X. Mao
et al., 2007, Theorem 3.3). In (F. Deng et al., 2012), a different growth condition is imposed on the
product of the Lyapunov function’s gradient and the jump function to prove a.s. exponential stabil-
ity for SDEs with Markovian switching, see (F. Deng et al., 2012, Theorem 2.2). In (X. Mao, 1999),
a linear growth condition is imposed on the system function to prove that the exponential stability
in moment implies the almost sure exponential stability for SDEs with Markovian switching, see
(X. Mao, 1999, Theorem 3.2). The common feature in the aforementioned works for the study of
a.s. exponential stability is the assumption made on the system jump function either independently
or as a separate condition on the jump term of the Lyapunov function’s infinite generator. From a
control design point of view, it is convenient to derive sufficient conditions impose on a Lyapunov
function and its (whole) infinite generator. Conditions imposed on the whole infinite generator are
more relaxed than those on the individual jump term in the infinite generator in control design
because the control can change the infinite generator on the whole but not its individual jump
term. This is analogous to the results developed for deterministic systems, and has obtained for
the study of exponential stability in moment and a.s. asymptotic stability for SDEs as reviewed
above.
The above discussion motivates the first contribution of this paper on developing a Lyapunov-

type theorem to study well-posedness and a.s. K∞-exponential stability of systems driven by Lévy
processes. We consider Lévy processes as disturbances driving the system because a Lévy process is
preferably used in systems with high uncertainties, and can be decomposed to three components by
Lévy-Itô decomposition (Applebaum, 2009): a drift, a Brownian motion, and a pure jump process,
which can be used to correspondingly describe the deterministic, diffuse, and jump components.
The Lyapunov conditions imposed by the theorem are similar to those required for exponential
stability in moment and a.s. asymptotic stability for SDEs in the literature.
Based on well-posedness and stability results as discussed above, control of systems driven by

diffuses and/or jumps has also been considered. When using the powerful Lyapunov direct method,
control of systems driven by diffuses and jumps (in comparison with deterministic systems) has
two difficulties induced by the Hessian and jump terms in the infinite generator of a Lyapunov
function. Despite the difficulty caused by the Hessian term, control of systems driven by diffuses
was considered by many authors (e.g., (H. Deng & Krstic, 1997; H. Deng et al., 2001; Do, 2015)).
However, the jump term is more complicated to be dealt with than the Hessian term. Thus, control
of systems driven by both diffuses and jumps (Lévy processes) is a new area. The only reference
is (Jagtap & Zamani, 2017) on backstepping control design for Hamiltonian systems driven by
diffuse-jumps to achieve stability in moment. As an application of the developed Lyapunov-type
theorem for study of well-posedness and stability of systems driven by diffuses and jumps to control
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design, tracking controllers are designed for active magnetic bearings (AMBs) under stochastic
(deterministic, diffusive, and jumped) loads. Control of AMBs under stochastic loads has not
been addressed in the literature despite the fact that loads on the rotor of AMBs contain high
uncertainties in a number of applications. Up to present, loads on the rotor of AMBs are only
considered as (time-invariant or time-varying) deterministic disturbances. Related works include
(Fujita, Hatake, & Matsumura, 1993; Matsumura & Yoshimoto, 1986; Mohamed & Emad, 1992;
Smith & Weldon, 1995) on linear control, and (Charara, Miras, & Caron, 1996; de Queiroz &
Dawson, 1996; de Queiroz, Dawson, & Suri, 1998; Do, 2010; Mittal & Menq, 1997; Smith & Weldon,
1995; Torries, Sira-Ramirez, & Escobar, 1999) on nonlinear control.
Motivated by the above review/discussion, the second contribution of this paper is the design of

tracking controllers for AMBs driven by Lévy processes to achieve a.s. (practical) K-exponential
stability of the closed-loop system. The control design also imposes a hard constraint on the dis-
placement tracking error.
Notations. The symbols ∧ and ∨ denote the infimum and supremum operators, respectively.

The symbol E denotes the expected value while P denotes probability.

2. Well-posedness and Stability of SDEs

This section presents SDEs to be considered, definition of a.s. stability, and a Lyapunov-type
theorem on well-posedness and stability of SDEs. These results are to be used for control design
and analysis of well-posedness and stability of magnetic bearings.

2.1 Nonlinear SDEs

LetW (t), t ≥ t0 ≥ 0 be anm1-dimensional standard Brownian motion vector defined on a complete
probability space (Ω,F ,P) equipped with a filtration Ft≥t0 such that it satisfies the usual hypothe-
ses. Let N = col(N1, ..., Nℓ, ..., Nm2

) be an m2-dimensional Poisson random measure vector defined

on R+× (Rm2 −{0}) with an m2-dimensional compensator vector Ñ and m2-dimensional intensity
measure vector ν = col(ν1, ..., νℓ, ..., νm2

). We assume that all Nℓ are independent of each other, N

is independent of W , and ν is a Lévy measure vector such that Ñ(dt, dξ) := N(dt, dξ)− dtν(dξ)
and

∫
Rm2−{0}(∥ξ∥

2 ∧ 1)ν(dξ) <∞ with ξ = col(ξ1, · · · , ξℓ, · · · , ξm2
).

Consider the nonlinear SDE driven by Lévy processes:

dX(t) = F (X(t), t)dt+G(X(t), t)dW (t) +
∫
∥ξ∥<εΦ(X(t−), t, ξ)Ñ(dt, dξ),

X(t0) = X0 ∈ Rn,
(1)

where X(t−) = lims↑tX(s); F : Rn × [t0,∞) → Rn; G : Rn × [t0,∞) → Rn×m1 ; Φ : Rn × [t0,∞)×
Rm2 → Rn×m2 , and

∫
∥ξ∥<εΦ(X(t−), t, ξ)Ñ(dt, dξ) :=

∑m2

ℓ=1

∫
|ξℓ|<εℓ

Φ(ℓ)(X(t−), t, ξ)Ñℓ(dt, dξℓ)

with Φ(ℓ) being the ℓth column of Φ for compact notation. The constants εℓ ∈ (0,∞] denote
the maximum allowable jump sizes.
We assume that the system functions F (X(t), t), G(X(t), t), and Φ(X(t−), t, ξ) satisfy the

following local conditions to ensure local well-posedness of (1).

Assumption 2.1:
C1. [Local Lipschitz] For any X,Y ∈ Rn with ∥X∥ ∨ ∥Y ∥ ≤ ϵ1, where ϵ1 is a positive constant,
there exists a nonnegative constant L1 such that for all t ∈ [t0,∞):

∥F (X, t)−F (Y , t)∥2 + ∥G(X, t)−G(Y , t)∥2
+
∑m2

ℓ=1

∫
|ξℓ|<εℓ

∥Φ(ℓ)(X, t, ξℓ)−Φ(ℓ)(Y , t, ξℓ)∥2νℓ(dξℓ) ≤ L1∥X − Y ∥2. (2)
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C2. [Locally linear growth] For any X ∈ Rn with ∥X∥ ≤ ϵ2, where ϵ2 is a positive constant, there
exists a nonnegative constant L2 such that for all t ∈ [t0,∞):

∥F (X, t)∥2 + ∥G(X, t)∥2 +
∑m2

ℓ=1

∫
|ξℓ|<εℓ

∥Φ(ℓ)(X, t, ξℓ)∥2νℓ(dξℓ) ≤ L2(1 + ∥X∥2). (3)

2.2 Definition of a.s. stability

The following definition is based on (Applebaum, 2009) and (Khalil, 2002).

Definition 2.1: The trial solution of (1) is said to be

(1) almost surely globally practically stable if for ϵ ∈ (0, 1), there exists a class K∞-function α
such that

P{∥X(t)∥ < α(∥X0∥) + ϵ0} ≥ 1− ϵ (4)

for all t ∈ [t0,∞) and X0 ∈ Rn, where ϵ0 is a nonnegative constant.
(2) almost surely globally practically K∞-exponentially stable if it is almost surely globally prac-

tically stable and

∥X(t)∥ ≤ α(∥X(t0)∥)e−ϵ(t−t0) + ϵ0, a.s. (5)

for all X0 ∈ Rn, where α is a class K∞-function, ϵ is a positive constant, and ϵ0 is a
nonnegative constant.

If ϵ0 = 0, “practically” is dropped from the above statements. Moreover, if α(∥X(t0)∥) ≡ c∥X(t0)∥
with c being a positive constant, then “K∞” is dropped from the above statements.

2.3 A Lyapunov-type theorem

The following theorem gives sufficient conditions on global well-posedness and stability of nonlinear
SDE (1).

Theorem 2.1: Under Assumption 2.1, assume further that there exists a function U ∈ C2(Rn ×
[t0,∞)) called a Lyapunov function; class K∞-functions α1(.) and α2(.); and an integer p ≥ 2 such
that ∀ (X, t) ∈ Rn × [t0,∞) :

α1(∥X∥p) ≤ U(X, t) ≤ α2(∥X∥p). (6)

1) [Well-posedness] Suppose that LU(X, t) satisfies

LU(X, t) ≤ c3(1 + U(X, t)), X ∈ V, t ∈ [t0,∞), (7)

where c3 is a nonnegative constant. Then the system (1) has a unique solution for each X0 ∈ Rn.
2) [a.s. stability] Suppose that there exists a positive constant c4 such that ∀ (X, t) ∈ V × [t0,∞) :

LU(X, t) ≤ −c4U(X, t) + c0. (8)

If the constant c0 = 0, the equilibrium X ≡ 0 is a.s. globally stable. If c0 > 0, the equilibrium
X ≡ 0 is a.s. globally practically stable.
3) [a.s. exponential stability] Suppose further that α2(∥X + Φℓ∥p) ≤ α21(∥X∥p) + α22(∥Φℓ∥p),

where α21(∥X∥p) and α22(∥Φℓ∥p) are some class K∞-functions, and the function α22(∥Φℓ∥p) sat-
isfies

sup
X∈E

∫
|ξℓ|<εℓ

e∥Φ
ℓ(X,t,ξℓ)∥νℓ(dξℓ) <∞ a.s. (9)

for all bounded sets E. If the constant c0 = 0, the equilibrium X ≡ 0 is a.s. globally K∞-
exponentially stable. If c0 > 0, the equilibrium X ≡ 0 is a.s. globally practically K∞-exponentially
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stable. Moreover,

∥X(t)∥p ≤ α−1
1

[
α2(∥X0∥p)e−c4(t−t0) + c0

c4

]
a.s. (10)

If α1(•) ≡ c1 • and α2(•) ≡ c2 • with c1 and c2 being positive constants, “K∞” is dropped in the
above statements.

Proof. See Appendix A.

Remark 2.1:

• Only local conditions (2) and (3) are needed. These conditions ensure existence and unique-
ness of a local solution to (1). This local solution is then extended to a global solution by the
conditions (6) and (7).

• The inequality (10) is equivalent to (5) by taking the power 1
p both sides of (10) and applying

(|a|+ |b|)ℓ ≤ 2ℓ(|a|ℓ + |b|ℓ) for all (a, b) ∈ R2 and ℓ > 0.
• Although conditions imposed in Theorem 2.1 are of the form similar to those for deterministic

systems, see e.g., (Khalil, 2002, Chapter 4), the infinite generator LU has to be used instead
of the normal time derivative of U . This makes Theorem 2.1 easily accessible to those who
are familiar to Lyapunov’s direct method for control design and stability analysis.

3. Stochastic control of magnetic bearings

3.1 Mathematical model and control objective

Since the dynamics of a magnetic bearing system in the y-direction is the same as that in the
x-direction, we only consider its mathematical model in the x-direction as follows, see (Smith &
Weldon, 1995):

mẍ =
∑2

j=1 Fi(x, Ii) + F0x, (11)

where x(t), ẋ(t) and ẍ(t) represent the rotor disk position, velocity, and acceleration, respectively,
along the x-direction; m represents the mass of the rotor; Fi(x, Ii), i = 1, 2 denote the forces
produced by each stator electromagnetic circuit; Ii, i = 1, 2 represent the current in each stator
coil; F0x is the external disturbance force. The forces Fi(x, Ii) and F0x are detailed in what follows.
Under a common assumption that the applied magnetic forces are only dependent on the direction

of major motion and the measured current in winding of the coil (for example F1(x, I1) only depends
on x and I1), the flux linkage model is used to compute the model for the force produced by the
electrical phases as follows (Woodson & Melcher, 1968):

Fi(x, Ii) =
∂
∂x

∫ Ii
0 λi(x, Ii)dIi, i = 1, 2 (12)

where λi(x, Ii) represents the flux linkage model. If fringing and leakage are neglected and the
magnetic circuit is assumed to be linear, the following flux linkage model is often utilized to
complete the electromechanical dynamic system description, see (Smith & Weldon, 1995):

λi(x, Ii) = Li(x)Ii, i = 1, 2, (13)

with

Li(x) =
L0

2 (g0x + (−1)ix) + L1
, i = 1, 2, (14)

where L0 and L1 are positive constant parameters which depend on the number of stator coil
turns, permeability of the material, air, cross-sectional area of the electromagnet, etc., and g0x is a
constant kinematic quantity, i.e. the gap between the rotor and the stator when the rotor is in its
neutral position. The flux linkage model given by (13) can now be used to calculate Fi(x, Ii), i = 1, 2
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in (12) explicitly as follows

Fi(x, Ii) =
(−1)(i+1)L0I

2
i

(2(g0x + (−1)ix) + L1)2
, i = 1, 2. (15)

To cover various external disturbance forces in practice, we consider F0x of the following form:

F0x = a1f1(x) + a2, (16)

where the functions f1(x) is a continuous function of x, and is bounded if its argument x is bounded.
We use a Lévy process to describe each parameter ai, i = 1, 2 as discussed in Section 1 as follows:

ai = θi + δi
dwi(t)
dt + γi

∫
|ξi|<εi

Ñi(dt,dξi)
dt , (17)

where θi, δi, and γi with i = 1, 2 are unknown but bounded parameters and the constant εi ∈ (0,∞];

and wi(t) is a standard Wiener process. The compensated Poisson measure Ñi(dt, dξi) is given by

Ñi(dt, dξi) = Ni(dt, dξi)−dtνi(dξi), where Ni(dt, dξi) is a Poisson measure and νi(dξi) is a intensity
measure, see also Section 2.1. Substituting (16), where ai are given in (17), into (11) results in the
stochastic model of the magnetic bearing system:

dx1 = x2dt,

dx2 =
1
m

[( 2∑
i=1

Fi(x1, Ii) +
2∑

i=1
θiΦi

)
dt+

2∑
i=1

δiΦidwi(t) +
2∑

i=1
γiΦi

∫
|ξi|<εi

Ñi(dt, dξi)
]
,

(18)

where x1 = x, x2 = ẋ, and

Φ1 = f1(x1), Φ2 = 1. (19)

Before stating the control objective, we make the following assumptions, which are reasonable in
practice.

Assumption 3.1: All the following conditions hold almost surely:

(1) From its neutral position, the rotor can displace in the interval [−g
0x
, g0x] along the x-axis.

The constants g
0x
, g0x are strictly positive such that g

0x
∨ g0x ≤ g0x.

(2) The reference trajectory x1d(t) is feasible, i.e., there exist strictly positive constants CM
1x < g

0x

and C
M
1x < g0x such that

−
(
g
0x

− CM
1x

)
≤ x1d(t) ≤

(
g0x − C

M
1x

)
. (20)

Moreover, the time derivatives ẋ1d(t) and ẍ1d(t) are bounded.
(3) The initial tracking error is feasible, i.e., there exist strictly positive constants C0x < CM

1x

and C0x < C
M
1x such that at the initial time t0 ≥ 0, the following conditions hold

−C0x ≤ x1(t0)− x1d(t0) ≤ C0x, (21)

where x1d(t0) is the initial value of x1d(t) at t = t0 ≥ 0.
(4) All the parameters θi(t), δi(t), γi(t), and

∫
|ξi|<ϵi

νi(dξi), i = 1, 2 are bounded, i.e., there exist

nonnegative constants θ̄i, δ̄i, γ̄i, and ϖi such that

sup
t∈[t0,∞)

θ2ki (t) ≤ θ̄i, sup
t∈[t0,∞)

δ2ki (t) ≤ δ̄i,

sup
t∈[t0,∞)

γ2ki (t) ≤ γ̄i, sup
t∈[t0,∞)

( ∫
|ξi|<ϵi

νi(dξi)
)2k ≤ ϖ2k := ϖ̄i,

(22)

where k is an integer larger than 1.

Control Objective 3.1: Under Assumption 3.1, design the control inputs Ii, i = 1, 2 that force
the output x1(t), of the magnetic bearing system defined in (18) to track the reference trajectory
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x1d(t), such that

(1) The output tracking error are within a pre-specified and feasible range almost surely, i.e.,

−C1x ≤ x1(t)− x1d(t) ≤ C1x, a.s. (23)

for all t ≥ t0 ≥ 0, where C1x and C1x are strictly positive constants that satisfy the following
feasibility conditions

C0x < C1x ≤ CM
1x, C0x < C1x ≤ C

M
1x, a.s. (24)

(2) Almost surely exponential tracking is achieved, i.e.

|x1(t)− x1d(t)| ≤ φ1(x1(t0), x2(t0))e
−c11(t−t0) + c10, a.s. (25)

where φ1 is a class K-function, c11 is a positive constant, and c10 is a nonnegative constant
such that c10 ≤ C1x ∧ C1x.

(3) All signals of the closed loop system are bounded.

3.2 Preliminaries

As the control objective imposes on both symmetric and asymmetric constraints on the tracking
error x1(t)− x1d(t), see (23), we first need a suitable smooth unbounded and increasing function,
which will be embedded in our Lyapunov function in the sequel.

Definition 3.1: Let a and b be constants such that a < 0 < b, a function Ψ(x, a, b) is said to be a
smooth unbounded and increasing function on the interval [a, b] if

1) x = 0 ⇔ Ψ(x, a, b) = 0,
2) limx→a+ Ψ(x, a, b) = −∞, limx→b− Ψ(x, a, b) = ∞,
3) Ψ(x, a, b) is smooth for all x ∈ (a, b),
4) Ψ′(x, a, b) > 0 for all x ∈ (a, b),

(26)

where Ψ′(x, a, b) = ∂Ψ(x,a,b)
∂x .

If a = −b, it is then easy to find many smooth unbounded and increasing functions such as
tanh−1(− 1

ax). If a ̸= −b, construction of smooth unbounded and increasing functions is given in
the following lemma:

Lemma 3.1: For given constants a and b such that a < 0 < b and a+b
b−a ̸= 2n + 1 for all n =

0,±1,±2, · · · , the scalar function Ψ(x, a, b) defined by

Ψ(x, a, b) = tan
[

π
b−a

(
x− a+b

2

)]
+ tan

[
π

b−a
a+b
2

]
(27)

is a smooth unbounded and increasing function of x on the interval [a, b]. Moreover, Ψ′(x, a, b) ≥
π

b−a , ∀ x ∈ R.

−2 0 2 4
−15

−10

−5

0

5

10

15

x

Ψ
(x
,
−
2,
4)

Figure 1.: A plot of Ψ(x,−2, 4).

Proof. The proof follows by a direct verification of all prop-
erties of smooth unbounded and increasing functions listed
in (26). Lemma 3.1 provides a much simpler construction of
smooth unbounded and increasing functions than Lemma 2.2
in (Do, 2010). A plot of smooth unbounded and increasing
function with a = −2 and b = 4 is given in Fig. 1.
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3.3 Coordinate transformation

To transform the tracking control objective with constraints
to a stabilization problem, we introduce the coordinate trans-
formation

z1 = Ψ(x1e, a, b), (28)

where x1e = x1 − xd is the output tracking error. The function Ψ(x1e, a, b) is chosen according to
Lemma 3.1. The constants a and b, are chosen such that

−C1x ≤ a < −C0x, C0x < b ≤ C1x,
a+b
b−a ̸= 2n+ 1, ∀ n = 0,±1,±2, · · · (29)

Applying the Itô formula, see (Applebaum, 2009), to (28) along the solutions of (18) gives

dz1 = Ψ′(x1e, a, b)(x2 − ẋd)dt,

dx2 =
1
m

[( 2∑
i=1

Fi(x1, Ii) +
2∑

i=1
θiΦi

)
dt+

2∑
i=1

δiΦidwi(t) +
2∑

i=1
γiΦi

∫
|ξi|<εi

Ñi(dt, dξi)
]
.

(30)

Thus, the control objective now is to design Ii, i = 1, 2 such that they stabilize (30) at the origin
almost surely.

3.4 Control design

The control design consists of two steps by applying the ingredients developed in Section 2 and
the backstepping method (Krstic, Kanellakopoulos, & Kokotovic, 1995), which are detailed below.

3.4.1 Step 1

Define

z2 = x2 − α1, (31)

where α1 is a virtual control of x2. To design α1, we consider the following Lyapunov function
candidate

U1 =
1

2k
z2k1 (32)

where k is a positive integer to be determined. The above choice of U1 is motivated by the work
in (Do, 2015) to handle the Hessian term in the infinite generator LU2, which will appear in the
second step. Applying the Itô formula to U1 along the solutions of the first equation of (30) and
(31) yields

LU1 = z2k−1
1 Ψ′(z2 + α1 − ẋd), (33)

where we have dropped the arguments (x1e, a, b) of Ψ
′ for clarity. From (33), we choose α1 as

α1 = −k11z1 − k12(Ψ
′)2k−1z1 + ẋd, (34)

where k11 and k12 are positive constants to be chosen later. It is noted that α1 is a function of
(x1, xd, ẋd). Substituting (34) into (33) gives

LU1 = −[k11Ψ
′ + k12(Ψ

′)2k]z2k1 +Ψ′z2k−1
1 z2. (35)

8
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3.4.2 Step 2

To design the controls I1 and I2, we consider the following Lyapunov function candidate

U2 = U1 +
m
2kz

2k
2 . (36)

Applying the Itô formula to U2 along the solutions of the second equation of (30) and using (35)
results in

LU2 = −[k11Ψ
′ + k12(Ψ

′)2k]z2k1 +Ψ′z2k−1
1 z2

+z2k−1
2

( 2∑
i=1

Fi(x1, Ii) +
2∑

i=1
θiΦi −m

(
∂α1

∂x1
x2 +

∂α1

∂xd
ẋd +

∂α1

∂ẋd
ẍd

))
+ 2k−1

2 z2k−2
2

2∑
i=1

δ2iΦ
2
i

+m
2∑

i=1

∫
|ξi|<εi

[
1
2k (z2 + γiΦi)

2k − 1
2kz

2k
2 − z2k−1

2 γiΦi

]
νi(dξi).

(37)

We now need to find the upper-bound of the right hand-side of (37). Using the inequalities (a +
b)2k ≤ 22k−1(a2k+b2k) and ab ≤ ϵp

p |a|
p+ 1

qϵq |b|
q with ϵ > 0, p > 1, q > 1, 1p+

1
q = 1 for all (a, b) ∈ R2,

and the expression of Φi, i = 1, 2 in (19), we can calculate:

Ψ′z2k−1
1 z2 ≤ (Ψ′)2kϵ

2k

2k−1

10 z2k1 + 1
2kϵ2k10

z2k2 ,

z2k−1
2 θ1Φ1 ≤ 2k−1

2k ϵ
2k

2k−1

11 z2k2 + 1
2kϵ2k11

θ̄1Ā,

z2k−1
2 θ2Φ2 ≤ 2k−1

2k ϵ
2k

2k−1

12 z2k2 + 1
2kϵ2k12

θ̄2,

z2k−1
2 δ1Φ1 ≤ 2k−1

2k ϵ
2k

2k−1

11 z2k2 + 1
2kϵ2k11

δ̄1Ā,

z2k−1
2 δ2 ≤ 2k−1

2k ϵ
2k

2k−1

12 z2k2 + 1
2kϵ2k12

δ̄2,

m
∫
|ξ1|<ε1

1
2k (z2 + γ1Φ1)

2kν1(dξ1) ≤ m22k−1

2k ϖ1z
2k
2 + m22k−1

2k γ̄1Āϖ1,

m
∫
|ξ1|<ε1

z2k−1
2 γ1Φ1ν1(dξ1) ≤ m22k−1

2k ϵ
2k

2k−1

15 z2k2 + m
2kϵ2k15

γ̄1Āϖ̄1,

m
∫
|ξ2|<ε2

1
2k (z2 + γ2Φ2)

2kν2(dξ2) ≤ m22k−1

2k ϖ2z
2k
2 + m22k−1

2k γ̄2ϖ2,

m
∫
|ξ2|<ε2

z2k−1
2 γ2Φ2ν2(dξ2) ≤ m22k−1

2k ϵ
2k

2k−1

16 z2k2 + m
2kϵ2k16

γ̄2ϖ̄2,

(38)

where ϵ1i, i = 0, · · · , 6 are positive constants to be chosen later; δ̄i, γ̄i, ϖ̄i, i = 1, 2 are defined in

(22); Ā =
(
supx∈[a−|xd|,b+|xd|] |f1(x)|

)2k
with a note that we have used (27) and (28) to obtain

x = arctan
(
z1 − tan

(
π

b−a
a+b
2

))
b−a
π + a+b

2 + xd. Substituting (38) into (37) results in

LU2 ≤ −
[
k11Ψ

′ +
(
k12 − ϵ

2k

2k−1

10

)
(Ψ′)2k

]
z2k1 + z2k−1

2

( 2∑
i=1

Fi(x1, Ii)

−m
(
∂α1

∂x1
x2 +

∂α1

∂xd
ẋd +

∂α1

∂ẋd
ẍd

)
+ c1z2

)
+ c0,

(39)

where

c1 =
1

2kϵ2k10
+ 2k−1

2k ϵ
2k

2k−1

11 + 2k−1
2k ϵ

2k

2k−1

12 + 2k−1
2k ϵ

2k

2k−1

13 + 2k−1
2k ϵ

2k

2k−1

14 + m22k−1

2k ϖ1 +
m22k−1

2k ϵ
2k

2k−1

15 + m22k−1

2k ϖ2

+m22k−1

2k ϵ
2k

2k−1

16 ,

c0 =
1

2kϵ2k11
θ̄1Ā+ 1

2kϵ2k12
θ̄2 +

1
2kϵ2k13

δ̄1Ā+ 1
2kϵ2k14

δ̄2 +
m22k−1

2k γ̄1Āϖ1 +
m

2kϵ2k15
γ̄1Āϖ̄1 +

m22k−1

2k γ̄2ϖ2

+ m
2kϵ2k16

γ̄2ϖ̄2.

(40)
From (39), we choose the controls I1 and I2 such that

2∑
i=1

Fi(x1, Ii) = −k2z2 +m
(
∂α1

∂x1
x2 +

∂α1

∂xd
ẋd +

∂α1

∂ẋd
ẍd

)
− c1z2

:= ∆,
(41)

9
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where k2 is a positive constant to be chosen later. We now write (41) with (15) as follows

χ2
1(x1)I

2
1 − χ2

2(x1)I
2
2 = ∆, (42)

where ∆ is defined in (41), and

χ1(x1) =
√
L0

2(g0x−x1)+L1
,

χ2(x1) =
√
L0

2(g0x+x1)+L1
.

(43)

To solve (42) for I1 and I2, we write (42) as follows(
χ1(x1)I1 − χ2(x1)I2

)(
χ1(x1)I1 + χ2(x1)I2

)
=

∆

(∆ℓ + γℓ0)
1

2ℓ

(∆ℓ + γℓ0)
1

2ℓ , (44)

where γ0 is a small positive constant, and ℓ is a positive even number. Thus, we can simply choose

χ1(x1)I1 − χ2(x1)I2 = (∆ℓ + γℓ0)
1

2ℓ ,

χ1(x1)I1 + χ2(x1)I2 =
∆

(∆ℓ + γℓ0)
1

2ℓ

,
(45)

which gives

I1 =
1

2χ1(x1)

( ∆

(∆ℓ + γℓ0)
1

2ℓ

+ (∆ℓ + γℓ0)
1

2ℓ

)
,

I2 =
1

2χ2(x1)

( ∆

(∆ℓ + γℓ0)
1

2ℓ

− (∆ℓ + γℓ0)
1

2ℓ

)
,

(46)

Remark 3.1: The choice of the controls I1 and I2 as in (46) is not unique as we can specify

alternative terms for (∆ℓ + γℓ0)
1

2ℓ in (44). Other choices like the ones in (de Queiroz & Dawson,
1996; de Queiroz et al., 1998; Do, 2010) are possible. The controls I1 and I2 in (46) are smooth and
their magnitude is proportional to

√
|∆|, which makes the controls I1 and I2 behave very similar

to ideal switching controls such as if △ ≥ 0 then I1 = 1
χ1(x1)

√
△ and I2 = 0, else if △ < 0 then

I1 = 0 and I2 = −1
χ2(x1)

√
−△ when |△| dominates γ0. Indeed, if γ0 is set to zero, the controls I1

and I2 in (46) become

I1 =
1

2χ1(x1)

(
∆√
|∆|

+
√
|∆|

)
,

I2 =
1

2χ2(x1)

(
∆√
|∆|

−
√
|∆|

)
,

(47)

which behave exactly the same as the aforementioned ideal switching controls. However, the controls
I1 and I2 in (47) are only continuous instead of being smooth as those in (46). The tradeoff is that
the controls I1 and I2 in (46) require a small quantity of currents when ∆ = 0 due to nonzero γ0.

Substituting (41) into (39) gives

LU2 ≤ −
[
k11Ψ

′ +
(
k12 − ϵ

2k

2k−1

10

)
(Ψ′)2k

]
z2k1 − k2z

2k
2 + c20. (48)

For a given ϵ10, we first choose k12 such that

k12 ≥ ϵ
2k

2k−1

10 . (49)

Using (49) and Ψ′ ≥ π
b−a , see Lemma 3.1, and definition of U2 given in (36), we can write (48) as

follows:

LU2 ≤ −cU2 + c0, (50)

10
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where

c = 2k
[(

k11π
b−a +

(
k12 − ϵ

2k

2k−1

30

)(
π

b−a

)2k) ∧ k2
]
. (51)

The control design has been completed. We summarize the main results in the following theorem.

Theorem 3.1: Under Assumption 3.1, the controls I1 and I2 given in (46) ensure that the closed-
loop system consisting of (41) and (30) or (18) is well-posed; x1e(t) ∈ (a, b) for all t ≥ t0 almost
surely; and |x1e(t)| almost surely exponentially converges to c⋆0 defined by

c⋆0 =
[
arctan

(
2

1

2k

[
22k−12k c0

c

] 1

2k − tan
(

π
b−a

a+b
2

))
b−a
π + a+b

2

]
∨
[∣∣∣− arctan

(
2

1

2k

[
22k−12k c0

c

] 1

2k + tan
(

π
b−a

a+b
2

))
b−a
π + a+b

2

∣∣∣], (52)

which can be made arbitrarily small choosing large control gains k11, k12, and k2 because c is given
by (51). Control Objective 3.1 is solved by the controls I1 and I2 given in (46) provided that control
gains k11, k12, and k2 are chosen such that c⋆0 ≤ c10, where c10 is defined in (25).

Proof. First, applying Theorem 2.1 to (50) with U2 given in (36) ensures that the closed-loop
system consisting of (41) and (30) or the x-subsystem given in (18) is well-posed. Next, applying
Theorem 2.1 to (50) with U2 given in (36) yields

z2k1 (t) + z2k2 (t) ≤ 2k
(

1
2k

(
z2k1 (t0) + z2k2 (t0)

)
e−c(t−t0) + c0

c

)
a.s.

⇒ |z1(t)|+ |z2(t)| ≤
[
22k−12k

(
1
2k

(
z2k1 (t0) + z2k2 (t0)

)
e−c(t−t0) + c0

c

)] 1

2k

≤ 2
1

2k

[
22k−12k

(
1
2k

(
z2k1 (t0) + z2k2 (t0)

)
e−c(t−t0)

] 1

2k

+ 2
1

2k

[
22k−12k c0

c

] 1

2k

a.s.

(53)

where we have used (|z1| + |z2|)2k ≤ 22k−1(z2k1 + z2k2 ) for all (z1, z2) ∈ R2 and (|a| + |b|)
1

2k ≤
2

1

2k (|a|
1

2k + |b|
1

2k ) for all (a, b) ∈ R2. The inequality (53) ensures that z1(t) and z2(t) are bounded
for all bounded initial values z1(t0) and z2(t0), i.e., for all initial values of x1e(t0) ∈ (a, b) and
bounded x2(t0) due to (28). Solving (28) gives

x1e = arctan
(
z1 − tan

(
π

b−a
a+b
2

))
b−a
π + a+b

2 . (54)

This together with boundedness of (z1(t), z2(t)) implies that x1e(t) ∈ (a, b) for all initial values of
x1e(t0) ∈ (a, b) and bounded x2(t0). Combining (53) and (54) yields

|x1e(t)| ≤
[
arctan

(
|z1(t)| − tan

(
π

b−a
a+b
2

))
b−a
π + a+b

2

]
∨
[∣∣− arctan

(
|z1(t)|+ tan

(
π

b−a
a+b
2

))
b−a
π + a+b

2

∣∣] a.s. (55)

Since arctan(·) is a class K-function, almost surely exponential convergence of |z1(t)| to

2
1

2k

[
22k−12k c0

c

] 1

2k , which is implied from (53), implies that of x1e(t) to c⋆0 defined in (52). Fi-
nally, it is noted from (43) that χ1(x1) and χ2(x1) are well-defined because g

0x
∨ g0x ≤ g0x, see

Item 1 of Assumption 3.1. �

3.5 Simulations

The system parameters are taken as m = 2.0[kg], g0 = 10−3[m], L0 = 3.0 × 10−4[Hm], L1 =
1.25×10−5[m], R1 = R2 = 1.0[Ω]. We simulate a problem of forcing the rotor to track a sinusoidal
signal given by xd(t) =

g0
2 sin(0.5t). The initial conditions are

x1(0) = 0.6× 10−3[m], x2(0) = 5× 10−3[m/s]. (56)

Based on the conditions specified in Assumption 3.1 and Control Objective 3.1, we take CM
1x =

C
M
1x = 0.9g0, C1x = C1x = 0.92g0, C0x = C0x = 0.93g0.

11
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For the disturbance force F0x, the function f1(x1) is taken as f1(x1) = |x1|0.723 (usually used
in calculation of metal cutting force (Stachurski, Midera, & Kruszýnski, 2012)); the deterministic
parameters are taken as θ1 = 200 and θ2 = 19.6[N ]; the diffuse and jump coefficients δi and γi
are taken to be 50% and 30% of their corresponding θi. The Poisson measures dtνi(dξi) are taken
as dtνi(dξi) = λiψ(ξi)dξidt, where λ1 = 5 and λ2 = 7, ψ(ξi) = 1√

2πξi
e−ξ2i /2, which is the density

function of a lognormal random variable, and ε1 = ε2 = 103. Based on Theorem 3.1, the control
design gains are chosen as

k11 = 1, k12 = 2, k2 = 8, γ0x = 0.15. (57)

The parameters a and b of the function Ψ(x1e, a, b) are chosen as a = −0.85g0 and b = 0.85g0.
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Figure 2.: Results by proposed control design
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Figure 3.: Results by control design in (Do, 2010)

Simulation results are plotted in Figure 2, where the displacement x1 and its reference xd are
plotted in Sub-figure 2.a, the velocity dx1

dt is plotted in Sub-figure 2.b, and the control currents I1
and I2 are plotted in Sub-figure 2.c. It is seen from Sub-figure 2.a that the proposed controls force
the rotor displacement to track its reference very well. From Sub-figure 2.c, we can see that the

12
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control currents I1 and I2 are fairly large at the beginning. This is because of the fact that the
initial position x1(0) = 0.6× 10−3[m] is fairly close to its boundary value b, and the initial velocity
x2(0) = 5×10−3[m/s] pushes the rotor toward the boundary value b. Therefore, the control currents
must provide sufficiently large control efforts to push the rotor back to prevent it from contacting
with the stator. Then at the steady state, the currents I1 and I2 need to produce sufficient large
force to handle the external disturbance force F0x, see (16) and (17) for the expression of this force
with the above value of the parameters (θi, δi, γi).
Since existing works on control of magnetic bearings only consider deterministic disturbances as

discussed in Section 1, it is not possible to run a simulation from these works on the stochastic
model of magnetic bearings in this paper. This is because the diffuse and jump terms are simply
unbounded in the deterministic sense. Thus, the diffuse and jump terms are first saturated by the
magnitude of δi and γi, i = 1, 2. Then the control design for magnetic bearings under deterministic
loads in (Do, 2010) is implemented, where it is noted that the voltage-dynamics in (Do, 2010) is
removed as we are considering magnetic bearings with current driving mode. Simulation results
of the control design in (Do, 2010) with diffuse and jump terms being saturated are shown in
Figure 3. The information presented in each sub-figure has the same meaning as that in Figure 2.
It is seen that deterministic design results in significantly poorer performance in comparison with
the stochastic design in this paper. This is due to the fact that the deterministic control design
considers the time derivative of the Lyapunov function while the stochastic control design addresses
the infinite generator of the Lyapunov function, which has additional Hessian and jump terms (see
the last two terms in (37)) compared with its time derivative. Thus, the stochastic control design
needs to handle these terms while the deterministic control design does not. These terms actually
present in the system. The above analysis explains why the stochastic control design results in
better performance than the deterministic one. Note that other controllers those papers such as
(de Queiroz & Dawson, 1996) and (de Queiroz et al., 1998) would give worse results as the hard
constraint on the tracking error is not imposed, see (Do, 2010) for a discussion.

4. Conclusions

The paper developed a Lyapunov-type theorem to investigate well-posedness and (global practical
K∞) exponential stability of SDEs driven by Lévy processes almost surely. Sufficient conditions
imposed by the theorem are relatively easy to be verified. The theorem was then applied to design
controllers to achieve a.s. practical K-exponential stability of magnetic bearings driven by stochastic
diffuse-jumps. Future work is to apply Theorem 2.1 to financial and other engineering systems
driven by diffuses and jumps.

Appendix A. Proof of Theorem 2.1

A.1 Proof of Item 1) of Theorem 2.1

We first need a lemma on global well-posedness of (1) if the conditions (2) and (3) hold globally.

Lemma A.1: Suppose that the conditions (2) and (3) hold for all X(t) ∈ Rn and Y (t) ∈ Rn.
There exists a unique solution to (1) with the initial condition X0 ∈ Rn almost surely (a.s.) for
which X0 is Ft0-measurable. This solution is adapted and càdlàg.

Proof. See (Applebaum, 2009), Theorem 6.2.3.
We now turn to proof of Item 1) of Theorem 2.1. Let k0 be the boundedness of the initial data,

13
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i.e., ∥X0∥ ≤ k0. For any integer k > k0, let us define

Fk(X, t) = F
(∥X∥∧k

∥X∥ X, t
)
,

Gk(X, t) = G
(∥X∥∧k

∥X∥ X, t
)
,

Φk(X, t, ξ) = Φ
(∥X∥∧k

∥X∥ X, t, ξ
)
,

(A1)

where we let ∥X∥∧k
∥X∥ X = 0 if X = 0. Then, it is clear that all the conditions of Lemma A.1 hold

for all X ∈ Rn. Thus, Lemma A.1 ensures well-posedness of the solution Xk(t) to the SDE:

dXk = Fk(Xk, t)dt+Gk(Xk, t)dW (t) +
∫
∥X∥<εΦ(Xk(t

−), t, ξ)Ñ(dt, dξ) (A2)

for any Xk(t0) = X0 ∈ Rn. Define a stopping time

sk = inf{t ≥ t0 : ∥Xk(t)∥ > k}, (A3)

where we let inf ∅ = ∞ as usual. Obviously for any σ < sk, we have ∥Xk(σ)∥ ≤ k. From definition
of Fk(X, t), Gk(X, t), and Φk(X, t−, ξ) in (A1), it is seen that

Fk+1(Xk(σ), t) = Fk(Xk(σ), t),

Gk+1(Xk(σ), t) = Gk(Xk(σ), t),

Φk+1(Xk(σ), t, ξ) = Φk(Xk(σ), t, ξ),

(A4)

for all t0 ≤ σ < sk. From (A2) and (A4), it holds that

Xk+1(t) = Xk(t), ∀ t0 ≤ t ≤ sk. (A5)

This further implies that sk is increasing in k. Thus, we can define s = limk→∞ sk. From (A5), we
also have

X(t) = Xk(t), ∀ t0 ≤ t < sk. (A6)

This together with (A4) means that X(t) is the unique solution of (1) for t ∈ [t0, sk). We need to
show that P(s = ∞) = 1. Applying the Itô formula to U(Xk, t) with Xk the solution of (A2) gives

U(Xk(t ∧ sk), t) = U(X0, t0) +
∫ t∧sk
t0

LkU(Xk(σ), σ)dσ +
∫ t∧sk
t0

UXk
(Xk(σ), σ)Gk(Xk(σ), σ)dW (σ)

+
∫ t∧sk
t0

m2∑
ℓ=1

∫
|ξℓ|<εℓ

[
U
(
Xk(σ

−) +Φ(ℓ)(Xk(σ
−), σ, ξℓ), σ

)
− U(Xk(σ

−), σ)
]
Ñℓ(dσ, dξℓ),

(A7)
where

LkU(Xk, σ) = Uσ(Xk, σ) + Fk(Xk, σ)UXk
(Xk, σ) +

1
2Tr

(
GT

k (Xk, σ)UXkXk
(X, σ)Gk(Xk, σ)

)
+

m2∑
ℓ=1

∫
|ξℓ|<εℓ

[
U
(
Xk(σ

−)+Φ(ℓ)(Xk(σ
−), σ, ξℓ), σ

)
− U(Xk(σ

−), σ)

−UXk
(Xk(σ

−), σ)Φ(ℓ)(Xk(σ
−), σ, ξℓ)

]
νℓ(dξℓ).

(A8)
By definition of Fk, Gk, and Φk in (A1), we have

LkU(Xk(σ), σ) = LU(Xk(σ), σ),∀ σ < t ∧ sk, (A9)

where LU(Xk(σ), σ) = LU(X(σ), σ)|X=Xk
. Moreover, we have

E
{∫ t∧sk

t0
UXk

(Xk(σ), σ)Gk(Xk(σ), σ)dW (σ)
}
= 0, (A10)

which implies that

E
{∫ t∧sk

t0
UXk

(Xk(σ), σ)G(Xk(σ), σ)dW (σ)
}
= 0. (A11)

14
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Thus, taking expectancy of (A7) and using (7) gives

E
{
U(Xk(t ∧ sk), t)

}
≤ E

{
U(X0, t0)

}
+ c3E

{ ∫ t∧sk
t0

(1 + U(Xk(σ), σ))dσ
}

≤ E
{
U(X0, t0)

}
+ c3E

{ ∫ t
t0
(1 + U(Xk(σ ∧ sk), σ))dσ

}
.

(A12)

Applying the Gronwall inequality to (A12) yields

E
{
U(Xk(t ∧ sk), t)

}
≤
(
c3(t−t0)+E

{
U(X0, t0)

})
ec3(t−t0), (A13)

which further gives

inf∥X∥≥k U(X, t)P(sk ≤ t) ≤ E
{
U(Xk(sk), t)Isk≤t

}
≤

(
c3(t− t0) + E

{
U(X0, t0)

})
ec3(t−t0).

(A14)

Therefore

P(sk ≤ t) ≤
(
c3(t− t0) + E

{
U(X0, t0)

})
ec3(t−t0)

inf∥X∥≥k U(X, t)
. (A15)

Letting k tend to infinity and using (6) result in P(sk ≤ t) = 0. Since t is arbitrary, P(sk = ∞) =
1 ⇒ P(s = ∞) = 1 by definition s = limk→∞ sk. �

A.2 Proof of Item 2) of Theorem 2.1

Since all the conditions of Item 1) satisfy, there exists a global unique solution to (1). The technique
in (H. Deng et al., 2001) is used at places in our proof. Applying the Itô formula to U(X, t) and
the solution X(t) of (1) and using Condition (8) gives

U(X(t), t) = U(X(s), s) +
∫ t
s LU(X(r), r)dr +

∫ t
s UX(X(r), r)G(X(r), r)dW (r)

+
∫ t
s

m2∑
ℓ=1

∫
|ξℓ|<εℓ

[
U
(
X(r−) +Φ(ℓ)(X(r−), r, ξℓ), r

)
− U(X(r−), r)

]
Ñℓ(dr, dξℓ)

≤ U(X(s), s) +
∫ t
s (−c4U(X(r), r) + c0)dr +

∫ t
s UX(X(r), r)G(X(r), r)dW (r)

+
∫ t
s

m2∑
ℓ=1

∫
|ξℓ|<εℓ

[
U
(
X(r−) +Φ(ℓ)(X(r−), r, ξ), r

)
− U(X(r−), r)

]
Ñℓ(dr, dξℓ),

(A16)

To further consider (A16), let us define an increasing time sequence tk, k = 1, · · · ,∞ such that
t∞ = ∞. In each time interval [tk−1, tk], we show that the system (1) is stable in probability for
any initial value Xtk−1

. For r ∈ [tk−1, tk], there are two cases:

Case I:
∫ tk
tk−1

(−c4U(X(r), r) + c0)dr > 0,

Case II:
∫ tk
tk−1

(−c4U(X(r), r) + c0)dr ≤ 0,
a.s. (A17)

Case I already implies that the system (1) is stable in probability in the interval [tk−1, tk] due to
(6). We now address Case II. For this case, we can write (A16) as

U(X(tk), tk) ≤ U(X(tk−1), tk−1) +
∫ tk
tk−1

UX(X(r), r)G(X(r), r)dW (r)

+
∫ tk
tk−1

m2∑
ℓ=1

∫
|ξℓ|<εℓ

[
U
(
X(r−) +Φ(ℓ)(X(r−), r, ξ), r

)
− U(X(r−), r)

]
Ñℓ(dr, dξℓ),

(A18)

which implies that U(X(tk), tk) is a supermartingale with respect to the filtration generated by

W (·) and Ñℓ(·, ·), ℓ = 1, ...,m2. By the supermartingale inequality (X. Mao, 2007, Theorem 3.6),
for any class K∞-function δ(·), we have

P
{

sup
tk−1≤s≤tk

U(X(s), s)≥δ(U(Xk−1, tk−1))
}
≤ U(Xk−1,tk−1)

δ(U(Xk−1,tk−1))
, (A19)

15
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where Xk−1 := X(tk−1). Thus,

P
{

sup
tk−1≤s≤tk

U(X(s), s)<δ(U(Xk−1, tk−1))
}
≥ 1− U(Xk−1,tk−1)

δ(U(Xk−1,tk−1))
. (A20)

Using (6) shows that suptk−1≤s≤tk U(X(s), s) < δ(U(Xk−1, tk−1)) implies that

suptk−1≤s≤tk ∥X(s)∥ < ϱ(∥Xk−1∥), where ϱ = α−1
1 ◦ δ ◦ α2. For a given ε > 0, we choose a

class K∞-function δ(·) such that U(Xk−1,tk−1)
δ(U(Xk−1,tk−1))

≤ ε. Thus, we can write (A20) as

P
{

sup
tk−1≤s≤tk

∥X(s)∥ < ϱ(∥Xk−1∥)
}
≥ 1− ε. (A21)

This further implies that

P
{
∥X(tk)∥ < ϱ(∥Xk−1∥)

}
≥ 1− ε. (A22)

For k = 1, ∥X0∥ is a.s. bounded. Combining Case I defined in (A17) and (A22) yields practical
stability of (1) in probability in the interval [t0, t1. Thus, X1 is a.s. bounded. The above procedure
is repeated for each k = 2, · · · to yield global practical stability of (1) in probability.

A.3 Proof of Item 3) of Theorem 2.1

Applying the Itô formula to ec4(t−t0)U(X, t) and the solution X(t) of (1), and using (8) gives

ec4(t−t0)U(X(t), t) = U(X(t0), t0) +
∫ t
t0
ec4(r−t0)

(
LU(X(r), r) + c4U(X(r), r)

)
dr

+
∫ t
t0
ec4(r−t0)

[
UX(X(r), r)G(X(r), r)dW (r)

+
m2∑
ℓ=1

∫
|ξℓ|<εℓ

(
U(X(r−) +Φ(ℓ)(X(r−), r, ξℓ), r)− U(X(r−), r)

)
Ñℓ(dr, dξℓ)

]
≤ U(X(t0), t0) + c0

∫ t
t0
ec4(r−t0)dr +

∫ t
t0
ec4(r−t0)

[
UX(X(r), r)G(X(r), r)dW (r)

+
m2∑
ℓ=1

∫
|ξℓ|<εℓ

(
U(X(r−) +Φ(ℓ)(X(r−), r, ξℓ), r)− U(X(r−), r)

)
Ñℓ(dr, dξℓ)

]
.

(A23)
Multiplying both sides of (A23) with e−c4(t−t0) gives

U(X(t), t) ≤ U(X(t0), t0)e
−c4(t−t0) + c0

c4
+

∫ t
t0
e−c4(t−r)

[
UX(X(r), r)G(X(r), r)dW (r)

+
m2∑
ℓ=1

∫
|ξℓ|<εℓ

(
U(X(r−) +Φ(ℓ)(X(r−), r, ξℓ), r)− U(X(r−), r)

)
Ñℓ(dr, dξℓ)

]
,

(A24)

which can be written as

U(X(t), t) ≤ U(X(t0), t0)e
−c4(t−t0) + c0

c4
+

m∑
ℓ=1

Mℓ(t), (A25)

where

Mℓ(t) :=
∫ t
t0
ḡℓ(X(r), r)dWℓ(r) +

∫ t
t0

∫
|ξℓ|<εℓ

ϕ̄ℓ(X(r−), r, ξℓ)Ñℓ(dr, dξℓ), (A26)

and

m = m1 ∨m2,

UX(X(r), r)G(X(r), r)=e−c4(t−r)row(ḡ1(X(r), r)), · · · , ḡℓ(X(r), r), · · · , ḡm(X(r), r),

ϕ̄ℓ(X(r), r, ξℓ)=e
−c4(t−r)

(
U(X(r)+Φ(ℓ)(X(r), r, ξℓ), r)− U(X(r), r)

)
,

(A27)

and if m1 < m, we set ḡℓ = 0 and Wℓ = Wm1
for ℓ = m1, · · · ,m; if m2 < m, we set

ϕ̄ℓ = 0 and Ñℓ = Ñm2
for ℓ = m2, · · · ,m. Since we have already proved that the system

(1) is globally practically stable in probability, G(X, t) and Φ(X, t, ξ) satisfy Conditions C1
and C2 of Assumption 2.1, U(X, t) ≤ α2(∥X∥p), see Condition (6), and α2(∥X + Φℓ∥p) ≤

16
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α2(2
p−1(∥X∥p + ∥Φℓ∥p)) ≤ ᾱ21(∥X∥p) + ᾱ22(∥Φℓ∥p) with ᾱ21 and ᾱ22 being some class K∞-

functions, we have
∫ t
t0
|ḡℓ(X(r), r)|2dr <∞ and

∫ t
t0

∫
|ξℓ|<εℓ

|ϕ̄ℓ(X(r−), r, ξℓ)|2νℓ(dξℓ)dr <∞ a.s. for

all t ∈ [t0,∞). Thus, we can apply the exponential martingale inequality, see (Applebaum, 2009,
Theorem 5.2.9), to Mℓ(t) with T = k, a = ϵ, b = ϵk, where ϵ ∈ (0, 12) and k ≥ t0 is an integer, as
follows:

P
{
supt0≤t≤k

[
Mℓ(t)− ϵ

2

∫ t
t0
|ḡℓ(s)|2ds

−1
ϵ

∫ t
t0

∫
|ξℓ|<εℓ

(
eϵϕ̄ℓ(X(s−),s,ξℓ) − 1− ϵϕ̄ℓ(X(s−), s, ξℓ)

)
νℓ(dξℓ)ds

]
> ϵk

}
< e−ϵ2k.

(A28)

Since
∑∞

k=1 e
−ϵ2k <∞, applying the Borel-Cantelli lemma to (A28) gives

P
{

lim
k→∞

inf
(

sup
t0≤t≤k

[
Mℓ(t)− ϵ

2

∫ t
t0
|ḡℓ(s)|2ds− 1

ϵ

∫ t
t0

∫
|ξℓ|<εℓ

(
eϵϕ̄ℓ(X(s−),s,ξℓ) − 1

−ϵϕ̄ℓ(X(s−), s, ξℓ)
)
νℓ(dξℓ)ds

]
≤ ϵk

)}
= 1.

(A29)

Therefore, for almost all ω ∈ Ω there exists a random integer k0 = k0(ω) such that for k ≥ k0 and
t0 ≤ t ≤ n:

Mℓ(t) ≤ ϵ
2

∫ t
t0
|ḡℓ(s)|2ds+ ϵk + 1

ϵ

∫ t
t0

∫
|ξℓ|<εℓ

(
eϵϕ̄ℓ(X(s−),s,ξℓ) − 1− ϵϕ̄ℓ(X(s−), s, ξℓ)

)
νℓ(dξℓ)ds.

(A30)
To further consider (A30), we need the following inequality by using Taylor series expansion of ex

for all x ∈ R+:

ex = 1 + x+ x2

2!

[
1 + 2!

3!x+ 2!2!
4!

x2

2! +
2!3!
5!

x3

3! + · · ·
]

≤ 1 + x+ x2

2! e
x.

(A31)

Applying (A31) to (A30) yields

Mℓ(t) ≤ ϵ
2

∫ t
t0
|ḡℓ(s)|2ds+ ϵk + ϵ

∫ t
t0

∫
|ξℓ|<εℓ

ϕ̄2ℓ(X(s−), s, ξℓ)e
ϵϕ̄ℓ(X(s−),s,ξℓ)νℓ(dξℓ)ds. (A32)

Since we have proved that the system (1) is globally stable in probability, under Conditions (9),
C1 and C2 of Assumption 2.1, by letting ϵ→ 0 the dominated convergence theorem holds that for
all t ≥ t0:

limϵ→0

[
ϵ
2

∫ t
t0
|ḡℓ(s)|2ds+ϵk+ϵ

∫ t
t0

∫
|ξℓ|<εℓ

ϕ̄2ℓ(X(s−), s, ξℓ)e
ϵϕ̄ℓ(X(s−),s,ξℓ)νℓ(dξℓ)ds

]
= 0. (A33)

Substituting (A33) into (A32) then into (A25) and using (6) gives (10). �
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