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Abstract In this work we study an interior penalty method for a finite-
dimensional large-scale Linear Complementarity Problem (LCP) arising often
from the discretization of stochastic optimal problems in financial engineering.
In this approach, we approximate the LCP by a nonlinear algebraic equation
containing a penalty term linked to the logarithmic barrier function for con-
strained optimization problems. We show that the penalty equation has a
solution and establish a convergence theory for the approximate solutions.
A smooth Newton method is proposed for solving the penalty equation and
properties of the Jacobian matrix in the Newton method have been investi-
gated. Numerical experimental results using two non-trivial test examples are
presented to demonstrate the rates of convergence, efficiency and usefulness of
the method for solving practical problems.

Keywords Variational inequality - stochastic optimal control - American
option pricing - HJB equation - linear complementarity problem - interior
penalty method.

1 Introduction

Many real-world phenomena in engineering, physics, mechanics, economics and
financial engineering can be formulated as differential Linear Complementarity
Problems (LCPs) of the form

Liu<f, Lou<w* and (Liyu—f) - (Lou—u*)=0 (1)
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defined on a given solution domain in space and time with appropriate bound-
ary and initial/terminal conditions which are also bounded above by u*, where
L1 and Lo are linear differential operators and f and u* are known functions
[2,18,13,11]. This problem may also be viewed as a Hamilton-Jacobi-Bellman
equation which often arises from stochastic optimal control problems in fi-
nancial engineering, in particular, financial derivative valuation [35,6,8,33,38,
3]. A typical example is the American option valuation problem in which the
value V' of an American option on an asset with its price following a geometric
Brownian motion is governed by the following infinite-dimensional LCP

av 1 o?v ov

LV i= =5 = 50252@ - 7’5% +7V >0, (2)
V(S,t) —V*(S) >0, (3)
Lv(s,t)-(V(S,t) = V*(5)) =0 (4)

for (S,t) € (0,Smax) X [0,T) with a given terminal/payoff condition V*(¢)
and appropriate boundary conditions, where ¢ denotes the volatility of the
underlying asset and 7 the risk-free interest rate. Other examples of LCPs
arising in stochastic optimal control in financial engineering including the cases
that Ly is not an identity can be found in [6,8,20,3].

Differential LCPs in infinite dimensions are normally not solvable analyt-
ically and numerical approximations to them are usually sought in practice.
Various discretization methods have been developed for differential LCPs such
as those in [5,28,9,19,20,34,4], just to name a few. Applying a discretization
scheme to such a problem yields a finite-dimensional LCP of the following
form:

Problem 1 Find x € R” such that
Az <b, Cx<d, (Az—b)"(Cxr—d) =0, (5)

where A and C are n X n matrices, and b and ¢ are known vectors in R™ with
n> 1.

A square matrix is called an M-matrix if the real parts of all its eigenvalues
are positive and all its off-diagonal entries are non-positive. If Z is an M-
matrix, then Z is invertible and Z~! > 0. A discretization scheme such as any
of the ones mentioned above is designed so that the coefficient matrices of the
resulting linear algebraic system are positive-definite M-matrices, but usually
not symmetric. Therefore, we make the following assumptions on the system
matrices A and C in Problem 1:

Al. Ais positive definite, i.e., there exists a constant ag > 0 such that y " Ay >
aolly||?, Vy € R™, where || - || denotes the Euclidean norm on R".

A2. A = (ai;) and C = (Cy;) are both irreducibly diagonally dominant with
positive diagonal and non-positive off-diagonal entries, i.e., they are irre-
ducible and satisfy, for 7,5 = 1,2, ...,n,

ai; >0, ¢i; >0, a;; <0, ¢;5 <0, 4# 7, a; > Z|aij|a Cii > Z |cijls
J#i J#i
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and there exist at least k and [ such that ap, > Z#k lak;| and ¢ >
>z |cij|- Under these conditions, A and C' are both M-matrices by [27].
A3. Problem 1 has a solution.

Clearly, Problem 1 can be solved by many existing generic methods for
complementarity problems such as the semi-smooth Newton method [17], the
smooth methods [22], the active-set Newton methods [7] and the interior-point
method [25], just to name a few. However, Problem 1 differs from a general
LCP because of Assumptions Al and A2. Therefore, it would be ideal if these
properties can be exploited in the design of a numerical method for it. Re-
cently, penalty methods have been used extensively for solving various linear
and nonlinear complementarity problems, particularly those arising in finan-
cial engineering [23,26,33,31,15,16,29,21,32,30]. Most of these methods are
based on power penalty terms to penalize the components of an approxima-
tion which are infeasible. The power penalty methods have the merit that they
have exponential convergence rates. However, the power penalty methods are
exterior in the sense that the constraints (3) may not be strictly satisfied
by the solutions from the methods. An empirical interior penalty method in
infinite-dimensions for option pricing problems is proposed in [23,26] and used
by various authors such as [14]. A convergence analysis for a similar method
in an infinite-dimensional functional space setting is conducted in [37]. How-
ever, to the best of our knowledge, there are no systematic studies on interior
methods for large-scale LCPs arising particularly in option valuation or obsta-
cle problems in financial and classic engineering, though such methods have
been studied extensively for solving general linear and nonlinear programming
problems [12].

Motivated by the penalty method in [23,26] and conventional interior meth-
ods in constrained optimization, we propose in this work an interior method
for (5) and study its mathematical properties such as its solvability and con-
vergence. In this approach, we approximate (5) by a nonlinear equation system
containing a penalty or barrier term to prevent approximate solutions from
becoming infeasible. This penalty term is in fact the first derivative of a well-
known logarithmic barrier function often used in constrained optimization.
Unlike most of the existing interior methods for (5) (cf., for example, [25,10]),
our method does not require any auxiliary functions such as potential or merit
functions which often result in a global optimization problem even when the
original problem is monotone or strictly monotone [17,36]. We will establish
a convergence theory for the approximate solution. The rest of this paper is
organised as follows.

In the next section we propose the interior penalty approach and prove
that the penalty equation has a solution under Assumptions Al and A2. In
Section 3, we establish a convergence theory for the approach. In Section 4
we propose a smooth Newton’s method. Numerical experimental results using
three test problems are presented in Section 5 to demonstrate the theoretical
rates of convergence and usefulness of the methods.
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Finally, we comment that although our focus of this work is on LCPs in
financial engineering, the developed method is also applicable to LCPs arising
from classic engineering satisfying Assumptions Al and A2.

2 The interior method

Without loss of generality, we assume that d = 0 in (5). A simple transforma-
tion will transform the case that d # 0 into that with d = 0.

Interior methods have been used very successfully for solving constrained
optimization problems [12]. These methods have the merit that a solution from
such a method satisfies the constraints strictly. When A in (2) is symmetric,
C =TI and d = 0, where I denotes the n x n identity matrix, in (5), it is trivial
to verify that (5) is the set of the KKT conditions of the following quadratic
programming problem:

1
min (:ﬂTAx - bTm) , subject to z <0. (6)
z€Rn \ 2

A popular interior method for (6) is based on the use of a logarithmic barrier
function whose value becomes infinite when the decision variable approaches
the boundary of the infeasible region. Mathematically, (6) is approximated by
the following unconstrained problem:

. I+ T -
seRn (296 Ar —b x — ,u;hl(—l‘i)> , (7)

where > 0 is a parameter and x = (x1,22,...,2,)". Clearly, we look for
solutions z,, satisfying x,, < 0 and expect that z, — z, the solution to (6),
as 1 — +0. Due to the barrier function, we expect that solution trajectory
generated by an algorithm such as the Newton method will never escape from
the feasible region if the initial guess is feasible. A convergence theory when
w — +0 for this interior method under certain conditions can be found in [12].

Before further discussion, we first define some notation to be used in the
rest of this paper. For any y € R", we let y./z = (y1/21,sYn/2n) ", i-e.,
./, used in Matlab, denotes the Hadamard element by element division of two
matrices of the same size with the exception that y./2 = (y/z1,...,y/zn) " if y is
a scalar. For any two functions f and g, we will use f(z) < O(g(z)) to represent
the relationship that there is a positive constant C' such that f(z) < Cg(x) as
x approaches a fixed value or infinity. Using the above notation, we write the
first-order optimality condition for the solutions to (7) as

Az, — p./x, = b, (8)

where z, = (¥,1, T2, s Tpn) | € R™. Thus, any negative solution to (8) is
a minimum point of (7) when A is symmetric.
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For most of practical problems arising in financial engineering such as the
discretized system of (2)—(4) using any of [28,9,19,20], A is usually unsymmet-
ric. In this case, the first-order optimality conditions of (6) are not of the form
(5) even when C = I and d = 0. In fact, (5) may not be the KKT conditions
of a constrained optimization problem.

Motivated by (8), we propose to approximate (5) by the following nonlinear
equation:

Awy — 1) (Cy) = b, (9)

where p > 0 is a parameter. Clearly, our main concerns are whether (9) has
a solution satisfying Cz,, < 0 and if so, whether such a solution converges
to the solution z to (5) as u — +40. Before considering the convergence of
this approach, we first show that there exists a solution to (9). We start this
discussion with following lemma.

Lemma 1 For any given p > 0, if x,, is a solution to (9) such that Cz,, <0,
then x,, satisfies
lzull < M, (10)

where M > 0 is a constant, independent of p.

Proof We let M denote a generic positive constant, independent of u, and use
|| - [l to denote the [*°-norm on R™. For a positive constant « independent
of p, we consider the following two cases.
Case 1. ||Cz,l| > ap.

Left-multiplying both sides of (9) by z,, we have

x:A;vu — xZ(u/(Cm)) = x;—b.

Thus, reorganising this equation and using Assumption Al, we have
2 T T 1
aolleu||” <z Az < pl[1./(Cap)llocll, ||+ 1] - llzall < { =+ 1Bl ) [l2ul]-

From this we have (10).
Case 2. ||Cz,l| < opt.

We first note that C is an M-matrix by Assumption A2 and thus C~! is
positive. From the positiveness of C~1 and Cz, <0 we have z, <0.

Since ||Cz |0 < ap and Cz,, < 0, we have

0<—Czx, <aue, or, 0>Cx,>—apue,

where e = (1,1,...,1)T € R™. Using the positiveness of C~! we have from the
above 0 > z,, > —apC~'e. Therefore, we see that (10) also holds true for this
case.

Combining the above two cases we have (10).

Using this lemma, we prove that (9) has a solution in the following theorem.

Theorem 1 For any pu > 0, there exists a solution x,, to (9) satisfying Cx, <
0.
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Proof We show that (9) has a solution in a bounded region S = {z € R™ :
—e7le < Oz < —de}, where e = (1,...,1)T and € and § are (sufficiently small)
positive constants. Let F(x) := Az — p./(Cz). Clearly, F : S C R" — R" is
continuous. To prove this theorem, it suffices to verify that the conditions of
Kronecker Theorem [24, p.161] that b is not in the image of the boundary of
S under the mapping F' and the degree of VF' is non-zero are satisfied. More
specifically, we will show that b ¢ F(9S) when both ¢ > 0 and § > 0 are
sufficiently small and VF' is non-singular, where 05 denotes the boundary of
S.

To prove the former, we assume that b € F(9S), that is, there exists an
x € 05 such that F(z) = b. Then, we show this is not possible when both §
and ¢ are sufficiently small in the following two cases:
Case 1. Suppose there is a k € {1,...,n} such that the kth component of Cz
is (Cz), = —4. Then, we have

F}c(l‘) = (Aa:)k — = appTr + Zaijj + H (11)

1
(Cﬁ)k oy 0

Note that Fi(x) = by. Since C is an M-matrix, C~! is non-negative and thus
Cz < 0 implies < 0. Therefore, from (11) we see that agpzr < —a(p/6) for a
positive constant «, independent of 1 and §, because ) 2k Ok 2 0, where.
Therefore, xp, — —oo as § — 40. This violates (10) in Lemma 1, and thus we
conclude that when ¢ > 0 is sufficiently small, b ¢ F(9S) with Czy, = —¢ for
a feasible k.

Case 2. We now consider the case that = is on 35 such that at least one
component of Cx is equal to (—f/¢) for a positive constant 3, independent

of ¢ and y, i.e., (Cz), = —Be~ ! for a feasible index k. In this case we have
r=C"1( - ...,—Be 1 ...,)T. Since C is an M-matrix, C~! := (€i;) is non-
——
kth

negative. Also, there must be at least one index [ such that ¢x; # 0, as other-
wise, C~! is singular. Note also that x < 0 as reasoned in the proof of Case
1 above. Thus, combining ¢;; # 0, non-negativity of C' and x < 0 we have
x; < —CPet = —o0 as € — +0. Therefore, Lemma 1 is also violated by this
x and thus we see that b ¢ F(9S) with (Cx), = —Be~ L.

Combining the above two cases we see that when € > 0 and J > 0 are both
sufficiently small, b ¢ F'(9S). Furthermore, it is easy to see that the Jacobian
matrix of F'is VF(z) = A+ uD(z)C, where

IKx)::dMg(lj(Cx)/U?xD :(hag<(czﬁ,“”(ciﬂ%). (12)

Note that
dici1 diciz --- dicin

dacay dacaz -+ dacan
D@)C=]| ", N (13)

dncnl dnCnQ e dncnn
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where d; = (Cx); 2. Since C is irreducibly diagonally dominant with ¢;; > 0
and ¢;; < 0 when i # j by Assumption A2, from (13) we see that DC is also
irreducibly diagonally dominant. Therefore, it is an M-matrix, and so VF' is
non-singular when Cx < 0. The non-singularity implies that the degree of F,
defined as sign(det(VF)), at any point of S is non-zero. Therefore, by the
Kronecker Theorem, F'(x) = b has a solution in S [24, p.161].

Thus we have proved the theorem.

3 Convergence

In the previous section we showed that the penalty equation (9) has a solution
satisfying C'z,, < 0. We now prove that z,, converges to that of (5) as u — +0.
We start this discussion with the following theorem.

Theorem 2 Let 1 > 0 be a constant. Any solution to (9) such that Cx, <0
satisfies the LCP (5) with d =0 as p — +0.
Proof When Cz,, <0, from (9) we have

Az, —b=p./(Cz,) < 0.

Left-multiplying both sides of (9) by (Cz,)" and rearranging the resulting
equation give

(Cl‘M)T(A.'L‘H —-b) = M(Cacu)T(l./(Cwu))

.
= p((Cx)1, ..., (Cx)p) ((Cic)l s ey (Ciﬁ)n> =pun. (14)

Therefore, when p — +0, x,, satisfies (5).

In Theorem 2 we have established the convergence of the solution of (9) to
that of (5) without explicitly using Assumptions Al and A2, though they are
used in Theorem 1. In our computation, we use (14) as one of the stopping
criteria for the iterative process. However, this theorem does not provide any
rate of convergence of x,,. If, in addition to Assumptions Al and A2, we further
assume that C'T A is positive-definite, we are able to show that both Problem
1 and (9) have a unique solution and that the solution to (9) converges to that
of Problem 1 at the rate of O(u'/?) as  — +0. These results are given in the
following theorem.

Theorem 3 Let Assumptions A1 and A2 be fulfilled. In addition, we assume
that CT A is also positive-definite, i.e., there exists a constant a; > 0 such
that 27 CT Az > a;1||x||? for any x € R™. Let 2* and z,, such that Cz, <0 be
solutions to Problem 1 and (9) respectively. Then, * and x, are unique for

any p > 0 and satisfy
* ny
2" — @l </ —. (15)
aj
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Proof Suppose both z* and y* satisfy (5) (with d = 0). From Cy* < 0 and
Azx* < b we have
(Cy*) " Az* > (Cy*) "D (16)

From the equation in (5) we have
(Cz*)T (Az* —b) = 0. (17)

Combining this equality and (16) we get

(Cly" —a") " Az* > (C(y* —a"))Tb. (18)
By symmetry, we also have

(Cla" —y)) Ay* > (C(a* —y") b (19)
Adding up both sides of (18) and (19) gives

(Cly"—a") A" —y") 20 or (2" —y") CTAE" —y") <0.

Therefore, using the positive definiteness of C'T A we obtain z* = y*.
The proof of the uniqueness of x,, is rather trivial and we omit it.
We now prove (15). Left-multiplying (9) by (C(x, — 2*))", we have

(O, — ") Az — (Clay — 2) (1) (C,)) = (Clay —2*) b, (20)

Since z* is a solution to Problem 1 and Cz, < 0, left-multiplying both
sides of (5) by (Cz,)" gives

(Cz,) " Az* > (Cz,) "
Combining the above inequality with (17) we have
(C(z, —2%)) T Az* > (C(x, — 2*)) . (21)

Now, subtracting both sides of (20) from the corresponding sides of (21)
yields

(Clx, — x*))TA(:E* —x,) + p(Clz, — x*))T(l./(Cxu)) > 0.
From this inequality we have
(@ —a,)(CTA) (@ —2,) < w(Clay — x*))T(l./(CxH))
=pu(n—(Ca*)" (L./(Cxy))) <pn,  (22)

since (Cz*) " (1./(Cx,))) > 0. Finally, using the positive definiteness of C'" A
we have from the above estimate

arlla” = a2 < (@" — 2,) TCT A" — ) < pm,

from which we have (15).
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We comment that while Theorem 3 provides an upper bound for the error in
x,,, this bound may not be sharp. In fact, from (22) we see that if ||1./(Cz,)|| is
uniformly bounded, then from the first inequality in (22) we can easily deduce
|z, — 2| < &[|C] - [|1./(Czy)||. However, in practice, some components of
Cz,, converge to zero as u — +0, and thus |[1./(Cz,)|| is usually unbounded
as it — +0. Nevertheless, in our computation we have found that the computed
rates of convergence are normally higher than the theoretical one given in (15).

We also comment that Theorem 3 contains the conventional type of LCPs
with C' = I as a special case in which CTA = A is positive-definite by As-
sumption Al. In general, even the positive-definiteness of C'T A is not satisfied,
numerical solutions from this approach still converge to the exact solution at
a rate no lower than that in (15). We will demonstrate this numerically using
one test example later in this work.

4 Newton’s method for (9)

Equation (9) is nonlinear and smooth in the interior of the convex set {z €
R™ : Cz < 0} and a smooth Newton method can be used for it. Since we
only look for negative solution to (9) the main consideration in designing a
Newton algorithm is to avoid an iterate to become infeasible, or ‘overshot’, due
to the linearization in the Newton method. We propose the following Newton
algorithm for (9).

Algorithm Newton

Step 1. Choose pp > 0, € > 0 and 0 > 0 sufficiently small and an initial guess
zo € R™ such that Cz® < 0. Let k := 0.
Step 2. Solve the following linear system for p*:

[A+ pD(*)Clp* = —(Az" — ./ (Ca*) —b), (23)

where D is defined in (12).
Step 3. Set ¥+ = C~!(min{C(z* + p*), —de}), where e = (1,1,...,1) T € R™.
Step 4. If
max {||o 1~ a¥], |(Cat )T (A~ b) — un| | <,

then stop. Otherwise, set k := k + 1 and go to Step 2.

We comment that in Step 3 of Algorithm Newton, we use an upper bound
to force an approximate solution to become strictly feasible when overshoot-
ing occurs in a Newton iteration due to the linear approximation. Since the
solution z, to (9) satisfies Cz,, < 0, when an iterate in Newton’s algorithm
becomes infeasible due to the linear approximation of the barrier function, the
usual practice is to use the ‘0.99’ rule [12], i.e., use a damping parameter to
reduce the step length of the new iterate so that it is taken as 99% of the dis-
tance to the finite boundary of the feasible region. However, this rule does not
work well for solving the type of LCP here from our computation experience.
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The reason may be that many of the constraints in (5) will become active and
‘0.99’ rule restricts the rate of convergence of approximate solutions to the
boundary of the feasible region.

In view of the numerical solution of (23), from the last part of the proof
of Theorem 1 we see that the system matrix A + pD(x*)C of (23) is an M-
matrix, and thus efficient iterative methods such as the preconditioned CGS
or BiCGSTAB can be used for solving (23). Note that C~! is used in Step 3
of the above algorithm which incurs addition computational costs. In practice,
we need to calculate the LU decomposition of C only once. Also, for many
practical problems C'is either an identity matrix or an upper/lower triangular
matrix as will be seen in the next section.

5 Numerical experiments

In this section we present some numerical experimental results to demonstrate
the efficiency, rates of convergence and usefulness of the numerical method
presented and analysed above. Two test problems with un-symmetric system
matrices and an American option pricing problem are chosen. In our numerical
experiments, the parameters ¢ and § in Step 1 of Algorithm Newton are chosen
to be ¢ = 1071% and 6 = 1072, All experiments were performed in double
precision under Matlab environment.

Test 1. The LCP (1) in two dimensions with the following operators and
functions:

2 9?2 0 0
@+67]J2)+%+67y’ L2—Ia
f=5[6xy(2—a® —y?) + (1 —32)(y — ) + (1 — 3y°)(z — 2”)],

u* =0.3+ |z —0.5]+ |y —0.5]

L= —(

for (z,y) € 2 := (0,1)? satisfying v = 0 on the boundary of (2, where I
denotes the identity operator. The exact solution to the unconstrained problem
Liu = f i Uyne = 5(x — 23)(y — v3).

This is a conventional LCP in which u* can be viewed as an obstacle
for the solution. To solve this infinite-dimensional LCP numerically, we first
choose a mesh for 2 with (N + 1) x (N + 1) nodes (z;,y;) = (i/N, j/N) for
1,7 =0,1,..., N, where N denotes a positive integer. For each of the mesh nodes
(i,95), 1,5 = 1,2,...,N, we use the conventional central difference scheme
and backward difference scheme to approximate respectively the 2nd-order
and the lst-order differential operators in Liu [20,19,21]. All other terms are
approximated by their respective nodal values at (x;,y;). This discretization
method results in an LCP of the form (5) in ROV-1? with A an un-symmetric
penta-diagonal system matrix A. In this case, it is easy to verify that CTA = A
is positive-definite. In our computation, we choose N = 100 and the initial
guesses for all the penalty equation are chosen to be zero.
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u:“;f i=0 i=1 i=2 i=3 i=4 i=5 i=6
Error 1.26e-1  6.69e-2  3.54e-3 1.87e-2 9.91e-3  5.25e-3  2.79e-3
Ratio — 1.88 1.89 1.89 1.89 1.89 1.88

=7 i=8 i=9 i=10 =11 =12 1=13
1.49¢-3 7.95c-4 4.24c-4 2.25¢-4 1.19e-4 6.24e-5 3.23e-5
1.88 1.87 1.88 1.88 1.89 1.91 1.93

Table 1 Computed rates of convergence in p for Test 1.

(a) u and u*

Fig. 1 Computed u, v* and uync — u for Test 1.

To compute the rates of convergence of the interior method, we solve the
finite-dimensional LCP using g = 107!% and use the numerical solution as
the ‘exact’ or reference solution. The problem is then solved for u = 1072/27
for j = 0,1,...,13 and the ly-norms of the errors between the numerical and
reference solutions are calculated. Table 1 contains the computed errors and
the ratios of errors from two consecutive values of p. Theoretically, the ratios
are no less than /2 by (15). From Table 1 we see that the rate of convergence
for this test problem is about O(u!®21-9) ~ O(1°92%). The numerical solution
u, upper bound »* and the difference between the unconstrained and numerical
solutions, Uync —u, are plotted in Figure 1 from which we see that the numerical
solution is qualitatively excellent. In our numerical experiments, the initial
guess in Step 1 of Algorithm Newton is xp = 0 for all values of 1 and the
mean of the numbers of Newton’s iterations for all the values of u is 33.3 with
the standard deviation 7.3, indicating the numerical method is robust with
respect to p.

Test 2. The LCP (1) in two dimensions with the following operators and
functions:

6724_872)_;'_&4_& L _Q_FE
o2 oy’ oz oy’ P 9x oy’

f=56ry(2—2* —y*) + (1 -32")(y —¢°) + (1 = 3y°)(z — 2%)], u* =1

Ly = —(
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=107 i=0 i=1 i=2 i=3 i=4 i=5 i=6
Error 6.97e-2  3.52e-2  1.77e-2  8.89¢-3  4.46e-3  2.24e-3  1.12e-3

Ratio - 1.98 1.99 1.99 1.99 1.99 1.99
i=7 i=8 i=9 =10 i=11 =12 =13
5.64e-4 2.83e-4 1.42e-4 7.13e-5 3.57e-5 1.79¢-5 8.98e-5

1.99 1.99 1.99 1.99 2.00 2.00 2.00

Table 2 Computed rates of convergence in p for Test 2.

for (z,y) € £ := (0,1)? satisfying u = 0 on the boundary of 2. The exact
solution to the unconstrained problem Lju = f is uyne = 5(x — 23)(y — y?).

Clearly, the difference between this test and Test 1 is that Test 1 has an
upper bound on the solution while Test 2 has one on the the sum of the two
first derivatives of the solution. We use the same mesh as used in Test 1 with
(N + 1)? mesh nodes to solve this problem. The discretized form of L; is the
same as that in Test 1 and the resulting LCP is in R” with n = (N — 1)2.
We also use the two-point backward finite difference scheme to discretize Lo
so that the system matrix C' = (¢;;) in (5) has only 3 non-zero diagonals,
ie, ¢y >0fori=1,2,..,n ¢_1; <0fori=23.,n, c_n_1); <0 for
i=N,..,n, and ¢;; = 0 for all other feasible (¢, j).

As in Test 1, we use the numerical solution from yu = 10719 as a reference
solution for calculating computational errors. The problem is then solved for
= 1072/27 with j = 0,1,...,13 and the ly-norms of the errors between the
numerical and reference solutions are calculated. The computed errors, along
with the ratios of those from two consecutive values of u, are listed in Table
2. From the ratios we see that the computed rates of convergence for this test
are of order O(y1), though in this case C'T A may not be positive-definite. For
all the chosen values of pu, the initial guess is zg = 0 and the average number
of Newton iterations is 34.3 with the standard deviation 5.08 which are in line
with that for Test 1. To further demonstrate the numerical method, we plot,
in Figure 2, the numerical solution of Lou along with the upper bound u*
and the difference between the unconstrained and constrained the numerical
solutions. From the figure we again see that numerical solution is qualitatively
excellent.

Test 3. American put option valuation problem (2)—(4) defined on (0, 100) x
[0,1) with the parameters o = 0.4, r = 0.03 and strike price K = 50. The
lower bound V* and boundary and payoff conditions are

V*(S) = max{0, K — S}, V(0,t) = K, V(100,t) = 0, V(S,t = T) = V*(S).

To solve this problem numerically, we choose an (M +1) x (N + 1) uniform
mesh with nodes (S;,t;) for i = 0,...,M and j = 0,1,..., N, where M and
N denote two positive integers. The infinite-dimensional LCP (2)—(4) is then
discretized using the fitted finite volume method in [28,34] and at each time
step 7, we solve an LCP in RM~1. (For an analysis of the discretization method,
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Fig. 2 Computed Lou, u* and uync — u for Test 2.

u:w; i=0 i=1 i=2 i=3 i=4 i=5 i=
Error 1.400e-1  9.259e-2  6.13e-2 4.07e-2  2.70e-2  1.80e-2  1.19e-2
Ratio - 1.51 1.51 1.51 1.51 1.50 1.50

i=7 i=38 i=9 i=10 =11 =12 =13
7.94¢-3  5.28¢-3  3.5le-3 223¢-3 1.54e-3 1.0le-3  6.58¢-4
1.50 1.50 1.51 1.51 1.51 1.52 1.53

Table 3 Computed rates of convergence in p for Test 3.

we refer to [1].) For most of the numerical experiments, we choose M = N =
100. Clearly, in this case C is the identity matrix and it is easy to verify that
at each time step, the system matrix A is un-symmetric and positive-definite.
Since the exact solution to this LCP is unknown, we use the numerical solution
with = 10710 as the ‘exact’ solution. The discretized American option pricing
problem is solved for g = 107%/27 for j = 0,1, ...,13. The computed errors in
the last time point ¢ = 0 and their ratios are listed in Table 3. From the table
we see that the computed rates of convergence are roughly O(u°5%), close to
the theoretical result O(u®%). At each time step j = 2,3,..., M, we use the
numerical solution at j — 1 as the initial guess for the Newton’s method, while
for j = 1 we use (V*(S1)+6,..., V¥*(Sar—1)+9) T as the initial guess. The mean
and standard deviation of the numbers of Newton iterations for all p and all
time steps are 5.0 and 3.7 respectively, indicating that the method is efficient
and robust.

To further demonstrate the quality of the results from our numerical method,
we plot in Figure 3 the computed value function V and its derivatives A :=
Vs(S,t) and I' := Vgg(S,t) which are often used in hedging strategies. From
the figure we see that the numerical results are qualitatively excellent. Also,
the optimal exercise curve is clearly visible in Figures 3 (b) and (c). This curve
is mathematically called a free boundary which is part of the solution. To fur-
ther demonstrate this curve, we recompute the solution using M = 500 and
N = 100. The optimal exercise curve is estimated using the computed A and
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Fig. 3 Computed value V, A, I and the optimal exercise curve for Test 3.

depicted in Figure 3(d). On this curve, both (2) and (3) become equalities.
All of the numerical results demonstrate that our numerical method produces
practically useful and meaningful solutions when applied to the American op-
tion pricing problem.

5 Conclusions

Motivated by conventional interior methods in constrained optimization, in
this work we have proposed an interior penalty approach to the finite-dimensional
large-scale LCP governing financial derivative valuation. The approach is to
approximate the LCP by a nonlinear algebraic equation containing a penalty
term of the form of the reciprocal of the solution. We have shown that the
penalty equation has a solution in the interior of the feasible region of the
original LCP. A convergence theory for the solution to the penalty equation
has been established and a smooth Newton method has been proposed for
solving the nonlinear penalty equation. Numerical experiments using differen-
tial LCPs in two spatial dimensions and a differential LCP in space and time
for valuing American vanilla put options have been carried out. Numerical re-
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sults have demonstrated that the computed rates of convergence are consistent
with theoretical one and that the method is efficient and effective for solving
practical problems.
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