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Abstract 

This paper estimates a translog cost function for the Australian coal industry from 

1968/69 to 2004/05. We use a variable measuring the shift to open-pit mining to 

capture the impact of embodied technical change, while using a time trend to capture 

the impact of other technical change and changing resource rents. The cost function is 

estimated with Zellner's SUR procedure. The shift to open-cut mining is shown to be 

important in lowering cost during the 1970s and 1980s, but more recently cost 

reduction is captured by the time trend. 
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I. Introduction  
 
 Australia is currently the largest global exporter of black (hard) coal and has been 

since 1986 when its exports surpassed those of the United States. Black coal is also 

Australia’s largest export industry and accounted for around 10% in value of exports in 

2005 (ABS Cat 5368.0). The prominence of the industry is due to Australia’s many 

natural advantages, including its abundant supplies of easily accessible good quality coal 

located relatively close to established rail and port facilities. 

 Australia’s natural advantages mean that at least some producers can earn 

substantial resource rents. Hotelling’s (1931) seminal contribution to the analysis of non-

renewable resource production demonstrates that such resource rents can be expected to 

increase over time for a homogenous resource. If there is heterogeneity of deposits an 

optimal movement from the exploitation of superior to inferior reserves over time. This 

implies that unit production costs (including resource rent) can be expected to rise over 

time unless there are new discoveries or improvements in the technology of coal mining. 

In this paper we use estimation of a translog cost function for the Australian coal mining 

industry to examine the effects of resource rents and technical progress on the cost of 

production in Australian coal mining over the period 1968/69 to 2004/05. 

 There have been a variety of methods used to model coal supply. Being a resource 

industry predominantly managed by engineers, attempts to understand cost relationships 

have typically been couched in terms of physical variables such as coal seam conditions 

and thickness (Zimmerman, 1977; Lev and Murphy, 1983; Gordon, 1983; Steenblik, 

1992). Although they are often used to assess the impact of a variety of government 

policies, these engineering-based models do not provide an understanding of the 

fundamental economic relationships. Similarly, logistic functions and surveys have been 

used to forecast capacity and future production based on current technology and practices, 
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again without recognising the underlying production processes (Hotard, Liu and Ristroph, 

1983; ABARE, 1997). 

Production and cost functions provide greater clarity in understanding the 

relationships between inputs and their impact on output as well as providing a basis for 

assessing technical change. In seminal studies, Rhodes (1945) and Lomax (1950) model 

coal mining in Great Britain using a Cobb-Douglas production function. Chakravarty and 

Hojman (1982) use a non-homogenous production function, allowing variable elasticities 

and variable returns to scale, to assess productivity improvements. They find significant 

returns to scale and variable elasticities of substitution over the 16-year period examined. 

More recently, Ellerman, et. al. (2001) find evidence of long-term increasing labor 

productivity in US coal mines, except during a period of rapidly rising output in the mid 

1970s when high prices encouraged exploitation of more marginal coal reserves. 

Donnelly and Dragun (1984) model the Australian coal industry with a 

homogenous, constant returns to scale, translog cost function. Their interest is in assessing 

differences in elasticities of substitution between production processes. However, their 

findings are limited by a small data set and the failure of the estimates to satisfy the 

required regularity conditions of a proper cost function. We follow Donnelly and Dragun 

in using a translog cost function to model the Australian coal industry over the 37 years, 

1968/69 through 2004/05. Unfortunately, changes in data collection make it impossible to 

separate coal-mining processes, so our estimates are for the aggregate coal industry.  

Standard practice in production or cost function estimation is to use a time trend as 

a proxy for technical change. While this may provide a reasonable approximation in the 

case of manufacturing or renewable resource industries, there is a substantial difficulty in 

the case of a non-renewable resource, such as coal, due to the cost-increasing effects of 

rising scarcity rents or resource exhaustion. A further complication is that new discoveries 

may offset the impact of resource exhaustion by providing new low-cost mining 
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opportunities. As a result, the coefficient of a time trend conflates the influence of 

changing resource rents or resource exhaustion with the opposing effects of new 

discoveries and technical change. 

We separate the effect of at least that portion of technical progress embodied in the 

switch to open-cut mining by including a variable measuring the relative importance of 

open-pit mines as a proxy for embodied technical progress. This allows the time trend to 

capture the residual influence of rising resource rents (or resource exhaustion) and 

disembodied technical change. The shift in Australian coal mining from a primarily 

underground mining industry to a substantially open-cut mining industry over the sample 

period reflects technical advance, in that input requirements for open-pit mining have been 

lower for the most accessible deposits. The transition has occurred gradually due to the 

fixed capital committed to underground mining prior to the development of modern open-

pit mining methods. The ratio of open-cut production to underground production is 

illustrated in Figure 1, where the production ratio is converted to an index equal to 1.0 in 

1968.  

We use the rise in the ratio of open-pit mine output to underground mine output as 

a measure of embodied technical progress. We allow for the possibility that this technical 

progress is biased, particularly toward saving labor, by including in the cost function 

variables that multiply each input price by the technology proxy. The same treatment is 

extended to the time trend to allow for the possibility that the impact of either 

disembodied technical change or resource exhaustion is biased. 
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Figure 1 - Technological Proxy
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The translog cost function model used for our estimates is described in Section 2. 

The variables and data sources used in estimation are described in Section 3. Empirical 

results are reviewed in Section 4, which also includes tests of various restrictions on the 

translog form to determine whether coal mining can be better described with a less 

flexible functional form. We conclude with our observations on the interplay of technical 

change and resource rents in influencing production costs in Australian coal mining. 

 

II. The Model  

Australian coal mining is modeled using a translog cost function.1 In comparison to other 

specifications, such as the Cobb-Douglas and CES functional forms, a feature of the 

translog functional form is that input substitution elasticities can change over the range of 

values of the independent variables. We also allow technical change and resource 

                                                 
1 We utilise a cost function rather than a production function, as it is more likely that the input prices faced 
by the industry, rather than input quantities, are exogenous under the assumption of perfectly competitive 
markets. 
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exhaustion to alter input elasticity for each input in that the cost function is not restricted 

to be homothetic in either the technology proxy or the time trend. Finally we impose 

constant returns to scale and estimate a unit cost function to remove output quantity from 

the right-hand-side of the function. 2  

 A generalised translog unit cost function with the technology proxy, a time trend 

and prices for three inputs, the rental price of capital, (R) labor, (L) and materials (M), is:  
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where i, j = R, L and M; t = time; tp = technical proxy; q = output and jiij α=α , itti αα = , 

itptpi αα = , iqqi αα = , tqqt αα = , tpqqtp αα =  and ttptpt αα = . The technology proxy is defined 

as the ratio of open-cut mines to underground mines. As is typical in cost function 

analyses, the function is restricted to be homogeneous of degree one in prices, so that: 3 
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Using Shephard’s Lemma (Shephard, 1953), we derive share equations for each 

input by taking the first derivative of equation (1) with respect to each of the input prices 

as follows: 

                                                 
2 In a competitive industry individual firms maximise profits in long-run equilibrium by operating at a point 
of local constant returns to scale. However, there may be external effects of firm expansion on other firms, 
leading to non-constant returns to scale at the industry level. Also, the cost function is estimated with a 
disturbance term, implying disequilibrium at some level. Experimentation with cost functions that allow for 
non-constant returns by including output variables does show some evidence of non-constant returns, but 
multicolinearity with time and the technical progress variables makes interpretation of the coefficients 
problematic. Results including quantity variables are available from the authors. 
3 This implies that if all prices double, total cost will also double. 
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These input share equations, when estimated simultaneously with the cost function, 

increase the degrees of freedom and the efficiency of the estimates.  By construction, the 

share equations sum up to one. Therefore, to prevent singularity in the covariance matrix 

when estimating the system, one of the share equations must be dropped. As discussed in 

Berndt (1991) the parameter estimates, log-likelihood values and estimated standard errors 

are invariant to which equation is dropped when the system is estimated by maximum 

likelihood methods. 

 Investigating productivity and technological progress within a cost function 

framework is based on duality theory.4 Duality theory (Shephard, 1953 and then Uzawa, 

1962) says that a well behaved cost function satisfying the following conditions: non-

negative; linearly homogeneous in input prices; non-decreasing in output and input prices; 

concave in input prices and; continuous in output and input prices can be used to derive 

the technology exhibited by a well behaved production function. In other words, it is 

possible to use a cost function to identify the economically meaningful features of the 

underlying production technology. A further condition, that the cost function is 

differentiable, allows the application of Shephard’s Lemma and the derivation of share 

equations. 

 Compliance with the regularity condition that the cost function be linearly 

homogenous in input prices is imposed prior to estimation. The regularity condition that 

the cost function is concave in input prices requires that the n x n matrix of second-order 

                                                 
4 A comprehensive description of the theory can be found in Chambers (1988). 



 7 

derivatives from the unit cost function ( )ji ppUC ln∂ln∂ln∂2  is negative semi-definite at 

each observation. The flexibility of the translog form means that concavity is not 

arbitrarily imposed but is explicitly tested.  

 Substitution elasticities describe the shape of the production isoquants, so that 

shallow curve isoquants have large substitution effects and sharply curved isoquants have 

small substitution effects. In the two-variable case, Hicks (1963) defines the direct 

elasticity of substitution between two inputs i and j, D
ijσ , as the percentage change in the 

input ratio following a percentage change in the marginal rate of technical substitution, 

where two inputs are substitutes in production if D
ijσ >0 and complements in production if 

D
ijσ <0.  Allen (1938) uses a measure for the n-input case by allowing for cross affects 

between inputs, A
ijσ , which is interpreted in the same way as the Hicks elasticity and is 

equal to the Hicks elasticity when there are only two inputs. The Allen partial elasticity of 

substitution shows how input demands change in response to a change in input prices. It 

can also be shown that the Allen partial elasticity of substitution can be rewritten as D
ijσ  = 

εij/Sj where εij is the elasticity of derived demand and Sj is the cost share of input j. 

 Uzawa (1962) shows that the Allen partial elasticities of substitution for a general 

dual cost function can be calculated as: 
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where Ci,, Cj and Cij are the first and second partial derivatives respectively of the cost 

function or unit cost function with respect to input prices Pi and Pj. For the translog cost 

function, the Allen partial elasticities of substitution are (see Berndt 1991): 
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where Si and Sj are the cost shares of inputs i and j, respectively. Berndt (1991) suggests 

that in deriving the elasticities fitted shares should be used and that these should be 

evaluated at the midpoint of the dataset. 

 Within a cost framework, technical progress is described by a decrease in costs 

holding all input prices and output constant (also known as cost diminution).  This concept 

of technical change includes the effect of improvements embodied in new mining 

techniques. The shift from underground to open-cut operations in Australian coal mining 

reflects a perception that saving labor is cost effective in an environment of steadily rising 

wage rates. Open-cut mining has had higher labor productivity than underground mining, 

although the capital embodied in site development is often huge. In this study we use the 

ratio of output from open-cut coal mines to that from underground mines as a proxy for 

technical change embodied in the move from underground to open-cut mining.   

 We use estimates of the unit cost function in (1) to calculate the rate of cost change 

associated with the shift from underground to open-cut operations by taking the first 

derivative with respect to the natural log of technical proxy (tp): 

 

∑ lnln
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ln∂
i
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A cost function characterised by tpθ < 0 indicates cost savings from the shift to open-cut 

operations, tpθ = 0 indicates no cost savings and cost increases occur when tpθ > 0.  The 

impact of the technological proxy is Hicks-neutral when 0=itpα  for all i, reflecting a 

parallel shift of the isoquants.  

We also calculate a residual rate of cost change, which we attribute to changing 

resource rents or resource exhaustion combined with residual technical change not tied to 
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the shift of mining from underground to open cut, by taking the first derivative of the unit 

cost function with respect to time: 

 

 ln
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ln∂ ∑
i
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A value of tθ < 0 indicates cost reduction over time, implying that the impact of residual 

technical progress or discovery exceeds the impact of rising resource rents or resource 

exhaustion. A value of tθ > 0 indicates cost increase over time, implying that the impact of 

rising rents or exhaustion exceeds that of residual technical progress or discovery. 

Suitable cost data covering the total cost of all inputs, especially capital input, used 

in the coal industry are not available. However, under long-run competitive equilibrium 

price is equal to cost. To this end, we specify that the long-run equilibrium price of coal, 

ln *
,tcoalP , is equal to the natural log of unit cost, which implies, 

 

t, Cln=*ln UP tcoal  (7) 

 

and that the logarithm of the actual price of coal, tcoalP ,ln , partially adjusts to differences 

between the actual price and long-run equilibrium price. Thus, 

 

ttcoaltcoaltcoaltcoal PPP ελ += )lnP-*(lnln-ln 1-,,1-,,  (8) 

 

 Coal and oil are substitute energy fuels, so that shocks to the price of oil will 

impact on the disturbance term in (8) such that: 
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toiltoilt PP υβε += )ln-(ln *
,  (9) 

 

where tυ  is a well-behaved error term. Combining equations (7), (8) and (9) defines the 

estimating equation as: 

 

toiltoiltcoalttcoal PPUCP εβλλ +++= )ln-(lnPln)-1()(lnln *
,1-,,  (10) 

 

 In equation (10) the rate of adjustment of coal prices to unit cost is measured by λ, 

whilst the sensitivity of coal prices to oil prices is captured by β. This equation is 

estimated along with the system of equations defined at (2). The parameter estimates are 

then used to calculate the rate of cost change with respect to the ratio of open-cut to 

underground mining and with respect to time, given by equations (5) and (6), respectively. 

 

III. Data  

This study uses Australian annual coal data on all coal types (black and brown) for the 37 

year period, 1968-69 to 2004-05. Price indices for labor and materials (PL, PM) are taken 

from various issues of ABS Catalogue 8415.0, Mining Operations. The rental price of 

capital, PR, is defined as, PR = (1/m + i)Pk . Where m is the average age of the gross capital 

stock, i is the 10-year bond rate (opportunity cost) and Pk is the price of new capital. These 

data are taken from ABS Catalogue 5204, Capital Stock by Industry and various RBA 

Bulletins. Coal prices are derived from revenue data, which is found in ABS Catalogue 

8415.0, Mining Operations. Labor and materials shares are calculated from data given in 

various issues of ABS Catalogue 8415.0, Mining Operations, and 8221.0, Manufacturing 

Industry, Australia and tables from the Electricity Suppliers Association 

(www.esaa.com.au).  
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 The technology index is defined as the ratio of output from open-cut mines to 

output from underground mines. Data to construct the technology index are taken from 

Coal Services Pty Ltd, Australian Black Coal Statistics, 2002. Finally, the index for crude 

oil prices in Australian dollars is derived from crude oil prices reported by the Department 

of Energy, http://www.eia.doe.gov and the OECD, Main Economic Indicators. 

 

IV. Results  

We estimate 3 different models to calculate rates of cost diminution: 

A. The simplest model assumes that prices are in perfectly competitive long-run 

equilibrium aside from a random disturbance term, so that there is no distinction 

between unit cost and prices. We estimate equation (11) along with the set of 

equations specified at (2). 

 

 UCP tttcoal ε+ln=ln ,   (11) 

 

B. The second model has the divergence between the unit cost of coal and the price of 

coal related to oil price shocks, modifying (11) with toiltoilt P-P υ+)ln(lnβ=ε *
, , 

where tυ  is a well-behaved error term and *ln oilP  is the long-run average oil price 

over the sample period. This yields 

 

 P-PUCP oiltoilttcoal υ+)ln(lnβ+ln=ln *
,,  (12) 

 

We then estimate equation (12) along with the set of equations specified at (2), 

assuming that the share equations are not altered by oil price shocks. 
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C. The final model we estimate incorporates oil price shocks as in (12), while 

allowing coal prices to only partially adjust to deviations from the long-run coal 

price. We then estimate the equation given by (10) along with the set of share 

equations described in (2). 

 

 In each model we impose the restrictions implied by assuming the cost function is 

homogenous of degree one in input prices and exhibiting constant returns to scale. A 

stochastic framework is specified where additive error terms are appended to each of the 

factor share equations to reflect unexplained factors that impact on cost shares (such as 

measurement error by the data collectors and/or the possibility that firms make random 

errors in choosing their cost-minimising input bundles). Ordinary Least Squares (OLS) 

could be used to estimate the coal price equation and each factor share equation 

separately. However, this ignores the additional information available from imposing 

cross-equation restrictions. Equation by equation estimation by OLS also ignores the 

additional information available when error terms are correlated across observations. This 

is likely to be the case when share equations are dependent on the same industry 

conditions. To take into account these factors, Seemingly Unrelated Regression (SUR) 

estimation is used to jointly estimate the systems of equations described by Models (A), 

(B) and (C). (Zellner, 1962).5  

 By construction, the share equations add up to one and therefore one of the share 

equations is a linear function of the others. To prevent singularity in the residuals, we drop 

the capital share equation. Joint estimation is then based on the factor share equations for 

labor and materials along with the coal price equation. We assume that the error terms are 

                                                 
5 As discussed in Barten (1969) the parameter estimates are invariant to which share equation is dropped, as 
long as the estimates are indeed maximum likelihood estimates (or, equivalently, iterative generalised 
feasible least squares estimation is used). 
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normally distributed, that they have a constant variance over time, and that there is 

contemporaneous correlation between equations (but impose zero covariance over time).  

 When the system of equations is estimated, we are unable to reject the hypothesis 

of autocorrelation for the coal price equation or for the share equations in any of the 

models. The system is therefore re-estimated, taking into account of various levels of auto-

correlation. This leads to the results for the three models given in Table 1. The results for 

Models A and B are based on a second-order auto-correlation adjustment, while the results 

for Model C are based on a first-order adjustment.6 

 Models A, B and C differ in terms of assumptions regarding the relationship 

between the coal price and the unit cost of producing coal. In Model A, any difference 

between price and unit cost is assumed to be randomly distributed, while in Model B the 

difference is related to the deviation of the price of crude oil from its long-run trend. In 

Model C the assumption from Model B regarding oil price is retained and it is further 

assumed that the price of coal only partially adjusts to disturbances in each year. The 

estimates in Table 1 show that the coefficient of the oil price deviation is not statistically 

significant in Model B. However in Model C, this coefficient is significant and of the 

expected positive sign, suggesting that each one percent deviation of the oil price from 

trend leads to about an eighth of a percent change in the coal price in the same direction. 

Further in Model C, the coefficient of the lagged coal price is statistically significant and 

between zero and one as expected, suggesting that approximately one half of the any 

difference between the price and unit cost of coal is made up in the following year. 

 

                                                 
6 Choice of the order of auto-correlation is based on testing for a significant improvement in the log-
likelihood ratio. Full results are available from the authors. 
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Table 1 - Results for Models A, B and C 

Variable Estimated coefficient 

 Model A Model B Model C 

Constant 0.1026   [0.88] 0.2308   [1.25] 0.9699   [4.99] 

Capital Price 0.5141 [13.91] 0.5111 [14.09] 0.5029 [14.92] 

Labor Price  0.2804 [16.87] 0.2818 [16.43] 0.2861 [17.72] 

Tech Proxy 0.0148   [0.04] -0.0565   [0.13] 0.5331   [0.85] 

Time 0.0386   [2.01] 0.0290   [1.37] -0.0634   [1.71] 

Labor*Capital -0.0284   [1.02] -0.0331   [1.22] -0.0229   [0.97] 

Labor*Materials -0.0275   [1.19] -0.0295   [1.31] -0.0434   [2.12] 

Capital*Materials -0.0373   [1.02] -0.0379   [1.07] -0.0241   [0.71] 

(Tech Proxy)2 -3.7584   [3.09] -3.9619   [3.57] -7.9365   [3.86] 

(Time)2 -0.0090   [4.33] -0.0094   [4.66] -0.0147   [4.50] 

Tech Proxy*Time 0.1657   [3.40] 0.1797   [3.82] 0.3600   [4.37] 

Labor*Tech Proxy 0.0013   [0.04] 0.0029   [0.09] -0.0315   [1.14] 

Materials*Tech Proxy -0.0331   [0.97] -0.0358   [1.10] -0.0635   [2.10] 

Labor*Time -0.0058   [3.05] -0.0061   [3.32] -0.0050   [2.90] 

Materials*Time -0.0002   [0.09] -0.0000   [0.02] 0.0015   [0.92] 

Oil Price  0.0515   [0.91] 0.1258   [3.74] 

Lambda   0.4705   [4.99]  

Auto-correlation order AR2 AR2 AR1 

Log-likelihood ratio 258.75 259.15 256.53 

Notes: Figures in brackets are t-ratios 

 

Models A, B and C yield broadly similar results in terms of the impact of input 

prices on the coal price. The coefficients of the capital and labor prices are positive and 

statistically significant at slightly more than .5 for capital and slightly less than .3 for 

labor. The sum of the coefficients for all inputs is restricted to equal one to guarantee that 

the conditions for linear homogeneity with respect to input prices are satisfied, so the 

implied coefficient for the omitted materials input is about .2. At the start of the sample 

period each coefficient is approximately equal to the elasticity of cost with respect to the 
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respective input price.7 These elasticities change over the sample period, especially the 

impact of labor, due to the negative and statistically significant coefficient on the 

interaction between the labor price and the time trend. Materials price has no clear 

interaction with time, but the cost elasticity with respect to materials price falls in each 

model with the shift to open-cut mining. The sum of coefficients of the interaction of time 

with each of the inputs prices is restricted to equal zero to satisfy the requirements of 

linear homogeneity in input prices. Likewise, the interaction of input prices with the 

technology proxy sums to zero. Thus, by implication, the elasticity of cost with respect to 

capital price is rising both directly with time and with the general shift over time to open-

cut mining.8  

Fundamental requirements of a well-behaved cost function include monotonicity 

(so that an increase in input prices does not decrease cost) and concavity in input prices. 

For a cost function to be monotonic, the first derivative of cost with respect to input prices 

must be positive. Even with the changes in the implied values of these derivatives over the 

sample period, each derivative is positive in every year of the sample for each of the 

models with results reported in Table 1. As discussed in Berndt (1991), concavity requires 

that the matrix of substitution elasticities be negative semi-definite. The coefficients on the 

interaction of input prices in Table 1 are all negative (although not generally by 

statistically significant amounts). Together with the positive first derivatives, this leads to 

a matrix of substitution elasticites for each model with results reported in Table 1 that is 

negative semi-definite.9 

                                                 
7 Each of the input prices and the technology proxy are measured by index values that are set equal to 1.0 in 
the first period and the logarithm of 1 equals zero. 
8 The implied elasticity of cost with respect to capital at the end of the sample period is slightly less than 
three quarters using coefficients for any of Models A, B and C, while the elasticities for labor and materials 
are slightly more and slightly less than one eighth, respectively. 
9 We evaluate the determinants of the matrices at the mid-point of the sample but the values of the regression 
coefficients are such that the same result would obtain at all sample values. Details of the tests are available 
from the authors. 
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The influences of time and the technological proxy (the ratio of output from open-

cut mining to the output of underground mining) on costs are similar in Models A, B and 

C, but in each case there is a complicated pattern for the estimated impact. The 

coefficients of the first-order terms for both time and the technological proxy are generally 

not statistically significant and vary in sign across the three models. However, the 

coefficients of the square of both time and the technological proxy are negative and 

statistically significant in each model, while the coefficients of the interaction between 

time and the technological proxy are positive and statistically significant in each model. 

The opposing signs for the coefficients of the second-order terms in the regression lead to 

varying rates of cost change associated with time and the technological proxy over the 

sample period.  

Figure 2 shows the values of the first derivative of the logarithm of unit cost with 

respect to time, labeled CDT, for each year in the sample period as calculated from the 

coefficients for Model A and for Model C in Table 1 using equation (6)10. These first 

derivatives give the rate of cost change with respect to time measured as a proportion of 

the unit cost of production. The variation over the sample period is striking and similar for 

both models, with rates of cost change ranging from close to plus 10% to greater than 

minus 10%. The cost changes are generally positive from the mid-70s through the mid-90s 

and then increasingly negative until about 2000 before leveling off at minus 5% to minus 

8% per year. As discussed above, production costs tend to increase over time for a non-

renewable resource due to either rising resource rents for a homogenous non-renewable 

resource or exhaustion of superior deposits when the resource is of heterogeneous quality. 

However, new discoveries and technical progress (excluding the separately measured 

technical change associated with the shift to open-cut mining) reduce costs. The pattern in 

Figure 2 suggests resource exhaustion was the dominant influence for at least two 
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decades, while the combination of new discoveries and technical progress has dominated 

for the last decade. 

Figure 2 - Cost changes with time
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Figure 3 shows the values of the first derivative of the logarithm of unit cost with 

respect to the logarithm of the technological proxy, labeled CDTP, for each year in the 

sample period as calculated from the coefficients for Model A and for Model C in Table 1 

using equation (5). These values are estimates of the elasticity of cost with respect to the 

technological proxy (measured by the ratio of output from open-cut mining to the output 

from underground mining). The shift from underground to open-cut mining was an 

outstanding feature of the Australian coal industry in the 1970s and 1980s as shown 

previously in Figure 1. Figure 3 shows that for two decades from the early 1970s, aside 

from three years in the early 80s, the effect of the shift was substantially cost reducing, 

with each ten percent increase in the ratio of open-cut to underground coal leading to a 

decrease in average unit production cost of between ten and twenty percent. However, 

after the early 1990s the cost advantage of open-cut mining apparently disappeared and 

was replaced with a cost disadvantage. This corresponds to a period in which the ratio of 

                                                                                                                                                   
10 Cost changes for Model B are not shown, as they are virtually identical to those for Model A. 
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output from open-cut mines to underground mines fluctuated in a narrow band, at least 

until the last few years when open-cut output has risen relative to underground output.  

Figure 3 - Cost elasticity with technological proxy

-3

-2

-1

0

1

2

3

4

1969 1974 1979 1984 1989 1994 1999 2004

year

el
as

tic
ity CDTPA

CDTPC

  

Combining the pattern in Figure 2 with that in Figure 3 suggests the nature of 

technical change in Australian coal mining has altered over the sample period. In the 

1970s and 1980s, productivity improvements and cost reductions were achieved through 

shifting production methods from underground mining to open-cut mining. Rising 

nominal and real prices for Australian coal during this period also encouraged the 

continued exploitation of mines with reserves of dwindling quality so production costs in 

these mines increased while resource rents in mines of superior quality rose. From the late 

1980s until recently, coal prices fluctuated in a narrow band against rising cost pressures, 

particularly higher wage rates, encouraging the abandonment of inferior deposits.11 Figure 

2 suggests this has generated cost savings of five percent or more a year in aggregate 

production costs. 

                                                 
11 Ellerman et al (2001) use data on individual US coal mines and find that relatively less productive mines 
operated throughout a period of high prices in the 1980s, but tended to shut down once prices declined in the 
1990s. 
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Production methods in Australian coal mining have also adapted to changing 

relative input prices. Figure 4 shows that wage rates have risen substantially relative to the 

prices of capital and materials. The Allen partial own-elasticities of substitution (σij) 

calculated from the results in Table 1 using the formula in (5) are each negative, while the 

cross-price elasticities are almost all positive at all sample values.12 The relative price 

changes have thus encouraged substitution away from labor. Furthermore, isoquant shifts 

associated with technical change through the technological proxy and the time trend have 

been biased against labor and, to a lesser extent against materials.  

Figure 4 - Log coal price and input prices
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Figure 5 shows the pattern of fitted cost shares calculated by applying the formula 

in (3) to the regression coefficients in Table 1 for Model A.13 Capital’s share is generally 

increasing throughout the period, while the shares of labor and, to a lesser extent, 

materials are generally falling. The rising share of capital relative to labor demonstrates 

the degree to which coal miners are economising on the use of labor that has become 

relatively more expensive over the sample period. 

                                                 
12 An exception is that the cross-price elasticities between labor and materials are generally negative for later 
years in the sample period. Full details of the Allen partial elasticities are available from the authors. 
13 The corresponding patterns for the other models are very similar and are omitted to provide a clearer 
diagram. 
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Figure 5 - Fitted Cost Shares from Model C
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V. Conclusions  

The Australian coal mining industry has seen major developments over the last four 

decades years, particularly with growth in large-scale, open-cut mines and improved 

technology that has been generally labor-saving. In this study, a flexible, non-homothetic 

translog cost function is shown to provide a satisfactory econometric model of the 

changing conditions in the industry. In particular, we separate cost changes associated 

with the shift from underground to open-cut mining from cost changes due to changing 

input prices and residual changes occurring with the passage of time, including changes 

due to rising resource rents or higher production costs with resource exhaustion. 

 We find that the shift from underground to open-cut mining led to substantial cost 

reductions during the 1970s and 80s, but that since then a cost disadvantage has developed 

for open-cut relative to underground. In the 1970s and 1980s rising coal prices increased 

resource rents and encouraged production from relatively inefficient mines with high unit 

costs. Since then technical progress across underground and open-cut mining reduced 
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production costs by at least five percent a year as prices fluctuated without trend up to the 

end of the sample period. We also find that there has been substantial substitution of 

capital for labor in Australian coal mining, driven by both a rising relative price of labor 

and by a labor-saving bias in technical change. As a result, the optimal cost share of 

capital has increased from about one half to about three quarters, while the share of labor 

has dropped from about three tenths to about one eighth and the share of materials from 

about two tenths to about one eighth.  
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