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Abstract
For long-baseline over several hundreds of kilometers, the ionospheric delays that cannot be fully removed by differencing 
observations between receivers hampers rapid ambiguity resolution. Compared with forming ionospheric-free linear com-
bination using dual- or triple-frequency observations, estimating ionospheric delays using uncombined observations keeps 
all the information of the observations and allows extension of the strategy to any number of frequencies. As the number of 
frequencies has increased for the various GNSSs, it is possible to study long-baseline ambiguity resolution performance using 
up to five frequencies with uncombined observations. We make use of real Galileo observations on five frequencies with a 
sampling interval of 1 s. Two long baselines continuously receiving signals from six Galileo satellites during correspond-
ing test time intervals were processed to study the formal and empirical ambiguity success rates in case of full ambiguity 
resolution (FAR). The multipath effects are mitigated using the measurements of another day when the constellation repeats. 
Compared to the results using multipath-uncorrected Galileo observations, it is found that the multipath mitigation plays 
an important role in improving the empirical ambiguity success rates. A high number of frequencies are also found to be 
helpful to achieve high ambiguity success rate within a short time. Using multipath-uncorrected observations on two, three, 
four and five frequencies, the mean empirical success rates are found to be about 73, 88, 91, and 95% at 10 s, respectively, 
while the values are increased to higher than 86, 95, 98, and 99% after mitigating the multipath effects.
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Introduction

In relative positioning using the Global Navigation Satellite 
System (GNSS), precise positioning results with accuracy 
of millimeter to centimeter can be achieved after correctly 
resolving the phase ambiguities. Depending on the iono-
spheric activities, for baselines with lengths up to 10–20 km, 
the atmospheric delays, i.e., the tropospheric delays and the 
ionospheric delays, can be significantly reduced by form-
ing single differencing observations between receivers. 
The phase ambiguities can thus be resolved within short 

convergence time, or even in one epoch only (Tiberius et al. 
2002). For longer baselines, however, the remaining differ-
ential atmospheric delays may strongly hinder successful 
integer ambiguity resolution (IAR).

Forming the ionospheric-free linear combination removes 
the first-order term of the ionospheric delays, which 
accounts for about 99% of the total ionospheric delays 
(Elmas et al. 2011). However, the ionospheric-free linear 
combination has the drawback that it has less flexibility to 
further strengthen the model, e.g., to constrain the tempo-
ral or spatial ionospheric behaviors (Mervart et al. 2013; 
Teunissen and Khodabandeh 2015). Furthermore, as stated 
in Teunissen and Odijk (2003), not all the ionospheric-free 
linear combinations could preserve the integer property of 
the ambiguities. In the GPS triple-frequency case, e.g., only 
a particular subset of the ionospheric-free linear combina-
tions allow the parametrization of integer ambiguities. One 
can therefore alternatively estimate the ionospheric delays 
using uncombined GNSS observations. Processing based on 
uncombined observations keeps all the information in the 
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observation equations and is easy to be extended to any num-
ber of frequencies (Odijk et al. 2016). In the dual-frequency 
case, however, this model is too weak for fast ambiguity res-
olution (Odijk et al. 2014a). Applying ionospheric constraint 
based on a regional ionospheric model during ionospheric 
quiet days, according to Zhang et al. (2017), can accelerate 
the ambiguity resolution from about 18 min to about 5 min 
on average using 30-s dual-frequency GPS observations for 
baselines with an average distance of around 95 km.

With the fast development of various GNSS during the last 
ten years, it is possible to exploit the benefits of the increas-
ing number of frequencies on long-baseline ambiguity resolu-
tion. Diverse studies have been performed based on simulated 
multi-frequency GNSS signals. Jonkman et al. (2000) inves-
tigated the impact of a third GPS frequency on long-baseline 
ambiguity resolution based on the ambiguity resolution suc-
cess rates using the geometry-free model. It was found that 
the third frequency helps to achieve substantial reduction in 
time for reliably fixing the ambiguities. Using simulated 1 Hz 
triple-frequency GPS and Galileo data, according to Zhang 
et al. (2003), it takes about 70 and 35 s on average to cor-
rectly fix the ambiguities for baseline of 50 km in GPS-only 
and Galileo-only triple-frequency cases, respectively, with 
the mean Time-To-Fix-Ambiguities (TTFA) rapidly increas-
ing with the baseline length. Based on a hardware simulation, 
Sauer et al. (2004) have shown a mean TTFA of around 85, 
60, and 50 s using two, three, and four frequencies of simu-
lated Galileo 1 Hz data for a 85 km baseline, respectively, 
with the TTFA increasing with the baseline length. Using 
triple-frequency GPS real/semi-generated observations for 
baselines over 200 km, with an ionosphere-weighted model 
applied, the IAR time was found to be around 20–25 min 
using 30 s data (Ning et al. 2016). Apart from these investiga-
tions, studies were also performed for long-baseline ambigu-
ity resolution using uncombined GNSS observations. Using 
uncombined observations when solving for ambiguities with 
cascade ambiguity resolution (CAS), over 39 s is required to 
resolve the ambiguities on average for baselines longer than 
250 km using simulated Galileo 1 Hz data on four frequen-
cies (Ji et al. 2013). Odijk et al. (2014a) have performed a 
study to predict the success rates of long-baseline GPS and 
Galileo ambiguity resolution using uncombined observations 
with simulated receiver and satellite geometries on three fre-
quencies. Using triple-frequency Galileo-only signals on E1, 
E5a, and E5b, the formal TTFA is found to be around 20 and 
10 min using 30- and 10-s data, respectively. Making use 
of ionospheric modeling such as single layer model (Schaer 
1999) and simulated Galileo signals, the Galileo-only triple-
frequency test case with 5-s data requires about 5 min for 
500 km ground-based single-baseline to resolve ambiguities 
(Nardo et al. 2016). Despite different underlying models and 
sampling rates of the data, the phase ambiguities of medium 
and long baselines are mostly reported to be resolved in less 

than or about 60 epochs on average using simulated Galileo 
signals on three or four frequencies.

The European Galileo system is providing data on five 
frequencies for 15 operational In-Orbit Validation (IOV) 
and Full Operational Capability (FOC) satellites by the end 
of September 2017 (Galileo Constellation 2017). Instead 
of using simulated signals, it is now possible to study and 
compare the long-baseline ambiguity resolution perfor-
mance using real Galileo data on two, three, four, and all 
five frequencies. In this contribution, undifferenced and 
uncombined observations are used with the slant ionospheric 
delays estimated as spatially and temporally unlinked param-
eters, so that the processing does not set conditions for the 
ionospheric activity. The observation model is easy to be 
extended to any number of frequencies. The real Galileo 
observations used in this study are influenced by code and 
phase multipath effects. Making use of Galileo observa-
tions of another day, the procedure to compute the mul-
tipath corrections and to mitigate the multipath effects is 
presented. The ambiguity success rates (SRs) of two long 
baselines consisting of continuously operating reference 
stations (CORS) without and with the multipath mitigation 
are analyzed and compared using different number of fre-
quencies and at different processing times. We remark that 
the approach proposed in this contribution is applicable to 
CORS network ambiguity resolution with known coordi-
nates, where the rover positioning is not performed.

In the subsequent section, we first introduce the strategy 
of the full integer ambiguity resolution using the Least-
Squares Ambiguity Decorrelation Adjustment (LAMBDA) 
method (Teunissen 1993, 1995). After that, the data selec-
tion and the process for multipath mitigation are explained. 
The formal and empirical success rates are then analyzed 
and compared using two, three, four, and five Galileo fre-
quencies. The results are discussed and concluded.

Processing strategy

In this contribution, multi-frequency Galileo-only signals 
are used in the observation model. The undifferenced and 
uncombined observed-minus-computed (O–C) terms of 
the multi-frequency single-system GNSS phase ( Δ�s

r,j
 ) and 

code observations ( Δps
r,j

 ) at the time point ti can be formu-

lated as (Hofmann-Wellenhof et al. 2008; Teunissen and 
Montenbruck 2017)
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where the subscripts r and j represent receiver r and fre-
quency j , respectively, and the superscript s represents satel-
lite s . The zenith tropospheric delay (ZTD) for receiver r 
(after removing the a priori value) and its mapping function 
for receiver r and satellite s are represented by �r and gs

r
 , 

respectively. The receiver and the satellite clocks are denoted 
by dtr and dts , respectively, and the ionospheric delay �s

r
 

between receiver r and satellite s on the reference frequency 
f1 is multiplied with the factor �j = f 2

1
∕f 2

j
 . �r,j and �s

,j
 stand 

for the receiver and satellite phase hardware biases, respec-
tively, and dr,j and ds

,j
 denote those for code observations, 

respectively. The phase ambiguity is represented by as
r,j

 , and 

the corresponding wavelength is denoted by �j . ms
�r,j

 and ms
pr,j

 

in [⋅] represent the phase and the code multipath effects, 
which will be discussed later in the paper. E(⋅) denotes 
expectation operator. The subscript 1 and the superscript 1 
represent the reference station and satellite, respectively.

During the processing, the precise Galileo satellite orbits 
of the Multi-GNSS Experiment (MGEX) (MGEX 2017; 
Montenbruck et al. 2014, 2017) calculated by CNES/CLS/
GRGS and German Research Centre for Geosciences are 
also used as known parameters. As to the receiver phase 
center offsets (PCOs) and phase center variations (PCVs), 
the ones in igs08.atx (Montenbruck et al. 2015) for GPS L1 
are used for Galileo E1 and those for GPS L2 are used for the 
other Galileo frequencies. The a priori ZTDs are computed 
based on the Saastamoinen model (Saastamoinen 1972), 
and the Ifadis mapping function (Ifadis 1986) is used as the 
troposphere mapping function. Since this study concentrates 
on the ambiguity resolution performance of CORS using 
signals on different number of frequencies, the coordinates 
of the stations provided by Geoscience Australia (GA, Geo-
science Australia 2017) are assumed to be known. With the 
strong model with known baselines, we show the ambiguity 
success rates that can be achieved for Galileo long-baseline 

processing without and with multipath mitigation, as well 
as the rate changes with increasing number of frequencies.

In order to solve the rank deficiencies in (1) and (2), a 
set of S-basis parameters are constrained (Teunissen et al. 
2010), so that estimable parameters are formed and a full-
rank design matrix is generated. After reformulation, the 
O–C terms of the phase and the code observations are rep-
resented by

where the double-differenced phase and code multipath m1s
�1r,j

 

and m1s
p1r,j

 in [⋅] remain as unmodeled effects, and the estima-

ble parameters are listed in Table 1 with d̄r≠1, j=1,2(ti) and 
d̄s
,j=1,2

(ti) formulated as

(⋅),IF and (⋅),GF in Table 1 represent the ionospheric-free and 
geometry-free combination of the contents in (⋅) , respec-
tively, and are defined as follows:

Using the Curtin PPP-RTK Network Software, the estima-
ble parameters listed in Table 1 are processed in a Kalman 
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Table 1  Estimable parameters 
and S-basis parameters in 
(3) and (4) with unlinked 
ionospheric delays and 
hardware biases and linked 
ZTDs

Parameter Interpretation
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filter (Odijk et al. 2017; Wang et al. 2017). The temporal 
behavior of the ZTDs is modeled by a random-walk process 
with a spectral density of 0.1 mm∕

√
s , and the ambigui-

ties are assumed to be time-constant. The slant ionospheric 
delays and hardware biases are assumed to be unlinked. The 
double-differenced phase ambiguities ã are first estimated 
as float values in the Kalman filter. Using the LAMBDA 
method (Teunissen 1993, 1995) with the integer least-
squares (ILS) estimator, the real-valued ambiguities ̂̃a are 
transformed and decorrelated, so that the ambiguity search 
ellipsoid is reformed to almost a spheroid, and fast and effi-
cient integer least-squares estimation of the ambiguities can 
thus be enabled:

where ẑ and Qẑẑ represent the transformed float ambigui-
ties and their variance–covariance matrix, respectively. 
Z denotes the transformation matrix that decorrelates the 
ambiguities ̂̃a , and Q ̂̃a ̂̃a represents the variance–covariance 
matrix of the float ambiguities ̂̃a . After the decorrelation 
of the ambiguities, the ILS solutions are searched within a 
hyper-ellipsoidal space with iteratively reduced size (Chang 
et al. 2005; de Jonge and Tiberius 1996; Giorgi et al. 2008; 
Teunissen 1995, 2010).

The formal bootstrapping success rate (BSR), which 
lower bounds the success rate of the ILS estimator, is used 
as a measure for successful ambiguity resolution (Teunis-
sen 1999):

with �(x) denoting the cumulative normal distribution 
function:

where P(žLS = z) and P(žB = z) represent the integer least-
squares success rate (LSR) and the integer BSR of the trans-
formed ambiguities z , respectively. n denotes the number of 
the transformed ambiguities. 𝜎ẑi|I with I = i + 1, ⋯ , n stands 

for the conditional standard deviations of the transformed 
ambiguities ẑ , which are given by the diagonal matrix D 
after an LDLT-decomposition of the matrix Qẑẑ (Teunissen 
1999). exp(⋅) denotes the natural exponential function.
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2𝜎ẑi|I

)
− 1

)

(11)�(x) =

x

∫
−∞

1
√
2�

exp

�
−
u2

2

�
du

Data selection

Two long baselines in West-Australia are used for the pro-
cessing as shown in Fig. 1. Galileo-only observations of 1 Hz 
are processed on two, three, four, and five frequencies. The 
elevation mask is set to be 10°. The length of the baselines, 
the time intervals used for the processing, and the number of 
the continuously tracked Galileo satellites are listed in Table 2. 
Septentrio receivers are used for both baselines. The Galileo 
frequency combinations used for the processing are listed in 
Table 3 with the frequency values given in RINEX (2015). 
The skyplots of the Galileo satellites for the stations FROY 
and PTHL are shown in Fig. 2.
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Fig. 1  West-Australia long baselines for Galileo processing. The 
length of the baselines FROY–KUNU and PTHL–TOMP amount to 
about 416 and 288 km, respectively

Table 2  Details of the baselines used for the Galileo processing

Baseline Baseline 
length 
(km)

Date Time (GPST) No. of 
satellites

FROY–
KUNU

416 April 19, 
2017

18:12:20–
19:29:36

6

May 29, 2017 15:29:57–
16:46:45

6

PTHL–TOMP 288 April 24, 
2017

1:26:23–
3:04:28

6

June 2, 2017 22:44:42–
23:59:59

6
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Multipath mitigation

As shown in (3) and (4), multipath effects are contained in 
the phase and code O–C terms. To show an example of the 
multipath effects, we compute the double-differenced mul-
tipath combination MP1s

1r,j
 (Leick et al. 2015) using the dou-

ble-differenced phase ( Δ�1s
1r,j

 ) and code O–C terms ( Δp1s
1r,j

):

in which the fixed ambiguities ǎ1s
1r,j

 and ǎ1s
1r,i

 at the last epoch 

of the time interval are assumed to be the correctly resolved 
ambiguities, and �1s

1r,j
 represents the double-differenced mul-

tipath combination of the noise. As shown in (12), the mul-
tipath combination on frequency j uses the double-differ-
enced code O–C terms on frequency j and the 
double-differenced phase O–C terms on frequency j and 
another frequency i.

The multipath effects are assumed to repeat when the 
satellite constellation repeats for stationary networks. The 
Galileo IOV and FOC satellites have a repeat cycle of about 
10 days (Zandbergen et al. 2004). According to ESA (2014) 
and ESA (2015), E18 and E14 were launched into incor-
rect orbits and reached their new target orbits in 2014 and 
2015, respectively. These two satellites repeat their ground 
tracks about every 20 days instead of 10 days as for the other 
Galileo satellites. For each baseline and each test day, we 
denote the tested time interval listed in Table 2 as t  with 
the i-th time point denoted as ti . As the repeat times may 
vary within constellation and fluctuate for the same satellite 
(Agnew and Larson 2007), the repeat times were calculated 
for each satellite and each processing time point ti . To cor-
rect multipath of satellite s at the time point ti , we used the 
MGEX precise orbits of the corresponding day and the day 
for multipath correction, i.e., May 9 and May 14, 2017 for 
baselines FROY–KUNU and PTHL–TOMP, respectively, to 
search for the time shift ΔTs

i
 , so that the following distance 

between satellite positions is minimized:

with
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Table 3  Frequency combinations used for the processing

Number of frequencies Signals

2 E1, E5a
3 E1, E5a, E5b
4 E1, E5a, E5, E5b
5 E1, E5a, E5, E5b, E6

90° 60° 30° 0° EastWest
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South
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E11
E12
E14
E24

90° 60° 30° 0° EastWest

North
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E09
E11
E12
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E24

Fig. 2  Skyplots of the Galileo satellites. The top and the bottom pan-
els show the skyplots for the station FROY in the first baseline on 
April 19, 2017 and the station PTHL in the second baseline on April 
24, 2017 during the test time intervals (Table 2)
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in which �s
r
 represents the signal running time from satellite 

s to receiver r , and Xs denotes the 3-dimensional orbit vector 
of satellite s . The search was performed on the basis of 1 s, 
and ΔTs

i
 denotes the searched time shift for satellite s and ti.

Figure 3 (top) shows the multipath combination MP1s
1r,j

 
on E5 for the baseline FROY–KUNU and the satellite pair 
E12 and E11 from 18:12:20 to 19:29:36 on April 19, 2017, 
plotted with the blue line, and at the shifted time points Ts

i
 

on May 9, 2017, plotted with the red line. To obtain the 
terms Δ�1s

1r,i
 and ǎ1s

1r,i
 in (12), the phase O–C terms and fixed 

ambiguities on E1 are also used for computing the multipath 
combination. We see that the multipath combination MP1s

1r,j
 

on April 19 has repeated behaviors on May 9, 2017. After 
forming differences between the blue and the red lines in 
Fig. 3 (top), as illustrated in the bottom panel of the figure, 
the multipath effects are reduced. The remaining systematic 
patterns are supposed to be caused by two reasons. First, by 

computing the double-differenced multipath combination on 
May 9, 2017, the shifted time points Ts≠1

i
 are used for both 

the reference satellite and the satellite s . This means that the 
multipath changes between T1

i
 and Ts

i
 are not considered for 

the reference satellite. Second, the same satellite does not 
fly over exactly the same location after the searched time 
shift. The corresponding distances range from kilometers 
to tens of kilometers.

The multipath effects that are clearly observed in Fig. 3 
may have significant influences on the ambiguity resolu-
tion performance. In the following two subsections, the 
procedure to mitigate multipath effects in the phase and 
code observations is explained in detail. In order to mitigate 
the multipath effects for the test time intervals, the Gali-
leo measurements of the same station pairs, May 9 for the 
baseline FROY–KUNU and May 14, 2017 for the baseline 
PTHL–TOMP, are used with a time shift of about 20 days 
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Fig. 3  (Top) Multipath combination on April 19, 2017 (blue) and at 
the shifted time points on May 9, 2017 (red), and (bottom) their dif-
ferences. O–C terms on frequency E1 and E5 are used to compute the 
multipath combination on E5. The baseline FROY–KUNU and the 
satellites E12 and E11 are used for the plots
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Fig. 4  Deviations of the time shifts for multipath mitigation from 20 
days. The top panel shows the time shifts for E14 that was launched 
into incorrect orbits and recovered, and the bottom panel shows the 
other Galileo satellites for the baseline FROY–KUNU in the tested 
time interval on April 19, 2017 (Table 2)
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minus 80–82 min. As an example, Fig. 4 shows the devia-
tions of the time shifts ΔTs

i
 from 20 days for all the six Gali-

leo satellites and baseline FROY–KUNU in the tested time 
interval for April 19, 2017 (Table 2). We see that ΔTs

i
 does 

not only differ for different satellites, but also changes during 
the tested time interval. Allowing a short initialization phase 
of the filter, the processing on the day used for multipath 
mitigation begins at 60 s earlier than the smallest Ts≠1

i
 and 

ends at the largest Ts≠1

i
 . The entire processing interval on 

the day used for multipath mitigation is denoted as T  . Since 
the multipath corrections are to be computed on double-
difference level at the shifted time point Ts≠1

i
 for satellite 

s ≠ 1 , the shifted time points of the reference satellite T1
i
 are 

thus not considered when defining T .

Residuals on the day used to compute multipath 
corrections

For long baselines, the change of the between-receiver 
atmospheric delays in time hampers the mitigation of the 
multipath effects. Since the estimable tropospheric and iono-
spheric delays are estimated in the observation (3) and (4), 
we may utilize the double-differenced atmospheric estimates 
in T  to reduce the multipath effects in the test time intervals 
t (Table 2).

The processing is first performed using the multipath-
uncorrected observations in T  . The zenith-referenced a pri-
ori standard deviations for multipath-uncorrected Galileo 
observations given in Zaminpardaz and Teunissen (2017) for 
Septentrio receivers are used in this study. The exponential 
elevation weighting function (Euler and Goad 1991) is used 
for the processing:

where �0,j and �s
r,j

(
ti
)
 represent the a priori standard devia-

tion of the observations in the zenith direction on frequency 
j and the elevation-weighted standard deviation of the obser-
vation between receiver r and satellite s at the time point ti 
on frequency j , respectively. es

r
(ti) stands for the elevation 

angle of the observations between receiver r and satellite s 
at the time point ti in degrees. The parameters e0 , a0 , and a1 
are pre-defined as 10°, 1, and 10, respectively, as defined in 
Zaminpardaz and Teunissen (2017). As Odijk et al. (2014b) 
only found small cross-correlations between the E5/E5a/E5b 
signals, we assumed all the cross-correlations in this study 
to be zero.

The observation equations (3) and (4) during T  , i.e., the 
time interval used to compute multipath corrections, can be 
formulated as follows:

(15)�s2

r,j

(
ti
)
= �2

0,j

(
a0 + a1exp

(
−
es
r
(ti)

e0

))2

where y stands for the vector of O–C terms, and a and b 
represent the vector of the estimable ambiguities and 
other estimable parameters in Table 1, respectively. A and 
B denote the corresponding design matrices for a and b , 
respectively. m in [⋅] represents the multipath vector, which 
is not modeled. Considering the fact that no cycle slips are 
detected during T  with the help of the multipath combina-
tion (Leick et al. 2015), the resolved phase ambiguities for 
FAR at the last epoch of T  are taken as reference and used to 
estimate the other estimable parameters. After introducing 
the resolved ambiguities ǎ of the last epoch, the estimates of 
the observations y̌ can be formulated as follows:

where b̌ represents the estimates of the other estimable 
parameters after introducing ǎ.

Due to the robustness of integer ambiguity resolution (Li 
et al. 2014), one may still obtain the correctly fixed ambi-
guities if the double-difference multipath is not too large. 
Assuming that the reference ambiguities at the last epoch 
of the time interval T  are correctly fixed with ǎ = a , we can 
obtain the expectation of the residuals ě based on (16) and 
(17):

Based on (3), (4), and (18), the expectation of the double-
differenced residuals of the phase observations ě1s

𝜙1r,j
 and the 

code observations ě1s
p1r,j

 after introducing the correctly fixed 

ambiguities of the last epoch can be formulated as follows:

with

where 𝜏r and ̌̃𝜄1s
1r

 represent the estimated ZTD for receiver 
r and the double-differenced ionospheric estimates at Ts

i
 , 

respectively, when introducing the fixed ambiguities of the 
last epoch. The double-differences are formed between both 
receivers and between the reference satellite and the satellite 
s ≠ 1 at the time point Ts≠1

i
.

(16)E(y) = Aa + Bb + [m]

(17)y̌ = Aǎ + Bb̌

(18)E(ě) = E(y − y̌) = B ⋅ E
(
b − b̌

)
+ [m]

(19)
E
(
ě1s
𝜙1r,j

)
= g1s

r
E
(
Δ𝜏r

)
− g1s

1
E
(
Δ𝜏1

)
− 𝜇jE

(
Δ̌̃𝜄1s

1r

)
+ [m1s

𝜙1r,j
]

(20)
E
(
ě1s
p1r,j

)
= g1s

r
E
(
Δ𝜏r

)
− g1s

1
E
(
Δ𝜏1

)
+ 𝜇jE

(
Δ̌̃𝜄1s

1r

)
+ [m1s

p1r,j
]

(21)Δ𝜏r = 𝜏r − 𝜏r

(22)Δ̌̃𝜄1s
1r
= �̃�1s

1r
− ̌̃𝜄1s

1r
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Multipath corrections applied to current data

Assuming that the satellite configuration and the design 
matrices A and B in the time interval T  given in (16) repeat 
in the current test time interval t  , the observation equa-
tions of the current test time interval t  can be formulated 
as follows:

where y0 , a0 , b0 , and m0 represent the vector of the O–C 
terms, the estimable ambiguities, the other estimable param-
eters (Table 1), and the multipath during the test time inter-
val t  , respectively. After subtracting the residuals ě in the 
time interval T  from the y0 in the current test time interval t , 
based on (18) and (23), the corrected observation equations 
can be formulated as follows:

with

Under the assumption that the satellite configuration repeats 
in T  and t  , the multipath is assumed to be removed, i.e., 
Δm = 0.

In practice, however, the time shifts ΔTs
i
 of different Gali-

leo satellites are different. In order to correct the multipath 
at the time point ti in the current test time interval, the resid-
uals of different time points Ts

i
 are used for different satel-

lites. As stated in the previous subsection, double-differ-
ences of the residuals are generated between the reference 
satellite and satellite s at the time point Ts≠1

i
 . The corrected 

O–C terms of the phase and the code observations at ti dur-
ing current processing time interval after subtracting the 
double-differenced residuals ě1s

𝜙1r,j
 and ě1s

p1r,j
 at Ts≠1

i
 can be 

reformulated as follows:

(23)E
(
y0
)
= Aa0 + Bb0 + [m0]

(24)E
(
y0 − ě

)
= Aa0 + B

(
b0 − E(b − b̌)

)
+ [Δm]

(25)Δm = m0 − m

(26)

E
(
Δ𝜙s

r,j
(ti) − ě1s

𝜙1r,j
(Ts

i
)
)
= gs

r
̃̃𝜏r + d̃̃tr − d̃̃ts − 𝜇j

̃̃𝜄s
r
+ 𝛿r,j − 𝛿s

,j

+ 𝜆jã
s
r,j
+
[
Δm1s

𝜙1r,j

]

where the estimable parameters and the ZTD mapping func-
tion gs

r
 refer to the time point ti , and the new estimable 

parameters ̃̃𝜏r , d̃̃tr , d̃̃ts , and ̃̃𝜄s
r
 at the time point ti are listed in 

Table 4 with detailed explanation given in “Appendix A.” 
Due to the different time shifts for different Galileo satel-
lites, the multipath effects of the reference satellite cannot 
be completely removed, and the terms g1s

r
E
(
Δ𝜏r

)
 and 

g1s
1
E
(
Δ𝜏1

)
 in (19) and (20) cannot be fully absorbed by the 

new estimable parameters in Table 4. These effects are con-
tained in Δm1s

�1r,j
 and Δm1s

p1r,j
 in (26) and (27) with the evalu-

ation given in “Appendix A.” This means that multipath can 
be mitigated, but residual biases may still be present due to 
the different time shifts of Galileo satellites. As remarked 
before, the satellite does not fly over exactly the same posi-
tion after the searched time shift, i.e., with distances within 
several tens of kilometers. This would also lead to incom-
plete removal of the multipath effects.

Due to the influences of the multipath effects during T  , 
the expectations of Δ𝜏r and Δ̌̃𝜄1s

1r
 in (21) and (22) do not equal 

to zero. Compared to the case without multipath mitigation, 
the new estimable parameters in Table 4 during the current 
processing time interval t  are thus still influenced by the 
multipath effects during T  , which are generally within mil-
limeters at the zenith direction for Galileo phase signals (Cai 
et al. 2016; Zaminpardaz and Teunissen 2017). However, 
since the double-differenced multipath during t  is signifi-
cantly mitigated by subtracting the residuals during T  , the 
ambiguity resolution during t is accelerated. The results will 
be discussed in the next section.

Instead of using the observation equations in (3) and 
(4), the corrected observation (26) and (27) are used for 
the processing in Kalman filter. The variance matrix of the 
corrected observations is approximated to a diagonal matrix 
with the diagonal elements computed using the exponential 
elevation weighting function given in (15). The undiffer-
enced zenith-referenced a priori standard deviations of the 
multipath-corrected Galileo observations reported in Zamin-
pardaz and Teunissen (2017) for Septentrio receivers are 

(27)
E
(
Δps

r,j
(ti) − ě1s

p1r,j
(Ts

i
)
)
= gs

r
̃̃𝜏r + d̃̃tr − d̃̃ts

+ 𝜇j
̃̃𝜄s
r
+ d̃r,j − d̃s

,j
+
[
Δm1s

p1r,j

]

Table 4  New estimable parameters in (26) and (27) at ti during the current processing time interval t  after subtracting double-differenced residu-
als at Ts

i
 . The ionospheric delays and the hardware biases are estimated as unlinked parameters, and the ZTDs are linked in time

Parameter Interpretation

̃̃𝜏r(ti) 𝜏r
(
ti
)
− E

(
Δ𝜏r

(
T2

i

))

d̃̃tr≠1(ti) dt1r
(
ti
)
+ d1r,IF

(
ti
)
+ g1

r

(
T1

i

)
E
(
Δ𝜏r

(
T2

i

))
− g1

1

(
T1

i

)
E
(
Δ𝜏1

(
T2

i

))

d̃̃ts(ti) dts
(
ti
)
+ ds

,IF

(
ti
)
−
(
dt1

(
ti
)
+ d1,IF

(
ti
))

− gs
1

(
Ts
i

)
E
(
Δ𝜏1

(
T2

i

))

̃̃𝜄s
r
(ti) 𝜄s

r

(
ti
)
+ dr,GF

(
ti
)
− ds

,GF

(
ti
)
− E

(
Δ̌̃𝜄1s

1r

(
Ts
i

))
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used in this study. After subtraction of the residuals at Ts
i
 , 

the undifferenced a priori standard deviations are multiplied 
with a factor of 

√
2.

Analysis of the results

Formal and empirical analysis are performed using the data 
from both baselines and all tested time intervals listed in 
Table 2. A time window of 15 min is defined for each round 
of processing and is shifted by 30 s before restarting the next 
round of processing. The empirical results using multipath-
mitigated and -uncorrected observations are compared with 
the formal results in the end of the section.

Formal analysis

Based on the model described before, the mean formal BSR 
at the time point ti , denoted as P̄F

(
ti
)
 , can be calculated using 

both baselines and test intervals in Table 2:

where l , h(q) , and w(q, k) denote the number of baselines, 
the number of test intervals for baseline q and the number 
of time windows for baseline q and test interval k , respec-
tively. Pq,k,p

BSR
 refers to the formal BSR for baseline q and time 

window p in the test interval k.
Figure 5 shows the mean formal BSRs P̄F for different 

frequency combinations using all data sets. The horizontal 
black-dashed lines mark the P̄F of 90 and 99%. From Fig. 5, 
we see that the P̄F increase with the increasing number of 
frequencies. The mean formal BSR P̄F at ti of 5, 10, and 

(28)P̄F

�
ti
�
=

∑l

q=1

∑h(q)

k=1

∑w(q,k)

p=1
P
q,k,p

BSR
(ti)

∑l

q=1

∑h(q)

k=1
w(q, k)

20 s are listed in Table 5 for different frequency combina-
tions. Using three or more frequencies, the P̄F are larger 
than 99.7% after 5 s. After 20 s, all frequency combinations 
deliver P̄F larger than 99.9%. We remark that the formal 
BSRs are computed based on the assumption that the mul-
tipath effects are completely removed from the observations.

Empirical analysis

As stated before, in practice, the multipath effects cannot be 
completely removed. Using both the multipath-mitigated and 
-uncorrected Galileo observations for both baselines and all 
time windows, the mean empirical success rate P̄E can be 
calculated for each time point ti:

where the empirical success rate Pq,k,p

E
(ti) is defined as the 

ratio of the number of the correctly fixed ambiguities Nq,k,p

C
 

to the number of all ambiguities Nq,k,p for baseline q in the 
test window p of the test interval k at the time point ti:

We remark that Nq,k,p

C
 and Nq,k,p in (30) refer to the trans-

formed ambiguities. Here, we use the fixed ambiguities at 
the last epoch of the entire test time interval as reference 
values to calculate the correctly fixed transformed ambigui-
ties at each epoch.

Figure 6 shows the mean empirical success rates (SRs) 
P̄E using both baselines and all time windows in the tested 
time intervals. In the top panel, the multipath effects are 
mitigated as described in the last section. In contrast to the 
multipath-mitigated case, we also compute the P̄E without 
correcting the multipath effects using the zenith-referenced 
a priori standard deviations of the multipath-uncorrected 
observations given in Zaminpardaz and Teunissen (2017) 
for Septentrio receivers.

From Fig. 6, we see that the multipath mitigation has 
increased the mean empirical SRs compared to the case 

(29)P̄E

�
ti
�
=
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q=1

∑h(q)

k=1

∑w(q,k)

p=1
P
q,k,p

E
(ti)
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q=1

∑h(q)

k=1
w(q, k)

(30)P
q,k,p

E

(
ti
)
=

N
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C

(
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)
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(
ti
)
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Fig. 5  Mean formal bootstrapping success rates (BSRs) P̄F given in 
(28). 1 Hz data for both baselines and all time windows in the tested 
time intervals (Table 2) are used for the plot

Table 5  Mean formal bootstrapping success rates (BSRs) P̄F in per-
cent given in (28) at 5, 10, and 20 s of the processing

Frequencies 5 s 10 s 20 s

E1 + E5a 97.20 99.64 99.97
E1 + E5a + E5b 99.76 99.99 > 99.99
E1 + E5a + E5 + E5b > 99.99 > 99.99 > 99.99
E1 + E5a + E5 + E5b + E6 > 99.99 > 99.99 > 99.99
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using multipath-uncorrected observations. In both cases, a 
higher number of frequencies is helpful to increase the SRs 
of ambiguity fixing. The mean empirical SRs P̄E at 5, 10, 
20 s, 1, and 2 min are listed in Table 6 using multipath-miti-
gated and -uncorrected observations, respectively. After the 
multipath mitigation, the P̄E is higher than 95, 98, and 99% 
at 10 s using three, four, and five frequencies, respectively, 
while the values remain at around 88, 91, and 95% using 
multipath-uncorrected observations, respectively.

Comparing the mean formal BSRs in the last subsection 
and the mean empirical SRs using multipath-mitigated and 
-uncorrected observations, we observe that the differences 
after the multipath mitigation are reduced. Table 7 lists the 
differences between the mean formal BSRs and the mean 
empirical SRs with and without multipath mitigation. At 
ti of 10 s, the differences in mean SRs amount to around 
12, 9, and 5% using multipath-uncorrected observations on 

three, four, and five frequencies, respectively, while they are 
reduced to below 5, 2, and 1% using multipath-mitigated 
observations.

Conclusions

For long-baseline ambiguity resolution, the ionospheric 
delays that cannot be removed by generating between-station 
differences hampers rapid ambiguity resolution. The first-
order terms of the ionospheric delays can either be elimi-
nated by forming linear combinations using multi-frequency 
data, or estimated as float values using uncombined phase 
and code observations. The latter strategy has the advantage 
that it keeps all information in the observation equations and 
is easy to be expanded to any number of frequencies. The 
dual-frequency case is, however, found to be too weak to use 
such a model. With the increasing number of the frequencies 
in current GNSS, it is now possible to exploit the benefits of 
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Fig. 6  Mean empirical success rates (SRs) P̄E given in (28). The mul-
tipath-mitigated and -uncorrected observations are used for the plots 
in the top and bottom panels. 1 Hz data of both baselines and all time 
windows in the tested time intervals (Table 2) are used for the pro-
cessing

Table 6  Mean empirical success rates (SRs) P̄E in percent given in 
(28) at 5, 10, 20  s, 1, and 2 min of the processing using multipath-
mitigated and multipath-uncorrected observations

Frequencies 5 s 10 s 20 s 1 min 2 min

Multipath-mitigated
 E1 + E5a 84.34 86.26 88.38 91.84 95.51
 E1 + E5a + E5b 92.19 95.32 96.00 97.28 98.09
 E1 + E5a + E5 + E5b 97.31 98.31 98.52 99.03 99.45
 E1 + E5a + E5 + E5b + E6 98.43 99.23 99.37 99.66 99.82

Multipath-uncorrected
 E1 + E5a 72.07 72.51 74.90 79.37 83.78
 E1 + E5a + E5b 87.09 87.66 88.16 89.63 90.79
 E1 + E5a + E5 + E5b 90.47 91.11 91.55 92.50 93.32
 E1 + E5a + E5 + E5b + E6 94.56 94.99 95.05 95.24 95.58

Table 7  Differences between the mean formal and empirical success 
rates (SRs) in percent using multipath-mitigated and multipath-uncor-
rected observations

Frequencies 5 s 10 s 20 s 1 min 2 min

Multipath-mitigated
 E1 + E5a 12.86 13.39 11.59 8.16 4.49
 E1 + E5a + E5b 7.57 4.67 4.00 2.72 1.91
 E1 + E5a + E5 + E5b 2.69 1.69 1.48 0.97 0.55
 E1 + E5a + E5 + E5b + E6 1.57 0.77 0.63 0.34 0.18

Multipath-uncorrected
 E1 + E5a 25.14 27.13 25.07 20.63 16.22
 E1 + E5a + E5b 12.67 12.33 11.84 10.37 9.21
 E1 + E5a + E5 + E5b 9.52 8.89 8.45 7.50 6.68
 E1 + E5a + E5 + E5b + E6 5.44 5.01 4.95 4.76 4.42
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real multi-frequency data in long-baseline ambiguity resolu-
tion using uncombined phase and code observations.

The current Galileo system is providing signals on five 
frequencies on 15 operational IOV and FOC satellites by the 
end of September 2017. In this study, real Galileo data on 
all five frequencies for two baselines of several hundreds of 
kilometers in Australia are used for the processing. Using 
both multipath-mitigated and -uncorrected phase and the 
code observations, we studied the formal and the empiri-
cal ambiguity success rates for long baselines with different 
frequency combinations. We observed that the multipath 
mitigation procedure is important for improving the empir-
ical ambiguity success rates compared to the cases using 
multipath-uncorrected observations. A higher number of 
frequencies are also found to be essential for achieving high 
success rates within short time. Using 1 Hz data after mul-
tipath mitigation, the mean empirical success rates are found 
to be above 95, 98, and 99% after 10 s using three, four, and 
five frequencies, respectively.
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Appendix A: Unmodeled effects

Based on (19) and (20), the expectation of the double-differenced 
phase and code residuals at Ts≠1

i
 can be formulated as follows:

with
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ě1s
p1r,j

(Ts
i
)
)
= E

(
D1s

1r
(Ts

i
)
)
+ 𝜇jE

(
Δ̌̃𝜄1s

1r

(
Ts
i

))
+
[
m1s

p1r,j

(
Ts
i

)]

(33)

D1s
1r

(
Ts
i

)
= g1s

r

(
Ts
i

)
Δ𝜏r

(
Ts
i

)
− g1s

1

(
Ts
i

)
Δ𝜏1

(
Ts
i

)

=
(
gs
r

(
Ts
i

)
Δ𝜏r

(
Ts
i

)
− g1

r

(
Ts
i

)
Δ𝜏r

(
Ts
i

))

−
(
gs
1

(
Ts
i

)
Δ𝜏1

(
Ts
i

)
− g1

1

(
Ts
i

)
Δ𝜏1

(
Ts
i

))

In order to let the term D1s
1r

(
Ts
i

)
 possibly be absorbed by the 

estimable parameters during t  , the ZTD mapping function 
g1
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(
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)
 and g1

1
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 , and 
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 and Δ𝜏1

(
Ts
i

)
 (with s ≠ 1 ) are replaced by 

Δ𝜏r
(
T2
i

)
 and Δ𝜏1

(
T2
i

)
 , which refer to the same time point T2

i
 

for all satellites pairs:

where the first, third, sixth, and eighth parameters are 
summarized by the term D01s

1r

(
Ts
i

)
 . The second, fifth, sev-

enth, and tenth parameters are included in the bias term 
ΔG

s≠1,2

r≠1
(T

s≠1,2

i
) , and the fourth and ninth parameters are 

contained in the bias term ΔHs≠1

r≠1
(T

s≠1

i
):

The formulation (⋅)(Tps

i
) in (34), (35), and (36) represents:

After subtracting the expected double-differenced residuals 
at Ts≠1

i
 from the expected O–C terms of the phase and the 

code observations at ti , as performed in (26) and (27), the 
expectations of the parameters included in D01s

1r

(
Ts
i

)
 (34) and 

the parameter Δ̌̃𝜄1s
1r

(
Ts
i

)
 in (31) and (32) are absorbed by the 

new estimable parameters in Table 4. The terms Δm1s
�1r,j

 and 

Δm1s
p1r,j

 in (26) and (27) are thus formulated as follows:

We assume that the multipath effects of receiver r and satel-
lite s at ti repeat at Ts

i
 , the multipath differences in (38) and 

(39) can then be reformulated as follows:

(34)

D1s
1r

(
Ts
i

)
=
(
gs
r

(
Ts
i

)
Δ𝜏r

(
T2

i

)
+ gs

r

(
Ts
i

)
Δ𝜏r

(
T2s
i

))

−
(
g1
r

(
T1

i

)
Δ𝜏r

(
T2

i

)
+ g1

r

(
T1s
i

)
Δ𝜏r

(
T2

i

)

+g1
r

(
Ts
i

)
Δ𝜏r

(
T2s
i

))

−
(
gs
1

(
Ts
i

)
Δ𝜏1

(
T2

i

)
+ gs

1

(
Ts
i

)
Δ𝜏1

(
T2s
i

))

+
(
g1
1

(
T1

i

)
Δ𝜏1

(
T2

i

)
+g1

1

(
T1s
i

)
Δ𝜏1

(
T2

i

)

+g1
1

(
Ts
i

)
Δ𝜏1

(
T2s
i

))

= D01s
1r

(
Ts
i

)
− ΔH

s≠1

r≠1
(T

s≠1

i
) − ΔG

s≠1,2

r≠1
(T

s≠1,2

i
)

(35)
ΔG

s≠1,2

r≠1

(
T
s≠1,2

i

)
= g1s

1

(
Ts
i

)
Δ𝜏1

(
T2s
i

)
− g1s

r

(
Ts
i

)
Δ𝜏r

(
T2s
i

)

(36)ΔH
s≠1

r≠1
(T

s≠1

i
) = g1

r

(
T1s
i

)
Δ𝜏r

(
T2
i

)
− g1

1

(
T1s
i

)
Δ𝜏1

(
T2
i

)

(37)(⋅)
(
T
ps

i

)
= (⋅)

(
Ts
i

)
− (⋅)(T

p

i
)

(38)

Δm1s
�1r,j

(
ti
)
= E

(
ΔG

s≠1,2

r≠1

(
T
s≠1,2

i

))
+ E

(
ΔH

s≠1

r≠1

(
T
s≠1

i

))

+ m1s
�1r,j

(
ti
)
− m1s

�1r,j
(Ts

i
)

(39)

Δm1s
p1r,j

(
ti
)
= E

(
ΔG

s≠1,2

r≠1

(
T
s≠1,2

i

))
+ E

(
ΔH

s≠1

r≠1

(
T
s≠1

i

))

+ m1s
p1r,j

(
ti
)
− m1s

p1r,j
(Ts

i
)

ftp://cddis.gsfc.nasa.gov/gnss/products/mgex/
ftp://cddis.gsfc.nasa.gov/gnss/products/mgex/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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As a result, the terms Δm1s
�1r,j

 and Δm1s
p1r,j

 in (38) and (39) can 

be formulated as follows:

As mentioned in the section of multipath mitigation, the 
expectation of Δ𝜏r during T  is not zero due to the multipath 
influences. This leads to non-zero expectations of 
ΔG

s≠1,2

r≠1

(
T
s≠1,2

i

)
 and ΔHs≠1

r≠1

(
T
s≠1

i

)
 . In this study, the abso-

lute differences between T1
i
 and Ts≠1

i
 and between T2

i
 and Ts≠2

i
 

are within 83 s. The resulted g1
r

(
T1s
i

)
 in (36) generally ranges 

to the level of 0.001, and the term E
(
ΔH

s≠1

r≠1

(
T
s≠1

i

))
 is 

assumed to be ignorable. Since strong temporal link is 
applied to the ZTDs, the change of E(Δ𝜏r) within T2s

i
 is also 

assumed to be small, so that E
(
ΔG

s≠1,2

r≠1

(
T
s≠1,2

i

))
 is also 

ignored. In this study, the satellite with the highest elevation 
angle at the first epoch of the processing is selected as the 
reference satellite, i.e., G12 for the baseline FROY–KUNU 
and G18 for the baseline PTHL–TOMP, respectively. Since 
the reference satellite with the highest elevation angle is 
assumed to be less influenced by the multipath effects, the 
multipath changes of m1

�1r,j
 and m1

p1r,j
 within the time interval 

T1s
i

 are ignored.
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