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ABSTRACT 

 

Murine malaria models have proved to be a valuable preclinical tool, particularly in 

the development of new concepts in the research of human malaria.  Plasmodium 

berghei (P. berghei), is the most extensively studied and manipulated rodent 

parasite and as a laboratory model, is largely selected for studies relating to 

developmental biology of parasites and investigation into new and innovative drug 

therapies.  Whilst direct extrapolation from rodent biology to human malarias 

should be generally avoided, murine malaria models may contribute a greater 

understanding of important characteristics for antimalarial drug development and 

drug efficacy studies.  However, there is currently a paucity of murine 

pharmacological data available for both commonly used, and emerging, antimalarial 

therapies.  The findings of the studies in this thesis are seen as an important 

contribution to the preclinical knowledge of the investigated drugs which to date, 

have not been adequately studied.   

 

The aim of the thesis was to investigate the efficacy, pharmacokinetic and/or 

pharmacodynamic properties of various antimalarial drugs, in a P. berghei murine 

malaria model.  Specific aims were to:  

(i) Evaluate the pharmacodynamic effects of dihydroartemisinin (DHA) in 

asplenic P. berghei infected mice.   

(ii) Investigate the pharmacokinetic and pharmacodynamic properties of 

single dose piperaquine (PQ) in healthy and P. berghei infected mice.   

(iii) Investigate the extended antimalarial effect of PQ concentrating on drug 

efficacy, re-inoculation outcomes and parasite viability. 

(iv) Evaluate the pharmacokinetic and pharmacodynamic properties of single 

and multiple doses of chloroquine (CQ) in healthy and P. berghei 

infected mice.  

 

Using an asplenic model of P. berghei malaria, the efficacy of single doses of DHA (0, 

10, 30 and 100 mg/kg) were evaluated in uninfected and P. berghei infected, intact 

and asplenic mice.  Haematology, liver biochemistry and histopathology were 
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performed to investigate the responses of key organs to malaria infection.  Whilst 

overall efficacy of single dose DHA in asplenic mice was shown to be similar to 

intact mice, the rate of parasite recrudescence after parasite nadir (20 h at all doses 

studied) was significantly higher in the asplenic mice, particularly at higher doses 

(30 and 100 mg/kg DHA).  Histopathology of the liver and associated blood 

chemistries, demonstrated an increased stimulation of liver function during malaria 

infection in asplenic mice, when compared to intact mice.   

 

Whilst studying the pharmacokinetic and pharmacodynamic responses of PQ in the 

P. berghei malaria treatment model, particular focus was placed on (i) 

pharmacodynamic properties of single doses of PQ (0, 10, 30 and 90 mg/kg PQ 

phosphate (PQP)); (ii) pharmacokinetic parameters of PQ in healthy and P. berghei 

infected mice; (iii) efficacy of combined doses of 10 mg/kg PQP and 30 mg/kg DHA.  

Single dose administration of PQP resulted in a median survival time of 4, 10 and 54 

days after doses of 0, 10 and 30 mg/kg PQP, respectively, while mice receiving a 

single 90 mg/kg dose showed a medium survival time exceeding 60 days 

(experimental endpoint). Pharmacokinetic analysis determined the elimination half-

life of PQ in healthy and P. berghei infected mice was 18 and 16 days, respectively.  

Furthermore, extrapolation of PQ concentrations suggested that at 60 days the 

plasma drug concentration would be ineffective at suppressing the P. berghei 

infection (<10 μg/L).  Combination of PQP and DHA resulted in a significantly lower 

parasite nadir (22 ± 12 fold) than for either drug given individually. 

 

Given that high dose PQP (90 mg/kg) demonstrated extended antimalarial efficacy, 

further invetsigations were pursued on drug efficacy, re-inoculation outcomes and 

parasite viability after a single 90 mg/kg dose of PQP.   Investigation showed that 

after initial dosing, PQ concentrations were not adequate to suppress parasitaemia 

after 25 days.  Furthermore, although viable parasites were present up to 90 days 

after drug administration, once these viable parasites were passaged into naive 

mice they were found to be generally resistant to PQ when exposed to the drug for 

a second time.  Overall, PQ was found to have a substantial antimalarial effect in 

this model with this effect appearing to be sufficient for a host immunological 



- 13 - 
 

response to be established thus resulting in the long term survival of P. berghei 

infected mice.   

 

Although CQ is widely used in preclinical animal studies, there is a paucity of 

comprehensive pharmacokinetic data of CQ in animal models. In this thesis robust 

pharmacokinetic and pharmacodynamic data of CQ is presentated after single and 

multiple dose administration of CQ in the P. berghei malaria model.  The 

pharmacokinetics of desethyl-CQ (DECQ), the major active metabolite of CQ, were 

estimated. Pharmacodynamic data demonstrated that parasite nadir was reached 

79 h after a single dose of 60 mg/kg CQ, with all mice developing parasite 

recrudescence.  Multiple dose (5 x 50 mg/kg CQ; dosed every 24 h) administration 

resulted in parasitaemia falling below the limit of detection.  Despite a short period 

of recrudescence (between 10 and 24 days after initial dose), parasitaemia 

remained undetectable until the experimental end point (35 days after the initial 

dose).  Pharmacokinetic analysis determined an elimination half-life of 46.6 h in 

healthy mice and 99.3 h in malaria-infected mice (single dose data; non-

compartmental analysis).  The mean rate of formation of DCQ from CQ was 0.63 ± 

0.55 h-1 with a formation half-life of 1.7 ± 1.0 h.  

 

Consequently, the drug efficacy, pharmacodynamic and pharmacokinetic data 

included in this thesis demonstrates that the current P. berghei murine malaria 

treatment model can be used as a valuable preclinical conceptual tool for the 

investigation of antimalarial drugs such as DHA, PQ and CQ.   
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CHAPTER ONE 

 
INTRODUCTION 

 

1.1 MALARIA 

The transmission of malaria from the mosquito vector was first described by Ronald 

Ross in 1898, at which time his discovery was described as ‘important as the 

discovery of America’ (386).  Notwithstanding the massive strides in biology and 

medicine in the past 100 years, malaria still poses the greatest threat of all known 

parasites to human health (386, 577, 584).  Despite an increased awareness of the 

disease, improved access to antimalarial drugs and global economic development,   

more people die from malaria today than 40 years ago with an estimated incidence 

of infection increasing 2-3 fold over the last 35 years (197, 386). Furthermore, with 

increasing drug resistance as well as changes in world climate, malaria is returning 

to areas from which it had previously been eradicated and is now entering new 

areas such as Eastern Europe and Central Asia (197, 386).   

 

Malaria is caused by transmission of single-celled protozoan parasites of genus 

Plasmodium from an Anopheles mosquito vector, to a suitable vertebrate host.  

Whilst there are over 200 species of Plasmodium, only five species have the 

capability to cause malarial illness in humans.  Plasmodium falciparum (P. 

falciparum), P. vivax, P. ovalae and P. malariae are all human specific parasites 

which cause both serious (P. falciparum) and milder forms (P. vivax, P. ovalae and P. 

malariae) of the disease (26, 85, 382, 573).  More recently a fifth human species P. 

knowlesi has being identified which can cause human infections from zoonotic 

transfer from macaques monkeys (Macaca fascicularis) (112, 247).  At the present 

time the most dominant parasite is P. falciparum which accounts for 40-60% of 

malaria cases worldwide and >95% of all malaria deaths (421).   In tropical Africa, 

where P. falciparum is the dominant pathogen, it is estimated that a child will die 

every 12-30 sec from malaria (386).  
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1.1.1 Epidemiology 

The 2008 World Malaria Report (580) estimated that in 2006 there were 3.3 billion 

people at risk of malaria infection of whom 247 million had a reported malaria 

infection, resulting in nearly 1 million deaths.  Those most at risk from fatal malarial 

infections included children under the age of 5, pregnant women and the 

immunocompromised (580).  It has been suggested that reported figures from the 

World Health Organization (WHO) could be an underestimation of the annual 

burden of this parasitic disease (458).   

 

Malaria is endemic throughout the tropical areas of sub-Saharan Africa, Southeast 

Asia, the Pacific Islands, India and Central and South America (Fig. 1.1)(382, 579, 

580).  In 2008, 109 countries were declared to be malaria endemic with 45 of these 

countries falling within the WHO African region (579, 580).  Statistically, this 

equates to approximately 40% of the world’s population being under threat from 

this parasitic disease (26, 386).    

 

 

Figure 1.1 Distribution of malaria transmission in 2007 (580).  Worldwide 

distribution of malaria-free and malaria-endemic countries including those that are 

currently in phases of malaria control, pre-elimination, elimination and prevention 

of reintroduction (580).   
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In Southeast Asia, particularly along the borders of Thailand with Myanmar and 

Cambodia, P. falciparum is multidrug resistant with chloroquine (CQ), sulphadoxine-

pyrimethamine (Fansidar) and mefloquine monotherapies all ineffective and 

quinine therapy rapidly losing potency (Fig. 1.2)(578).  In sub-Saharan Africa CQ 

resistance to falciparum malaria is widespread and antifolate resistance is rapidly 

developing (26).   

 

 

Figure 1.2 Range of reported in vivo antimalarial drug treatment failures for  

P. falciparum malaria in Southeast Asian countries, 1981 – 2006 (578). 

 

 

1.1.2 Pathophysiology and aetiology 

1.1.2.1 Historical background 

The symptoms of a disease resembling malaria were first described over 4,000 years 

ago in the Nei Ching (The Canon of Medicine), the ancient Chinese medical writings 

edited by Emperor Huang Ti in 2700 BC (341).  Features of the disease, later named 
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mal’aria, Italian for bad air, became widely recognized in 4th century BC after 

Hippocrates characterised the clinical symptoms and complications of this seasonal 

intermittent fever (181, 341).  By 6th century BC the symptoms of malarial fever, 

which were attributed to the bites of certain insects, were extensively described in 

the Susruta, a Sanskri text (341). During the same time period Roman writers 

associated the incidence of malarial fever to swampy regions (341, 442).   Despite 

the continued characterization of disease processes, the cause of malaria was not 

isolated until 1880 (73, 341, 442).   

 

In November 1880, Charles Laveran, microscopically observed the exflaggelation of 

a male gametocyte which led to the conclusion that the causative agent of malaria 

was a protozoan parasite (73, 341, 442).  During the next 10-20 years, four different 

human species of malaria parasite were identified and named by Italian and 

American scientists (P. vivax and P. malariae, Giovanni Grassi and Raimondo Fileeti, 

1890; P. falciparum, William Welch, 1897; P. ovalae, John Stephens, 1922) (442).  

 

Perhaps the greatest advancement in the study of malaria was the discovery of the 

role of the Anopheles mosquito in the transmission of malaria.  On 20th August 1897 

Ronald Ross found the malaria parasite within the stomach tissue of an Anopheline 

mosquito that had fed on a malaria-infected patient four days earlier (73, 341).  In 

further malaria research Ross showed the transmission of malaria parasites 

between birds demonstrating that the mosquito acted as an intermediate host for 

the avian malaria.  After feeding mosquitoes with blood from infected birds he 

showed that the malaria parasite developed in the mosquito stomach and later 

migrated to the salivary glands, allowing the mosquito to then infect other birds 

during subsequent blood meals (341).  The complete sporogenic cycles of P. 

falciparum, P. vivax and P. malariae were soon after described by a team of Italian 

scientists led by Giovanni Grassi (1898-1899).  Thus, the process of malaria 

transmission was established (341).  
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1.1.2.2 Life cycle 

The genus Plasmodium may be identified taxonomically by the presence of 

protozoa with two forms of asexual division, schizogony and sporogony, and a 

single stage of sexual division.  Schizogony is the phase of parasitic asexual division 

and maturation occurring within the vertebrate host, while sporogony is the sexual 

and asexual and divisional stage occurring with a mosquito vector (446).  In order to 

successfully complete the parasitic life cycle (Fig. 1.3) two hosts, the definitive and 

intermediate hosts, must be present.  

 

The female Anopheles mosquito is the sole vector of Plasmodium parasites and 

whilst there are over 600 species of Anopheles mosquitoes worldwide, only 60 

species have been found to transmit malaria (382, 421).  The schizogonic cycle is 

initiated when a malaria-infected mosquito takes a blood meal from a person, 

releasing on average 15-20 (26), but up to 100 sporozoites (422), into the blood 

circulation from the salivary glands.  After entering the bloodstream the sporozoites 

take about 30-45 min to travel to the liver where they invade hepatocytes and 

begin to multiply.  This cycle, referred to as the pre-erythrocytic cycle, takes 

approximately 6-14 days and results in the production of merozoites.  Growth and 

division in the liver takes approximately 6, 6, 10 and 15 days for P. falciparum, P. 

vivax, P. ovalae and P. malariae, respectively (382, 386).  In P. vivax and P. ovalae 

infections some sporozoites appear to develop for the first 24 h at which stage they 

become dormant, as single-celled forms known as hypnozoites, which can remain in 

the hepatocytes for months to years until they are reactivated causing a relapsed 

malaria infection (382, 386, 421).  

 

At the conclusion of the pre-erythrocytic cycle, the host liver cells burst releasing 

thousands of merozoites into the blood circulation which attach to and invade 

erythrocytes within 20 sec of release (319, 386).  This process initiates the 

erythrocytic cycle.  Within the erythrocytes the parasites begin to again multiply 

resulting in erythrocyte (red blood cell) rupture 48–72 h later, depending on 

parasite species. Following erythrocyte rupture, both merozoites and pyrogenic 

materials are released resulting in both an increase in parasite biomass and malarial  
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Figure 1.3 The life cycle of human malarial parasites (85).  The malaria parasite 
life cycle involves two hosts.  During a blood meal, a malaria-infected female 
Anopheles mosquito inoculates sporozoites into the human host .  Sporozoites 
infect liver cells and mature into schizonts , which rupture and release 
merozoites .  (Of note, in P. vivax and P. ovalae a dormant stage [hypnozoites] can 
persist in the liver and cause relapses by invading the bloodstream weeks, or even 
years later.)  After this initial replication in the liver (exo-erythrocytic schizogony ), 
the parasites undergo asexual multiplication in the erythrocytes (erythrocytic 
schizogony ). Merozoites infect red blood cells .  The ring stage trophozoites 
mature into schizonts, which rupture releasing merozoites .  Some parasites 
differentiate into sexual erythrocytic stages (gametocytes) .  Blood stage parasites 
are responsible for the clinical manifestations of the disease.  
 
The gametocytes, male (microgametocytes) and female (macrogametocytes), are 
ingested by an Anopheles mosquito during a blood meal .  The parasites’ 
multiplication in the mosquito is known as the sporogonic cycle .  While in the 
mosquito's stomach, the microgametes penetrate the macrogametes generating 
zygotes .  The zygotes in turn become motile and elongated (ookinetes)  which 
invade the midgut wall of the mosquito where they develop into oocysts .  The 
oocysts grow, rupture, and release sporozoites , which make their way to the 
mosquito's salivary glands.  Inoculation of the sporozoites into a new human host 
perpetuates the malaria life cycle .  
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symptoms of fever and anaemia (26, 382, 386).  This asexual erythrocytic cycle 

usually continues until it is either controlled through immune responses, drug 

therapy or until host death.  The morbidity and mortality associated with malaria 

are derived primarily from the erythrocytic cycle (386).   

 

After several erythrocytic cycles a yet unidentified trigger diverts the development 

of certain intraerythrocytic merozoites into sexual forms known as gametocytes.  

The male and female gametocytes are taken up by a mosquito and in the mosquito 

midgut they mature as gametes (26, 382, 386). The sporogonic cycle is initiated 

through the fertilization of the gametes producing zygotes which within 24 h 

matures to a motile ookinete.  The ookinetes burrow through the mosquito midgut 

wall to encyst on the basal lamina where, within the developing oocyts, there are 

many miotic divisions resulting in the formation of sporozoites.  When the infective 

oocysts rupture sporozoites are released at which time they migrate through the 

haemocoel to the salivary glands completing the sporogonic cycle, approximately 7 

to 30 days after gametocyte ingestion (depending on the host, infective parasite 

species and environmental conditions (26, 382, 386).   

 

1.1.2.3 Malaria and the immune system 

Clinical immunity to severe non-cerebral falciparum malaria usually occurs after one 

or two infections, however, immunity against mild disease takes much longer to 

acquire (200, 519). In malaria endemic regions, children born to immune mothers 

are protected against malaria infections, although they may be exposed to 

infections, for the first 6 months after birth by maternal antibodies transferred 

through breast milk (200, 369, 454, 519).  During this period of time the immune 

system in the infants compiles a repertoire of specific humoral and cellular immune 

responses against the infecting parasites (519). However, as exposure to maternal 

antibodies wanes, the child will have a period of 1 to 2 years of increased 

susceptibility to malaria infections before they are able to acquire active immunity 

(369).   
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Innate immunity, the immunity not associated with specific antigens, may be 

classified into genetically based resistance and cell mediated mechanisms (455). 

During malaria infections genetically based resistance mechanisms may influence 

the progression of disease through the impairment of merozoite invasion of 

erythrocytes, reduction in the growth of parasites within an erythrocyte, impaired 

liberation of merozoites from schizonts and the reduction in vitality of merozoites 

after they are released from the rupturing schizont (309, 455).  Cell mediated 

mechanisms are responsible for the phagocytosis of merozoites or parasitised 

erythrocytes by neutrophils, monocytes or macrophages, and through the 

production of cytotoxic molecules (i.e. cytokines or nitric oxide) which are produced 

by various immunological cells against both the free parasites or parasitised 

erythrocytes (103, 455, 519).  Whilst the innate immune system, comprising mainly 

dendritic cells, monocytes and macrophages, natural killer cells, and T cells, is an 

important defence mechanism against malaria infections it also plays a very 

important role in shaping the adaptive immune response to blood-stage malaria 

(519).   

 

In malaria endemic regions a person will often be exposed to a number of malaria 

infections during childhood.  Surviving the malaria infection may result in the 

development of a state of immunity, referred to as acquired immunity, where a low 

level parasitaemia is maintained whilst remaining asymptomatic (369, 393).  

Acquired immunity, immunity developed in response to foreign antigens in the 

body, is both species- and stage- specific and results from the generation of specific 

antibodies to several variant antigenic proteins, most notably P. falciparum 

erythrocyte membrane protein 1 (PfEMP-1), which are produced by trophozoite and 

schizont stage parasites and expressed on the surface of parasitised erythrocytes 

(301, 369, 393, 455).  However, as there are over 50 genes that encode PfEMP-1 

molecules, acquired immunity to P. falciparum arises after multiple infections.  

Whilst acquired immunity does not prevent future re-infection with P. falciparum, 

the inflammatory response to the parasites, which causes the acute febrile 

symptoms, are limited and mechanisms to kill parasites or inhibit parasite 

replication are enhanced (25, 455).   
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The difficulties that confront immunologists studying host responses of human 

malarias has led to the use of experimental models of rodent malaria (159).   

Although it is readily acknowledged that murine models cannot accurately reflect all 

aspects of human infections, there is commonality between the immune responses 

to malaria parasites in humans and rodents (159).  Studies in both humans and mice 

have demonstrated an important role of dendritic cells (274, 370, 395, 519, 585) 

and T cells (103, 196, 369, 393), among others,  for the formation and maintenance 

of malarial immunity (159). 

 

1.1.3 Diagnosis of malaria 

Clinical diagnosis of malaria is imprecise but in many cases is the basis of 

therapeutic care for patients presenting with fever in malaria endemic areas, 

particularly if laboratory support is not available or delayed (225, 565).  Due to the 

life-threatening nature of the disease, the correct and timely diagnosis of malaria 

infection is critically important (16, 52, 197, 225). 

 

Diagnosis of malaria infection as a cause of disease is multifactorial and includes 

both the presence of parasites in the blood and clinical symptoms of infection (576). 

The detection of parasites on a blood film does not always indicate the cause of 

disease, as children who are indigenous to an endemic area may continually have 

low level parasitaemias, however, this does not present as symptomatic disease 

(197).  Diagnosis also plays an important role in patient management and follow-up 

chemotherapy.  Apart from detecting parasites in the blood, laboratory testing is 

also imperative to detect signs of poor prognosis (i.e. haemoglobin levels, blood 

glucose, lactate and the presence of protein or free haemoglobin in the urine) or to 

guide the methods of chemotherapy (glucose-6-phosphate dehydrogenase (G6PD)) 

(225).  Despite the obvious need for improvement of malaria diagnosis, this area 

remains the most neglected aspect of all malaria research and development (565). 

 

Whatever the method used, a diagnostic test should be able to correctly 

differentiate between individuals who are infected with malaria and those that are 



- 31 - 
 

not (16, 197, 298).  Consequently, the validity of the test is usually determined on 

its sensitivity and its specificity (225). 

 

1.1.3.1 Presumptive diagnosis  

In the vast majority of malaria endemic countries, national poverty ensures that 

laboratory support cannot be relied on for the diagnosis and treatment of malaria 

(225).  Clinical diagnosis is the least expensive thus most commonly used diagnostic 

method and often is the basis for patient self-treatment (565).  Although malaria 

infection has a number of distinct clinical symptoms, the overlapping of malaria 

symptoms with other tropical diseases (including influenza, pneumonia, viral 

hepatitis or typhoid) impairs its specificity  (225, 565).  In areas of high malarial 

endemicity fever is most often related to malaria infection therefore, the vast 

majority of patients presenting with fever will be presumptively diagnosed and 

treated with antimalarials (565).     

 

1.1.3.2 Blood examination for malaria parasites 

Light microscopic examination of Giemsa stained blood films is the most widely 

practiced and most appropriate diagnostic instrument for parasite detection (59, 

197, 576).  Examination of a correctly prepared blood film allows an inexpensive, 

yet definitive, diagnosis of malaria infection including speciation and quantification 

(59, 225, 565).  Thick and thin blood films should be prepared and appropriately 

stained. The most commonly used stain used in the field setting is Giemsa stain 

(225).   

 

Disadvantages of light microscopy as a diagnostic method are that the processes of 

blood collection, slide preparation, staining and reading can be time-consuming and 

the microscopist requires adequate training and supervision to ensure accuracy and 

consistency (59).  Whilst availability of microscopic diagnosis has shown to reduce 

drug use in some clinical trials (248), in clinical practice the results may be 

disregarded by the clinicians who tend to favour presumptive diagnostic techniques  

(43, 59). 
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To increase the sensitivity and specificity of malaria diagnosis, modifications to 

simple microscopy have been made. The quantitative buffy coat method (QBCTM, 

Becton-Dickinson) works by staining parasites with acridine orange stain (59, 275).  

Blood is placed in microhaematocrit tubes precoated in acridine orange stain which 

are then centrifuged.  Any parasites that may be present in the blood will spin at a 

specific density and be easily identifiable at a predetermined position on the 

microhaematocrit tube (41, 59).    Advantages of this system are that it requires less 

training to operate and read the tests compared to normal Giemsa stained blood 

films, as well as taking less time to complete diagnosis compared to light 

microscopy.  Under ideal conditions, the QBC system has been found to be slightly 

more sensitive than routine light microscopy for the diagnosis of malaria (41, 275),  

however, its disadvantages of higher cost, requirement of electricity, specialized 

equipment and supplies as well as a decreased specificity for species identification 

has led to the QBC system not being routinely incorporated into diagnostic 

laboratories (59).   

 

1.1.3.3 Detection of malarial antigen 

Rapid diagnostic tests (RDTs) detect malarial antigen in small quantities of blood (5–

15 μL) by immunochromatographic assay with monoclonal antibodies directed 

against the target parasite antigens that are abundant in the blood during a malaria 

infection (325, 334, 565). A positive result on an antigen detection assay suggests 

infection with malaria parasites (225).  Current antigen detection methods diagnose 

active malaria infections, primarily P. falciparum, rapidly and reliably in an easy to 

use immunochromatographic kit which does not need a microscope for diagnosis.  

The two predominant antigen testing kits commercially available today are based 

on the detection of the malarial antigen Histidine-Rich Protein 2 (HRP-2) or the 

enzyme parasite Lactate Dehydrogenase (pLDH) (292, 299). 

 

1.1.3.4 Serology 

Serological testing methods have been used for the detection of malaria infection 

since the early 1960s, when indirect fluorescent antibody tests (IFAT) and indirect 

haemagglutination assays (IHA) were described.  A disadvantage of serological 
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testing methods is that as they detect antimalarial antibodies, current and past 

infections cannot be differentiated and the tests have limited value in the 

treatment or management of malaria infections.  Therefore the only reliable use of 

these testing procedures is for the detection of negative serological assays, thus 

demonstrating that the patient does not have malaria (225).  

 

1.1.3.5 Molecular Methods 

The application of DNA or RNA hybridization via polymerase chain reaction (PCR) 

based probes, to malaria diagnosis has several advantages over traditional 

methods, although the feasibility of implementing into the field setting is limited.   

However,  it may have a place as a research tool to monitor malaria control 

programs, or to perform quality control checks on microscopic diagnosis or to 

determine the distribution of important genes, particularly those associated with 

drug resistance (225, 327).  Recent publications (206, 325, 575) have suggested that 

PCR is able to detect blood parasitaemias of less than 0.00002%, if performed under 

the best possible conditions.  This level of parasitaemia is theoretically the 

detection of a single parasite in an entire sample, although this is rarely achieved 

(225).  A detection of a parasitaemia of 0.00002%, which equates to 5 parasites per 

μL blood, is a detection threshold at least five times lower than that achieved by a 

thick blood film performed in optimal conditions (i.e. 0.0001%), assuming that an 

experienced scientist has spent at least 10 min examining 100 fields of view (205, 

206, 325).  Whilst in field conditions the sensitivity of PCR may only be comparable 

or slightly better than examination of a thick blood film by a trained microscopist 

(206), the specificity of PCR is generally considered to be better than microscopy, 

particularly if the patient has a mixed infection (225).       

 

1.1.3.6 Value of diagnostic methods  

In most situations, the ‘gold standard’ for individual diagnosis is microscopic 

examination of thick and thin blood films (197, 576). However, there are situations 

when this form of diagnosis is not ideal (225).  In areas of high malarial endemicity, 

clinical diagnosis alone is usually the only feasible and cost-effective method for the 

recommendation of first-line antimalarial treatment.  For example, in a country that 
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has an annual health budget of US$2 per person, it is difficult to justify diagnostic 

assays costing more than US$1 if the cost of treatment is only US$0.04 (225).  

Unfortunately, all modern diagnostic tests are likely to cost at least US$1 and the 

use of less costly microscopy requires a health care infrastructure and expertise that 

may not exist in the field setting.  When microscopy is not available, the use of 

dipstick antigen tests may be of value, particularly in areas of low endemicity where 

infection usually coincides with infection (225, 325).   

 

1.1.4 Enumeration of malaria parasites 

It has long been established that there is a strong correlation between parasite 

density and the severity of malaria (116, 163, 225). It is currently considered that 

any P. falciparum infection above 250,000 parasites/μL (approximately 5% of 

erythrocytes) should be regarded as a severe parasitaemia requiring urgent 

antimalarial treatment and emergency care (507, 509).  The presence of P. 

falciparum schizonts in peripheral circulation may also be taken as a sign of severity 

as due to sequestration mechanisms, mature P. falciparum parasites are rarely 

visualized in the peripheral circulation (225).  

 

The enumeration of parasites serves as a useful guide for the clinical management 

of infection and furthermore provides an valuable guide for the success of clinical 

trials and epidemiological studies (205, 298).  Thick and thin blood films are 

routinely used to monitor infection, to determine the development of resistance to 

antimalarial drugs and to serve as an important information base in the 

development of appropriate national and international drug policies (298, 390).  

Whilst observation of thick and thin blood films remain the first choice of 

enumerative studies (325), with several methods of parasite density estimation 

(151, 193, 205, 298, 367), no standard procedure exists for counting parasites on a 

thick blood film (565).   

 

In 1910, Ross and Thompson described a method of parasite enumeration where 

thick blood films were prepared, using a measured volume of blood, 

dehaemoglobinised and then stained.   Parasite density was then determined by 
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thoroughly searching the entire volume of blood using a sliding stage (427).  This 

method was further modified by Earl and Perez (151) who used a fixed volume of 

blood in a pre-established area. This varied from the methods described by Ross 

and Thompson where blood volume was not restricted to a specific area.  In the 

field and clinical laboratory three different techniques are routinely employed; (i) 

determining the percentage of infected erythrocytes (from a thin blood film), (ii) 

determining the number of parasites per white blood cell (WBC) or (iii)  determine 

the number of parasites in a field of view (145, 298).   Despite the method used for 

parasite enumeration, all determined values can be transformed into an index to 

determine the number of parasites per volume of blood.  This is determined by 

assuming that a constant number of erythrocytes, leukocytes or microscopic fields 

in that volume of blood (i.e. 5,000,000 erythrocytes, 8,000 leukocytes or 400 

microscope fields) per microlitre (μL) of blood (193, 298).  Although these indices 

appear crude, differences between the methods are not important as they would 

rarely vary by more than a factor of 1 (145).  However, variability in blood film 

preparation techniques and the method employed for parasite enumeration 

accounts for the majority of variability observed in parasite counts (145, 260).  For 

example, a large difference in parasitaemia is observed when comparing counting 

of parasites against leukocytes on a thick blood film and against erythrocytes on a 

thin blood film (354).  Such variability could significantly affect research results and 

outcomes (565).   

 

For the accurate determination of parasite density the number of parasitised 

erythrocytes are determined in a thin blood film (193).  To ensure accuracy, at least 

100,000 erythrocytes should be counted (193).  A drawback of this enumeration 

technique is that it is time-consuming and therefore not a feasible method for large-

scale field studies.  As a result two indirect methods, using a thick blood film, are 

currently employed for the determination of parasite density (193).   The first 

method determines parasite density by counting the number of parasites per 

leukocyte then multiplying the figure by 8000, the average white blood cell count 

per μL.  The second indirect method counts the average number of parasites per 

high powered field of view with parasite density calculated from this value and the 
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estimated volume of blood in the thick blood film (193, 510).  Although these two 

indirect methods are substantially quicker alternatives for the determination of 

parasite density, disadvantages of these methods are related to the accuracy of 

parasite counts.  The first method will be inaccurate if the total white blood cell 

count differs markedly from the assumed value of 8,000 leukocytes per μL, as can 

occur if the patient has an underlying bacterial infection, inflammation or as seen in 

children with malaria (193, 311).  The second method will be inaccurate if the thick 

smears are prepared incorrectly or the volume of blood is not known (193, 510).   

 

In a comparative study conducted by Greenwood et al. (193) it was demonstrated 

that there was little difference between the two indirect enumeration methods 

using thick blood films .  ‘True’ malaria parasite density was determined by counting 

the number of parasitised erythrocytes within 100,000 erythrocytes then 

multiplying this percentage by the total red blood cell count (RBCC), determined 

using a Coulter Counter.  Parasite density was then determined using both of the 

indirect thick blood film methods and the results compared to the ‘true’ malaria 

density.  They concluded that although both indirect methods were reasonably 

accurate and allocated levels of parasitaemia within broad bands, it was easier and 

slightly faster to determine parasite density using the high powered fields of view 

method (193).   This was due to the fact that only parasites needed counting, 

compared to the other method where both parasites and leukocytes needed to be 

enumerated.  Although the parasite density results determined in both of these 

indirect methods were assessed to be acceptable for the clinical management of 

malaria cases, for an accurate parasite enumeration the percentage parasitaemia 

should be determined using the thin blood film method (193).   

 

A number of attempts to rationalize and define the reliability of microscopic 

diagnosis of malaria in the field and laboratory have been described.  In 1966, 

Raghavan used a statistical approach with special reference to the efficacy of cross-

checking procedures in malaria eradication programs (403).  It was found that thick 

blood film examinations, using the standard 100-field of view criteria, could only 

detect with “reasonable certainty” parasite densities of 44 parasites in 1,000 thick 
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blood film fields.  However, as it was not made clear what a ‘standard film’ was, it 

made it difficult to draw any definitive conclusions from this study.  In an attempt to 

standardize counting techniques, Dowling and Shute (145) calculated the average 

thickness of thick and thin blood films that they used in comparative studies.  

Through these comparative studies they concluded that whilst a high proportion of 

parasites were lost during film dehaemoglobinization, a parasite count as low as 

one parasite per µL could be detected after 10 min close examination of a thick 

blood film.  Whilst this is not equated to the number of fields examined, it is similar 

to procedures using a detection threshold of four or more parasites identified after 

6 minutes of thick blood film examination (367).   

 

A further consideration, when determining parasite density as a measure of clinical 

success, is that without understanding the behaviour of the sequestered population 

of P. falciparum parasites it is difficult to obtain a reliable measure of treatment 

success (129, 191).  This is an important factor in the clinical setting as parasite 

sequestration is responsible for the majority of severe malaria pathology (184, 191).  

In an attempt to overcome this shortcoming in parasite enumeration of P. 

falciparum infections, a mathematical model was proposed by Gravenor et al. (191) 

which allowed the number of sequestered parasites to be estimated using 

sequential peripheral blood films.  However, despite the predicted value of such a 

simple model in providing insight into the success of antimalarial therapy against all 

blood stages of P. falciparum parasites, it is acknowledged that the parasitaemias 

determined will only be a conceptual parasite density (129, 130, 191).   

 

1.1.5 Antimalarial drug resistance 

The antimalarial drug CQ was first introduced into the clinical setting in 1945 but 

within 12 years CQ-resistant falciparum malaria was reported in Southeast Asia and 

South America (546, 566). By the late 1980s, the Thai-Cambodain and Thai-

Myanmar borders were declared to be multidrug-resistant (MDR) areas with a 

prevalence of mefloquine and sulfadoxine-pyrimethamine resistant falciparum 

parasites (566).  Today, drug resistance has emerged to all classes of antimalarial 
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drugs, including evidence of the recent emergence of resistance to artemisinin 

derivatives in Southeast Asia (143, 348) (Table 1.1). 

 
Table 1.1 Dates of introduction and first reports of antimalarial drug 

resistance.  [Table modified from data presented in Wongsrichanalai et al, (566)] 

Antimalarial drug Introduced  
(genuine clinical use) 

First reported 
resistance 

Difference 
(years) 

Refs 

Quinine 1632 1910 278 (376) 
Chloroquine 1945 1957 12 (547) 
Proguanil 1948 1949 1 (57, 376) 
Sulfadoxine-
pyrimethamine 

1967 1967 0 (57, 376) 

Mefloquine 1977 1982 5 (567) 
Atovaquone 1996 1996 0 (291) 
Artemisinins 1980 2008 28 (143, 

348) 
 

Antimalarial resistance is defined as “the ability of a parasite to survive in the 

presence of concentrations of drug that normally destroy parasites of the same 

species or prevent their multiplication” (540).   Drug resistance in malaria depends 

on the ability of the parasite to respond, through innate genetic diversity, to 

adverse conditions (540, 557).  It is acknowledge that the problem of antimalarial 

resistance has emerged as a result of the indiscriminate use of antimalarials leading 

to the development of high levels of resistance in parasites through selective 

pressure (574).   The goal of malaria chemotherapy is therefore to use the 

antimalarial drugs in such a way that the selection process is minimized, thus 

extending the therapeutic life of the drug (540, 551).   

 

Many factors contribute to the development and spread of drug resistance 

including characteristics of the drug itself (dosing, drug pressure, pharmacokinetics, 

cross-resistance), human host factors (host immunity, maintenance of resistant 

parasite reservoir), parasite characteristics (genetic mutations, transmission level) 

and vector and environmental factors (vector affinity of parasites) (59, 234, 361, 

372, 376, 551, 562, 566).  Characteristics of the drug may be perhaps the most 

important determinants for drug resistance, particularly the drug elimination half-
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life (208).  Drugs with long elimination half-lives, such as mefloquine and 

piperaquine, may exert substantial residual selection on new infections contracted 

after treatment of the primary infection when the drug persists at subtherapeutic 

concentrations in the plasma (566).  Subtherapeutic dosing also results in an 

increased risk of the emergence of resistant forms because any residual parasites 

may proliferate (44).  As a result the therapeutic index may increase beyond the 

maximum dose tolerated, with a manifestation in the occurrence of drug resistance 

(566).   

 

The assessment of P. falciparum susceptibility to antimalarial drugs is commonly 

assessed through the use of an in vivo therapeutic response test (465, 572), 

although in vitro assays measuring the intrinsic sensitivity of P. falciparum from the 

inhibition of growth or schizont maturation are also used (59, 547, 566).   Whilst 

both testing methods have their place in clinical assessment of parasite resistance, 

it is often observed that results obtained from in vitro and in vivo testing methods 

are not always comparable (415).   An advantage that an in vivo assessment method 

has over in vitro testing is that it takes into account host factors such as 

immunological regulation of infection.  Furthermore, pharmacokinetic data may be 

warranted to differentiate between true resistance and failure to achieve adequate 

drug concentrations, an observation that is limited to in vivo models (551, 566).  
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1.2  MURINE MODELS FOR CHEMOTHERAPY 

1.2.1 Murine malaria models 

1.2.1.1 Isolation of murine parasites and their implementation into the research 

laboratory 

A notable contribution to malaria chemotherapy research occurred in 1948 when 

the Belgian parasitologist Ignace Vincke reported the presence of a Plasmodium 

species in African thicket rats in the Belgian Congo (now Zaire) (241, 382, 527).  The 

isolated parasite, later named Plasmodium berghei, was found to be infective not 

only in the natural host but also in laboratory rats, mice and hamsters (382) and as a 

result soon became an integral component of antimalarial drug discovery and drug 

development (33, 368, 382, 502).   

 

Three other rodent specific species, P. vinckei, P. yoelii and P. chabaudi, along with 

their subspecies (Table 1.2), were subsequently identified (261, 267, 416), with the 

majority of these parasites now used for chemotherapy research (241, 382, 433).  

The rodent malaria parasites were found to be analogous to the malaria parasites 

infecting humans and primates in the most essential aspects of structure, 

physiology and life cycle and as a consequence have proved to be valuable in 

studies on the activity and stage specificity of drugs, and the molecular biology and 

genetics of drug-resistance (241, 243, 382).    

 

Historically, the main contribution of the murine model has been in the screening of 

new antimalarial compounds, which can be clearly seen by comparing statistics of 

drug discovery both before and after the introduction of the murine malaria model 

(382).  During World War II (1939–1945) the only antimalarial drug screening model 

was the avian model, which in itself was problematic due to the vast differences in 

parasite life cycle compared to human malarias (382).  However, the P. gallinaceium 

(avian) model was soon superceeded by the introduction of the rodent model which 

proved to be a far superior drug screening model.  This was demonstrated as 

between 1963 and 1990 over 300,000 compounds were screened in rodent models 

in comparison to only 4,000 compounds using avian models (372, 382).   
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Table 1.2 Murine Plasmodium species used for chemotherapy research 

(adapted from (241, 382)) 

 

Species Subspecies Isolate  strain Place of origin Extent 

of use 

P. berghei 

(Vincke and 

Lips, 1948) 

 Keyberg 173 

NH65 

ANKA 

RLL 

SP11 

Zaire (Katanga) 

Zaire (Katanga) 

Zaire (Katanga) 

Zaire (Katanga) 

Zaire (Katanga) 

+++++ 

++ 

++ 

- 

+ 

P. yoelii P.y.yoelii 

(Landau and 

Killick-Kendrick, 

1966) 

P.y. killicki 

(Landau et al. 1968) 

P.y. nigeriensis 

(Killick-Kendrick, 1973) 

P. yoelii ssp. NS 

17X 

 

 

 

 

N67 

Central African Republic 

 

Brazzaville 

 

S.W. Nigeria 

 

Zaire (Katanga)* 

++ 

 

 

- 

 

+++ 

 

++++ 

P. vinckei P.v. vinckei 

(Rodhain, 1952) 

P.v. brucechwatti 

(Killick-Kendrick, 1975) 

P.v. lentum 

(Landau et al. 1970) 

P.v. petteri 

(Carter and Walliker, 

1977) 

P. vinckei ssp. 

 Zaire (Katanga)* 

 

S.W. Nigeria 

 

Brazzaville 

 

Central African Republic 

E. Camaroon 

+ 

 

- 

 

- 

 

+ 

 

- 

P. chabaudi P.c. chabaudi 

(Landau, 1965) 

P.c. adami 

(Carter and Walliker, 

1977)  

AS Central African Republic 

Brazzaville 

++ 

 

- 
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1.2.1.2 Life cycle  

The parsite life cycle of rodent and human malarias are remarkably similar, a 

feature not shared with all species of malaria (82).  The main difference in life cycle 

between the rodent and human forms is the time taken to complete asexual 

schizogony which takes 18-24 hours in the rodent malarias and 48-72 hours in the 

human species (82, 241, 382). There are also slight differences in the timing of each 

stage of life cycle of the rodent malaria strains, with the main differences seen in 

the chronobiological characteristics of length of schizogonic cycle, rhythm and time 

of schizogony, degree of synchronicity, the age of erythrocyte invaded and the 

pathogenicity (268, 382).  Table 1.3 provides a summary of the major features of 

the life cycle of each of the four rodent Plasmodium species compared to human 

malarias in general.  

 

Table 1.3  Different characteristics of the four rodent malaria parasites 

compared to human parasites (241, 382) 

 

 P. berghei P. yoelii P. chabaudi P. vinckei Human 

parasites 

Merozoites per schizont 12–18 12–18 6–8 6–12 8–16 

Reticulocyte preference Yes No Yes Yes Yes/No 

Synchronous infection No No Yes Yes Yes/No 

Optimum temperature 

range for sporogony (oC) 

19–21  23–26 24–26 24–26 >26 

Sporozoite infection time 

(days) 

13–14  9–11 11–13 10–13 Temperature 

dependant 

Duration of pre-

erythrocytic schizogony (h) 

48–52  43–48 50–58 60–72 6–15 days 

Duration of asexual blood 

stage (h) 

22–24  18 24 24 48–72 

Developmental time of 

gametocytes (h) 

26–30  27 36 27 48 h–12 days 
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1.2.1.3 Scientific contribution of murine malaria models 

Despite the advantages of studying human malaria parasites for determining the 

clinical applicability of new antimalarial treatment regimens or drug candidates, 

experimental models of murine plasmodia are increasingly employed in an attempt 

to understand the developmental biology of malaria parasites, parasite-host 

interactions and the pathology of human malarias (13, 269, 278).  These models 

have also proved to be an important investigational tool in the discovery and 

development of vaccines, antimalarial compounds and their therapeutic regimens 

(81, 82, 222, 241, 268, 423).  Furthermore, it has been suggested that the selection 

and use of a suitable animal model will generally reduce the time required for the 

development of the drug/vaccine prior to its evaluation in humans (401, 539).   

 

Areas where the study of murine models has contributed to the overall 

understanding of Plasmodium parasites include; 

• (Ultra-structural) morphology of the different life cycle stages (12, 294, 445) 

• Genetics of malaria parasites (81, 530, 531) 

• Function of malaria specific proteins, including candidate antigens for drug 

targets (315, 473, 523) 

• Parasite-host interactions in the mosquito (141, 204, 340, 411) 

• Immunity to malaria (269, 392, 466) 

• Vaccine development (222, 353, 391) 

• Drug development and resistance (371, 372, 423) 

 

Although simian malaria is most comparable to human parasite strains, the study of 

murine malaria parasites has several advantages over the more complex simian 

models.  Generally, murine models are inexpensive and easy to develop and 

maintain (268).  Large-scale dissective and interventional studies may also be 

performed in murine models while such techniques are not ethical nor practical in 

humans or non-human primates (486).  It is also well recognized that the use of 

simian models for the general screening of antimalarial therapies requires 

specialized skills and financial resources that are adequate to cover the high cost of 
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animals and drugs.  More importantly, the ethical considerations in such cases 

demand that the use of high order experimental animals should be restricted (382).  

 

When using murine models, selection of rodent malaria species and mouse strain is 

an important variable to be considered during experimental design and 

interpretation (162).  The individual species and strains of plasmodia have been well 

characterised and all differ significantly in their degree of infection, lethality and 

synchronicity, which can affect experimental results.  For example, P. berghei and P. 

vinckei produce lethal infections whilst P. yoelii, P. chabaudi adami, P. chabaudi 

chabaudi and P. vinckei petteri all produce self-resolving infections (162, 487).  

Furthermore, the course of infection may also vary depending on the selected 

mouse strain (162).   

 

1.2.2 Plasmodium berghei 

Experimental murine malaria models exploit all four rodent parasites, although P. 

berghei is the most comprehensively studied and manipulated parasite (162, 268, 

487, 539).    As a laboratory model, 37 animal species have been found to be 

susceptible to P. berghei after artificial inoculation with infected blood (590).  The 

majority of these species belong to the rodent family, however, African fruit bats 

and new-born rabbits have also been found to be susceptible (502, 590). In 1965, 

Meir Yoeli presented a paper at the Royal Society of Tropical Medicine and Hygiene 

meeting (590) describing the segregation of each animal species into a number of 

‘groups’ based on the course and outcome of the P. berghei infection in the 

inoculated host.  These are described below as presented in the original paper.   

a)  A fulminating and fatal course terminating in death within 7 to 14 days, 

accompanied by high and rising parasitaemia.  The white mouse and the baby 

albino rat fall into this category. 

b)    A more prolonged clinical course, terminating in the death of the host within 2-

3 weeks and accompanied by a rising parasitaemia.  The golden hamster 

(Mesocricetus auratus) belongs to this category. 
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c)  Chronic and latent course with spontaneous recovery.  Rarely, death from the 

infection and fluctuation in parasitaemia.  The adult albino rat is typical of this 

group. 

d)  Mild and transient P. berghei infection with low parasitaemia and complete 

recovery. 

e) Short-lived survival of inoculated parasites in an alien host, without power of 

multiplication.  Detection of ‘static’ infection by blood sub-inoculation into 

susceptible hosts.  

 

Within the laboratory, P. berghei is used to infect hamsters, rats and mice (502).  

When involvement of sporogonic and/or the exo-erythrocytic stages are sought, the 

susceptible mosquito vector Anopheles stephensi, is widely employed (400, 526).  As 

a laboratory model, P. berghei is largely selected for studies relating to 

developmental biology of parasites, molecular genetics studies and most 

importantly for investigation into new and innovative drug therapies (241, 268, 

502).  Specific characteristics that differentiates P. berghei from the other rodent 

malarias include: 

• Preferentially invades reticulocytes (119, 502, 539). 

• Largely asynchronous in laboratory rodents (241). 

• Results in a lethal infection within 1 to 3 weeks in most laboratory models; 

although a large number of environmental factors influence the virulence 

and pathology of infection (384, 406, 430, 448, 502). 

• Cerebral effects may be observed in selected rodent species (216, 486). 

 

The morphology of asexual P. berghei parasites have been described as very similar 

in characteristics to those of the human malaria P. vivax (501) (Fig. 1.4).  The ring 

stage is usually uni-nucleate and contains a large food vacuole (241, 501, 502).  As 

the parasite matures to the trophozoite stage the food vacuole is seen to 

significantly reduce in size resulting in a parasite that is non-vacuolate, slightly 

amoeboid and containing fine granules of black pigment (241, 501, 502, 527).  

Further maturation sees the trophozoite develop a number of merozoites (6 to 20).  
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In heavy infections, the presence of multiple parasitised cells is not uncommon 

(241, 502).   

 

 

Figure 1.4 Morphology of erythrocytic stages of P. berghei (241, 322) 

 

1.2.2.1 In vivo models 

For the majority of murine malaria research albino laboratory mouse strains have 

generally been used (382).  Although some areas of murine research, including 

those studies observing immunological responses of murine malaria, use specific 

inbred strains of mouse such as BALB/c or C56BL/6 (17, 99), random outbred Swiss 
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mice are suggested to be acceptable for the majority of murine malaria research 

providing the mice are appropriately housed, nourished and kept free of 

concomitant pathogens (372, 382).  The gender and age of laboratory mice is also 

thought to be an important consideration for chemotherapy studies (192, 372, 596).  

It is suggested that male mice weighing between 18 and 20 g are ideal for routine 

studies as female mice may demonstrate variable responses to chemotherapy 

depending on their time of oestrus cycle (372). Mice also tend to become less 

susceptible to P. berghei infections with advancing age whilst young mice that 

weigh under 18 g are hard to handle compared to slightly older and heavier animals 

(192, 372, 596).   

 

Within the laboratory, mice can be infected with rodent parasites through a number 

of techniques, as infection via mosquito transmission and artificial inoculation with 

infected blood are both successful inoculation methods (502).  When infection via 

mosquito transmission is desired, the laboratory mice are placed within a restricted 

area with mosquitoes burdened with infective sporozoites (have fed on infectious 

blood at least 14 days prior).  The mosquito bite is expected to transfer 20 to 50 

sporozoites into the host (large variability between parasite species and strain) 

resulting in a model including both liver and blood stage infection as well as 

maintaining gametocyte production (241, 382, 502, 526).  

 

In comparison, mice can be inoculated by direct blood passage from infected mice 

with high parasitaemia either through intravenous (i.v.) or intraperitoneal (i.p.) 

injection, with an inoculum of blood containing all asexual blood stages (schizonts, 

trophozoites and ring-forms) (502).  Early inoculation studies comparing these two 

routes of infection suggested that i.p. injection was as suitable as i.v. injections as 

an inoculation technique (498, 502), with the majority of  parasites injected 

penetrating the peritoneal wall and entering the blood stream within one minute of 

i.p. injection (58).  Whilst more recent studies have suggested that i.v. injection may 

be a more accurate route of inoculation (as when using i.p procedures it is 

estimated that only 10% of injected parasites will survive and enter the 

bloodstream)(241), other inoculum factors must be considered with inoculum size 
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being one of the most important (207). In order to prevent fluid overload in the 

mouse, which may lead to severe illness or death of the animal, injection of fluid 

volumes must be carefully considered.  Although a more direct method of fluid 

delivery, i.v. inoculation is hindered as no more than 0.2 mL should be injected into 

the adult mouse (> 12 weeks of age) (207).  As the majority of mice used for 

experimental research are usually between the age of 5–9 weeks, the maximum 

injectable fluid volume would be smaller.  Therefore, i.p. injections are commonly 

used in mice as fluid volumes up to 2 mL can be injected into the abdominal cavity, 

with a low risk of detrimental effects to the animal (207).  Therefore, if using 

artificial inoculation methods the route of infection must be carefully considered, 

depending on inoculum size and dilution volume (502).  

 

1.2.2.1.1 Chemotherapy testing procedures  

Since the introduction of P. berghei parasites into laboratory animals, several 

methods have been used for testing the response of erythrocytic infections of P. 

berghei to antimalarial drugs  (372).  In 1950, Thurston (498) established the first of 

the standard methods for testing antimalarial activity against blood stage P. 

berghei.  This initial method was then further modified by a number of researchers 

resulting in the development of five additional drug screening methods, of which 

the “Rane test” and “Peters 4-day test” are the most commonly used (49, 86, 89, 

132, 176, 198, 360, 378, 381, 387) .  

 

1.2.2.1.1.1 Thurston test for activity against blood forms 

The Thurston test is based on the studies by Curd et al (120) and Tonkin and 

Hawking (505) for antimalarial activity in the avian P. gallinaceum malaria model.  

Albino mice, weighing between 15 and 20 g, were inoculated, by i.p. injection, with 

P. berghei infected blood containing between 5-15 million parasites on Day 0.  All 

mice received the same parasite inoculum.  Test drugs, of which doses were weight 

adjusted, were given orally once daily for four days, commencing three to four 

hours after parasite inoculation.  Parasitaemia was monitored on the fifth and 

seventh day by Giemsa stained thin blood films.  Parasitaemia was determined by 

the percentage of parasitised erythrocytes and the geometric mean was taken for 
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each group of mice.  The minimum effective dose was defined as the smallest dose 

that gave a mean infection level of <1% on the fifth day (120, 498, 505).   

 

In 1953, Thurston published a modification of her initial method (499) in which the 

mice were given a smaller initial parasite inoculum of approximately 1 million 

parasitised erythrocytes, resulting in a parasitaemia that ranged between 1-5% on 

the fifth day.  The minimum effective drug dose was defined as the smallest dose 

that reduced the parasitaemia to 2% of that of the control mice (372, 499).    

 

Although the Thurston test provided a good model for determining drug activity 

against P. berghei (498-501), certain limitations were identified.  The first of these 

was the measurement of drug activity which, when described by Thurston was the 

minimum effective dose that gave <1% infection on the fifth day and later the 

smallest dose that reduced parasitaemia to 2% of that of the control mice. This 

form of measurement was deemed to be ineffective for comparison of the activity 

of different drugs hence the development and adaptation of the ED50 (Effective 

Dose 50%: 50% suppression of parasitaemia when compared to untreated controls) 

by Rollo in 1952 (418).   The use of an ED50 and later ED90 (373) as a measurement 

and determinant of drug efficacy remain in use for drug activity studies (162).  A 

second limitation identified by Peters (373) in 1965 was that the Thurston test 

monitored parasite suppression and was not a true therapeutic test.  Therefore, 

further modifications took place (498) so that drug therapy was not initiated until 

parasitaemia reached 10% (373).  However, perhaps the main disadvantage of the 

modified Thurston method was the increased time required for the operator to 

count blood films as inoculation methods often resulted in a chronically low 

infection for prolonged periods of time (499, 501). 

 

1.2.2.1.1.2 Warhurst bio-assay techniques 

In an attempt to overcome the interpretation problems caused by host immunity 

associated with the Thurston test, Warhurst (536) and Warhurst and Folwell (537) 

described a bio-assay technique which overcame previously noted problems of host 

immunity and copious numbers of thin blood films.  In this test, a group of 10 mice 
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were infected with a standard 107 parasitised erythrocyte suspension (erythrocytes 

suspended in ice-cold 50% calf serum and Ringer solution) and then divided into 

two groups of five after infection.  One to 3 h after infection one group of mice 

receive a single dose of drug whilst a placebo injection was given to the other group 

of 5 mice.  A second group of 10 animals were treated identically except that at the 

time of infection, the mice received an inoculum that was one-tenth that received 

by the first 10 animals.  The mean period of time required to reach a 2% 

parasitaemia for each group of mice was plotted on a logarithmic scale and the 

mean growth rate was determined through comparison of the two inoculum sizes 

(537).   

 

1.2.2.1.1.3  Thompson test for suppressive curative activity  

In the early 1960s, Schneider became interested in developing a compound that 

would give a human long lasting protection against malaria, after oral 

administration (372).  In an attempt to test the suppressive activity of the new 

compounds, a 21-day parasite free test was designed (372).  The purpose of this 

testing procedure was to treat all experimental animals on Day 0 with the test 

compound, and then infect groups of animals at Day 7, 14 and 28.  Daily blood films 

were prepared and mice were monitored for a period of 21 days after parasite 

inoculation.    At Days 7 and 21 blood was drawn from the donor mouse and 

injected into 2 naive mice to test for parasite presence and/or viability (372).  This 

testing procedure was reported to be extremely sensitive and enabled the 

differentiation between a true schizogonic drug and one that simply inhibited 

parasitaemia (372).   

 

A modified version of Schneider’s 21-day parasite free test was used with success in 

the development of cycloguanil pamoate by Thompson et al. (495, 496)  which was 

moved to human volunteer studies and demonstrated antimalarial protection for 

more than one year with sensitive P. vivax and P. falciparum strains (106, 107).  
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1.2.2.1.1.4 Rane in vivo screening system  

The Rane in vivo screening system was developed by Leo Rane at the Walter Reed 

Army Institute of Research (WRAIR) as a tool to assess the efficacy of antimalarial 

compounds that entered their research and development program (372, 382).   

 

This testing system used albino mice that were infected with a standard 106 

inoculum of P. berghei parasites by i.p. injection.  Three days after infection, mice 

were treated with a single dose of drug and animals observed daily for survival or 

death (372, 382).  Untreated control mice usually died 6 to 7 days after inoculation.  

The drug was considered to be active, and underwent further investigation, if the 

treated animals survived for at least twice as long as the untreated control mice.  

Any mice that survived longer than 60 days without exhibiting symptoms were said 

to be cured, whilst animals that died between day 2-5 of drug administration were 

said to have died from drug toxicity (372).  The minimum effective dose was 

compared to the maximum tolerated dose (i.e. the dose that produced no more 

than 1 in 5 toxic deaths) with dose levels titrated downwards to give an indication 

of the therapeutic index of the drug (382).  This simple test system allowed over 

25,000 compounds to be examined per year with all promising drugs further 

investigated using methods such as the ‘4-day test’ to obtain more accurate 

information on their activity  (365, 382, 503).   

 

An advantage of the Rane method is that as it monitors animal survival and death as 

an indicator of drug activity, an increased number of compounds may be studied in 

a short period of time (382). However, a general limitation of this method is that 

the drug efficacy of certain antimalarial compounds, such as proguanil, may have an 

immediate effect on parasitaemia but does not affect animal survival (372).  

Therefore, if drug success is dependent on animal survival time, some active 

antimalarial compounds may be overlooked.   
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1.2.2.1.1.1 Peters “4-day test”  

The ‘4-day test’ , as described by Peters (379), comprises two distinct parts: (a) a 

preliminary ‘4-day test’ for the detection of suppressive activity and (b)  the ‘4-day 

test’ for quantitative assessment of blood schizontocidal activity (382). 

a) Preliminary ‘4-day test’ for detection of suppressive activity: Groups of male 

albino mice are inoculated with either 2 x 106 P. berghei N parasites or a 

similar inoculum of  P. chabaudi AS.  All mice are then given a fixed dose of 

30 mg/kg [once daily for 4 consecutive days beginning on the day of 

infection].  For each parasite species one group of mice receive drug 

administration via subcutaneous (s.c.) injection whilst the other group 

receives drug through oral administration.  Parasitaemia is determined 

through preparation of peripheral blood film on the fifth day (first day after 

conclusion of treatment), to determine qualitatively the presence and 

degree of activity of the screening dose (379).   

b) ‘4-day test’ for quantitative assessment of blood schizontocidal activity: 

Male albino mice are inoculated with 106 parasitised erythrocytes (of either 

P. berghei or P. chabaudi strain) by i.v. administration. Following inoculation, 

all mice are dosed once daily for 4 consecutive days using the dosing range 

determined in the preliminary test (as described above).  Each tested 

compound may be administered s.c., i.p. or by any other desired route.  The 

parasitaemia is determined on the fifth day after inoculation and the ED50 

and ED90 values are determined from a semi-logarithmic time-density plot.  

The degree of cross-resistance (I50 or I90) is determined by comparing the 

drug activity in sensitive and resistant parasite strains using the following 

formula: 

 

 

 

 

 

 

         ED50/ED90 of resistant line 
 
ED50/ED90 of sensitive parent strain 

Index of cross resistance   = 
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Compounds shown to possess suppressive activity can be further tested at the dose 

ranges determined in the preliminary ‘4-day test’ for detection of suppressive 

activity  and including one dose step further than the minimum fully suppressive 

dose, for suppressive curative activity and influence on survival times as outlined in 

the Thompson test (1.2.2.1.1.3 ) (378-380, 382, 384).  

 

1.2.2.2 In vitro studies 

In vitro interactions between antiplasmodials, as represented by isobolograms, 

provide useful activity data for clinical studies. However, they do not necessarily 

determine the efficacy of a combination in the host, since this also depends on 

pharmacokinetic characteristics. Synergy, indifference (addition), and antagonism 

are the expected outcomes of drug-drug interactions (164).   

 

In 1976, Trager  and Jensen (508) described an in vitro culture method in which 

human malaria parasites could be maintained in continuous culture, whilst still 

remaining infective to Aotus monkeys. Today, parasites from both human malaria 

and experimental animals are used successfully in continuous culture for a wide 

variety of malaria research facets, in particular drug development, assessment of 

drug combinations and parasite sensitivity studies (46, 54, 63, 79, 88, 126, 224, 242, 

243, 288, 349, 405, 417, 459, 516, 568).     

 

1.2.2.2.1 Methods for evaluation of drug combinations 

Among the techniques employed in the evaluation of the combination of two 

antimicrobials potentially exhibiting synergy, are the checkerboard technique and 

the time-killing curve method (235, 302).  The checkerboard or fractional inhibitory 

concentration (FIC) technique employed a methodology similar to that utilized for 

the determination of the minimum inhibitory concentration (MIC), the lowest 

concentration of drug inhibiting growth after 24 h of incubation.  The combination 

is said to have a synergistic effect if there is a 4 fold reduction in the MIC of each of 

the agents tested alone (358). In the time-killing curve method, the reduction of a 

fixed inoculum over 24 h exposure of combination antimicrobials is compared with 

the effect of each agent used alone (235).  In this method the measure of success is 
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determined by calculating the IC50, which is the concentration of drug required to 

inhibit growth of the parasite by 50% compared to untreated controls (349, 488).  

 

1.2.2.2.2 Isobolograms 

The study of the presence, type, and degree of interaction between biologically 

active agents is highly relevant to many research areas including pharmacology, 

immunology and toxicology (302). The construction of isoboles (Fig. 1.5) is a classic 

procedure of the analysis of interactions between agents (164, 302).   The isobole 

method has been used for the evaluation of synergy and antagonism in many fields 

and requires experimental data for agents used alone and in different dose 

combinations at equi-effective levels (126, 164, 302, 475). The construction of 

isobolograms has several disadvantages.  Finding a combination of drugs that would 

produce a given effect is a time-consuming task.  In addition, isobolograms can only 

be used to evaluate interactions at this effect level (302).  

 

Figure 1.5.  Isobolograms demonstrating antagonistic (a) and synergistic (b) drug 

combinations in the rodent P. berghei model.  (Taken from (459)) 

 

However, isobolograms have also proven to be a useful method of evaluating 

antimalarial drug combinations in in vivo models such as the P. berghei murine 

malaria model.  Whilst discrepancies in isoboles prepared from in vitro and in vivo 

data may occur, this is not of major concern as in vivo parasites are exposed to 

variable levels of drugs and metabolites, compared to the direct antiparasitic 

activity observed with in vitro parasite cultures (459). This method of antimalarial 

(a) (b) 
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compound assessment has been successful in several P. berghei murine models (89, 

459). 

 

1.2.2.3 In vivo versus in vitro studies 

The majority of primary drug screening in vitro methods, as well as investigation 

into their modes of action, are performed using P. falciparum parasites in culture.  

Nevertheless, the study of the action of drugs in rodent Plasmodium models 

remains an important step for in vivo studies of the activity of new molecules, drug 

associations and the setting up of new therapeutic strategies (268).    

 

Rodent malaria models are widely used for screening new drugs for their 

antimalarial activity in vivo (243, 378).  The study of drugs in rodent-malaria models 

can provide valuable information about stage specificity of the drugs, routes of 

administration and development of resistance  (243).   The P. berghei rodent model 

has been developed to allow the determination of the effect of drugs on the 

erythrocytic schizogony both in vivo and in vitro cultures (242, 323, 379, 384, 417, 

430, 500-502, 525).  Synchronized short-term cultures of blood stages are easily 

established (242) in which antimalarial efficacy and stage specific activity of drugs 

can be accurately assessed and compared with the in vivo antimalarial activity 

(243). 

   

Comparisons of the antimalarial activities from different studies are hampered 

when different Plasmodium species and different methods are used.  In vitro and in 

vivo studies using the same species are therefore valuable in determination and 

comparison of the antimalarial activity of drugs (243, 324).  For example, studies 

with a number of dihydroartemisinin (DHA) derivatives showed good activity 

against P. falciparum in cultures, but were ineffective against P. berghei in rodents 

(281).  It is unknown whether variation in susceptibility of various parasite species, 

differences in stability of drugs between culture and host or other factors in the 

host are responsible for the observed difference in antimalarial activity (281).  

Variation in the antimalarial activity of a drug between studies can also be 

influenced by differences in culture methods, routes of administration and solvents, 
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which hamper comparison of results from laboratories using different techniques 

(243).  Standardized experiments and combination in vitro and in vivo studies with 

the same species are therefore essential for the accurate comparison of the 

antimalarial efficacies of different drugs (243).  This can be observed in a series of 

experiments conducted by Janse et al. (243), who demonstrated a good comparison 

of the in vitro and in vivo antimalarial activity of artemisinin in a P. berghei model.  

 

Traditional in vitro measurements such as the MIC are used to predict outcome of 

antimicrobial therapy.  While these measurements are a good indication of the 

potency of an antimicrobial, they do not provide the type of information necessary 

to determine the optimal drug dose or dosing interval (18).   The MIC test provides 

information about a drug concentration at a single time point.  However, the MIC 

does not elucidate the effect of varying drug concentrations over time or whether 

there may be effects that persist after drug exposure.  Both in vitro and animals 

studies have been used to determine the impact of drug concentration on the rate 

and extent of antimicrobial killing (18). Both in vitro and animal studies can also 

determine the impact of drug exposure on organism growth after drug exposure.  

However, only in vivo animal models are able to determine the time course of 

activity at the site of infection and the potential impact of host immune factors on 

drug activity (18, 278).   

 

Animal model studies have a distinct advantage over both in vitro models and 

clinical trials in the ability to discern which pharmacokinetic/pharmacodynamic 

dosing index is most closely associated with efficacy (18).  Furthermore, whilst 

studies with bacteria, tissue culture, and computer simulation have been found to 

provide useful information for therapeutic studies, testing on animals is required in 

order to attain results influenced by the complexities of a living organism (407).     

 

1.2.3 Murine malaria as a model for human infections 

There are a large number of animal models that provide investigators with the 

ability to characterise the pharmacokinetics and pharmacodynamics of antimalarial 

drugs (268, 382, 407).  However, murine models are the most versatile of the 
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animal models in which to study the interactions between host and the erythrocyte 

stage of parasite, the analysis of molecular interactions and precise pathological 

changes (134, 278, 433).  Attractive characteristics of the murine model include the 

fact that it is (i) inexpensive and easy to maintain, (ii) the mouse immune system is 

well characterised and (iii) large scale intervention studies of a nature not 

permissible in humans, may be performed (487).  While there may be 

pharmacokinetic and immune state differences between different animal models, 

appropriate pharmacodynamic analyses most often account for these differences 

and allow comparison of data among studies possible (18).  

 

Although mouse models may contribute to the understanding of the pathogenesis 

of complications of malaria, the human disease is not replicated in full (269).  This 

may be seen in particular in the study of cerebral malaria, in which several murine 

models have been developed (83, 121, 134, 486).  Whilst many similarities between 

human and murine cerebral malaria can be identified, particularly in regard to 

pathological lesions (such as sequestration, cerebral hemorrhage or infarction) and 

clinical symptoms (such as ataxia, fitting and coma) (134, 293), there are also 

distinct differences in the disease progression.  A criticism of several of the current 

cerebral models (such as P. berghei ANKA in C57BL/6 mice) is that these murine 

models are characterised by monocyte adherence to blood vessels (23, 486) 

although more recent models have found the presence of parasite sequestration in 

the brain which more closely mimics P. falciparum infection (23, 214).  However, 

recent studies in African children have also identified that those who have died 

from cerebral malaria also show the adherence of mononuclear cells in the brain 

(278, 394).  Therefore, for future studies the use of P. berghei ANKA in BALB/c mice 

may be a more appropriate clinical model given that both infected erythrocytes and 

mononuclear cells were found to sequester in the brain, thus more closely 

resembling the human disease (214, 278).  Furthermore, one of the major 

differences in the pharmacokinetics between animals and humans is that the rate of 

drug elimination is faster in animals. This is especially true in small rodents, which 

are commonly used in animal infection models.  In general, the half-life of 

antimicrobial drugs is 6 to 9 fold longer in humans than in mice (18).   
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Whilst mouse models are not exact replicas of the human infection and disease, 

they do provide a useful insight into disease pathogenesis, complications of 

infection, interaction of the host immune system and treatment therapies (269, 

278).   Whilst direct extrapolation from rodent biology to human malarias should be 

done with caution, and might not be applicable in all situations, each of the four 

rodent malaria species has similar characteristics to the human malarias and which 

makes them suitable for parallel study (75, 80, 269).   Therefore, a suitable murine 

model may contribute valuable data, and a greater understanding, of specific 

disease processes, therapeutic responses and the identification of potential targets 

for therapeutic intervention, all important characteristics for drug development and 

drug efficacy studies (1, 269, 278, 433).   
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1.3 ANTIMALARIAL DRUGS 

1.3.1 Introduction 

In the current clinical setting there are at least 10 defined classes of antimalarial 

drugs which are used for the prophylaxis and chemotherapy of malaria including 

arylaminoalcohols, 4-aminoquinolines, dihydrofolate reductase inhibitors, 8-

aminoquinolines, antibiotics, sesquiterpene lactones and naphthoquinones (42, 

250, 300, 423, 535, 540, 555).   Prophylactic drugs are used to prevent the 

establishment of the Plasmodium parasite either in the liver (primaquine) or blood 

(mefloquine), whilst malaria chemotherapies are used to suppress and clear 

parasitaemia and achieve clinical cure for current infections (540).   

 

1.3.1.1 Classification of antimalarial drugs 

Conventional antimalarial drugs are generally classified based on either the stage of 

parasite that they target or on chemotherapeutic actions (236).  In consideration of 

these factors, antimalarials are classified as blood schizontocides, tissue 

schizontocides, gametocytocides or sporontocides.   

 

1. Blood schizontocides – this class of drug act on the asexual erythrocytic 

forms of all Plasmodium species are used to achieve clinical or suppressive 

cure.  The majority of all commonly used antimalarials fall into this category 

eg.  chloroquine, quinine, mefloquine, pyrimethamine, amodiaquine, 

proguanil, sulfadoxine, tetracyclines, artemisinin derivatives (39, 236, 266, 

539) (Fig. 1.6).  

 

2. Tissue schizontocides – this class of antimalarials is used either for 

prophylaxis or for the prevention of relapse of P. vivax or P. ovalae by 

eliminating developing tissue schizonts (primary tissue forms) or latent 

hypnozoites (secondary exoerythrocyic forms).  Examples of tissue 

schizontocides include primaquine, pyrimethamine and proguanil (39, 236, 

266, 539) (Fig. 1.6).   
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3. Gametocytocides – These antimalarials act by destroying the sexual forms of 

the parasite in the blood thereby preventing transmission of infection to the 

mosquito.  Chloroquine and quinine have gametocytocidal activity against P. 

vivax and P. malariae, but not against P. falciparum.  Primaquine is a 

commonly used gametocyctocide for P. falciparum infections (39, 236, 266, 

539). Recent investigations have also provided evidence that the artemisinin 

drugs also demonstrate gametocytocidal activity against P. falciparum (213, 

398, 574) (Fig. 1.6). 

 

4. Sporontocides – This class of antimalarials acts by preventing development 

of oocysts and sporozoites in the infected mosquito, thus preventing further 

transmission of infection.  Primaquine, pyrimethamine and proguanil are all 

classed as sporonticides  (236, 266, 539) (Fig. 1.6). 

 

 
 

Figure 1.6.  Action of antimalarial compounds at different stages of the 

development of the malaria parasites in Anopheles mosquitoes and in the human 

host (540). 
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1.3.1.2 Determinants of drug effectiveness 

When selecting an antimalarial drug for clinical therapy, a number of factors much 

be considered.  These include assessment of the patient’s age, the degree of 

immunity (if any), the likely pattern of susceptibility to antimalarial drugs, drug 

pharmacokinetics, parasite burden, and the cost and availability of those drugs (39, 

555).  All of these factors prove to be important determinants in the selection of a 

suitable treatment option.  The main issues related to drug selection are 

predominantly related to drug availability, adherence to therapy and drug 

resistance patterns (39, 44, 186, 555). 

 

1.3.2 Artemisinins  

Artemisinin, more traditionally known as qinghaosu, is isolated from the leaves of 

the Chinese herb sweet wormwood Artemisia annua L and is the only natural 

antimalarial agent since the discovery of quinine (272).   Historical accounts report 

the antipyretic properties of artemisinin from Chinese scripture dating back over 

2000 years with the first accounts of the specific effect of malarial fever 

documented in the 16th century (128, 228, 238, 570, 574).  In 1972, Chinese 

scientists characterised the structure of artemisinin as a sesquiterpene lactone with 

an internal peroxide linkage and within 10 years the drug was introduced into 

clinical practice (128, 238, 520). The semi-synthetic artemisinin derivatives 

dihydroartemisinin (DHA), artesunate, artemether and arteether (Fig. 1.7) were 

subsequently developed and introduced into clinical practice where they have 

become renowned as the most potent and rapidly acting of the antimalarial drugs 

available on the market today, with clearance of parasites noted within 48 h in most 

cases (212, 238, 521).   

 

Although artemisinins are an exciting class of antimalarial drugs with their short 

elimination half-life, rapid onset of action and no major side-effects, a major 

drawback of these drugs is the high parasite recrudescence rates within 2 to 3 

weeks of monotherapy (187).  In view of this high recrudescence rate, it has been 

concluded that to prevent the formation of artemisinin resistant parasites, 
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artemisinins should only be used in combination therapies rather than in 

monotherapy (77, 521, 552, 570).  

 

 

Figure 1.7. Chemical structure of 1. Artemisinin; and derivatives 2. 

Dihydroartemisinin (DHA); 3. Artemeter; 4. Arteether; 5.  Artesunic acid 

(artesunate) and 6.  Artelinate  (570). 

 

1.3.2.1 Mode of action 

For decades after their discovery, the antimalarial action of artemisinin and its 

derivatives was based on their unusual chemical structure incorporating a peroxide 

bridge and was attributed to their chemical capability to generate free radicals (213, 

570).  It was thought that the endoperoxide bridge underwent ring-opening via 

protonation or formation of a complex with metal iron causing destructive, free-

radical generation with the parasite altering the function of key parasite proteins, 

including membrane transporters (128, 152, 363).  Early studies indicated that the 

modulation of oxidative stress may be important for antimalarial activity as those 

artemisinin compounds lacking the peroxide oxygen atom, were without activity 

(213, 363).   

 

More recently an alternative mechanism of action for artemisinins was proposed 

which is based on the inhibition of the malaria parasite’s calcium ATPase 6, 

sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA) (152, 213, 570).  

SERCAs act to reduce cytosolic free calcium concentration by actively concentrating 

Ca2+ into membrane-bound stores with this activity is critical to cellular survival 

(213).  Eckstein-Ledwig et al. (152) demonstrated that artemisinins inhibited the 
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SERCA ortholog of P. falciparum (PFATP6) with marked specificity, ultimately 

resulting in the death of the parasite (152, 263, 515).  However, SERCA inhibition as 

a mechanism of action for artemisinins remains contentious (355, 569). Whilst 

recent publications have offered further possible mechanisms for artemisinin’s 

antimalarial action (136, 532), the drugs’ biological targets still remain ambiguous 

(355).  

 

1.3.2.2  Antiparasitic activity 

Artemisinin derivatives are active against all human malaria parasites, including 

multidrug-resistant P. falciparum and have a broad activity against the 

intraerythrocytic stages of the parasite, ranging from young ring-forms to schizonts 

(128, 212, 213, 238, 574).  In falciparum malaria, it has been shown that artemisinin 

also kills gametocytes, including stage 4 gametocytes which are otherwise only 

sensitive to primaquine (213, 574).  This gametocytocidal activity of artemisinin 

derivatives was also shown in clinical studies in Thailand which showed that 

artemisinin derivatives (artesunate and artemether) reduced the transmission 

potential of falciparum malaria (398).    

 

1.3.2.3 Pharmacokinetics  

Pharmacokinetic studies of artemisinins have been limited by difficulties of assays 

with several different techniques employed by various groups giving ranging 

accuracies (344, 570).  Whilst high performance liquid chromatography (HPLC) with 

electrochemical detection was originally deemed the method of choice for 

measurement of artemisinin and its derivatives, with a sensitivity of 1–5 ng/mL 

(520, 521), more recently LC-MS methods have shown to have equal sensitivity with 

the additional quality of measurement of drug concentrations from small sample 

volumes (480, 524, 533).  Although the pharmacokinetic parameters of artemisinin 

and its derivatives have been determined, unfortunately very few pharmacokinetic 

studies have focused on the variation of artemisinin profiles in different populations 

of patients, particularly children and pregnant women (570).   
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1.3.2.3.1  Artemisinin 

After oral or rectal administration of artemisinin the peak plasma concentrations 

occur 3 h and 11 h later, respectively (344, 574).  Artemisinin is a potent inducer of 

its own metabolism with an estimated elimination half life of 1-3 h (32, 128, 238).    

 

1.3.2.3.2 Dihydroartemisinin (DHA) 

DHA is the main active metabolite of the artemisinin derivatives, but can also be 

administered orally and rectally as a drug in its own right.  DHA is rapidly absorbed 

following oral administration reaching peak plasma concentrations approximately 

2.5 h after dosing.  After rectal dosing, peak plasma concentrations occur 

approximately 4 h later.  The elimination half-life of DHA is estimated to be 40-60 

min and it is metabolised to an inactive glucuronide (128, 238, 347, 574).    

 

1.3.2.3.3  Artesunate  

Artesunate is rapidly absorbed after dosing and is almost entirely converted to DHA, 

the active metabolite through which the antimalarial activity of artesunate is 

determined (344).  Artesunate peak plasma concentrations occur 0.2–1.6 h (53, 

337, 345, 347), 1.4–3.1 h (255, 343) and 0.2–0.6 h (237) after oral, rectal and i.m. 

administration, respectively (344, 574).  The elimination half-life of artesunate is 

estimated to be between 2-5 min before conversion to DHA (elimination half-life 

40-60 minutes) (128, 238, 344).   

 

1.3.2.3.4  Artemether 

Artemether is the methyl ester of DHA and is metabolized to DHA.  Artemether can 

be administered orally or intramuscularly with peak plasma concentrations 

occurring 2-3 h after oral dosing or approximately 6 hours after i.m. injection.  

However, following i.m. injection absorption is variable and slow and although the 

mean absorption time is approximately 6 h, peak plasma concentration can occur as 

long as 18 h after dosing (574).  The elimination half-life of artemether ranges 

between 2-11 h (128, 238).   
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1.3.2.3.5  Artemotil (previously arteether) 

There are limited data on the pharmacokinetics of artemotil, however, absorption is 

said to be slower and more erratic than the other artemisinin derivatives, with 

some patients having peak plasma concentrations more than 245 h after 

administration (574).  A limited study in healthy volunteers suggested that the 

absorption half-life of artemotil varied from 0.6 to 1.7 h with a long elimination half-

life of 25-72 h (249).   

 

1.3.2.4  Clinical applications 

Artemisinin derivatives can be used for the treatment of both uncomplicated and 

severe malaria in both adults and children (570).  Since their introduction into the 

clinical setting as a chemotherapeutic agent artemisinins have been used 

extensively, predominantly in combination therapies, with impressive results (27-

29, 31, 165, 180, 209, 217, 227, 230, 244, 256, 310, 521, 522, 571).  The most 

rapidly acting of all antimalarials, artemisinins are effective against all Plasmodium 

species and are active by parenteral, oral or rectal administration (77, 552, 570).  To 

date, there has been no significant toxicity reported in humans (218, 318, 552, 570).   

 

1.3.2.5  Adverse Effects 

In the clinical setting artemisinin and its derivatives have been found to be safe and 

remarkably well tolerated.  However, occasional reports of mild gastrointestinal 

disturbances, dizziness, tinnitus, reticulocytopenia, neutropenia, elevated liver 

enzymes and electrocardiographic abnormalities including bradycardia and 

prolongation of the QT interval have been reported (238, 520, 574) . 

 

Animal toxicology studies have reported neurotoxicity, particularly when using very 

high doses of i.m. artemotil and artemether, however, these results have not been 

substantiated in humans (218, 574).  In the animal studies, administration of high 

doses of artemether and artemotil resulted in selective damage to the brain stem 

centres involved predominantly in auditory processing and vestibular reflexes (68, 

350, 436, 506).  However, although neurotoxic and cardiotoxic effects have been 

observed in experimental animals, these all occurred after high dosing regimens 
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and therefore the probability of adverse effects in humans using the clinical dosing 

regimens is minimal (42). 

 

Animal studies have also provided evidence of morphological abnormalities and 

embryo death after artemisinin derivatives were administered during early 

pregnancy (582). A comprehensive review by Clark (104), on the embryotoxic 

effects of artemisinin derivatives in animal models, suggested that malformations of 

the cardiovascular and skeletal systems occurred when embryolethal doses were 

administered in the early gestational period, but not in late gestation. Furthermore, 

such adverse effects were reported in the absence of maternal toxicity (104).  The 

effect of artemisinin and its derivatives have not been thoroughly evaluated in the 

first trimester of pregnancy in Humans (534).  Therefore,  the WHO recommends 

that use of artemisinin derivatives during the first trimester of pregnancy should be 

avoided until further investigation has taken place (582).   

 

1.3.2.6  Resistance  

It was generally regarded that through the tight control of artemisinin therapies, 

and having their use limited to combination therapies, resistance towards this 

highly efficacious drug could be prevented (149, 551, 563).  In 2000, a report was 

published which described the reduced parasite clearance noted in 4 patients in 

Sierra Leone after treatment with artesunate (431).  Whilst the authors concluded 

that this was evidence that resistance towards artesunate was developing on the 

African continent, no other non-responsive or confirmed cases of parasite 

resistance were published and it was still generally acknowledged that there was no 

resistance towards artemisinin drugs (31, 550).  However, further cases of 

artesunate resistance in P. falciparum infection were published in 2009 (143), 

where it was clearly demonstrated that there was a prolongation of parasite 

clearance time after artesunate therapy in clinical cases in Western Cambodia 

compared to north-western Thailand (143).  The described prolonged period to 

parasite clearance could not be explained by drug pharmacokinetics or other host 

factors and was therefore concluded to be artesunate resistance (143). 

 



- 67 - 
 

1.3.3 Piperaquine 

Piperaquine (PQ) is a bisquinoline antimalarial which was first synthesized in the 

1960s by both the Shanghi Pharmaceutical Research Institute in China and Rhone 

Poulenc in France (92, 127).  During the next 20 years PQ was used extensively as 

both a prophylactic agent as well as for malarial chemotherapy in China and 

Indochina.  Once the Chinese National Malaria Control Programme recommended 

PQ over CQ for the treatment of malaria, over 140 million adult treatment doses 

were distributed (127, 217).  However, with the emergence of PQ-resistant P. 

falciparum strains as well as the emergence of the artemisinin derivative drugs, the 

use of PQ in the clinical setting declined (127).   

 

In the quest for the development of new antimalarial combination therapies, PQ 

was ‘rediscovered’ by Chinese scientists as a suitable drug partner for combination 

with an artemisinin drug (127).   PQ was found to be a useful partner drug for 

artemisinin derivatives as early clinical studies demonstrated that PQ had good 

tolerance, mild side-effects, high-level prophylactic efficacy for 3 weeks after a 

single oral administration and rapid blood schizontocidal action against P. 

falciparum (46).  Subsequently, several artemisinin combination therapies including 

PQ as the partner drug have emerged in the clinical setting, with results to date 

demonstrating good tolerability and efficacy (10, 27, 29, 139, 178, 189, 209, 217, 

252, 253, 305, 456, 480). 

 

1.3.3.1  Mode of action 

PQ is a member of the 4-aminoquinoline class of antimalarial drugs and contains the 

7-chloro-4-aminoquinoline structure found in every member of this drug class (127) 

(Fig. 1.8).  As a result, it is likely that PQ has a similar mode of action as other 4-

aminoquinolines such as CQ.  Evidence suggests that the mode of action of PQ is the 

inhibition of the haem-digestion pathway in the parasite food vacuole (127, 356).  It 

is suggested that PQ accumulated in the malaria parasite by iron trapping, resulting 

in high drug concentrations in the food vacuole, which leads to an inhibition in the 

formation of the haemozoin polymer (356). 



- 68 - 
 

 

 

  Figure 1.8. Chemical structure of piperaquine phosphate (127)  

 

1.3.3.2  Antiparasitic activity 

The parasite maturation stage predominantly affected by PQ administration is the 

trophozoite, as this is the only asexual stage which contains a functional food 

vacuole (91, 127).  Microscopic studies on the effect of PQ on the structure of 

erythrocytic stages of P. berghei ANKA, of which all asexual parasite stages are 

observed within the peripheral circulation, supports the proposed mechanism of 

action of PQ as after treatment the ultrastructure of trophozoites are 

predominantly affected whilst ring-form, schizonts and gametocytes showed few 

morphological changes (93, 94).   Changes to the structure of trophozoites was first 

identified as the progressive swelling of the food vacuole membrane with eventual 

autophagocytosis of the parasite, 12-24 h after drug administration (93).  It is 

therefore highly likely that the target of PQ efficacy is the food vacuole of the 

trophozoite (90, 93).   

 

1.3.3.3  Pharmacokinetics 

Despite use as an antimalarial agent in clinical practice since the early 1960s, 

pharmacokinetic data of PQ in humans has only recently become available (10, 232, 

286, 425, 443, 480).  The first clinical study describing the pharmacokinetics of PQ 

was published by Hung et al, (232) who described the population pharmacokinetics 

of PQ in Cambodian children and adults with uncomplicated P. falciparum and P. 

vivax malaria. All patients received the artemisinin combination therapy Artekin 2® 

(each tablet containing 40 mg of DHA and 320 mg of PQ phosphate (PQP)).  It was 



- 69 - 
 

shown that PQ had a slow absorption and a long terminal elimination half-life (t½) of 

22.6 days (543 h) in adults and 13.5 days (324 h) in children (232).    

 

With the increasing popularity of PQ as a partner drug to the artesmisinins for 

combination therapy, this initial report was rapidly followed by a succession of 

studies investigating the pharmacokinetics of PQ in healthy and malaria-infected 

populations, across a variety of ethnicities, age groups and infecting parasite species 

(254, 286, 425, 480).   Despite a general consensus that PQ has an extremely long 

elimination half-life, designating a consistent value to this parameter has proven to 

be a contentious issue (127, 483).   The accuracy of the published and generally 

accepted half-life of 23 days (231) was challenged by Tarning et al. (483) who 

suggested that the previously published value was likely to be an underestimation 

as a result of insufficient assay sensitivity,  short duration of sampling and 

oversimplified fitting of two-compartment models.  In their study, the duration of 

sampling was increased from 35 days (previous published report (231)) to 93 days 

(483).  As a result of the extended period of monitoring of plasma PQ 

concentrations, the terminal elimination half-life was suggested to be in the order 

of 36 days although if based on the last measurements, could be as long as 80 days 

(483).   However, since these early pharmacokinetic data, further studies in healthy 

volunteers have reported PQ half-life in the range of 11.7 to 20.3 days after a single 

dose (286, 425, 443), and as 12.5 days after multiple doses (286).  In patients with 

uncomplicated malaria the mean elimination half life (t½) was suggested to range 

between 13.5 and 28 days (232, 254, 480).  The aforementioned studies 

demonstrate the issues involved in accurately measuring and defining 

pharmacokinetic parameters for long half-life drugs, such as PQ.  Reported half-lives 

appear to be strongly dependent on sample numbers, assay sensitivity and the 

duration of follow-up after drug administration.    Such issues are best illustrated in 

Fig. 1.9 (483), which shows the relationship between follow-up duration and assay 

sensitivity and the potential problems associated with the estimation of terminal 

elimination half-life for drugs, like PQ, that have multiphasic elimination kinetics 

and a long terminal half-life.   
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Figure 1.9  Pharmacokinetic elimination of piperaquine.  The diagram  

illustrates the different estimates of the terminal elimination half-life as a function 

of follow-up duration and assay sensitivity (483) 

 

 

1.3.3.4 Clinical Efficacy 

Published preclinical studies, although limited, have concluded that PQ is a 

relatively safe and well tolerated drug, with a good toxicity profile (50, 92, 127).  It is 

effective against all Plasmodium strains, including those strains of P. falciparum 

which are resistant to CQ, with few patients reporting adverse affects.    Despite the 

rapid acquisition of parasite resistance towards PQ after extensive monotherapeutic 

use,  the excellent tolerability, effectiveness, long half-life and low cost of PQ make 

it a promising partner drug for short-course antimalarial combination therapies 

(127).   

 

Even with the successful implementation of the artesunate-mefloquine and 

artemether-lumefantrine combinations in malaria endemic countries, the quest for 

a more desirable Artemisinin Combination Therapy (ACT), with a partner drug that 

fulfils more of the WHO recommendations, continues.  Whilst searching for new 

partner drugs for ACTs, PQ underwent a renaissance and as a result a number of 

ACTs including PQ as the partner drug have been successfully formulated and 

implemented in the clinical setting (Table 1.4)(456).  The first PQ combination 

therapy combined the artemisinin derivative DHA with PQP in a co-formulation with 
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Table 1.4  Combination therapies including PQP currently used in the clinical 

setting.  Abbreviations: Dihydroartemisinin (DHA); Artemisinin (AR); Piperaquine 

phosphate (PQP); Trimethoprim (TMP); Primaquine (PRIM); days (d); hours (h). 

 

Commercial 
name 

DHA 
(mg) 

AR 
(mg) 

PQP  
(mg) 

TMP 
(mg) 

PM 
(mg) 

Dosing schedule      
(adult) 

Cure rate Ref 

CV-8® 32 0 320 90 5 2 tablets at 
t = 0, 24 and 48 h 

28 d: 94% (178) 

Artecom® 32 0 320 90 0 2 tablets at 
t = 0, 6, 24 and 48 h 

28 d: 96.9% 
56 d: 97.4% 

(560) 
(217) 

Duo-
Cotexcin® 

40 0 320 0 0 3 tablets at  
t = 0 and 24 h,  
2 tablets at t = 48 h 

 
2.1 mg/kg/day DHA 
17.1 mg/kg/day PQP 
t = 0, 24 and 48 h 

28 d : 97.8% 
 
 

 
42 d: 98% 

(595) 
 
 

 
(589) 

Artekin® 40 0 320 0 0 2 tablets at 
t = 0, 6-8, 24 and 48 h 
 
 

 
1.6 mg/kg/day DHA 
12.8 mg/kg/day PQP 
t = 0, 8, 24 and 48 h 

 
1.6 mg/kg/day DHA 
12.8 mg/kg/day PQP 
t = 0, 24 and 48 h 
 

 
2.1 mg/kg/day DHA 
16.8 mg/kg/day PQP 
t = 0, 24 and 48 h 

 
2.25 mg/kg/day DHA 
18 mg/kg/day PQP 
t = 0, 24 and 48 h 
 

28 d: 92.3–
100% 
56 d: 98.7% 
63 d: 97.5% 

 
63 d: 100% 
63 d: 96.1% 
 

 
28 d: 95.2–
99% 
63 d: 99.4% 
 

 
28 d: 99% 
42 d: 100% 
63 d: 98.4% 

 
42 d: 87–
89.9% 
63 d: 92.2% 

(27, 139, 
253) 
(217) 
(244) 

 
(29) 
(27) 

 

 
(252, 
477) 
(29) 

 

 
(456) 
(305) 
(189) 

 
(209, 
397) 
(413) 

Artequick® 0 80 400 0 4 3.2 mg/kg/day AR 
16 mg/kg/day PQP 
0.16 mg/kg/day PRIM 
t = 0, 24 and 48 h 

28 d: 98.5% (265, 
476) 
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trimethoprim and primaquine called CV-8® (127, 178).  This combination was 

implemented as national policy for first-line treatment of uncomplicated malaria in 

Vietnam in 2000, with a 3-day regimen giving 28-day cure rates of 96%, a similar 

outcome to the combination atovaquone-proguanil (Malarone) (178). After slight 

modification of the original CV-8® formulation, Artecom® was registered in both 

Vietnam and China, however, its use in the clinical practice appears to have been 

limited  (127, 217).   The most recent PQ formulations Artekin® (PQ-DHA) and 

Artequick® (PQ-artemisinin) have been more successfully implemented into the 

clinical setting, particularly in Southeast Asia, with both drugs being shown to be 

highly efficacious   (27, 29, 139, 189, 209, 217, 244, 252, 253, 265, 305, 336, 397, 

413, 456, 476, 477, 589, 595).  

 

Benefits of DHA-PQ over artemether-lumefantrine were that DHA-PQ offered better 

post-treatment prophylactic effect, a significantly lower risk of recurrent 

parasitaemia after treatment, simple dosing schedule, more consistent intestinal 

absorption, relatively low cost, a lower risk of gametocytaemia after therapy and 

better haemoglobin recovery (336, 589).   Several advantages that DHA-PQ has over 

artesunate-mefloquine are that the treatment course is cheaper (approximately 

US$1.50 per adult treatment), better tolerated (217) and available as a co-

formulation which means the treatment course is easier to take and should result in 

an increase in adherence thus limiting the chance of the emergence of resistant 

parasites to either the DHA or PQ (456).  

 

Studies comparing the combinations artesunate-mefloquine and DHA-PQ have 

demonstrated that both treatment regimens were highly efficacious and well 

tolerated treatments (27, 29, 217, 253, 305, 456) with reported cure rates of 95 to 

99% with 3-day dosage regimens in uncomplicated falciparum malaria (27, 139, 217, 

252, 456, 477).  Therefore, with the successful implementation of PQ based ACTs in 

the clinical setting, it is important to further understand the relationship between 

PQ plasma concentrations and toxicity or efficacy (253) as well as determining the 

therapeutic index for PQ, which, remains poorly defined.  
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1.3.3.5  Adverse effects 

Overall, studies have shown that when taken in monotherapy or as an ACT, PQ is a 

well tolerated drug with few patients reporting adverse effects (127, 139, 178, 217).  

Minor complains that have been reported include mild headache, dizziness, nausea, 

abdominal pain and vomiting   (27, 29, 92, 127, 139, 209, 217, 232, 456, 477) 

although these symptoms are often difficult to distinguish from the symptoms 

resulting from the malaria infection.  However, in a healthy volunteer study it was 

found that mild nausea, abdominal pains, dizziness and fatigue occurred transiently 

after PQ administration (443) suggesting that the mild adverse effects noted in 

clinical studies were in fact due to either a combination of symptoms of malaria and 

drug administration or simply due to PQ administration.   

 

To date there are limited data available relating to the safety of PQ use during 

pregnancy, lactation or in children younger than 12 months of age (127, 139, 232, 

252, 253, 413). 

 

1.3.3.6 Resistance 

After the extensive and unregulated use of PQ as a monotherapy for antimalarial 

prophylaxis and chemotherapy in China, PQ resistance soon emerged with IC50s 

significantly increasing in areas of southern China where PQ use was widespread 

(127).  As a result, the use of PQ for either prophylaxis or chemotherapy was 

stopped and its use has only recently resumed, albeit in combination therapies 

under much stricter regulation.      

 

There are conflicting views in the literature to whether any cross-resistance 

between PQ and other antimalarial drugs (particularly other 4-aminoquinolines and 

artemisinins) exist (89, 90, 127, 279, 280, 356).  In two PQ resistant mouse strains, 

P. berghei ANKA and K173 PR strains, cross-resistance was found between PQ, 

hydroxy-PQ, artesunate, artemisinin and mefloquine (279, 280). However, studies 

looking at the cross-resistance of PQ in CQ-sensitive and CQ-resistant isolates of P. 

falciparum from Cameroon suggested that with IC50s of <100 nmol/L there was only 

a slight correlation between the two drugs therefore minimizing the risk of in vitro 
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cross-resistance (46).  More recently in vitro studies observing the interactions 

between PQ, DHA, mefloquine, quinine, CQ, pyronaridine and naphthoquine 

demonstrated that PQ had no interaction with DHA, CQ, pyronaridine and 

naphthoquine but antagonism with mefloquine (126).  This suggests that there 

should be little clinical interaction of PQ with any of the drugs studies except 

mefloquine which, according to these results should be limited (126).   

 

1.3.4 Chloroquine 

The antimalarial CQ (originally named Reochin) was discovered in 1934 by Hans 

Andersag at Bayer I.G. Farbenindustrie A.G. laboratories in Germany (39, 105, 111).  

However, it wasn’t until during World War II that British and U.S. scientists 

recognized CQ as an effective and safe antimalarial drug (39, 341).   Therefore, CQ 

became the first-line treatment for uncomplicated and severe malaria as well as the 

principal drug for malaria prophylaxis (105).  In the late 1950s the first cases of CQ-

resistant P. falciparum were documented in Thailand and Columbia which was soon 

after followed by the spread of CQ-resistant strains worldwide (39, 63, 326).   

 

Despite the extensive spread of CQ-resistant strains of P. falciparum and more 

recently the emergence of chloroquine-resistant P. vivax strains in New Guinea and 

Indonesia (38, 40, 110, 412), CQ remains by far the most widely used antimalarial 

drug worldwide (450, 540, 562).   

 

1.3.4.1  Mode of action 

Whilst the precise mechanism of action of CQ is not fully elucidated, it is generally 

considered that the antimalarial action of CQ is attributed to the drug’s 

accumulation within the haem-rich lysosomes of the food vacuole of malaria 

parasites.  This accumulation results in an increase in the intralysosomal pH of the 

parasite which directly inhibits the lysosomal hydrolysis of haemoglobin.  As a 

consequence, toxic metabolites accumulate within the parasites leading to the 

arrested growth of the parasite (219, 297, 356, 409, 562).   
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1.3.4.2  Antiparasitic action 

CQ only acts on those stages of the parasite life cycle that can actively digest 

haemoglobin within the erythrocyte, thus trophozoite stage parasites (540).  This 

has been confirmed by ultrasturctural studies which have shown that the parasite’s 

food vacuole is the target of the activity of CQ (424, 540).   

 

1.3.4.3  Pharmacokinetics  

 CQ has a long terminal elimination half-life ranging from 3 h to 1500 h (490) 

although most recent studies suggest a longer terminal elimination half-life of 1–2 

months (148, 264, 504, 540, 562).  In healthy patients and those with 

uncomplicated malaria, oral chloroquine is rapidly absorbed with peak plasma 

concentrations of approximately 250 µg/L reached within 2 h of dosing.  After i.m. 

or s.c. injection, absorption is so rapid that dangerously high peak plasma 

concentrations (500–3500 µg/L) may be reached within 5–20 min after 

administration of a 5 mg base/kg dose (540).    

 

CQ is extensively bound to tissues, particularly the liver, connective tissue and 

pigmented tissues such as the skin and retina resulting in a very large total volume 

of distribution.  CQ is also concentrated in erythrocytes, granulocytes and platelets 

with approximately 55–60% bound in plasma (148, 540).  Following administration, 

the drug is rapidly dealkylated  in the liver via cytochrome P450 enzymes into the 

pharmacologically active desethylchloroquine (DECQ) and bisdesethylchloroquine 

(148, 264).   

 

1.3.4.4 Clinical efficacy  

Whilst CQ-resistant P. falciparum is present worldwide, with high grade resistance 

in many areas, CQ remains the drug of choice for combating CQ-sensitive parasites 

in Africa (59, 551, 561).  However, clinical failure after a course of CQ now exceeds 

25% in much of Africa but as the drug is cheap and readily available, it remains the 

first-line therapy throughout much of Africa and parts of Southeast Asia (562).   
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In the clinical setting CQ is most commonly used for the oral treatment of 

uncomplicated malaria and is effective against all CQ-sensitive parasite species 

(111, 562). Recent efficacy studies of CQ in Burkina Faso, a region which has had 

high grade CQ-resistant P. falciparum since 1983, demonstrated that after 

administrating a standard course of CQ to children, parasitological and clinical 

failure rates were reported to be 27% and 10%, respectively (330). These results 

were surprising as clinical failure rates in the same region in 1988 were estimated to 

be closer to 70% (437). Therefore, this efficacy study suggested that since replacing 

CQ as a first-line drug, the incidence of CQ resistance has decreased.  Such 

observations appear to correspond to a general trend seen across areas of 

Southeast Asia.  Furthermore, data collected in 1994 in Gabon showed a decrease in 

CQ resistance isolates (385) and further data in 1996 (67) showed a significant 

increase in P. falciparum sensitivity to CQ.   These data imply that if CQ 

monotherapy is replaced in a region for a period of time, there is the capacity for 

the parasites to become more sensitive to the drug.  Therefore, CQ should not be 

disregarded as an antimalarial therapy and, with better understanding of the 

mechanisms of resistance, there is a potential for CQ to be restored to clinical utility 

(111, 183).  For example, it has been suggested that sequential treatment with CQ 

and a glutathiamine-depleting drug, may increase the efficacy of CQ in the clinical 

setting (183).  Furthermore, it has been demonstrated that combination of CQ with 

a sensitising drug, such as antihistamines or antidepressants, may increase the 

clinical efficacy of the drug particularly against CQ-resistant parasites (56).   Studies 

reported that addition of the antihistaminic drugs cyproheptadine (377), azatadine 

(47), or chlorpheniramine (462) potentiated the activity of CQ against mild to 

moderately CQ-resistant parasites (56).  

 

1.3.4.5  Adverse effects  

CQ is generally well tolerated, however, when plasma concentrations exceed 250 

µg/mL, unpleasant side-effects such as dizziness, headache, diplopia, disturbed 

visual accommodation, dysphagia, nausea and malaise may develop.  Therefore, the 

adverse effects of CQ are usually limited to patients receiving intravenous infusions 

(364, 540).  In Africans, Haitians and dark-skinned Asians pruritus of the palms, soles 



- 77 - 
 

and scalp may also be a problem and is particularly seen in cases of therapeutic 

noncompliance (364, 540, 562).  Pruritus is suggested to occur in up to 70% of adult 

Africans taking CQ (364).  Serious adverse effects such as hypotension, 

electrocardiograph abnormalities, leucopenia and aplastic anaemia are rare but can 

occur at high drug concentrations (562).    

 

1.3.4.6 Resistance 

The first case of CQ-resistant P. falciparum malaria was described in Colombia in 

1960 and within a short period, had spread to most of the malaria endemic regions 

of the world (326, 461).  So rapid was the progression of resistance that within 10 

years of the first case, CQ-resistant P. falciparum had spread across the entire 

African continent (547).  Today, CQ remains effective for P. vivax, P. ovalae and P. 

malariae infections worldwide and for falciparum malaria in restricted areas such as 

central America northwest of the Panama Canal, Haiti, the Dominican Republic and 

parts of the middle east (540).  However, caution must be taken before treating any 

cases of malaria with CQ as reports of chloroquine-resistant P. vivax have also 

started to emerge (461, 540). 

 

1.3.5 Antimalarial combination therapies 

In light of the ever increasing pressure of the emergence of drug resistance, 

antimalarial combination therapies are now thought to be the way forward in the 

treatment of uncomplicated and severe malaria (581, 583{World Health 

Organization, 2010 #1255)}.  The concept of combination therapy is based on the 

synergistic or additive potential of two or more drugs, which have independent 

modes of action and/or different biochemical targets, so as to improve therapeutic 

efficacy and delay the development of resistance to individual components of the 

combination (127, 581).   In order to determine the merits of a proposed 

combination therapy for different epidemiological conditions, a set of criteria have 

been suggested by the WHO (581).  The major criteria include the following:  

•  Therapeutic efficacy of the combination, irrespective of the efficacy of the 

individual components. 

• Safety of the drugs in combination, especially amongst high risk groups. 
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• Potential for widespread use at all levels of heath care, including use for 

home management. 

• Potential for consumer compliance. 

• Cost effectiveness.  

• Potential for the delay or prevention of development of resistance. 

• Other factors: including product availability, production capacity and 

potential for wide-spread use at a sub-regional level.   

 

In the clinical setting, a number of drug combinations are currently available and 

used successfully to treat uncomplicated and severe malaria. The most common are 

the ACTs (150, 335, 351, 551, 555, 563, 581).  

 

1.3.5.1  Artemisinin combination therapy 

In recent times ACTs have become increasingly popular in Southeast Asia for 

malaria chemotherapy and are expected to become more frequently used in 

tropical Africa (438, 581).  Although ACT has been recommended by the WHO since 

2001 as the ‘ideal strategy’ for malaria control, overall deployment has been slow.  

This is primarily related to their high relative cost, limited public awareness of the 

concept and advantages of combination therapy, limited knowledge on the safety 

of ACTs in pregnancy and other operational issues including inappropriate drug use, 

lack of suitable formulation and the imbalance between supply and demand (335, 

562).   

 

The advantages of ACT relate to the unique properties and mode of action of the 

artemisinin compound including; its rapid reduction of the parasite biomass, rapid 

resolution of clinical symptoms, effective action against multidrug-resistant P. 

falciparum, reduction of gametocyte carriage thus possibly reducing transmission of 

resistance, little documented resistance to artemisinin or its derivatives in most 

regions and few reported adverse clinical effects (335, 581).  Ideally, in ACT the 

partner drug should have a half-life exceeding 4 days (eg. mefloquine or PQ) which 

both protects the artemisinin derivatives against resistance and offers an extended 

period of malaria prophylaxis whilst enhancing efficacy  (46, 232, 252, 351, 581).  
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With the increasing emergence of drug-resistant P. falciparum, the use of ACTs in 

the clincal setting has also grown, resulting in the WHO recently recommending 

ACTs as the treatment of choice for uncomplicated malaria (253, 574, 581)}.   In 

order to provide efficacious antimalarial therapy, without the risk of drug 

resistance,  the WHO has stipulated that when devising new ACTs the following 

factors must be considered    (128, 351):  

• Components have different modes of action. 

• No interactions. 

• Short course regimens (3 days at most). 

• At least one drug which clears asexual forms rapidly. 

• At least one drug with a long half-life. 

• Well tolerated, low toxicity. 

• Broad spectrum of action (including against gametocytes). 

• Co-formulation, if possible. 

 

It is currently estimated that more than 60 malaria endemic countries are 

advocating the change of antimalarial policy to ACTs, however, there is still much 

debate over which are the most suitable combinations for first-line treatment of 

uncomplicated malaria (408).  To date, artemether-lumefantrine (Coartem®) is the 

only co-formulated ACT which has international registration (28, 408).  However, 

despite not being commercially available as a co-formulation, artesunate-

mefloquine is a popular choice of ACT, particularly in Southeast Asia (28, 352, 457, 

476, 477, 522, 560). Artesunate-mefloquine is used as first-line antimalarial therapy, 

as a 3-day regimen (artesunate 12 mg/kg and mefloquine 25 mg/kg), in many 

Southeast Asian countries, demonstrating excellent efficacy and tolerability (28, 

352, 456, 457, 477, 522).  Despite the efficacy of this combination, there are a 

number of drawbacks for relying solely on this treatment regimen, particularly 

when considering the stipulations made by the WHO for ACTs.  These include:  

1. The high price of each adult treatment of artesunate-mefloquine 

(approximately US$3 per treatment) means that most people in endemic 
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areas cannot afford the treatment and thus are treated with less effective 

alternatives (eg. CQ) (456) 

2. Mefloquine has some common adverse effects, and although not serious, 

can result in poor adherence to the multiple dose therapy.  Mefloquine can 

also be associated with neurological and neuropsychiatric side-effects, 

however, these are usually mild and are not long lasting (118, 125, 456) 

3. To date, co-formulated mefloquine and artesunate are not widely available 

commercially.  Hence, if patients experience adverse effects to mefloquine 

they can stop taking this drug but continue to take the artesunate which 

thereby compromises efficacy and risks parasite resistance (456, 457).  In 

2010, a co-formulation of mefloquine and artesunate (ASMQ) was registered 

for clinical trials and several trials in Africa and Latin America are currently in 

progress.  

 

The co-formulation artemether-lumefantrine has proved to be highly effective and 

well tolerated in several studies from Africa and Southeast Asia (2, 29, 30, 160, 161, 

329, 404, 492, 522, 589, 595). Like the artesunate-mefloquine combination, 

however, artemether-lumefantrine has several drawbacks.  Disadvantages of this 

combination include; the need for twice-daily dosing, that each dose should be 

taken with a fat-rich meal or soya milk (30, 161) as well as the relatively high 

recurrence of parasitaemia within 28 days (317, 589).  

 

Alternative ACTs, which are either currently available or in the process of 

undergoing clinical investigation, include: 

1. DHA-PQP (Artekin®)  

2. Artesunate plus sulfadoxine-pyrimethamine  

3. Naphthoquine plus DHA  

4. Artesunate plus amodiaquine 

5. Artesunate plus pyronaridine 
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1.3.5.2 Non-artemisinin combination therapies  

Before the introduction of the ACTs several successful non-artemisinin combination 

therapies were used in the clinical setting, specifically quinine-tetracycline (or 

doxycycline), sulfadoxine-pyrimethamine and most recently atovaquone-proguanil 

(MalaroneTM), amodiaquone-sulfadoxine-pyrimethamine and chlorproguanil-

dapsone (LapDap) (128, 362).  However, with each of these combinations a number 

of issues have hampered their continued application in the clinical setting, 

particularly relating to side-effects (quinine-tetracycline), compliance (each dosing 

strategy usually spans 7–10 days) and declining efficacy (high-grade resistance to 

sulfadoxine-purimethamine is common).  Although atovaquone-proguanil is given 

as a short-course regimen it is one of the most expensive antimalarial therapies 

currently available and despite being only introduced in 2000, highly resistant cases 

have already been reported (128, 464).    

 

Whilst the majority of comparative efficacy studies conducted between ACTs and 

non-ACTs demonstrate that ACTs have the highest cure rates (particularly when 

referring to treatment failure) and tolerability, ACTs are not always the best or most 

feasible option for malarial chemotherapy (262, 362).  The high cost of artemisinin 

based therapies and their availability, particularly on the African continent remain 

major concerns (588).  As a result clinicians in Africa are turning to the inexpensive 

and widely available non-artemisinin combination therapies, particularly 

amodiaquone plus sulfadoxine-pyrimethamine, which may still be a feasible 

treatment option in areas where sulfadoxine-pyrimethamine resistance is not 

endemic (314, 588).   

 

The most commonly used non-artemisinin combination therapies available in the 

clinical setting, which still remain efficacious in many regions and are therefore a 

suitable option for ACT, if necessary, include the following (581): 

1. Amodiaquine plus sulfadoxine-pyrimethamine 

2. Atovaquone-proguanil (MalaroneTM) 

3. Quinine plus tetracycline (or doxycycline) 
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1.4 AIMS OF THE THESIS  
 
Although the rodent P. berghei model has been the primary animal model for in 

vivo screening of new antimalarial compounds, its application has been limited to 

efficacy assessment.  The potential of this model to provide pharmacokinetic and 

additional pharmacodynamics data, has therefore not been fully explored. Whilst 

the overall aim of this thesis was to further investigate and develop the P. berghei 

murine malaria model as a tool for the assessment of the pharmacokinetic and 

pharmacodynamic properties of antimalarial drugs, the specific objectives included: 

 

1. To evaluate the efficacy of dihydroartemisinin (DHA) in an asplenic murine 

malaria model. 

The pharmacodynamic properties of DHA were investigated through a 

single dose ranging study conducted in both P. berghei infected and 

uninfected asplenic and intact mice.  Given published clinical findings, it was 

hypothesised that the efficacy of DHA would be compromised in the 

asplenic mice. (Chapter 3; Paper I) 

 

2.  To obtain robust pharmacokinetic and pharmacodynamic data following 

the single dose administration of piperaquine (PQ) to mice 

The pharmacokinetic and pharmacodynamic properties of PQ were 

investigated in P. berghei infected and uninfected mice after administration 

of single doses of PQ phosphate (PQP).  Similarly to human pharmacokinetic 

studies it was hypothesised that in the murine malaria model, PQ would 

demonstrate a long elimination half-life, with little difference in drug 

plasma concentrations between P. berghei infected and uninfected mice. 

(Chapter 4; Paper II). 

 

3. To investigate drug efficacy, reinoculation outcomes, and parasite viability 

after administration of a single dose of PQ in the murine malaria model 

Previous investigations (Chapter 4) demonstrated that high dose PQP had 

an extended antimalarial efficacy, with resolution of detectable 
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parasitaemia, although for the majority of the pharmacokinetic profile, PQ 

plasma concentrations were deemed to be at less than efficacious 

concentrations.  Therefore, the aim of this study was to determine whether 

the extended antimalarial efficacy was a result of drug effects alone or a 

combination of drug efficacy and host factors. It was hypothesised that in 

combination with initial PQ efficacy, the host immune system played an 

important role in the resolution of infection. (Chapter 5; Paper III) 

 

4. To obtain robust pharmacokinetic data for chloroquine (CQ) and its major 

metabolite desethylchloroquine (DECQ) after single and multiple dose 

administration in the murine malaria model. 

Despite CQ being used extensively throughout the clinical setting, the 

pharmacokinetic parameters of this drug in preclinical models is not well 

defined.  Furthermore, there are limited data on the pharmacokinetics of 

multiple dose CQ administration or single and /or multiple dose DECQ 

administration in mice.  It was hypothesised that in the murine malaria 

model, CQ would have a long elimination half-life in both malaria-infected 

and uninfected mice. (Chapter 6; Paper IV). 

 

  



- 84 - 
 

CHAPTER TWO 

 
METHODS 

 
2.1 MATERIALS 

2.1.1 Animals and animal welfare 

2.1.1.1 Mice 

2.1.1.1.1 Experimental mice 

All experimental work was performed using 5-6 week old male outbred albino male 

Swiss Arc:Arc(S) mice which were obtained from the Animal Resource Centre (ARC; 

Murdoch, Australia).  The ARC reports that the original breeding stock of Arc:Arc(S) 

mice was received from the Charles River Breeding Laboratories (Kingston, NY) in 

1991 as a SPF CD1 animal stock (22).  This particular mouse strain was then re-

imported from the Charles River Laboratory in 2006 (22).  Whilst genetically stable 

inbred mouse strains are often used in animal studies involving specific disease 

processes or immunological responses, outbred mouse strains are more commonly 

associated with drug development or efficacy studies (18, 122, 268, 378, 379, 381).  

The outbred Swiss mouse model was therefore used for all studies as it provided a 

robust and economical mouse model.  Male mice were selected for use in these 

studies which eliminated the chance of variable biochemical parameters as result of 

fluctuating hormone levels which can be linked to females (268).   

 

The experimental design of each animal investigation was based on a modified Rane 

in vivo screen system (Refer to 1.2.2.1.1.4).  The number of animals used in each 

drug treatment group throughout the thesis investigations was selected based on a 

statistical power calculation. For the pharmacodynamic studies, it was determined 

that statistically significant results could be achieved in this biological system with 

at least 8 mice per treatment group (>25% difference in outcomes; power = 80%; 

α=0.05). 

 

2.1.1.1.2 Mice for P. berghei passage 

Inbred albino male BALB/cArc mice (ARC; 7-8 weeks of age) were used for the 

weekly passage of P. berghei infection.  The BALB/c mice were originally sourced by 
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the ARC from the Animal Breeding Unit, University of Western Australia (Crawley, 

Australia) in 1981 (21).  In order to obtain specific pathogen free status in this 

strain, the first litters were derived by  caesarean (21).  The genetic make-up of the 

BALB/c mice used in all investigations were the inbred albino Tyrc, Tyrp1b, A, H-2d 

strains (21).  As the experimental procedures involving BALB/c mice required a 

stable infection for weekly passage, this inbred strain was chosen as it is the most 

established method of passage and it reduces immunological responses when 

transferring the infection between mice.   

 

2.1.1.1.3 Sentinel mice 

Male Swiss mice (ARC; 5-6 weeks of age) were used as sentinel mice for the animal 

holding room.  At quarterly intervals, 6 mice (of similar age to experimental mice) 

were obtained and separated into 3 open-top cages (n=2 per cage) with the cages 

then distributed around the animal room (1 cage close to the entry door, 2 cages 

dispersed within the experimental cages).  These mice received the same food, 

water and bedding as the experimental mice.  Additionally, when changing dirty 

bedding in the experimental cages, a small amount of dirty bedding was randomly 

selected and placed in the sentinel cages.  At the conclusion of the interval, blood 

was harvested from the mice and sent for laboratory testing (Murine Virus 

Monitoring Service, Gilles Plains, South Australia) against a panel of known murine 

viral pathogens, most importantly including Mouse Hepatitis Virus (MHV), Mouse 

Parvovirus (MPV), and Pneumonia Virus of Mice (PMV) (Full testing panel outlined 

in Appendix 1).  For the duration of research undertaken for this thesis, the sentinel 

mice remained pathogen free.   

 

2.1.1.2 Animal welfare 

2.1.1.2.1 Ethical approval 

All experimental protocols described in this thesis were approved by the Curtin 

University Animal Ethics Committee.  All research was conducted in accordance 

with the NHMRC Code of Practice for the Care and Use of Animals for Scientific 

Purposes (342).   
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2.1.1.2.2 Housing facilities 

Between 2005 and 2007, all animals were housed in the School of Pharmacy animal 

laboratory in an air-conditioned room set at 22oC with a 12-h light/dark cycle.  This 

animal laboratory was decommissioned at the end of 2007 and all animal research 

was moved to the Curtin University PC2/PC3 Animal Research Laboratories.  As a 

result, the P. berghei inoculum had to be re-established in the new environment 

from frozen blood stocks.  Within the new facility, animals were housed in a PC2 

rated animal holding room, maintained at 22oC, with a 12-h light/dark cycle.   

 

2.1.1.2.3 Cages 

Non-porous, translucent plastic cages with stainless steel bar tops were used to 

house the mice.  For experiments over short periods (1-2 weeks) small cages housed 

a maximum of 4 mice whilst large cages housed up to 12 mice.  For experiments 

lasting more than 2 weeks, a maximum of 2 and 8 mice were housed in each small 

and large cage, respectively.  Stainless steel nameplates were used to hold 

identification cards on the front of each cage.  Plastic water bottles with stainless 

steel drinking teats were used for water dispensing.   

 

All cage components were autoclaved at 121oC for 15 min on a hard good cycle, 

using an accredited autoclave in the School of Pharmacy and/or Curtin University 

Animal Research Laboratories.  

 

2.1.1.2.4 Bedding 

ALPHA-dri bedding (Shepherd Specialty Papers; Able Scientific, Perth, Western 

Australia) was autoclaved at 121oC for 15 min on a hard goods cycle, using an 

accredited autoclave.  Cellulose bedding was selected for use as it ensured low dust 

accumulation and ingestion of bedding by the mice would not interfere with animal 

biochemistry parameters, which can be seen when using wood chips as a bedding 

source (251).  A number of autoclaved tissues were also placed in each cage for use 

as nesting material.   
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2.1.1.2.5 Acidified water 

Acidified water (pH2.5) was prepared by adding 400 μL of 32% w/v HCl to 1 L glass 

bottles of de-ionised water.  Before use, the prepared water solution was 

autoclaved for 20 min at 121oC on a fluid cycle in an accredited autoclave.  The 

water was acidified in order to prevent bacterial contamination whilst water was 

either in storage or in the cage water bottles (439, 469).   

 

2.1.1.2.6 Rodent food 

Rodent food cubes, purchased from Glen Forrest Stock Feeders (Perth, Western 

Australia), were used for animal feed.  The food was autoclaved on a hard goods 

cycle for 20 min at 121oC in an accredited autoclave before distribution to the 

animals.   

 

2.1.1.2.7 Environmental enrichment 

Cardboard tubes and small cardboard boxes were autoclaved at 121oC for 15 min 

on a hard goods cycle, with a selection placed in each cage to provide stimulation.  

The goal of adding environmental enrichment to the cages was to decrease fighting, 

particularly in the large cages, as part of established animal welfare 

recommendations (342).   

 

2.1.2 Parasites 

The rodent specific parasites, P. berghei ANKA parasites were used for all 

experimental work.  Originally sourced from the Australian Army Malaria Research 

Institute (Enoggera, Queensland; acquired by Prof K Ilett and Dr K Batty in 1995), 

the parasites were well established in the laboratory through weekly passage of 

infection through BALB/c mice.  The P. berghei ANKA strain was selected as it 

induced high mortality in mice, thus providing a good model to estimate 

antimalarial drug efficacy in reducing parasitaemia, and is sensitive to all currently 

used antimalarial drugs (379). Occasionally, volumes of infected blood were 

prepared as stock samples and stored at -80oC, should a new infection line require 

development at a later date.   
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2.1.3 Antimalarial drugs 

Antimalarial drugs selected for evaluation included DHA, PQ and CQ.  DHA 

(MW=284.3) was obtained from Dafra Pharma N.V. Turnhout, Belgium. PQ 

phosphate (PQP; MW=927.5) was sourced from Yick-Vic Chemicals and 

Pharmaceuticals, Kowloon, Hong Kong whilst CQ diphosphate salt (MW= 515.9) was 

obtained from Sigma-Aldrich (St. Louis, MO, USA).   

 

2.1.4 Sodium pentobarbitone 

Pentobarbitone injection is commercially available as Lethobarb® (300 mg/mL; 500 

mL) which is 5-10 times the required concentration (murine doses were 3-4 mg) and 

was unsuitable for the present studies.  Therefore, for the present studies, all 

sodium pentobarbitone for injection (sodium pentobarbitone at 30 mg/mL, 

propylene glycol at 40% [vol/vol], and ethanol at 10% [vol/vol] in water [pH 9.5]) 

was prepared in house by a registered pharmacist (Dr K Batty).  After preparation 

the sodium pentobarbitone solution was stored in 10 mL volumes in sterile glass 

bottles in a cool, dark environment.  At time of use the solution was diluted 50:50 

with 0.9% NaCl for injection.  

 

2.1.5 Reagents and chemicals 

May-Grunwald Giemsa stain was obtained from the Department of Microbiology, 

Royal Perth Hospital, Western Australia. All general laboratory chemicals and 

solvents were of analytical grade (Sigma-Aldrich Chemical Co., Milwaukee, WI; BDH 

Laboratory Supplies, Poole, England; and Merck Pty. Limited, Kilsth, Victoria, 

Australia).  

 

2.2 METHODS 

2.2.1 Mouse manipulations 

2.2.1.1 Animal identification 

As each animal cage contained at least 4 animals, and all results were mouse 

specific, it was desirable that each individual could be identified.  This was 

accomplished by marking the topside of the base of each tail with a coloured 

permanent marker.  The markings were monitored closely and renewed over the 
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period of the study should they have faded over a period of time or were 

rubbed/licked off, particularly after nesting during each night.   

 

Whilst there are a number of techniques that are commonly used for animal 

identification, including the use of either tattoos or punctures in the ear, the 

experiments used in these studies were short term and did not require such 

invasive identification methods.   

 

2.2.1.2 Restraint for manipulation 

In order to gain greater control of the mouse for i.p. injection, correct restraint had 

to take place to reduce the possibility of injury during manipulation.  The mouse 

was first removed from the cage, by lifting it at the base of the tail, and then placed 

on the cage lid.  The tail was held firmly and using the right hand, the tail pulled 

back gently, causing the mouse to pull in the opposite direction and clasp the cage 

bars with all four feet (Fig. 2.1; A).  Using a quick firm action, the thumb and 

forefinger of the left hand grasped the scruff of the neck, near the base of the head 

whilst the tail was still held by the right hand (Fig. 2.1; B).  With the tail held in the 

right hand, and the scruff in the left, the mouse was lifted and laid against the left 

palm.  The tail was then tucked under the third and fourth finger of the left hand 

resulting in the manual restraint of the animal (Fig. 2.1; C).  This position allowed 

adequate access to the abdominal region for i.p. injection and ensure little 

movement from the mouse, thus preventing injury during injection processes.   
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Figure 2.1 Manual restrain of a mouse.  A: The mouse is removed from the 

cage by lifting the base of the tail and placed on the cage lid and gently pulled 

backwards.  B: The scruff of the mouse’s neck is grasped with the thumb and 

forefingers whilst the right hand still holds the tail. C: The tail is tucked under the 

little finger of the left hand whilst the mouse’s back lies across the palm of the 

hand, manually restrained.   
 

2.2.1.3 Tail bleeding procedures 

Peripheral blood smears were prepared using a single drop of blood collected from 

one of the veins of the mouse tail. The mouse was initially removed from the cage 

by picking it up at the base of the tail and drawing it backwards into a bleeding cone 

by the tail.  The mouse tail was held firmly between the fore and middle fingers at 

the base of the cone to limit mouse movement, whilst the thumb and little finger 

held the top of the tail to prevent movement.  A small prick was then made in one 

of the tail veins using a 26Gx½ inch needle which resulted in the formation of a 

single droplet of blood.  The blood was collected in a 15 μL heparinised capillary 

tube and further blood flow from the vein was stemmed by placing a tissue over the 

needle prick and gently applying pressure until a clot formed.  The mouse was then 

returned to its cage.  

 

2.2.1.4 Intraperitoneal injection 

Intraperitoneal injections were made into the caudal left abdominal quadrant.  The 

mouse was restrained manually (Section 2.2.1.2) and the head and body tilted 

downwards.  A 26Gx½ inch needle, with the bevel facing upwards to prevent tissue 

tearing, was inserted firmly through the skin past the abdominal wall and the 

syringe contents deposited into the abdominal cavity.  During insertion, care was 

taken to note the change in tissue densities as incorrect positioning of the needle 

A B C 
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may result in the penetration of an abdominal organ and/or slow or erratic 

absorption of the injected compound (469). 

 

2.2.1.5 Cardiac puncture 

The mouse was manually restrained (Section 2.2.1.2) and injected i.p. with 200 μL of 

diluted (15 mg/mL) sodium pentobarbitone and then rested to allow the 

anaesthetic to take effect.  After 5 to 10 min mouse reflexes were tested to see if 

the anaesthetic had taken control.  Foot reflexes were tested by squeezing the back 

foot between the thumb and middle finger.  If the mouse was still conscious, this 

would result in a kicking reflex.  To test tail reflexes, the base of the tail was pressed 

firmly with the thumb.  If the mouse squeaked or flinched then anaesthetic control 

had not been obtained and the mouse was further rested.  If no response was 

observed in either reflex test, cardiac puncture procedures could continue. 

 

The mouse abdominal midpoint was determined and using surgical scissors, a small 

incision was made by lifting the skin and cutting a small hole through the fur and 

skin layers.  From this point a midline vertical incision was made to the chin.   Four 

further incisions were made, two from the primary incision radiating out to the left 

and right side of the abdominal cavity, and two incisions running left and right of 

the vertical incision at the mouse diaphragm to each forelimb, respectively (Fig. 2.2; 

A).  Using forceps, the sternum was lifted exposing the chest cavity and diaphragm.  

Using a sharp blade, a hole was made in the diaphragm resulting in the collapse of 

the lungs.  The ribs were parted by excising the sternum, exposing the heart and 

collapsed lungs (Fig. 2.2; B).  Whilst still raising the sternum with forceps, a 1 mL 

syringe with a 26Gx½ inch needle was used to harvest blood from the left cardiac 

ventricle (Fig. 2.2; C).  The vacuum within the syringe, combined with the pressure 

of the beating heart, resulted in the syringe filling with blood.   

 

A male mouse with an approximate weight of 30g has a total blood volume in the 

range of 3-5 mL.  However, for the purposes of this project, only 1-1.5 mL of blood 

was collected, preferentially in a single draw.  Once drawn, the blood was placed 
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into a paediatric citrate anticoagulant tube (Citrate 0.105M, 1 mL, BD Vacutainer) 

and mixed thoroughly. 

 

   

 

Figure 2.2 Schematic demonstrating the procedures of internal cardiac 

puncture.   A: A primary inscision was made at the abdominal mid-point,  

immediately above the external genetalia, and a vertical inscision was made to the 

mouse chin.  4 radiating cuts were made along the primary vertical incision towards 

each limb. B: The skin was pealed back revealing the abdominal organs.  To gain 

access to the heart the diaphragm was first punctured to collapse the lungs, then 

the sternum excised, revealing the cardiothorassic organs underneath.  C:  A 26Gx½ 

inch needle, connected to a 1 mL syringe, was placed in the left ventrical and the 

maximum volume of blood removed.  Organs observed in the cardiothorassic cavity 

included 1. Thyroids; 2. Esophagus; 3. Trachea; 4. Thymus; 5.  Heart; 6. Lungs.  The 

original image, sourced from (366), was modified for explanatory purposes.   

 

 

2.2.1.6 Euthanasia  

Pre-determined end points of >40% parasitaemia, >10% reduction in mouse body 

weight in less than 24 h, animal distress or the termination of the experimental 

protocol were selected and firmly adhered too in all studies.    

 

When euthanasia was required the mouse was manually restrained (Section 2.2.1.2) 

then injected with 200 μL of 15 mg/mL sodium pentobarbitone injection by i.p. 

A B C 
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administration (dose=100 mg/kg).  A further 100-200 μL of sodium pentobarbitone 

injection was administered 3-5 min later if the mouse had not expired.  Variable 

volumes of sodium pentobarbitone were administered to the mice dependant of 

age, body weight, health status and sex, all which may influence the sensitivity to 

both the desired and undesired effects of anesthetics (469).       

 

2.2.2 Parasite preparations 

2.2.2.1 Establishment of parasitaemia 

For the purpose of these investigations the murine malaria model was initiated 

from cryopreserved stock parasites.  Two BALB/c mice were initially infected with 

200 μL of thawed cryopreserved P. berghei ANKA parasites by i.p. injection (Section 

2.2.1.3). Mice were maintained and monitored daily until a significant level of 

parasitaemia had been established (>30% parasitaemia).  At this time the total 

blood volume was collected via cardiac puncture (Section 2.2.1.5).  After 

determining an accurate blood parasitaemia, the blood was diluted to a standard 

inoculum of 107 parasitised erythrocytes per 100 μL.  The standard inoculum (100 

μL) was passaged into two new BALB/c recipients to maintain constant passage of 

the infection.   

 

2.2.2.2 Parasite inoculation 

To determine parasite density within a blood sample, total red blood cell and 

parasite counts were performed.  The total number of red blood cells was 

determined using a cell count performed in a Neubauer chamber (Section 2.2.2.3) 

while parasitaemia was estimated by counting the number of parasites in tail blood 

films taken before mouse euthanasia (Section 2.2.1.6).  The volume of blood 

required for an inioculum of 107 parasites was determined using the following 

calculation.     

 

 

 

 

 



- 94 - 
 

 

 

 

 

* For these series of investigations a standard value of 0.004 was used, which took into 

account the counted area of the Neubauer chamber (10 squares = 0.4mm2), the chamber 

depth (0.1mm) and the dilution factor (1:100). 

 

Once calculated, the volume of blood was drawn from the anticoagulant tube into a 

positive displacement pipette and then diluted in the appropriate volume (1 mL 

blood volume) of citrate phosphate dextrose buffer (Appendix 2) and mixed 

thoroughly on a vortex.  When infecting, 100 μL of the standard inoculum was given 

to each mouse by i.p. injection. 

 
2.2.2.3 Neubauer cell counting chamber (haemacytometer) 

The Neubauer cell counting chamber has a glass-etched grid on its base to allow the 

number of cells to be accurately determined.  To determine red blood cell numbers, 

a blood suspension was prepared by diluting 10 μL of blood in 990 μL of 

formaldehyde in trisodium citrate (Appendix 2).  The blood/diluent preparation was 

vortexed then 10 μL was pipetted into the chamber and left for 5 minutes to allow 

the erythrocytes to settle.  Under x40 light microscopy, red blood cell numbers 

were counted in 10 of the inner 25 grid squares (Fig. 2.3).   

 

 

 

 

 

 

 

 

 

 

 Volume of blood  = Total RBCC 
     0.004* x  100  x  

% Parasites 
      100 
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Figure 2.3 Neubauer cell counting chamber.  After loading 10 μL of diluted 

blood suspension into the chamber, erythrocyte numbers were counted in 10 of the 

25 squares within the specified area (as shown by ). Using this cell total we are 

able to calculate the total number of erythrocytes per µL of blood. 

 

 
2.2.2.4 Preparation and staining of blood films 

Peripheral blood films were prepared using blood collected from one of the tail 

veins from each mouse (Section 2.2.1.3).  To prepare the blood film a single droplet 

of heparinised blood was placed at the base of a clean, labelled glass microscope 

slide.  A spreader slide was then drawn back into the blood droplet causing the 

droplet to spread across the edge of the spreader slide.  Using a smooth, 

uninterrupted movement, the spreader slide was moved away from the droplet of 

blood forming a thin blood smear.  An ideal blood smear should have an area of 

thickly stacked red blood cells at the base of the slide, and an area in which red 

blood cells are spread in a single uniform layer.   

 

All thin blood films prepared in these investigations were stained using May-

Grunwald Giemsa, a commonly used stain for the improved visualisation of malaria 

parasites.  Thin blood smears were fixed in absolute methanol for 30 sec.  The slides 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
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were then air dried (approximately 2 min) before placing them on the HemaTek 

staining machine loaded with a 10% May-Grunwald Giemsa preparation 

(Department of Microbiology, Royal Perth Hospital, Perth, Australia).  Whilst passing 

through the staining machine each film was exposed to stain for 4 min, buffer 

solution for 3 min and a wash solution for 2 min.  The machine then dried the 

stained films by blowing air against the slide for 2 min.  Once dried, the slides were 

cover slipped using DePex as the mounting medium.    

 

2.2.2.5 Determination of parasitaemia 

Prepared blood films were stained, air dried, cover slipped with DePex then left to 

air dry for 1 to 2 days. Once dried these films were observed under light microscopy 

using a x100 oil immersion objective.  Within the eyepiece of the microscope, a 1cm 

x 1cm, 100 square graticule had been placed, allowing more accurate cell counting 

within each field of view (FOV).   

 

To determine blood parasitaemia two types of cell counting took place.  After 

selecting a section of the film that showed a uniform distribution of red blood cells, 

all red blood cells, including parasitised cells, were counted within the 100 graticule 

squares.  The total number of parasitised erythrocytes was then counted within the 

same area.  The lens was then moved upwards 1 field of view with a similar 

procedure undertaken.  This process was followed for the number of fields of view 

required (30 and 100 fields of view for parasitaemias <0.05% and >0.5%, 

respectively). Using the values obtained for total number of red blood cells and 

parasitised red blood cells in 100 squares, parasitaemia was then calculated using 

the formula below.  An accelerated method of counting was also employed when 

>30 fields of view were required to be counted.  At this time, the number of 

erythrocytes was counted in only ¼ of each FOV and multiplied by 4 to determine 

the total number of cells per FOV.  However, this accelerated method could only be 

used when the film being counted had an even distribution of red blood cells.    

 

 

 

    PRBC  
    RBCC x    100 % Parasitaemia  = 
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2.2.2.6 Parasite staging 

Studies in asplenic mice required stage-specific parasite counts (Chapter 3). 

Parasites were separated into the 4 different asexual maturation stages; ring-form, 

early trophozoite, late trophozoite and schizonts, using a pre-prepared 

identification chart (Table 2.1).  In order to numerically tally the different stages, a 

haematology differential counter was used which allowed the operator to tally each 

parasite stage separately, whilst calculating the total number of parasites counted.  

All parasite staging was performed using x100 oil immersion light microscopy.  All 

microscopy was performed by a single operator to maintain continuity and 

reproducibility of results.   

 

2.2.3 Statistical analysis 

All statistical analysis of the counting data was performed using the statistical 

computer packages SigmaStat® 2004 (SPSS Inc., Chicago) obtained from Hearne 

Scientific Software Pty, Melbourne and Microsoft Excel for Windows (Microsoft® 

Windows 2000 Professional).  From raw data the mean, standard deviation, 95% 

confidence interval and linear interpolation were determined.  Student’s t-test and 

one way analysis of variance (ANOVA) testing was also performed using the 

SigmaStat® program. A P value of <0.05 was deemed significant for all statistical 

analysis.   

 

All statistical data was plotted on a series of linear and semi-logarithmic graphs 

using the statistical program SigmaPlot® 2004 (SPSS Inc., Chicago) obtained from 

Hearne Scientific Software Pty, Melbourne.  
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Table  2.1 Asexual P. berghei parasite stages.  Examples of parasite 

morphology used for the identification and staging of P. berghei maturation stages 

(Gibbons, unpublished; based on (241)). 

 

Maturation stage Morphology Characteristics 

 

Uninfected 

erythrocytes 

 

    

Erythrocyte containing 

no intracellular parasite. 

 

Ring-form 

       

Substantial nucleus with 

a thin chromatin band 

and large vacuolated 

area. 

 

Early trophozoite 

       

Regular shape, vacuole 

beginning to retreat due 

to haematin pigment. 

 

Late trophozoite 

       

Regular or irregular in 

shape.  Vacuole half to 

completely filled with 

haematin pigment. 

 

Schizont 

       

Irregular shape with 

multiple nuclei due to 

forming merozoites.  4- 

16 nuclei. 

 

Meroizoites 

release by 

schizont rupture 
 

Erythorycte’s integrity 

destroyed as mature 

merozoites are released 

into circulation 
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CHAPTER THREE 

 

PHARMACODYNAMIC STUDY OF DIHYDROARTEMISININ  

IN AN ASPLENIC MURINE MALARIA MODEL 

 

3.1 INTRODUCTION 

3.1.1 Role of the spleen 

3.1.1.1  Function of the Spleen 

The central role of the spleen, the largest lymphatic organ of the human body, is the 

selective clearance of erythrocytes, microbes and other foreign particles from the 

blood (76, 97, 158, 313, 428).  However, the highly organised architecture of the 

spleen, consisting of lymphoid follicles (white pulp) and intervening sinusoids (red 

pulp) (Fig. 3.1), extends splenic functions to also include phagocytosis, 

immunological reactivity, haematopoiesis and platelet storage (544).  The distinct 

cellular organisation of both the red and white pulp lends itself towards their 

specific functions which are phagocytic activity and immune activity, respectively 

(303, 517, 518).    

 

The success of the red pulp as a filtering organ is due to its unique vasculature, 

where numerous filtration beds, consisting of a three dimensional network of 

branched fibroblastic contractile reticular cells, are interposed between the end of 

an artery and the beginning of a vein (71, 428, 544) (Fig. 3.2).  After filtering through 

the red pulp, where the cells are in intimate contact with immunologic effector 

cells, the blood re-enters the venous lumen by passing through inter-endothelial 

slits (IES) in the splenic sinuses.  The IES measure 1 to 3 μm and in order to pass 

from the cords of Billroth to the venous lumen, cells must be deformable with those 

unable to change shape remaining trapped in the cords of Billroth (428, 544).  Due 

to the contractility of their actin-myosin filamentous cytoskeleton, leukocytes are 

able to easily pass through the IES (303, 426).  Reticulocytes are somewhat less 

deformable than mature erythrocytes and therefore will usually spend 1 to 2 days in 

the cords of Billroth before they are sufficiently mature to resume circulation (518).     
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Figure 3.1 Schema of the spleen.  The afferent splenic artery branches into 
central arterioles, which are sheathed by white-pulp areas; these white pulp areas 
consist of the T-cell zone (also known as the periarteriolar lymphoid sheath, PALS), 
arterioles and B-cell follicles.  The arterioles end in cords in the red pulp, from 
where the blood runs into venous sinuses, which collect into the efferent splenic 
vein.  The larger arteries and veins run together in connective-tissue trabeculae, 
which are continuous with the capsule that surrounds the spleen. [Schematic and 
figure description as presented in (313)] 
 

 

Figure 3.2 Venous sinuses in the red pulp of the spleen.  Schema of a venous 
sinus located in the cords of the red pulp.  Blood from the cords collects in the 
sinuses (shown by arrows).  The venous sinuses consist of a lining of endothelial 
cells that are positioned in parallel and connected by stress fibres to annular fibres.  
Contractility of the stress fibres allows the formation of slits between the 
endothelial cells, thereby regulating the passage of blood and blood cells from the 
red-pulp cords into the sinuses and back into the venous system.  Because the red-
pulp cords contain a large number of macrophages, ageing erythrocytes that are no 
longer able to pass through the slits are phagocytosed.  [Schematic and figure 
description as presented in (313)] 
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The immune activity of the white pulp may be attributed to its architecture of 

clusters of T and B lymphocytes, mononuclear phagocytes and reticular cells.  All 

cell types have an active role in the regulation of immune function and host defence 

through antibody and cytotoxic cell production (84, 441).   When foreign bodies 

stimulate antigen presenting cells (including monocytes, macrophages or dendritic 

cells) in the marginal zone of the spleen, adaptive immune responses are most 

often initiated.  After receiving an inflammatory signal from an antigen presenting 

cell, either from the pathogen themselves or from components of the innate 

immune system responding to infection, the antigen presenting cells migrate deep 

into the white pulp and activate naïve and memory T cells which are clustered 

around the periarterial lymphatic sheath (97, 290, 497).    The T lymphocytes are 

then responsible for the generation of an immunological defence against the 

foreign organism (428). 

 

3.1.1.1.1Removal mechanisms of intraerythrocytic bodies 

To maintain a healthy population of circulating erythrocytes, the spleen removes 

those with reduced deformability, IgG sensitisation and those containing 

intraerythrocytic particulate material by three distinct processes  (312, 428, 517). 

(1)  Phagocytic mechanisms due to IgG sensitization of erythrocytes (428, 

544). 

(2) Trapping of deformable erythrocytes in the cords of Billroth (97). 

(3) Removal of intracellular particles through splenic pitting mechanisms 

(20, 289, 312, 346, 428).    

 

3.1.1.1.1.1 Splenic pitting 

The complex architecture of the cords of Billroth results in a reduced blood flow 

through the red pulp which creates a hypoxic, hypoglycaemic environment, that is 

lethal to aged erythrocytes or those with damaged membranes (544).  The reduced 

blood flow through the cords is also important for phagocytosis as it prolongs the 

exposure of erythrocytes to the splenic macrophages, increasing the time for 

detection of surface antibodies or intraerythrocytic inclusions.  Once detected by a 

macrophage, it is thought that attachment between the erythrocyte and 
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macrophage occurs and the inclusion/antibody is removed along with their cell’s 

outer membrane, in a process known as splenic pitting (312, 428, 544).  Although 

this is the most accepted theory, another pitting mechanism has been suggested in 

which pitting occurs whilst the cell is attempting to traverse the IES.  In this 

mechanism, erythrocytes containing intracellular bodies attempt to cross the IES, 

however, they become stuck with the healthy portion of the cell through the IES 

and the intracellular body on the cord side.  It is at this stage that the body is 

‘pitted’ from the cell by splenic macrophages or other phagocytic cells (290, 426).  

Either way, it is believed that the erythrocyte, from which the inclusion was 

removed, is then returned to the circulation and continues its normal circulatory 

functions albeit possessing a slightly more fragile membrane.  The most commonly 

removed intracellular bodies in this process include Pappenheimer bodies, Howell 

Jolly bodies, Heinz bodies and mature or damaged malarial parasites (290).      

 

3.1.1.1.1.2 Immune response 

Although the precise protective mechanisms of the spleen are not completely 

elucidated, as the body’s largest lymphoid organ it is a major site of antibody 

production (428, 453).  Extensive research  has provided valuable evidence that in 

both humans and animals the spleen clears erythrocytes and foreign matter, 

through both rheological and immunological means (453).  However, the precise 

processes involved in the production of antibodies towards malaria parasites is yet 

to be conclusively identified (289, 497).  The most accepted theory is that in the 

removal of erythrocytes with particulate material, the immunological process of 

opsonisation occurs, this being the alteration of target cells to aid in more effective 

and efficient removal.  This involves the binding of IgG antibodies to the surface of 

an erythrocyte containing particulate material. When opsonisation occurs, the cell is 

detected by splenic macrophages and circulating neutrophils and is removed by 

phagocytosis (97, 123, 194, 221, 240).   

 

3.1.2 Removal of malaria parasites 

As the majority of asexual Plasmodium parasites dwell within erythrocytes and 

reticulocytes, the spleen plays a central role in host defence.  This occurs through 
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the elimination of parasites by recognition of altered erythrocyte deformability 

after parasite invasion,  IgG sensitization of erythrocytes as due to the insertion of 

foreign antigens into erythrocyte membranes, modulating parasite antigen 

expression as well as cellular and humoral immune responses of the host (221).   

 

Recent studies in humans suggest that during both acute and chronic malaria 

infections the splenic structure, cellular composition and function may change, 

which appears to be of increasing importance in the stimulation of both rheological 

and immunological functions of the spleen (137, 289, 290, 518). During the course 

of a malaria infection, increased numbers of parasite-specific antibody forming cells 

have been detected in the spleen.   It was observed that the total population of T-

cells (which are native to the white pulp) increased, resulting in a heightened rate of 

immune reactivity against the parasites.  It was also recorded that there was a 

marked increase in the number and function of splenic macrophages, cytokines 

produced by CD4+ T cells and other lymphocytes present within the red pulp (20).  

These findings suggest that there was an interrelationship between the observed 

stimulation and activation of splenic components and the presence of increased 

parasitic load within the host circulation (20).  

 

3.1.2.1 Splenic pitting mechanisms 

Studies using P. falciparum suggest that the elimination of mature parasites from 

the peripheral circulation involves two spleen dependent processes, with the 

primary process very similar to the sequestration mechanisms used to protect 

parasites against removal.  The primary process involves the adherence of 

erythrocytes containing mature stage parasites (parasitised red blood cells; PRBCs) 

to capillary and post-capillary venular endothelium through interactions between 

receptor molecules on the endothelium and parasite ligands found on the surface of 

the infected erythrocyte (20, 97, 347).  The parasite ligand ring-infected erythrocyte 

surface antigen (RESA) is associated with the dense granules of the merozoite which 

is deposited in the erythrocytic membrane during cell invasion and is therefore 

present from an early stage of parasite maturation (290).  Late stage parasites, such 

as trophozoites and schizonts, insert PfEMP1 neoantigens into the erythrocyte 
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exterior membrane.  Both of these parasite antigens act in parasitic antigenicity and 

as ligands mediating the attachment of the cell to venule endothelium (290).  

Adherence of PRBCs to the endothelium stimulates a secondary process leading to 

their removal from the peripheral blood through splenic clearance mechanisms 

after the detection of the endothelium-ligand interactions (20, 129).  Further 

evidence supporting these mechanisms was obtained in human studies using radio-

labelled infected erythrocytes which demonstrated that the spleen removes both 

infected erythrocytes and those sensitized by IgG via the two spleen dependent 

mechanisms (96).  

 

Studies in the 1960s suggested that the spleen could remove intraerythrocytic 

parasites leaving the host cell intact through splenic pitting, however, parasite 

clearance in human malaria was previously considered to be through the obligatory 

destruction of the parasitised erythrocyte (96).  The theory of splenic pitting was 

further demonstrated by Chotivanich et al. (96) who used immunofluorescent 

staining with antibodies against P. falciparum ring-infected erythrocyte surface 

antigen (RESA) to show an increase in the number of circulating erythrocytes that 

detected positive to RESA (showing parasitisation) but did not contain an 

intracellular parasite (290).  These results clarified that splenic pitting was the main 

route of removal of circulating parasites after antimalarial therapy, which also 

explains why after drug treatment in some patients with hyperparasitaemia, the 

parasite count falls dramatically but the red blood cell count remains stable or only 

slightly depressed (20, 96, 321).    

 

Despite the observed stability in red blood cell counts after treatment with 

antimalarials, severe anaemia is one of the most lethal complications, particularly in 

children, with P. falciparum infection (133, 399, 528).  However, it is recognised that 

the anaemia of malaria is multifactorial (316).  Various studies describe potential 

mechanisms for malarial related anaemia including increased surface IgG (528), 

deficiencies in complement regulatory proteins CR1 and CD55 potentially leading to 

complement mediated lysis (468, 528), increased red blood cell susceptibility to 

phagocytosis (3, 399, 528) and insufficient erythropoesis (87) to name a few.  
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Although the precise mechanism of malaria related anaemia is unknown, it is widely 

acknowledged that loss of parasitised erythrocytes does not account for the degree 

of anaemia seen in many patients (316, 399).  In fact, a population based study 

demonstrated that whilst 18% of patients (750 of 4,007) in Thailand presented with 

anaemia, the loss of parasitised red blood cells only accounted for <10% of the 

overall blood cell loss (399).   

 

3.1.2.2 Immune response 

In malaria infections the protective immune response stimulated in the spleen may 

be demonstrated by observation of an increased susceptibility and severity of 

infection observed in splenectomized animals (154, 156, 401).  Immunity provided 

by the spleen appears to be directed mainly against intraerythrocytic parasites.  

Recent studies have demonstrated that splenectomy does not affect host 

susceptibility to sporozoite-induced infections or the development of the 

subsequent exoerythrocytic stages of the parasite (453).  The mechanisms of 

immunological protection against malaria infections are not well understood, but it 

is suggested that the spleen is the major site of production of protective antibodies, 

immune defence and the production of antiparasitic antibodies during malarial 

infections (60, 70).   

 

While the natural resolution of a malaria infection is highly dependent on the 

rheological removal mechanisms of the host, the presence and activity of 

antimalarial antibodies is also thought to be of major importance (518).  There is 

evidence that parasitised erythrocytes, particularly those that harbour multiple 

parasite stages, bind a specific antibody on the infected erythrocyte membrane.  

The antimalarial antibody, an IgG isotype, results in the increased recognition of the 

infected erythrocytes to cytotoxic T cells and phagocytic macrophages, leading to 

the removal of the parasite through phagocytic processes (240).  Phagocytosis of 

parasite debris and parasitised erythrocytes has also been demonstrated in antigen-

presenting cells, including macrophages, monocytes, and dendritic cells, in the 

marginal zone of the spleen which may also stimulate adaptive immune responses 

(453).   Evidence from animal models also shows the importance of the host’s 
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defence against malaria infections.  Antigen presentation and recognition during 

the initial infection occurs primarily in the splenic macrophages with the spleen 

continuing to play an important role in the immune responses of the host until cure 

or death (62, 303, 426). In experimental investigations performed by Hunter and 

colleagues (233), the process of opsonisation and subsequent phagocytosis was 

observed in vitro using a model of P. berghei schizont-infected erythrocytes and rat 

macrophages.  It was suggested that the findings in the experimental procedure 

could be correlated with processes observed in the clearance and organ 

sequestration of parasitised cells in vivo (124).    

 

3.1.2.3 Parasite defence mechanisms to splenic clearance 

In order to both maintain and increase parasite biomass in the infected host, P. 

falciparum parasites have developed defence mechanisms to prolong the survival 

time of the parasite within the human host by allowing the parasite to mature and 

reach schizogony (97).  Referred to as parasite sequestration, mature P. falciparum 

parasites insert neoantigens into the surface of the infected erythrocyte which 

enables them to avoid passage through the splenic cords. Of the four established 

human malaria parasites, P. falciparum is the only species which has defended itself 

from splenic clearance by sequestration, and as a result is the parasite species 

responsible for the majority of severe malaria deaths (221).   

 

Throughout its asexual blood stage cycle the P. falciparum parasite decreases the 

possibility of detection through maintenance of erythrocyte membrane integrity or 

as it matures, insertion of neoantigens into the erythrocyte membrane (129). The 

immature ring-form parasite, present in the first 6–8 h of the blood stage cycle, has 

a small, soft morphology that does not perturb the erythrocyte membrane 

configuration or express parasite antigens on the erythrocytic membrane.  

Consequently, the invaded erythrocyte maintains its integrity and avoids detection 

or recognition by the splenic macrophages (129, 221).  As the parasite matures, the 

young flexible form develops into a larger more rigid parasite that is more likely to 

cause damage to the host cell function and membrane integrity.  These changes 

increase the likelihood of recognition by the host’s sensitive defence mechanisms.  



- 107 - 
 

To compensate for its increased susceptibility, the parasite inserts specific 

neoantigens (including P. falciparum RESA and PfEMP1) into the host erythrocyte 

cell membrane forming electron-dense protrusions on the surface of the host 

erythrocytes (129).   

 

Through interaction of the specific parasite ligand and endothelial receptors, the 

parasitised erythrocytes have the ability to cytoadhere to the vascular endothelium, 

particularly in organs such as the brain, heart and kidney (20, 97, 346).  

Consequently, the parasitised erythrocytes anchored to the epithelium do not pass 

through the splenic filtration system, thereby reducing the likelihood of their 

detection and removal from the host.  Such deep vascular sequestration is thought 

to be a major factor in the beginning of vital organ dysfunction and may also 

contribute to the rapid development of anaemia in the host (97).   As a result of 

sequestration in P. falciparum infections, only ring-form parasites may be observed 

in the peripheral blood (320).   If damage occurs to the malarial parasites during 

their life cycle, usually due to antimalarial therapy, the parasites’ host defence 

mechanisms will be affected leading to their rapid detection by splenic 

macrophages and roving phagocytic cells resulting in their subsequent removal 

(320).   

 

3.1.3 Effect of Splenectomy 

As the spleen is a soft encapsulated organ it remains relatively unprotected within 

the abdominal cavity.  Consequently, the spleen is the most common intra-

abdominal organ to be injured, often requiring its removal in an attempt to stem 

internal bleeding (62).  Whilst low velocity blunt trauma, most often due to 

domestic violence, assault or automobile accidents is the primary cause for 

splenectomy, splenic removal may also be required in cases of splenomegaly or 

cellular damage as a result of infection, inflammation or invasion by cancer cells (36, 

62, 289, 517, 542). 

 

Although the filtration and immune responses of the spleen are important in the 

regulation of homeostasis, the life expectancy of a person may not be impaired 
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after splenectomy (331).  Currently, the only documented consequences of 

splenectomy are related to immune function and a decrease in immunity (69, 195, 

290).  Surgical removal of the spleen has been shown to result in a reduced 

clearance of particulate antigens, be they intracellular (malaria) or extracellular 

(bacteria); diminished response to new antigens, particularly polysaccharides; 

impaired phagocytosis of unopsonized and opsonized bacteria and cells; and 

decreased levels of tuftsin and poperdin (246, 447, 517).  Although lymphoid organs 

involved in immune defences remain (eg. lymph nodes), the response time to 

invading bacterial or pathogenic bodies is delayed.  This may result in a 

splenectomized patient having a far more severe and sometimes life-threatening 

infection, which before splenectomy may have been quickly resolved (97, 240).  

Blood filtration, once a major function of the spleen, is compensated for by the liver 

where Kupffer cells (perisinusoidal macrophages) undertake the majority of 

phagocytic activity.  After splenectomy, it may be histologically observed that the 

number of circulating macrophages and Kupffer cells increase as a splenic 

compensatory mechanism.  Although splenectomy results in the prolonged 

circulation of many foreign bodies or damaged cells, these inferior bodies will 

eventually be removed through phagocytosis within the liver (97).   

 

3.1.3.1 The effect of splenectomy and malaria infection 

During malaria infections the absence of a functioning spleen results in reduced 

immunological and rheological mechanisms necessary for parasite removal, with 

high parasite counts observed in asplenic patients up to several months after drug 

therapy (97, 290, 497).  Morphological studies, observing the circulating parasite 

population, suggested that the majority of parasites remaining in the circulation 

were (in most cases) no longer considered viable, thereby reducing the risk of 

further infections with these parasites (97).  These studies were based on 

microscopic comparisons of drug affected parasites and those not exposed to any 

drug.  The results showed an identifiable change in parasite shape, density and 

structure.  It was found that the shapes of the persistently circulating drug affected 

parasites in asplenic patients were similar to those of parasites detected in an in 

vitro cell culture exposed to the antimalarial artesunate.  The morphological 
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changes in the parasites included a shrunken cytoplasm, rapidly expanding vacuoles 

and pyknotic nuclei, which were highly suggestive of a degenerative process directly 

resulting from the effects of the antimalarial drugs on the active parasites.  It was 

concluded that although the parasites were present, they were no longer viable 

(97). 

 

It has also been shown that during malaria infections in monkeys (particularly P. 

knowlesi (138, 221), P. falciparum (45, 123, 221)  and P. fragile (5, 34, 138, 240)) the 

spleen is essential for maintaining the expression of parasite antigens on the 

surface of the infected erythrocytes, including those cytoadherent ligands that are 

essential for parasite sequestration (449).  These studies have demonstrated that 

the parasite antigens are not present on the erythrocytic membranes in 

splenectomized animals and as a result the infected cells from splenectomized 

animals are unable to sequester in vivo and do not bind to endothelium or 

melanoma cells in vitro.  However, the ability to cytoadhere and express surface 

antigens is restored when these parasites are passaged into intact hosts (449).  A 

number of clinical cases also correlate with the animal findings as in these malaria-

infected splenectomized patients all intraerythrocytic developmental stages were 

observed in the  peripheral blood smears suggesting that the mature parasites are 

not sequestering (5, 34, 138, 240, 290). This may imply that the parasite has the 

capacity to determine whether or not it is required to activate its defence 

mechanisms dependant on the state of splenic clearance.  Although this possibility 

has not been investigated further it could be an important observation, especially 

when considering new drug developments, as a lack of sequestration may result in a 

decreased mortality from cerebral malaria.   

 

3.1.3.2 Asplenic model of malaria infection 

In experimental and naturally occurring malaria models, splenectomy has been 

found to have an adverse effect on the host’s defence against infection, in that 

normally non-lethal infections become lethal and P. falciparum infections are 

always a life-threatening disease (401).  The splenectomized host is also abnormally 
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prone to other health issues including meningitis, septicaemia and pneumococcal 

infections (401).   

 

In studies performed in a splenectomized murine model, hosts with innate 

resistance to infection became susceptible, transient infections became lethal and 

there was a loss of immunity (290).  Consequently, Eling (155) concluded that the 

spleen should be considered essential for the resolution of an acute malaria 

infection or, at least for the induction phase of immunity, to both the avirulent and 

virulent malaria parasites.  This conclusion was more recently challenged based on 

several experimental studies performed in Saimiri monkeys and clinical cases (401, 

449, 542) where it was suggested that the spleen is not essential for the resolution 

of malaria infections.  In a primate experimental model Pye et al. (401) used a total 

of 31 monkeys, of which 6 were splenectomized.  Each monkey was infected with 

an inoculum of 107 parasites of the Indochina 1/CDC malaria strain of P. falciparum.  

Results demonstrated that the splenectomized monkeys had higher peak 

parasitaemias and longer duration of detectable parasitaemia (about 20 days) 

compared to intact monkeys, which had parasite duration of 11–14 days.  In the 

splenectomized population several of the animals required treatment with 

mefloquine when their parasitaemia exceeded 10% of the total erythrocyte count.  

Mefloquine treatment was not required for any of the intact monkey population, to 

aid in parasite resolution (290).  The researchers reported an interesting and 

unexpected observation in the splenectomized monkey population in that a number 

of the animals resolved their infection without antimalarial drug intervention.  This 

indicated that the initiation of effective antimalarial immune responses were 

independent of the spleen (62, 124, 290).  The observations made by Pye et al. 

(1994) were further supported by studies conducted in patients with P. falciparum 

infections (124).  In the human studies the humoral and cellular immune responses 

to blood-stage antigens in splenectomized patients were similar to those individuals 

with spleens.  Thus, the spleen may not be essential for the processes leading to 

parasite clearance in partially immune, splenectomized patients (449, 542).  It may 

therefore be suggested that the involvement of the spleen in the resolution of 

malaria infection is important but not essential.   
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To date only a limited number of case studies describing the pharmacodynamic 

response to antimalarial therapies in the asplenic patient have been referenced (34, 

62, 138, 194, 240, 290, 432, 449, 497).  However, despite similar antimalarial 

therapies being used, the parasitological responses described after antimalarial 

therapy are inconsistent and often contradictory. For example, Thu et al. (497) 

described an asplenic patient who presented with a moderately severe malaria 

infection.  Despite intensive antimalarial therapy over a period of 18 days, including 

the use of oral mefloquine (1 dose), oral artemisinin (6 doses), i.v. artesunate (2 

doses), i.v. quinine (9 doses) and oral quinine (12 doses), a rapid elimination of 

parasites was not observed until 13 days after the initiation of antimalarial therapy, 

with eventual resolution of infection 18 days after the initiation of therapy (in a 

patient with a functional spleen expected resolution of infection would be no more 

than 7 to 10 days with the use of only one of these antimalarial drugs) (497).  The 

conclusion of this clinical case, as with other cases (138), was that the prolonged 

parasitaemia was a direct result of the patient’s asplenic status.  In contrast, further 

clinical cases have demonstrated the clearance of asexual parasitaemia and 

parasitological recovery from infection after a normal duration of antimalarial 

therapy (34, 194).  In fact, using similar antimalarial regimens, Bach et al. (34) 

determined in 33 splenectomized individuals that although asplenic status resulted 

in an increased susceptibility to malaria infection, it did not contribute to the clinical 

outcome of infection (34).  The variability of clinical outcomes described in 

splenectomized patients could potentially be the result of a number of factors 

including; prior immunity to the infecting parasite species, infection with drug 

resistant parasites, selected antimalarial therapy, other pre-existing health 

problems (including haemoglobinopathies), concurrent bacterial or viral infections 

and/or the initial level of parasitaemia.  

 

Therefore, although it is acknowledged that comparison of human and animal 

responses to a particular disease process should proceed with caution, there are 

several explanations for the parasitological responses in animal species and human 

infections to differ so significantly.  Firstly, the apparently contradictory outcomes 

described in the range of case studies in splenectomized patients are compounded 
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by the small number of patients in each report.  The largest cohort of 

splenectomized patients studied for parasitological response was 33 patients with 

the majority of conclusions drawn from single case studies, from a wide range of 

clinical manifestations and different patient ethnicities (34, 194, 290, 432, 497).  By 

contrast, animal models are generally more consistent.  Unlike the clinical setting, 

most aspects of infection and antimalarial therapy within animal models are tightly 

controlled to ensure consistency and reproducibility of results.  For example, within 

an animal laboratory the researcher is able to guarantee infection with a single 

parasite species, a standardised infecting inoculum, a similar level of parasitaemia 

at the time of drug administration, constant environmental influences, controlled 

diet and perhaps most importantly, maintenance of a pathogen-free environment 

to eliminate the possibility of concurrent infections that may alter the course of 

antimalarial therapy.  Animal models also have the capacity to involve large 

numbers within each cohort, which is often not feasible in the clinical setting, 

particularly when studying a specific population.   

 

Secondly, in clinical case studies where delayed parasite removal is noted in 

splenectomized patients (497), the parasitaemia observed in the peripheral 

circulation after antimalarial therapy may include dead or drug affected (non-viable) 

parasites that are still present as a result of the patient’s asplenic status (96, 97).  

Case studies generally fail to indicate whether such a factor was taken into account 

when determining the peripheral parasitaemia, and even if considered, 

differentiating the microscopic changes to parasite structure when affected by 

antimalarial drugs is only reliable if undertaken by an experienced microscopist.  

Therefore, it is possible that in the case studies where a delayed parasitaemia was 

observed, the majority of parasites were killed by early antimalarial therapy but 

their removal from circulation was delayed.  If this were the case, parasitological 

and clinical recovery in the splenectomized patients could have occurred 

significantly earlier than indicated in the report and if so, the results in these case 

studies could be similar to results described in animal models.  It is also possible 

that in the absence of a spleen, the compensatory clearance mechanisms of the 
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liver, observed in simian and rodent models are not as significant, or rapidly 

achieved, in the human host.   

 

3.1.3.3 Antimalarial treatment strategies 

Compared to normal individuals, asplenic people living in malaria-endemic areas are 

more commonly parasitaemic, and have a delayed clearance of parasites after 

treatment (542).  In addition, an asplenic status can result in a malaria infection 

being more severe or even fatal (241).   Ideally, splenectomized individuals living in 

endemic areas should take lifelong antimalarial prophylaxis and be immunized 

against pneumococcal infections, but this is often difficult and prohibitively 

expensive (87, 388, 543).  If the person lives in the tropics, but in an area of low 

transmission (such as the highlands), malaria prophylaxis must be taken when they 

plan to travel into an endemic zone (489).    

 

3.1.4 Study Aims 

The principal aim of this study was to evaluate the effects of DHA in asplenic and 

intact mice infected with P. berghei. Histopathological examination of key organs 

was also performed to investigate the role of the liver, and other key organs, in the 

removal of parasites after DHA treatment in this murine model.  

 

3.2 METHODS 

3.2.1 Materials 

3.2.1.1 Mice 

This study was approved by the Curtin University Animal Experimentation Ethics 

Committee.  Male Swiss mice (5 to 6 weeks of age; average weight 29.5 ± 3.3 g) 

were obtained from the ARC for all experimental work.  Male BALB/c mice (7 to 8 

weeks of age; ARC) were used for weekly passage of malaria parasites.  All animal 

handling and housing procedures were performed as outlined in Sections 2.1.1 and 

2.2.1.    
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3.2.1.1.1  Splenectomy procedures 

All splenectomy procedures were performed by registered veterinarians at the ARC 

on 3-5 week old mice.  After surgery all mice were observed for a period of 2 weeks 

at the ARC laboratories before delivery to the Curtin University Animal Holding 

Facilities.   

 

3.2.1.2 Parasites 

P. berghei ANKA parasites were maintained by continuous weekly blood passage in 

BALB/c mice (Section 2.2.2.1).  A standard inoculum of 107 parasitised erythrocytes 

per 100 μL was prepared by dilution of blood harvested from infected BALB/c mice 

(>30% parasitaemia) in citrate-phosphate-dextrose solution (Section 2.2.2.2) and 

administered by i.p. injection to infect the experimental mice (Section 2.2.1.4).     

 

3.2.1.3 Drug preparation 

DHA (Dafra Pharma N.V., Belgium) was used for all antimalarial therapy 

experimental procedures.  All drug doses were prepared by dissolving the DHA 

powder in a solution of 60% dimethyl sulfoxide (DMSO) in polysorbate 80 (Tween 

80).  In order to ensure all DHA powder was completely dissolved and evenly 

distributed, the drug solution was sonicated for 1-2 min to break down any large 

particles and aid in dissolution.   When completely dissolved, the drug solution was 

drawn into 1 mL syringes for administration using a 26Gx½ inch needle.    

 

3.2.2 Study Design 

3.2.2.1 Single dose pharmacodynamic study 

As clinical case reports show a delayed clearance in peripheral parasitaemia in 

asplenic patients, the basis of this investigation was to determine if a single dose of 

DHA would lead to the successful clearance of parasitaemia in asplenic mice.  The 

aim of this study was therefore to compare the pharmacodynamic response of 

subtherapeutic doses of DHA in malaria-infected intact and asplenic mice.  

 

 Asplenic (n=32) and intact (n=32) mice were inoculated with 107 P. berghei 

parasites. Groups of asplenic (n=8) and intact (n=8) mice were given DHA 
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approximately 56 h after inoculation (anticipated parasitaemia 2-5%, confirmed by 

thin blood film examination) at doses of 0, 10, 30 and 100 mg/kg (Fig. 3.3).  

 

 

 

 

 

 

 

Figure 3.3 Schematic simplifying the experimental protocol for the single dose 

pharmacodynamic study.   1.   Naive asplenic (n=32) and intact (n=32) mice were 

inoculated with 107 P. berghei parasites;  2.  Mice were left for a period of 56 h at 

which time the peripheral parasitaemia was expected to reach 2-5%; 3.  Mice were 

broken into 4 groups of n=8 mice.  Each group of mice received a single dose of DHA 

(0, 10, 30 or 100 mg/kg) by i.p. injection.  Parasitaemia was then monitored through 

the preparation of regular peripheral blood smears.   

 

To monitor peripheral parasitaemia, tail vein bleeds were performed every 4 h for 

the first 52 h after drug administration, then twice daily until the time of euthanasia 

(>40% parasitaemia).  Peripheral blood smears were prepared after each tail vein 

bleed.  Once air dried, each smear was stained with May Grunwald Giemsa then 

observed under 100x oil immersion microscopy.   In addition to determining total 

parasitaemia, parasites were classified into the four erythrocytic maturation stages 

(Fig. 3.4; ring-form, early trophozoite, late trophozoite and schizont) according to 

guidelines from Leiden University Medical Centre (24). 

 

  

 

    

 

    

 

      

Figure 3.4 Maturation stages of P. berghei parasites during the asexual 

erythrocytic cycle. (A) ring-form; (B) early trophozoite; (C) late trophozoite; (D) 

schizont. 
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3.2.2.3 Histopathological study 

Although P. berghei parasites are known to not sequester in the Swiss mouse 

model, mature stage parasites cause disruption to the host erythrocyte surface 

membrane causing it to become rigid and unable to easily transverse the 

microcirculations of organs, particularly in cases of high parasite density (97, 158).  

Furthermore, it would be expected that those organs that perform a blood filtration 

function would demonstrate a higher presence and density of parasites.  As the 

spleen is the primary organ for the filtration of blood, with selective removal of 

infected cells, it would be expected that this organ would demonstrate the greatest 

presence of parasites throughout the stages of P. berghei infection.  However, as 

the asplenic host does not have the capacity to remove the parasites through 

splenic ‘pitting’ or phagocytic mechanisms, it would be presumed that either 

another organ may perform this function or there would be a lack of parasite 

removal after drug therapy.  Therefore, the purpose of this investigation was to 

determine the parasite presence and distribution of P. berghei parasites, 

throughout the course of malaria infection, in treated and untreated intact and 

asplenic mice.  After consideration of the function and microcirculation properties 

of each of the major organs, the liver, spleen, lung and kidney were all selected for 

observation.   

 

To observe the distribution of parasites throughout different stages of P. berghei 

infection, time-points were selected to reflect situations of light, moderate and 

heavy infections as well as key time-points such as the time of drug administration 

in drug treated mice.  Two series of mice were investigated in parallel.  The first 

series of mice (Group A; n=24) consisted of untreated intact and asplenic mice 

where groups (n=4) were euthanized and organs harvested at 0, 36, 56, 76, 96 and 

168 h after inoculation.  A second series (Group B; n=12) of intact and asplenic mice 

were given a single i.p. dose of 30 mg/kg DHA 56 h after inoculation and groups 

(n=4) were euthanized 76, 96 and 168 h after inoculation for organ examination 

(Fig. 3.5).  
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Figure 3.5 Schematic simplifying the experimental protocol for the 

histopathology study.   1.   Naive asplenic (n=36) and intact (n=36) mice were 

separated into 2 groups, Group A (untreated mice; n=24) and Group B (DHA treated 

mice; n=12);  2.  All mice in Group A and Group B were inoculated with 107 P. 

berghei parasites; 3.  Group A mice were broken into 6 groups of n=4 mice which 

were euthanized and specific organs harvested at 0, 36, 56, 76, 96 and 168 h after 

parasite inoculation; 4.  Group B mice were left for a period of 56 h (peripheral 

parasitaemia 2-5%) at which time each mouse received a single dose of 30 mg/kg 

DHA;  5.  Group B mice were broken into 3 groups of n=4 mice which were 

euthanized and specific organs harvested at 76, 96 and 168 h after parasite 

inoculation (20, 40 and 112 h after DHA treatment).  
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At the designated time of organ harvesting each mouse was euthanased by a single 

i.p. dose of sodium pentobarbitone (Section 2.2.1.6), which was carefully injected as 

to not perturb or damage any abdominal organs.  A slightly higher dose of sodium 

pentobarbitone was used in this investigation as it is normal practice to harvest the 

blood volume of the mouse via cardiac puncture and it is desirable to anesthetise 

the mouse, but not interfere with cardiac function. However, in this experiment, no 

blood was harvested from these mice before organ harvest (as to preserve the 

natural distribution of parasites within each of the organs) so a higher dose of 

sodium pentobarbitone was used to ensure prompt cessation of cardiac and 

respiratory function.  Once it was determined that the respiration of the mouse had 

ceased, organ harvesting was performed. 

 

To remove the organs from the mouse without causing unnecessary damage, the 

abdominal cavity was opened as previously described for performing internal 

cardiac punctures (Section 2.2.1.5).   Using sterile surgical equipment, each organ 

was removed in its entirety, washed in 0.9% NaCl solution to remove external 

contaminants, weighed and then observed macroscopically.  The organ was then 

placed in a vial containing a solution of 10% formalin in 0.9% NaCl for fixation. Due 

to their small size, the spleen, heart and kidney were able to be fixed in their 

entirety, however, in order to ensure complete and adequate fixation a single lobe 

of liver (left lobe) was selected for fixation.  As the malaria infection progressed, 

splenomegaly was seen to occur and in many cases only half of the spleen was 

placed into fixative to ensure adequate fixation.  

 

When preparing organs for histological fixation it is common practice to perfuse the 

organs with fixative before they are removed from the animal, to minimise the 

alteration of cell structures as a result of post-mortem effects (426).  However, for 

this study perfusion was deemed unsuitable because forcing the fixative into the 

organ would disrupt the natural distribution of parasites.  Therefore each organ was 

promptly processed and placed in fixative. 

 

 



- 119 - 
 

3.2.2.3.1  Histology 

After removal from the body, each organ remained in fixative until histological 

processing took place (a maximum of 6 months after harvesting).  For histological 

preparation the organs were dehydrated in increasing concentrations of alcohol (70 

to 100%) and finally embedded in paraffin blocks.  The histological preparation took 

place using a Shandon Hypercenter XP enclosed tissue processor (Thermo Fisher 

Scientific, Scoresby, Victoria, Australia).  Each organ section was removed from its 

fixation vial and placed in a cassette which was then loaded into the processing 

racks.  When all samples were loading into the processing racks, these racks were 

inserted into the processor and the cycle initiated.  The purpose of the processing 

cycle was to remove all of the fixative from the tissues through dehydration and 

replacing it with molten paraffin.  This was achieved by taking the samples through 

cycles of increasing concentrations of ethanol, then xylene and finally molten 

paraffin.  The schedule followed during this process was as outlined in Table 3.1. 

 

Table 3.1  Cycle Schedule for the Shandon Hypercentre XP Enclosed Tissue 

Processor. 

 

SOLUTION TIME 

  70% Ethanol  2 h 

  90% Ethanol 2 h 

100% Ethanol 1 h 

100% Ethanol 2 h 

100% Ethanol 2 h 

Xylene 2 h 

Xylene 2 h 

Paraffin wax 2 h 

Paraffin wax vac 2 h 

Paraffin wax vac 30 min 

Paraffin wax vac 30 min 
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Once tissue processing was completed the samples were ready for embedding into 

paraffin blocks.  Embedding took place using the Tissue embedding Centre (Electron 

Microscopy Services, Hatfield, PA, USA).  Solid paraffin was placed in the thermal 

and dispensing consoles and the temperature gauges set to 65oC to ensure a 

smooth consistency.  The embedding plate was cleaned to remove all foreign 

contaminants and the cold plate switched on. When all solid paraffin was melted in 

the thermal and dispensing consoles the tissue cassettes containing processed 

organ samples were removed from the tissue processor and placed into the wax 

bath.  Plastic paraffin embedding cassettes (25 mm diameter) were used to set the 

organ sections.  The organ sections were embedded using the following process: 

1.  A plastic embedding cassette was labelled using a 2B pencil and placed on 

the cold plate facedown and molten paraffin dispensed into the cassette to 

a height of 2–3 mm. 

2. The organ section was placed into the molten paraffin with the cutting 

surface placed facing down. 

3. Liquid paraffin was then slowly dispensed into the cassette as to 

completely cover the organ section and fill the plastic cassette. 

4. Once filled the cassette was left to set on the embedding plate. 

 

This process was followed until all sections were embedded in cassettes and the 

paraffin set to solid wax.  Each cassette was then stacked in cardboard storage 

boxes and placed in a cool dark room until time of cutting.  

 

Tissue sectioning took place using a Leica rotary microtome (Leica Microsystems, 

Gladesville, NSW, Australia) with tissue sections floated on a Leica temperature 

controlled waterbath (Leica Microsystems, Gladesville, NSW, Australia).  Blocks 

were mounted on the microtome and roughly trimmed at 10 μm sections until a 

good clean tissue face was achieved.  Once trimmed, the trimming blade was 

replaced with a cutting blade, which was thoroughly cleaned and inspected for nicks 

which could tear the delicate tissues.  Before sectioning, the steel cutting plate was 

chilled using ice cubes to ensure the thin paraffin sections would not stick to the 

plate. Each block was then sectioned in serial 4 µm slices which consisted of 10 to 
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15 slices of tissue. The tissue ribbons were gently picked up using steel forceps and 

floated in a sectioning water bath set at 30oC. The cut ribbon was floated on the 

heated distilled water until the tissue sections had re-expanded to their original 

shape and size at which time each section was separated and mounted on a clean 

glass slide. All mounted sections were air dried overnight.   

 

After 12 h of air drying, to ensure section stability on the slide, the sections were 

prepared for staining in Haematoxylin and Eosin. The prepared slides were first 

placed in a drying oven set at 60oC for 45 h to melt excess paraffin wax surrounding 

the tissue sections.  The sections were then ready for deparaffinization and staining 

following the procedure outlined in Table 3.2. 

 

Table 3.2 Haematoxylin and Eosin staining procedure (Note: Times were 

variable depending on organ section requiring staining) 

SOLUTION TIME 

Xylene 1 min 

100% ethanol 1 min 

95% ethanol 1 min 

80% ethanol 1 min 

Deionised water rinse (> 30 sec) 

Haematoxylin 5 min 

Deionised water rinse 

Scott’s tap water 5-10 dips 

0.3% Acid ethanol 5-10 dips 

Deionised water rinse 

Eosin 3-5 min 

80% ethanol 30 sec 

95% ethanol 30 sec 

100% ethanol 30 sec 

Xylene > 30 sec 
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Once stained in Haematoxylin and Eosin the tissue sections were left to air dry then 

cover-slipped using DePex as the mounting medium.  The slides were then placed 

on a flat surface for 24 h to allow the mounting medium to dry at which time the 

slides were stored in designated slide storage trays.  Organ sections were examined 

under oil immersion light microscopy for parasite visualization and evaluation of 

tissue morphology. 

  

3.2.2.3.2 Haemozoin quantification 

Several methods have been described for the detection of haemozoin in blood and 

tissues, including microscopy, spectrophotometry, fluorescence and 

chemiluminescence (215, 271, 328, 419, 470, 511).  However, although microscopic 

techniques have been further advanced in more recent years, it remains a useful 

tool only for the identification of pigment rather than as a quantitative measure 

(271, 339, 419, 470).  The use of magnetic field separation, spectrophotometry, 

fluorescence and chemiluminescence are all more sensitive quantitative measures.   

 

 For the purpose of this study an alternative quantification method had to be 

developed to determine haemozoin density in liver sections as the only tissue 

samples that were available were the stained histology samples.  Therefore, a 

microscopic method was developed based on that used for the determination of 

peripheral parasitaemia in blood films.   Liver sections from 4 mice per dose group 

were observed under 100x oil immersion light microscopy. A high resolution digital 

image was taken for 10 consecutive fields of view from each liver section (Olympus 

DP70 digital imaging system, Olympus DP70 controller version 2.1.1.183 and DP 

manager version 2.1.1.163; Olympus Australia Pty Ltd, Mt Waverley, VIC Australia). 

A calibrated scale (200 µm x 150 µm) was superimposed on the digital image and 

the numbers of haemozoin deposits (regardless of size) were counted within the 

defined area. This process was repeated for each of the 10 fields of view with the 

total count used to estimate haemozoin density (haemozoin deposits per mm2). 

 

It is acknowledged that whilst the proposed method does not quantify the mass of 

haemozoin within the liver tissue it does identify the number of haemozoin deposits 
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thus allowing comparison between liver sections and varying time-points from the 

asplenic and intact mouse populations.  

  

3.2.2.3.3 Blood pathology 

Haematological changes, which are the most common complications of malaria 

infections, play a major role in the pathogenicity of infections (463).  These changes 

can involve all blood components and include anaemia, white blood cell changes as 

a result of cytokine induction, thrombopathy and possible coagulopathies (312, 463, 

543).  It is also acknowledged that during malaria infection the increased 

destruction of red blood cells, as well as mechanical destruction to soft organ 

tissues by the rigid parasites, can contribute to selective changes in biochemistry 

(182, 258).  The liver in particular is an organ which is directly affected by malaria 

parasites and as a result the release of liver enzymes into blood circulation is often 

seen to occur as parasitaemia increases (258).    

 

The purpose of this study was to investigate the progressive changes in 

haematology, liver biochemistry and electrolyte levels from groups of asplenic and 

intact mice that were either untreated or received a single dose of 30 mg/kg DHA 

56 h after parasite inoculation.  At each designated time point (0, 36, 56, 76, 96 and 

168 h after inoculation) blood was collected by internal cardiac puncture from each 

infected Swiss mouse (n=6 asplenic and intact mice at each time point). After 

harvesting, the blood from 3 mice at each time point was placed into EDTA 

anticoagulant for haematological testing, whilst blood from the remaining 3 mice 

was placed in lithium heparin tubes for biochemistry.   

 

EDTA samples were processed daily on a Cell-Dyn3200 (Abbott Diagnostics, Illinois, 

USA) to determine full blood parameters as anaemia and thrombocytopaenia are 

recognised features of malaria infection and these specific tests are routinely used 

to monitor disease progression (382). As mouse blood cells are distinctly smaller 

than human cells, the samples were run under the Veterinary mode using a Mouse 

parameter setting.  As cell separation and counting occurs due to pre-calibrated 
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MCV values, the use of this package ensured that red blood cells were counted as 

such, rather than being counted as large platelets in the human mode.    

 

For biochemistry analysis, heparinised blood was immediately centrifuged for 10 

min at 3000 g (Biofuge Primo, Heraeus Instruments/ Kendro Instruments Australia 

Pty Ltd, Lane Cove, NSW, Australia) and the separated plasma was stored in micro-

centrifuge tubes and refrigerated at 4oC until analysed at the conclusion of the 

study.  The plasma was separated from the red blood cell pellet to eliminate the 

possibility of enzyme leaching from the pellet into the plasma which would falsely 

elevate enzyme levels.  The plasma samples were processed in a single batch using 

a Synchron LX® 20 PRO (Beckman Coulter Australia Pty Ltd., Gladesville, NSW, 

Australia) for liver function tests (bilirubin, alanine transaminase (ALT), aspartate 

transaminase (AST) and alkaline phosphatase (AFP)) as indicators of liver damage 

associated with malaria infection.  The same procedure was performed for mice 

treated with DHA (56 h after inoculation) using blood that was harvested at 76, 96 

and 168 h after inoculation.  Both haematology and biochemistry results from intact 

and asplenic mice were compared to determine differences in disease pathology 

between the two groups.   

 

3.3 RESULTS 

3.3.1 Single Dose Pharmacodynamic Study 

3.3.1.1 DHA pharmacodynamics 

Single dose DHA produced a prompt decline in parasitaemia, reaching a nadir 24 h 

after drug administration (Fig. 3.6). The nadir was 2.8, 4.4 and 6.0 fold below 

starting parasitaemia in asplenic mice and 2.7, 5.1 and 6.9 fold in intact mice at 

doses of 10 mg/kg, 30 mg/kg and 100 mg/kg, respectively. Parasite recrudescence 

was observed in all groups of mice. To determine if there was a significant 

difference in the rate of parasite recovery, the time to reach a 5% parasitaemia 

after dosing (t5%) was determined by linear interpolation. The value of 5% was 

selected as the recrudescence comparison time point, as this both reflected the 

maximum parasitaemia at time of dosing, and a previous study had determined that  



- 125 - 
 

A 

Time of infection (h)

24 48 72 96 120 144 168

Pa
ra

si
ta

em
ia

 (%
)

0.01

0.1

1

10

100

DHA

 

B 

Time of infection (h)

24 48 72 96 120 144 168

Pa
ra

si
ta

em
ia

 (%
)

0.01

0.1

1

10

100

DHA

 

C 

Time of infection (h)

24 48 72 96 120 144 168

Pa
ra

si
ta

em
ia

 (%
)

0.01

0.1

1

10

100

DHA

 

Figure  3.6. Effect of dihydroartemisinin on parasitaemia in intact and asplenic 
mice. Data are shown as mean total parasitaemia (% of infected erythrocytes) + SD 
versus time in relation to the dose of DHA. Mice were inoculated with 107 
parasitised erythrocytes 56 h prior to DHA administration [A: 10 mg/kg DHA, B: 30 
mg/kg DHA, C: 100 mg/kg DHA;  untreated intact mice,  untreated asplenic 
mice,  treated intact mice,  treated asplenic mice; n=8 per group]. 
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a recrudescent parasitaemia reaching 5% in mice would likely lead to a fatal 

outcome, whilst no significant changes would occur in the erythrocyte count (179).    

 
The mean ± SD t5% was 39 ± 5 h, 34 ± 8 h and 48 ± 5 h (P=0.003; ANOVA) in asplenic 

mice, and 32 ± 3 h, 43 ± 7 h and 62 ± 24 h (P=0.004; ANOVA) in intact mice at 10 

mg/kg, 30 mg/kg and 100 mg/kg, respectively. There was a significant difference in 

the t5% between asplenic and intact mice at each dose studied (P=0.004, P=0.044 

and P=0.012 for 10 mg/kg, 30 mg/kg and 100 mg/kg, respectively; t-test).  

 

3.3.1.2 Parasite Staging 

No significant difference in staging profiles was observed between asplenic and 

intact mice, both untreated and DHA-treated (Fig. 3.7). Late trophozoites were the 

predominant stage at each time point. In untreated mice, early trophozoites and 

ring-forms comprised the remainder of the total observed parasitaemia up to 2-3 

days post-dose (4-5 days post infection; Fig. 3.7, panels A and B). Schizonts became 

more prominent than the ring-forms as the infection advanced beyond a total 

parasitaemia of at least 10%. All erythrocytic stages were affected by the 

administration of DHA, with nadir at 20-28 h (Fig. 3.7, panels C-F), clearly 

demonstrating that DHA was broadly effective in this in vivo model.  This finding is 

consistent with other published findings which have shown that artemisinin 

derivatives are effective on all stages of the Plasmodium parasite (238).  
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Figure 3.7 Parasite stage differentiation at varying doses of dihydroartemisinin. 
Data are shown as mean parasitaemia (% of infected erythrocytes) versus time in 
relation to dose (error bars excluded for clarity; n=8 per group). [A: untreated 
intact mice, B: untreated asplenic mice] 
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Figure 3.7  Parasite stage differentiation at varying doses of dihydroartemisinin. 
Data are shown as mean parasitaemia (% of infected erythrocytes) versus time in 
relation to dose (error bars excluded for clarity; n=8 per group). [C: 10 mg/kg DHA 
treated intact mice, D: 10 mg/kg DHA treated asplenic mice, E: 30 mg/kg DHA 
treated intact mice, F: 30 mg/kg DHA treated asplenic mice, G: 100 mg/kg DHA 
treated intact mice, H: 100 mg/kg DHA treated asplenic mice;  mean total 
parasitaemia, ring-forms, early trophozoites, late trophozoites,  schizonts]. 
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3.3.2 Histopathological Study 

3.3.2.1  Histology 

In order to observe pathological changes in tissue sections, as well as the presence 

of malarial parasites and haemozoin deposits, histological sections of spleen, liver, 

lung and kidney sections were observed and morphology compared at 36 h (Fig. 

3.8), 56 h (Fig. 3.9), 76 h (Fig. 3.10), 96 h (Fig. 3.11) and 168 h (Fig. 3.12) after 

parasite inoculation.  Furthermore, organ sections were compared from mice that 

received DHA 56 h after parasite inoculation.  For comparative purposes, these 

organ sections were also taken 76 h (Fig. 3.13), 96 h (Fig. 3.14) and 168 h (Fig. 3.15) 

after parasite inoculation (20, 40 and 112 h after DHA administration).   

 

Liver and lung weights increased as the infection progressed and were significantly 

greater than uninfected mice at 168 h after inoculation in both asplenic and intact 

mice (Table 3.3). A similar outcome was observed in DHA-treated asplenic and 

intact mice (Table 3.3). By contrast, the kidney weight was not affected by malaria 

infection. The mean proportionate weight of the spleen was significantly greater in 

the infected mice, compared to the uninfected animals, from 56 h of infection (the 

time of DHA administration) in treated and untreated mice (Table 3.3).  

 

As anticipated in the intact mice in the study, the spleen increased in size and 

weight as the infection progressed. Along with haemozoin accumulation, organ 

histology showed an increase in the cellularity of both red and white pulp and the 

progressive loss of a defined marginal zone. These expected histological changes 

were associated with increasing parasite burden (15, 210). The increase in red pulp 

cellularity is reported to occur as the phagocytic and erythropoietic activity of the 

spleen is enhanced to replace infected erythrocytes with a healthy population of 

cells (210). White pulp expansion occurs as the immune function of the spleen is 

stimulated by the presence of parasites resulting in both lymphocyte and antibody 

production (15).  In asplenic mice, careful examination of the abdominal cavity 

occurred post mortem to check for any remnants of splenic tissues which may 

account for the increased parasite clearance.  No evidence of residual spleen was 

found in any of the asplenic mice.   
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Figure 3.8 Light microscopy of Haematoxylin and Eosin stained mouse organ sections 
(x40) 36 h after parasite inoculation. Sections are from the spleen of infected mice 
and liver, lung and kidney sections are from both intact and asplenic mice 36 h after 
inoculation with P. berghei parasites.  Arrows demonstrate the presence of haemozoin 
deposits (), parasitised erythrocytes () and liver Kupffer cells ().   
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Figure 3.9 Light microscopy of Haematoxylin and Eosin stained mouse organ sections 
(x40) 56 h after parasite inoculation. Sections are from the spleen of infected mice 
and liver, lung and kidney sections are from both intact and asplenic mice 56 h after 
inoculation with P. berghei parasites.  Arrows demonstrate the presence of haemozoin 
deposits (), parasitised erythrocytes () and liver Kupffer cells ().   
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Figure 3.10 Light microscopy of Haematoxylin and Eosin stained mouse organ 
sections (x40) 76 h after inoculation. Sections are from the spleen of infected mice 
and liver, lung and kidney sections are from both intact and asplenic mice 76 h after 
inoculation with P. berghei parasites.  Arrows demonstrate the presence of haemozoin 
deposits (), parasitised erythrocytes () and liver Kupffer cells ().   
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Figure 3.11. Light microscopy of Haematoxylin and Eosin stained mouse organ 
sections (x40) 96 h after parasite inoculation. Sections are from the spleen of infected 
mice and liver, lung and kidney sections are from both intact and asplenic mice 96 h 
after inoculation with P. berghei parasites.  Arrows demonstrate the presence of 
haemozoin deposits (), parasitised erythrocytes () and liver Kupffer cells ().   

20.0 µm 

20.0 µm 20.0 µm 

20.0 µm 20.0 µm 

20.0 µm 20.0 µm 



- 133 - 
 

 Intact Mice Asplenic Mice 
 
Spleen 

 

 

 

 
Liver 

 

 

 

 
 
Lung 

 

 

 

 
 
Kidney 

 

 

 

 
Figure 3.12 Light microscopy of Haematoxylin & Eosin stained mouse organ sections 
(x40) 168 h after parasite inoculation. Sections are from the spleen of infected mice 
and liver, lung and kidney sections are from both intact and asplenic mice 168 h after 
inoculation with P. berghei parasites. Arrows demonstrate the presence of haemozoin 
deposits (), parasitised erythrocytes () and liver Kupffer cells ().   
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Figure 3.13 Light microscopy of Haematoxylin and Eosin stained mouse organ sections 
from DHA treated mice (x40) 76 h after parasite inoculation. Mice were inoculated with P. 
berghei parasites then at 56 h of infection were treated with 100 mg/kg DHA.  Sections are 
from the spleen of infected mice and liver, lung and kidney sections are from both intact and 
asplenic mice 76 h after inoculation with P. berghei parasites.  Arrows demonstrate the 
presence of haemozoin deposits (), parasitised erythrocytes () and liver Kupffer cells ().   
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Figure 3.14 Light microscopy of Haematoxylin and Eosin stained mouse organ sections 
from DHA treated mice (x40) 96 h after parasite inoculation. Mice were inoculated with P. 
berghei parasites then at 56 h of infection were treated with 100 mg/kg DHA.  Sections are 
from the spleen of infected mice and liver, lung and kidney sections are from both intact and 
asplenic mice 96 h after inoculation with P. berghei parasites.  Arrows demonstrate the 
presence of haemozoin deposits (), parasitised erythrocytes () and liver Kupffer cells ().   
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Figure 3.15 Light microscopy of Haematoxylin and Eosin stained mouse organ sections 
from DHA treated mice (x40) 168 h after parasite inoculation. Mice were inoculated with P. 
berghei parasites then at 56 h of infection were treated with 100 mg/kg DHA.  Sections are 
from the spleen of infected mice and liver, lung and kidney sections are from both intact and 
asplenic mice 168 h after inoculation with P. berghei parasites.  Arrows demonstrate the 
presence of haemozoin deposits (), parasitised erythrocytes () and liver Kupffer cells ().   
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Sections of liver and spleen showed that after 56 h of infection, both organs were 

accumulating parasitised erythrocytes (Fig. 3.9–Fig. 3.15). This was demonstrated by 

the presence of haemozoin within the splenic cords, an increased number of 

phagocytic cells in the spleen and liver and Kupffer cell hyperplasia within the liver. 

In asplenic mice, parasites were observed in the liver as early as 36 h after 

inoculation (Fig. 3.8) and Kupffer cell hyperplasia became prominent from 56 h of 

infection (Fig. 3.9). Comparison of liver sections from asplenic and intact mice 

indicated a greater density of parasites in asplenic mice throughout the infection 

(Fig. 3.9).  An interesting observation made in liver sections taken from asplenic 

mice was that from 56 h of infection clusters of basophilic staining cells were 

randomly present within the liver lobules (Fig. 3.16).  The clusters of cells could be 

observed in all asplenic liver sections in increasing size (approximately 30-50 cells) 

and numbers as the infection progressed.  These basophilic staining clusters are not 

a unique observation as they have been previously described when looking at the 

increased antibody production within liver tissue during malaria infection in 

splenectomized rats (Fig. 3.16) (545). Liver sections from intact mice did not 

demonstrate the presence of the basophilic clusters until after 96 h of infection, and 

only in sporadic numbers.     

 

Overall, haemozoin density in the liver was significantly greater in asplenic mice, 

compared to intact mice, and the haemozoin density was greater in untreated mice 

than DHA treated mice at the same time post-inoculation (Table 3.3). These data 

provide an indication of total parasite presence in the liver, but may not reflect 

natural parasite accumulation/extraction by the liver if haemozoin transport 

between tissues has occurred (179).  

 

The lungs showed parasite presence from 36 h of infection (Fig. 3.8 to Fig. 3.12) 

with evidence of haemorrhage observed by both gross and histological examination 

after 76 h of infection. Increasing numbers of macrophages and lymphocytes were 

observed as the infection progressed in both intact and asplenic mice. The kidneys 

were generally unremarkable and did not show parasite presence in the tubules 

until 168 h of infection in both intact and asplenic mice (Fig. 3.11).  
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Figure 3.16 (A, B) Light microscopy of Haematoxylin and Eosin stained liver 
sections from asplenic mice (x40) demonstrating the presence of clusters of 
basophilic staining lymphoid cells known as pseudofollicles.  As shown, 
pseudofollicles vary size (number of cells within cluster), shape and distribution 
through the liver section. (C, D) Examples of pseudofollicles in rat liver sections as 
previously described by Weiss (545). 
 

 

Table 3.3 Haemozoin deposits per mm2 of liver from mice inoculated with P. 
berghei parasites. Treated mice were given DHA 56 h after inoculation. Data are 
mean ± SD. 

 Untreated DHA Treated 
 Intact 

(n=4) 
Asplenic 

(n=4) 
Intact 
(n=4) 

Asplenic 
(n=4) 

Time after 
inoculation 

    

0 h 0 0 - - 
36 h 0 5 ± 4 a - - 
56 h 34 ± 10 45 ± 13 - - 
76 h 190 ± 92  532 ± 67 a 64 ± 34b 123 ± 78b 

96 h 215 ± 145 765 ± 117a 127 ± 53 317 ± 87ab 
168 h 1684 ± 242 1776 ± 107 301 ± 137b 809 ± 85ab 

a P<0.05 for comparison between intact and asplenic mice at designated time point (t-test); b P<0.05 

for comparison between untreated and DHA-treated mice at designated time point (t-test) 

20.0 µm 20.0 µm 

A B 
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The kidneys and lungs were also examined, with particular consideration of parasite 

trapping in the microvasculature. No significant pathological change was observed 

in kidney sections in our study (up to 168 h post-inoculation), suggesting that the 

kidneys did not have a significant role in the removal of parasitised erythrocytes 

from circulation. However, there was a significant increase in the mass of the lungs 

as the infection progressed (Table 3.4). Based on autopsy examination and organ 

histology, this was apparently due to oedema and haemozoin deposition in the 

microcirculation of both asplenic and intact mice. Histological examination of lung 

tissue demonstrated parasite presence from 36 h of infection with evidence of 

haemorrhage observed by both gross and histological examination after 76 h of 

infection. Increasing number of macrophages and lymphocytes were observed as 

infection progressed in both intact and asplenic mice.   

 

3.3.2.2 Pathology  

3.3.2.2.1 Haematology 

During the course of infection, red blood cell indices progressively changed in both 

intact and asplenic mice, as would be expected.  Although total red blood cell count 

(RBCC) and haematocrit (HCT) remained stable in both cohorts of mice for the first 

76 h of infection, at 96 h, when parasitaemia exceeded 10%, both values steadily 

declined with significantly decreased values observed at 168 h in both asplenic and 

intact mice when compared to the RBCC and HCT indices at baseline (Table 3.6).  

After treatment with DHA no statistically significant difference in RBCC was 

observed in intact mice throughout the malaria infection, however, a significantly 

different HCT value was observed at 168 h (Table 3.7).  In treated asplenic mice 

both the RBCC and HCT were significantly different at 168 h compared to both the 

starting indices as well as when compared to intact mice at the same time point 

(Table 3.7). 

 

Haemoglobin concentrations declined in both asplenic and intact untreated mice 

from 36 h after inoculation but this decrease was not statistically significant until 

168 h after inoculation (Table 3.6). A similar pattern was observed in asplenic, 
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Table 3.4  Organ weights as a proportion of total body weight (%TBW) from mice after inoculation with P. berghei parasites.  Treated mice were 

given DHA 56 h after inoculation and blood was harvested 20, 40 and 112 h after dosing (76, 96 and 168 h after inoculation).  Data are mean ± SD. 

 Parasitaemia (%) Liver (%TBW) Lung (%TBW) Kidney (%TBW) Spleen (%TBW) 
Time after 
inoculation 

Intact 
(n=10) 

Asplenic 
(n=10) 

Intact 
(n=10) 

Asplenic 
(n=10) 

Intact 
(n=10) 

Asplenic 
(n=10) 

Intact 
(n=10) 

Asplenic 
(n=10) 

Intact  
(n=10) 

 
Untreated mice          

0 h 0 0 5.5 ± 0.9 5.8 ± 0.1 0.57 ± 0.06 0.60 ± 0.05 0.86 ± 0.12 0.88 ± 0.1 0.31 ± 0.05 
36 h 0.41 ± 0.1 0.39 ± 0.2 5.2 ± 0.1 4.9 ± 0.1 0.51 ± 0.14 0.45 ± 0.15b 0.71 ± 0.09b 0.63 ± 0.12b 0.33 ± 0.12 
56 h 2.3 ± 0.7 3.2 ± 1.4 5.9 ± 0.1 5.8 ± 0.1 0.74 ± 0.06b 0.71 ± 0.08b 0.85 ± 0.08 0.81 ± 0.08 0.58 ± 0.07b 
76 h 9.3 ± 3.4 15.2 ± 9.3 6.5 ± 0.2 6.2 ± 0.1 0.64 ± 0.05 0.72 ± 0.14b 0.86 ± 0.07 0.86 ± 0.1 0.62 ± 0.11b 
96 h 27.1 ± 12.0 28.2 ± 17.1 6.6 ± 0.1 6.6 ± 0.1 0.61 ± 0.07 0.68 ± 0.06a 0.83 ± 0.13a 0.89 ± 0.05a 0.81 ± 0.13b 

168 h 68.1 ± 17.3 66.3 ± 20.0 7.5 ± 0.1b 7.0 ± 0.1b 0.84 ± 0.10b 0.75 ± 0.07ab 0.97 ± 0.14 0.90 ± 0.13 1.0 ± 0.3b 
 
DHA treated mice (56 h after inoculation)      

76 h 0.10 ± 0.01 1.3 ± 0.5a 6.0 ± 0.1 5.9 ± 0.7 0.62 ± 0.05 0.66 ± 0.07 0.87 ± 0.11 0.90 ± 0.14 0.66 ± 0.17b 
96 h 1.5 ± 0.4 2.5 ± 0.8 6.5 ± 0.1 6.1 ± 0.6 0.65 ±0.08b 0.65 ± 0.08 0.88 ± 0.14 0.71 ± 0.12 0.64 ± 0.13b 

168 h 14.6 ± 6.1 30.1 ± 2.5a 7.1 ± 0.1b 7.3 ± 0.5b 0.96 ± 0.08b 0.74 ± 0.06ab 0.91 ± 0.12 0.90 ± 0.11 0.86 ± 0.24b 
  
a P<0.05 for comparison between intact and asplenic mice at designated time-points (t-test); b Parameter significantly different to uninfected animals 

(0 h group, P<0.05, ANOVA; not applicable to parasitaemia).  
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treated mice, but not in intact mice treated with DHA where haemoglobin 

concentration remained stable after treatment with DHA (Table 3.7). 

 

Mean corpuscular volume (MCV) and mean corpuscular haemoglobin (MCH) values 

remained stable for the entire malaria infection in both asplenic and intact mice, 

although in asplenic mice both the MCV and MCH were increased at 168 h.  However, 

these increases were not significantly different compared to baseline values (Table 

3.6).  However, in treated intact mice, the MCV was significantly lower compared to 

treated asplenic mice at both 96 and 168 h.  The MCH in treated intact mice remained 

stable for the course of infection, however, in treated asplenic mice the MCH was 

significantly decreased compared to baseline values (Table 3.7).   

 

In untreated asplenic mice the red blood cell distribution width (RBDW) was 

significantly increased compared with intact mice at the same time-points of 56, 76, 96 

and 168 h post-inoculation.  At 168 h the RBCDW in asplenic mice was also significantly 

increased compared to the RBCDW in asplenic mice at 0 h (Table 3.6).  The RBCDW 

value for untreated intact mice was only significantly increased at 168 h when 

compared to baseline values (Table 3.6).  After treatment with DHA, the RBCDW in 

both intact and asplenic mice remained consistent through all examined time-points 

(Table 3.7).   

 

Although an initial decrease in white blood cell count (WBCC) was seen at 36 h in both 

intact and asplenic mice, the general trend was an increase in white blood cells during 

the course of infection in both treated and untreated mice (Table 3.6 and Table 3.7).  

However, a statistically significant difference in parameters was only observed at 168 

h.  The total WBCC was also differentiated at each time point with absolute counts for 

granulocytes, lymphocytes and monocytes generally all increasing as expected (Table 

3.6).  After treatment with DHA, the WBCC and absolute differential counts for all 

three white blood cell populations, in both intact and asplenic mice, increased during 

the course of infection (Table 3.7).   

 

Declining platelet counts were seen in both treated and untreated intact mice with a 

statistically significant decrease seen after 36 h of infection in untreated mice (Table 
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3.6). In the asplenic mice, platelet counts fluctuated in both treated and untreated 

mice but were not significantly different to the uninfected animals at any of the 

sample times (Tables 3.6 and 3.7). 

 

3.3.2.2.2 Biochemistry 

ALP and ALT concentrations showed no significant difference throughout the infection. 

Bilirubin concentrations increased during the course of infection but were not 

significantly greater than uninfected mice until 168 h after inoculation in all groups of 

mice (Table 3.8).  

 

The mean AST concentration was significantly higher in all infected mice than in 

uninfected mice (Table 3.8). In the asplenic groups a significant difference in AST 

concentrations was seen when comparing untreated infected and uninfected mice 

(Table 3.8). After treatment with DHA there was a statistically significant increase in 

AST concentrations in infected intact mice compared to uninfected intact mice, 

however, there was no significant difference in AST concentrations between DHA 

treated asplenic and uninfected asplenic mice (Table 3.9). AST concentrations were 

higher in the untreated asplenic mice than in intact mice (statistically significant 56 and 

76 h after inoculation; Table 3.8).  
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Table 3.6  Haematology parameters from mice after inoculation with P. berghei parasites.  Data are mean ± SD. 

Time after inoculation 
 0 h 36 h 56 h 76 h 96 h 168 h 
 Intact 

(n=3) 
Asplenic 

(n=3) 
Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

             
Parasitaemia (%) 0 0 0.46 ± 0.11 0.35 ± 0.19 1.6 ± 0.3 3.0 ± 0.1 5.1 ± 0.4 5.6 ± 1.2 12.6 ± 6.5 14.3 ± 0.9 51.1 ± 1.2 54 ± 7 
RBCC (x1012/L) 8.60 ± 0.02 8.10 ± 0.78 9.39 ± 0.64 8.44 ± 0.45 8.41 ± 0.58 8.02 ± 0.84 8.67 ± 0.69 8.36 ± 1.7 7.42 ± 0.43 7.86 ± 1.1 4.88 ± 0.81b 3.69 ± 1.05b 
Hb (g/L) 131 ± 4 127 ± 10 139 ± 8 131 ± 4 126 ± 8 123 ± 12 128 ± 11 130 ± 20 117 ± 5 122 ± 11 87 ± 20b 71 ± 20b 
HCT 0.43 ± 0.01 0.42 ± 0.03 0.45 ± 0.02 0.42 ± 0.01 0.41 ± 0.02 0.40 ± 0.03 0.43 ± 0.04 0.44 ± 0.07 0.38 ± 0.00 0.40 ± 0.04 0.25 ± 0.06b 0.21 ± 0.06b 
MCV (fL) 50 ± 1 52 ± 1 48 ± 1 50 ± 1 44 ± 9 50 ± 2 50 ± 1 52 ± 2 50 ± 1 51 ± 2 52 ± 1 55 ± 1a 
MCH (pg) 15.2 ± 0.5 15.6 ± 0.4 14.5 ± 0.2 14.7 ± 0.1 14.5 ± 0.7 15.0 ± 0.7 18.9 ± 0.8 15.5 ± 1.1 14.6 ± 0.53 15.5 ± 1.3 12.2 ± 0.9 19.3 ± 0.31 
MCHC (g/L) 304 ± 3 303 ± 1 301 ± 2 296 ± 7 301 ± 7 301 ± 3 284 ± 3 297 ± 10 294 ± 8 305 ± 11 358 ± 30b 349 ± 11b 
RBCDW 10.0 ± 0.3 11.4 ± 1.2 9.2 ± 0.2 10.4 ± 0.8 9.5 ± 0.3 11.4 ± 0.7 a 10.2 ± 0.2 13.7 ± 1.1a 10.1 ± 0.32 12.1 ± 0.42a 12.2 ± 0.94b 14.7 ± 0.44ab 
             
WBCC (x109/L) 1.4 ± 0.6 1.5 ± 0.7 0.54 ± 0.1 0.54 ± 0.09 2.32 ± 1.67 3.5 ± 2.1 1.8 ± 0.5 2.6 ± 0.6 1.8 ± 0.46 3.9 ± 2.4 4.9 ± 0.8ab 3.1 ± 0.3b 
Gran (x109/L) 0.32 ± 0.46 0.56 ± 0.10 0.13 ± 0.05 0.20 ± 0.11 0.43 ± 0.14 2.04 ± 1.46 0.23 ± 0.31 0.34 ± 0.27 0.39 ± 0.08 0.5 ± 0.4 1.06 ± 0.88 0.35 ± 0.3 
Lymph (x109/L) 0.97 ± 0.27 0.87 ± 0.24 0.19 ± 0.02 0.28 ± 0.0a 0.74 ± 0.11 1.24 ± 0.41 1.43 ± 0.67 1.88 ± 0.18 1.27 ± 0.17 1.33 ± 1.7 2.86 ± 1.71 2.62 ± 0.22b 
Mono (x109/L) 0.07 ± 0.08 0.10 ± 0.09 0.05 ± 0.00 0.07 ± 0.01 0.12 ± 0.04 0.26 ± 0.22 0.13 ± 0.15 0.33 ± 0.23 0.19 ± 0.18 0.04 ± 0.03 0.96 ± 0.72b 0.16 ± 0.19 
% Gran 18 ± 21 34 ± 11 35 ± 10 36 ± 13 25 ± 16 55 ± 9 13 ± 18 13 ± 8 22 ± 2 15 ± 13 23 ± 18 11 ± 8 
% Lymph 79 ± 24 61 ± 14 52 ± 9 52 ± 10 44 ± 27 38 ± 11 80 ± 27 76 ± 11 74 ± 18 60 ± 24 58 ± 30 84 ± 14 
% Mono 4 ± 3 6 ± 3 14 ± 1 12 ± 4 6 ± 2 7 ± 2 7 ± 9 12 ± 8 10 ± 8 25 ± 24 19 ± 13 5 ± 5 
             
Platelets (x109/L) 1022 ± 92 1079 ± 25 802 ± 10b 828 ± 7 845 ± 74b 1173 ± 654 591 ± 81b 888 ± 117a 668 ± 40b 807 ± 160 463 ± 45b 1097 ± 76 

 

a P<0.05 for comparison between intact and asplenic mice at designated time-points (t-test); b Parameter significantly different to uninfected animals 
(0 h group, P<0.05, ANOVA; not applicable to parasitaemia).  Abbreviations – RBCC: Red blood cell count; Hb: Haemoglobin; HCT: haematocrit; MCV: 
Mean corpuscular volume; MCH: Mean corpuscular haemoglobin; MCHC: Mean corpuscular haemoglobin concentration; RBCDW: Red blood cell 
distribution width; WBCC: White blood cell count; Gran: Granulocytes; Lymph: Lymphocytes; Mono: Monocytes).  
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Table 3.7  Haematology parameters from mice that were treated with DHA 56 hours after inoculation with P. berghei parasites.  Blood was 
harvested 20, 40 and 112 h after dosing (76, 98 and 168 h after inoculation). Data are mean ± SD. 

Time after inoculation 
 0 h 76 h 96 h 168 h 
 Intact 

(n=3) 
Asplenic 

(n=3) 
Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

         
Parasitaemia (%) 0 0 0.45 ± 0.4 0.92 ± 0.5a 3.8 ± 2.2 7.5 ± 3.9a 29.2 ± 13 38 ± 9.1 
RBCC (x1012/L) 8.60 ± 0.02 8.10 ± 0.78 8.27 ± 0.40 7.67 ± 0.93 8.09 ± 0.55 7.64 ± 0.07 7.68 ± 0.38 5.82 ± 0.32ab 
Hb (g/L) 131 ± 4 127 ± 10 124 ± 4 118 ± 10 121 ± 7 119 ± 4 121 ± 4 97 ± 6a 
HCT 0.43 ± 0.01 0.42 ± 0.03 0.42 ± 0.02 0.39 ± 0.03 0.39 ± 0.03 0.38 ± 0.02 0.37 ± 0.01b 0.28 ± 0.02ab 
MCV (fL) 50 ± 1 52 ± 1 50 ± 1 51 ± 3 48 ± 1b 50 ± 3 48 ± 1b 49 ± 1 
MCH (pg) 15.2 ± 0.5 15.6 ± 0.4 15.0 ± 1.2 14.7 ± 0.5 14.4 ± 0.4 15.2 ± 1.2 15.3 ± 1.1 14.6 ± 0.9b 
MCHC (g/L) 304 ± 3 303 ± 1 291 ± 9 292 ± 4 298 ± 7 305 ± 11 317 ± 18 300 ± 13 
RBCDW 10.0 ± 0.3 11.4 ± 1.2 10 ± 1 11 ± 1 10 ± 1 12 ± 1 10 ± 1 12 ± 1 
         
WBCC (x109/L) 1.4 ± 0.6 1.5 ± 0.7 2.1 ± 0.7 2.7 ± 1.1 2.3 ± 7 2.3 ± 0.9 4.8 ± 2.1 6.0 ± 0.9b 
Gran (x109/L) 0.32 ± 0.46 0.56 ± 0.10 0.67 ± 0.42 1.03 ± 0.86 0.55 ± 0.33 0.16 ± 0.15 2.60 ± 1.49b 2.51 ± 0.7 
Lymph (x109/L) 0.97 ± 0.27 0.87 ± 0.24 1.16 ± 0.10 1.34 ± 0.16 1.24 ± 0.24 2.02 ± 0.97 1.34 ± 0.64 2.52 ± 1.42 
Mono (x109/L) 0.07 ± 0.08 0.10 ± 0.09 0.30 ± 0.24 0.32 ± 0.22 0.47 ± 0.46 0.08 ± 0.01 0.83 ± 0.62 0.94 ± 1.2 
% Gran 18 ± 21 34 ± 11 30 ± 9 34 ± 17 23 ± 8 8 ± 8 52 ± 14 42 ± 5 
% Lymph 79 ± 24 61 ± 14 58 ± 15 55 ± 18 59 ± 21 88 ± 8 33 ± 21 41 ± 17 
% Mono 4 ± 3 6 ± 3 13 ± 6 11 ± 7 18 ± 14 4 ± 2 15 ± 8 17 ± 23 
         
Platelets (x109/L) 1022 ± 92 1079 ± 25 784 ± 114 865 ± 141 582 ± 23b 935 ± 92a 227 ± 217b 1266 ± 306a 

 

a P<0.05 for comparison between intact and asplenic mice at designated time-points (t-test); b Parameter significantly different to uninfected animals 
(0 h group, P<0.05, ANOVA; not applicable to parasitaemia).  Abbreviations – RBCC: Red blood cell count; Hb: Haemoglobin; HCT: haematocrit; MCV: 
Mean corpuscular volume; MCH: Mean corpuscular haemoglobin; MCHC: Mean corpuscular haemoglobin concentration; RBCDW: Red blood cell 
distribution width; WBCC: White blood cell count; Gran: Granulocytes; Lymph: Lymphocytes; Mono: Monocytes).  
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 Table 3.8  Biochemistry parameters from mice after inoculation with P. berghei parasites.  Data are mean ± SD. 
Time after inoculation 

 0 h 36 h 56 h 76 h 96 h 168 h 
 Intact 

(n=3) 
Asplenic 

(n=3) 
Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

             
Parasitaemia (%) 0 0 0.42 ± 0.2 0.63 ± 0.8a 2.9 ± 0.7 4.7 ± 0.8a 12.3 ± 

1.0 
22 ± 4a 37.2 ± 

5.9 
41.2 ± 12.8 79.4 ± 6.1 82.1 ± 3.7 

Total Bilirubin (µmol/L) 10 ± 1a 7 ± 1 12 ± 2 13 ± 2b 14 ± 6 14 ± 7 9 ± 2 9 ± 0b 11 ± 2 12 ± 1b 21 ± 2b 20 ± 4b 
ALP (IU/L) 57 ± 22 41 ± 13 47 ± 11 45 ± 25 34 ± 3a 54 ± 10 39 ± 2 53 ± 10 49 ± 12 47 ± 7 36 ± 8 49 ± 8 
ALT (IU/L) 36 ± 12 38 ± 10 73 ± 34 44 ± 10 48 ± 3 59 ± 17 46 ± 9 63 ± 16 48 ± 12 54 ± 15 30 ± 8a 66 ± 1 
AST (IU/L) 107 ± 19 85 ± 13 134 ± 25 142 ± 18b 148 ± 7ab 155 ± 53b 134 ± 10a 161 ± 4b 140 ± 9 152 ± 16b 165 ± 39 176 ± 19b 
Total Protein (g/L) 43 ± 2 41 ± 3 43 ± 1 47 ± 1 43 ± 1 43 ± 3.5 40 ± 2 40 ± 1 45 ± 3 44 ± 3 46 ± 2 42 ± 2 
Albumin (g/L) 10 ± 1 9 ± 1 10 ± 1 11 ± 2 8 ± 0 10 ± 1 10 ± 1 10 ± 1 11 ± 0 10 ± 1 11 ± 1 11 ± 1 

 

a P<0.05 for comparison between intact and asplenic mice at designated time-points (t-test); b Parameter significantly different to uninfected animals 
(0 h group, P<0.05, ANOVA; not applicable to parasitaemia).  Abbreviations – ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: 
Aspartate transaminase).   
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Table 3.9  Biochemistry parameters from mice that were treated with DHA 56 hours after inoculation with P. berghei parasites.  Blood was 

harvested 20, 40 and 112 h after dosing (76, 98 and 168 h after inoculation). Data are mean ± SD. 

Time after inoculation 
 0 h 76 h 96 h 168 h 
 Intact 

(n=3) 
Asplenic 

(n=3) 
Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

Intact 
(n=3) 

Asplenic 
(n=3) 

         
Parasitaemia (%) 0 0 1.0 ± 0.2 1.1 ± 0.4 4.1 ± 2.0 11.3 ± 2.1a 33.0 ± 17.4 42.4 ± 8.2 
Total Bilirubin (µmol/L) 10 ± 1 6.5 ± 0.7 11 ± 2 12 ± 5 13 ± 6 11 ± 3 20 ± 4b 17 ± 3b 
ALP (IU/L) 57 ± 22 41 ± 13 43 ± 10 45 ± 13 50 ± 6 45 ± 11 39 ± 13 30 ± 3 
ALT (IU/L) 36 ± 12 38 ± 10 75 ± 15 71 ± 16 76 ± 12a 42 ± 7 133 ± 52 69 ± 16 
AST (IU/L) 107 ± 19 85 ± 13 342 ± 43b 230 ± 72 266 ± 40ab 177 ± 31 351 ± 60ab 197 ± 12 
Total Protein (g/L) 43 ± 2 41 ± 3 41 ± 6 44 ± 11 47 ± 1 41 ± 4 42 ± 2 41 ± 3 
Albumin (g/L) 10.3 ± 0.6 9.0 ± 0.6 10 ± 0 10 ± 1 11 ± 0 11 ± 1 9 ± 1 10 ± 1 

 

a P<0.05 for comparison between intact and asplenic mice at designated time-points (t-test); b Parameter significantly different to uninfected animals 
(0 h group, P<0.05, ANOVA; not applicable to parasitaemia).  Abbreviations – ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: 
Aspartate transaminase).   
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3.4 DISCUSSION 

This series of investigations demonstrates that: 

1. DHA has potent antimalarial efficacy in asplenic and intact mice infected 

with P. berghei malaria.  

2. DHA appears to be effective against most erythrocytic stages of the malaria 

parasite. 

3. The liver is able to remove parasites from the circulation, thus compensating 

for asplenic status in malaria infection (in the murine malaria model).  

 

The single dose-ranging pharmacodynamic study verified that the therapeutic effect 

of DHA extends well beyond the duration of detectable drug concentration.  

Previous studies have identified that DHA has an extremely short elimination half-

life of 12–15 min in mice  (48, 554).   Therefore, it would be expected that the drug 

is effectively eliminated from the blood circulation within a few hours.  However, 

parasite nadir occurred at 24 h after a single dose of DHA, regardless of drug dose, 

followed by parasite recrudescence (Fig. 3.6).  These results indicate that DHA is 

rapidly taken into the red blood cell where it exerts a more prolonged antimalarial 

effect against the intraerythrocytic parasite.  This speculation correlates with the 

observed low plasma DHA concentrations described in the literature (48).  

 

In contrast to case reports of malaria in asplenic patients (34, 290, 497), this murine 

malaria model showed that single dose administration of DHA (10, 30 and 100 

mg/kg) to asplenic and intact mice resulted in similar parasitaemia-time profiles. 

The only significant difference between the pharmacodynamic profiles of asplenic 

and intact mice was during parasite recrudescence, where after high dose DHA 

administration the rate of recrudescence was faster in the asplenic group (t5% 48 h v 

62 h) (Fig. 3.6).  Whilst previous murine studies have shown that splenectomized 

and intact mice infected with P. yoelii did not differ in their course of infection 

(434), and that the effects of splenectomy on the progression of malaria infection 

can be mouse strain dependant (156), it was expected that in the current study a 

significantly delayed and/or less effective parasite clearance would be observed in 

the asplenic mice following drug administration.  The results obtained were 
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therefore surprising.  Although elucidating the precise mechanisms of parasite 

clearance was beyond the scope of the present investigation, further investigations 

were persued into the pathology and histology of blood and organ systems of the 

mouse in an attempt to provide an alternative explanation for the unexpected 

pharmacodynamic findings.   

 

Through the examination and differentiation of the asexual erythrocytic stage 

parasites, it was determined that DHA appears to be efficacious against all of the 

asexual erythrocytic stages (Fig. 3.7).   This finding is consistent with in vitro data, 

showing that artemisinin compounds are effective against most of the P. falciparum 

erythrocytic life cycle (451, 554), and indications of stage-specific activity of 

artemisinin drugs in vivo (554).  The apparent broad spectrum stage efficacy of DHA 

is presumably a result of the novel mechanism of action of the artemisinin 

derivatives.  Although other mechanisms of action have been proposed, interaction 

of the SERCA orthologue should be considered given that DHA is shown to be 

effective against all stages of the parasite, including ring-forms that lack haemozoin 

(34, 290, 497).  

  

It is recognized that differentiating between dead and live parasites in the blood 

circulation and organs is difficult, although differences in parasite morphology have 

been noted after treatment with antimalarial drugs, particularly artemisinin 

derivatives (435). It is possible that ineffective single doses would result in a mix of 

both dead and live parasites in circulation, making it difficult to quantify the viable 

parasite burden. However, due to the rapid clearance (short half-life) of DHA (156), 

drug concentrations beyond the nadir parasitaemia would be negligible. Hence, in 

the absence of drug pressure, the majority of parasites detected would be live and 

viable, as dead parasites would likely have been rapidly removed from the 

circulation by phagocytic mechanisms.  In the case of splenectomy, with a reduced 

parasite clearance capacity, a combination of both live and dead parasites could be 

expected in the circulation.  However, as clearly shown in the asplenic model (Fig. 

3.6) parasite clearance was rapid in both intact and asplenic mice.  Therefore, it is 

presumed that the parasitaemia results reported in this thesis are reflective of the 
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true number of viable parasites in the peripheral circulation at each time point due 

to both the successful clearance of parasites by both asplenic and intact mice, but 

also due to the experience of the microscopist (candidate) at differentiating viable 

parasites and those affected by DHA administration.  

 

In this study, malaria infection caused an increase in liver mass and rigidity, as well 

as changes in organ histology. This was attributed to haemozoin deposition and 

parasitised erythrocyte accumulation in the organ, predominantly through Kupffer 

cell and macrophage phagocytosis, as well as accumulation of the rigid parasitised 

erythrocytes in the liver sinusoids. The observed Kupffer cell hyperplasia and 

hypertrophy also would have contributed to the increased mass of the organ (276). 

Liver integrity was compromised during the infection, in both asplenic and intact 

mice, as reflected by increased levels of bilirubin, ALT and AST (Table 3.8 and 3.9) 

and as previously reported (35). These changes have been attributed to the malaria 

infection, as liver toxicity is unlikely to be caused by DHA (238), although the 

possibility of changes in liver enzyme concentrations due to the injection vehicle 

cannot be excluded. Comparison of asplenic and intact mice revealed little 

difference in liver mass and biochemistry, but a notable contrast was observed in 

the liver histology. Beyond 76 h post inoculation, at a parasite density in excess of 

5%, liver sections from asplenic mice showed occasional clusters of basophilic 

staining cells of varying sizes (30-50 cells per cluster; Fig. 3.16), which were 

consistent with cells of lymphoid origin closely resembling areas of white pulp of 

the spleen.  These clusters were previously described in an asplenic murine malaria 

model where they were identified as ‘pseudofollicles’ (545).  It is thought that 

pseudofollicules are cellular infiltrates of macrophages and lymphocytes of T and B 

cell origin, that act as secondary, ectopic, splenic germinal centres in asplenic mice 

(545). This is consistent with a report suggesting that in the absence of a spleen, 

processing of malaria antigens, previously regulated by the spleen, becomes a role 

of the liver (435).  These observations have so far only been described in the murine 

model which may suggest why mice have the capacity to survive at much higher 

parasitaemia than humans, although such intensive liver histology is not realistic in 

malaria-infected patients.  In all other compared organs (kidney, lungs) there was 
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little difference in the tissue histology between the asplenic and intact mouse 

groups.   

 

Haematology data were broadly consistent with expectations (543). In the advanced 

malaria infection, haemoglobin levels decreased as the parasitaemia exceeded 20% 

in both asplenic and intact mice regardless of drug treatment. This was most likely 

related to well recognized mechanisms such as increased cell haemolysis as a result 

of schizont rupture and erythropoietic depression (87). Furthermore, these 

observations are consistent with human (34) and murine (142) reports showing that 

haemoglobin concentrations were similar in both asplenic and control groups. 

 

In contrast to the haemoglobin data, there was a significant difference between the 

intact and asplenic mice in relation to the platelet counts. In the intact mice 

(treated and untreated), the platelet count decreased as the infection progressed, a 

common feature of malaria infection. However, in asplenic mice the platelet count 

was relatively stable throughout the infection in both treated and untreated groups. 

Although the mechanism of thrombocytopenia during malaria infection is yet to be 

elucidated, in mice infected with P. berghei it is thought to be a result of reduced 

platelet life span, platelet adherence to vasculature and immune mechanisms (188, 

190, 388). The relatively stable platelet count observed in the asplenic mice was not 

expected, as in clinical cases, thrombocytopenia occurs in asplenic patients.  

 

Investigation into plausible explanations for the observed differential pathology 

revealed a number of possibilities: 

a) A Type 1 error as a result of an analytical error due to spurious automated 

platelet determinations could result in a falsely high platelet count as 

observed in the asplenic group.  As the automated cell counter differentiates 

between red blood cells and platelets as a function of size, any circulating 

red blood cells fragments (as a result of erythrocyte rupture during 

merozoite release) would erroneously be counted as platelets.  However, 

microscopic examination of a representative selection of blood films 

determined that the increased platelet count of asplenic mice was not a 



- 151 - 
 

result of increased numbers of schistocytes/red blood cell fragments or 

other microcytic cells that would create a false positive.  Furthermore, 

examination of blood films from intact mice with thrombocytopenia rules 

out the presence of platelet clumps which may have resulted in a falsely 

decreased platelet count.  Therefore, it is presumed that the observed 

platelet differences are most probably not a result of a Type 1 error.  

b)  As a recognised function of the spleen is as a platelet reservoir, containing 

up to 1/3 of the total circulating numbers, it would be expected that platelet 

counts would be substantially higher after splenectomy due to the lack of 

platelet sequestration.  However, although this may explain why higher 

numbers of platelets are present in circulation it does not account for the 

lack of thrombocytopenia seen in asplenic mice during infection.  

c) The antigenic nature of malaria infections could result in the production of 

antibodies that bind to platelets during malaria infection resulting in their 

sequestration into vascular endothelium.  Alternatively, expression of 

malarial antigens to the surface of thrombocytes may result in splenic 

clearance due to its hyperactivity.    

 

In conclusion, although DHA had similar overall efficacy in asplenic and intact mice, 

this study showed that asplenic mice had a reduced capacity for parasite clearance. 

Although the current findings in asplenic mice did not reflect observations in recent 

clinical case reports, there is a relative paucity of human studies for detailed 

comparison of the results from rodent models. The current study has shown an 

enhanced role of the liver in clearing parasites in asplenic mice following DHA 

treatment.  However, a detailed investigation of the mechanisms of clearing 

parasites in asplenic mice was not feasible in the present study.  Overall, this 

asplenic murine malaria model could be useful in studying the splenic function in 

parasite clearance of new antimalarial compounds.  This study also demonstrates 

the potential value of the model for investigations of disease pathology.  
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CHAPTER FOUR 

 
PIPERAQUINE PHARMACOKINETIC AND  

PHARMACODYNAMIC STUDY 
 

4.1 INTRODUCTION 
4.1.1 Physicochemical properties 

PQ is commercially available as either a base (C29H32Cl2N6; 4,4`-(1,3-propaneiyldi-

4,1-piperazinediyl)bis[7-chloro]quinoline; Molecular weight: 535.51 ), or as the 

water soluble salt, piperaquine phosphate (PQP; C29H32Cl2N6.4H3PO4; 1,3-bis[1-(7-

chloro-4`-quinolyl)-4`-piperazinyl] phosphate; Molecular weight: 927.48) (Fig 4.1) 

(253). PQ base is a highly lipophilic basic molecule with a melting point of 212-213°C 

and poor solubility in water (283, 482), whilst PQP is slightly soluble in acidic 

solutions (482).  Plasma protein binding has also been estimated to be at least 97% 

(231, 232).   

 

 

 

Figure 4.1  Chemical structure of piperaquine phosphate (PQP) (253) 

 

 

PQ has been shown to concentrate moderately in red blood cells, with a mean  

erythrocyte: plasma ratio of 1.5:1 at 46% haematocrit over the plasma 

concentration range 50-500 µg/L (232).  It has also been shown that PQ 

concentrations in EDTA and heparinised blood are equivalent, whilst serum 

concentrations prepared from the same blood are approximately 58% higher (127, 

282).  This is most likely because the clotting process in the anticoagulant tubes 

releases drug which are concentrated in leucocytes or platelets (55, 282).   
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4.1.2 Piperaquine as an antimalarial 

In recent years, the increased incidence and spread of multidrug-resistant P. 

falciparum malaria has meant that new antimalarial drugs or drug combinations are 

essential.  Whilst developing new antimalarial combination therapies, PQ was 

“rediscovered” by Chinese scientists as a suitable drug partner, particularly for 

combination with the artemisinin derivative drugs (127).  To date, two fixed-dose 

combination therapies including PQ and the artemisinin derivatives DHA 

(Artekin®)(27, 61, 94, 127, 139, 252, 253, 477) and artemisinin (Artequick®) (389, 

476) have emerged in the clinical setting with all clinical results to date showing 

excellent tolerability and efficacy (27, 29, 139, 209, 217, 252-254, 305, 413, 456).  

PQ is listed in the Chinese Pharmacopeia and commercially available in China, 

however, it is not yet available in the western world as either single dose or fixed-

dose combination therapies (127, 231, 284, 285, 425, 485).  

 

4.1.3 Animal studies 

Although PQ has been used in monotherapy for many years in China and as an 

emerging candidate for ACTs, there is little preclinical data available in western 

literature on the pharmacokinetic and pharmacodynamic profiles of PQ (127).  

Reports are limited to several animal studies published in Chinese literature in the 

early 1980s, focusing on PQ toxicology and PQ monotherapy (127, 484).   Therefore, 

we rely on more recent animal investigations (484), as well as PQ review articles 

(127), for information about the pharmacokinetics and pharmacodynamics of PQ 

and possible implications for dosing regimens in the clinical setting.  Furthermore, 

no preclinical studies of the combination DHA and PQ were found in a detailed 

literature search. 

 

Chinese pharmacodynamic studies, comparing the efficacy of PQP and PQ base in 

mice infected with CQ-sensitive or CQ-resistant strains of P. berghei, found that PQ 

and PQP have different potencies in prophylactic and therapeutic roles (127).  Qu et 

al. (402) reported that the oral doses of PQ and PQP required to suppress infections 

were significantly different, with PQP apparently more effective at lower doses than 

PQ base (87 ± 4 mg/kg and 65 ± 3 mg of base/kg for PQ base and PQP, respectively; 
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P<0.01) (402).  These results were further supported by Zhu et al. (594) who 

demonstrated that PQP was more potent than PQ base in their model of murine P. 

berghei malaria at doses of 50 and 200 mg base/kg (127, 594).  However, it is 

thought that the difference in efficacy seen between PQ and PQP are more likely to 

be a result of the differences in solubility of the two forms (127).  Further studies 

using the CQ-sensitive and CQ-resistant murine models demonstrated that there 

may be a low level of cross resistance between PQ and CQ, an observation that 

corresponded to later observations in the clinical setting (127, 402).   

 

The pharmacokinetic parameters of PQ have only recently been elucidated in both 

animal models and clinical studies, despite PQ being used as an antimalarial agent 

for over 20 years (127, 232, 425).  In an early pharmacokinetic study in mice, 14C 

labelled PQP was used to determine the accumulation and absorption patterns of 

PQ in mice (95).  The study suggested that PQ had a rapid absorption from the gut, 

with a high systemic availability of 80-90%, and preferentially accumulated in the 

liver, kidney and spleen (95, 127).  Using this method it was also determined that 

PQ had a half-life  of 9 days (95, 127).   However, the validity of these results is 

unclear as the method used to measure the absorption and half-life of PQ is neither 

sensitive nor specific.  Chen et al. (95) measured the total 14C, hence it is unclear if 

there were any radiolabelled metabolites also present at the time of measurement, 

which would contribute to the total 14C measurements made at each time point (95, 

127).  Therefore the results obtained may not reflect the true fate of PQ in the 

murine model.  The pharmacokinetic parameters of PQ in dogs were also described 

in a toxicology study by Sheng et al. (440) where the half-life was reported as 9.4 

days.  However, the accuracy of the reported half-life is unclear as details on how 

the value was calculated were not described (127).  As a result it is important to 

further investigate the pharmacokinetics of PQ in preclinical models to address 

issues such as the erratic absorption of PQ (425), possible enterohepatic 

recirculation (232, 443), parenteral administration, extreme volume of distribution 

(232, 425), or long half-life  (483, 484).   
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A recent study of PQ pharmacokinetics in the rat examined pharmacokinetic 

parameters of PQ after either a single oral dose or i.v. administration (484).  It was 

found that the half-life for PQ after a low dose (13 mg PQP/kg) was 34 ± 19 h and 23 

± 8 h following intravenous and oral administration, respectively.  After high (26 mg 

PQP/kg) dose PQP, a similar half-life of 38 ± 16 h and 25 ± 3 h was obtained for both 

intravenous and oral administration (484).   However, in this study blood samples 

were only collected for 80 h after administration, which does not take into account 

the possibility that PQ could remain in the system for longer than 3.5 days.  Despite 

the short duration of sampling, the authors concluded that as the pharmacokinetic 

properties and metabolism of PQ was similar in the rat to that found in humans, the 

rat is a suitable species for PQ preclinical studies (484).   

 

4.1.4 Study aims 

In order to address the paucity of preclinical pharmacokinetic, efficacy, and safety 

data that are normally required by regulatory authorities and are essential for 

future research, the aim of this study was to obtain robust pharmacokinetic and 

pharmacodynamic data following the administration of single doses of PQ in the P. 

berghei murine malaria model.   To achieve this aim, the study comprised three 

arms: (i) the determination of single dose pharmacodynamic profiles in mice 

infected with P. berghei and given 10, 30 or 90 mg/kg PQP at 2 to 5% starting 

parasitaemia.  Furthermore, at 60 days after drug administration, the 90 mg/kg PQP 

group was reinoculated with P. berghei parasites to test for acquired immunity; (ii) 

the determination of PQ pharmacokinetic parameters in healthy and malaria-

infected mice after administration of 90 mg/kg PQP; (iii) investigation of the 

combination efficacy of 10 mg/kg PQP and 30 mg/kg DHA. 

 

4.2 METHODS   

4.2.1 Materials 

4.2.1.1 Mice 

This study was approved by the Curtin University Animal Experimentation Ethics 

Committee.  Male Swiss mice (5 to 7 weeks of age; average weight 28.9 ± 3.8 g) 

were obtained from the ARC for all experimental work.  Male BALB/c mice (7 to 8 
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weeks of age; ARC) were used for weekly passage of malaria parasites.  All animal 

handling and housing procedures were performed as outlined in Sections 2.1.1 and 

2.2.1.    

 

4.2.1.2 Parasites 

Plasmodium berghei ANKA parasites were maintained by continuous weekly blood 

passage in BALB/c mice (Section 2.2.2.1).  A standard inoculum of 107 parasitised 

erythrocytes per 100 μL was prepared by dilution of blood harvested from infected 

BALB/c mice in citrate-phosphate-dextrose solution (Section 2.2.2.2) and 

administered by i.p. injection to infect the experimental mice (Section 2.2.1.4).    

 

4.2.1.3 Drug Treatment 

PQP was available as a finely crushed powder.  As PQP is only slightly soluble in 

water (231), a uniform suspension had to be prepared for i.p. administration.  To 

prepare the suspension, an accurately weighed mass of PQP was placed in a mortar 

and pestle and several drops (3-5 depending on drug mass) of ethanol added to wet 

the drug.  An accurately measured volume of drug vehicle (Polysorbate 80: glycerol 

80:20% [vol:vol]; drug suspension formulated by Andrzejewski, C. BPharm (Hons), 

Curtin University, 2004) was then added to the drug and well mixed using the 

mortar and pestle.  Care was taken during mixing to prevent the formation of 

bubbles in the suspension.   

 

When administering the doses to experimental mice, 1 mL of suspension was drawn 

from the stock suspension with careful mixing taking place between draws to 

ensure an even distribution of drug throughout the polysorbate 80:glycerol 

suspension.  Due to the high viscosity of the suspension, a 23G needle was required 

for drug administration.  
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4.2.2 Study design 

4.2.2.1 Single dose pharmacodynamic study 

4.2.2.1.1 Dosing 

For the single dose pharmacodynamic study, 3 doses of PQ were chosen for 

investigation, 300 µg, 900 µg and 2,700 µg PQP (approximately 10, 30 and 90 mg/kg 

PQP for 30 g mice; concentration of the PQP suspension was variable and a 

standard 100 µL volume of suspension was administered to the mice).  These doses 

were chosen for investigation as a previous study on the preventive and therapeutic 

effects of PQ in mice infected with P. berghei had demonstrated that the median 

preventative dose of PQ after oral administration was 33.6 mg/kg (402).  Based on 

this premise, the efficacy of PQP was tested in the P. berghei murine malaria model 

using three logarithmically distributed doses.  Considering the observations of Qu et 

al. (402), it was anticipated that the 3 chosen doses (10, 30 and 90 mg/kg PQP) 

would demonstrate ineffective, partially effective and highly effective dosing, 

respectively.   These doses were run in parallel with an untreated control group 

which received only drug vehicle (0 mg/kg PQP) at the time of dosing. 

 

4.2.2.1.2 Drug administration 

Male Swiss mice (n=50) were infected with a standard 107 P. berghei parasitised 

erythrocytes inoculum by i.p. injection. The mice were then divided into 4 

treatment groups consisting of n=8 mice in the untreated control group and n=14 

mice in each of the PQP dose groups.  Sixty-four hours after parasite inoculation, 

when the peripheral parasitaemia had reached a level of 3–5% (confirmed by thin 

blood film microscopy) each mouse received a single i.p. dose of 0, 10, 30 or 90 

mg/kg PQP, depending on their selected treatment group.   

 

After drug administration, the parasitaemia in each mouse was monitored through 

the preparation of peripheral tail vein blood smears which were subsequently 

stained in May-Grunwald Giemsa and then examined under 100x oil immersion light 

microscopy.  In order to characterise the pharmacodynamic response to PQP 

administration with rich data, tail vein bleeds were performed 3 times a day for the 

first 5 days after treatment, twice daily for the next 2 weeks and then daily until the 
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time of euthanasia (>40% parasitaemia, >10% reduction in mouse body weight in 

less than 24 h or termination of the experimental protocol).  Mice were euthanased 

with sodium pentobarbitone injection (50-100 mg/kg i.p.). 

 

4.2.2.1.2 Parasite re-inoculation at 60 days post PQP-administration 

Preliminary pilot studies (Andrzejewski, C. BPharm (Hons), Curtin University, 2004) 

demonstrated that after dosing with 90 mg/kg PQP, all mice survived to the 

experimental end point (56 days) with many mice maintaining persistently low 

parasitaemias.  Therefore, one objective of this investigation was to determine if 

these mice had acquired immunity towards the P. berghei parasites as a result of 

the persistent subclinical levels of infection.    

 

All mice that had initially received a single 90 mg/kg dose of PQP in the single dose 

pharmacodynamic study were re-inoculated with a second 107 P. berghei 

parasitised erythrocyte i.p. inoculum 60 days after drug administration.  

Furthermore, three control arms were run in parallel with the re-inoculated group 

consisting of uninfected age matched mice that received either (a) drug vehicle 

(n=4), (b) 90 mg/kg PQP (n=8) or (c) remained untreated (n=4) on day 0.  These 

groups were required to control for age and/or PQ concentrations, 60 days after 

drug administration.  All control groups were subsequently inoculated with 107 P. 

berghei parasitised erythrocytes 60 days after dosing.  Parasitaemia was monitored 

by daily peripheral blood films as previously described.   

 

4.2.2.2 Pharmacokinetic Study 

4.2.2.2.1 Drug administration and blood sampling 

The pharmacokinetic parameters of PQ were determined in both healthy and 

malaria-infected mice.  To determine the pharmacokinetics of PQ in healthy mice, 

55 male Swiss mice (6 weeks old) received a single i.p. dose of 2,700 µg PQ 

phosphate (PQP; 100 µL of suspension; approximately 90 mg/kg).  This PQP dose 

was selected as pharmacodynamic time-density profiles suggest that 90 mg/kg PQP 

had prolonged antimalarial efficacy and ensured lengthy survival for malaria-

infected mice.  It was therefore desirable to ascertain whether the observed 
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antimalarial efficacy was a result of drug concentrations, immunological 

mechanisms or a combination of the two.  Mice were divided into 11 groups of n=5 

mice, with each group representing a collection time point.   

 

Blood was harvested from each group by cardiac puncture at 0, 2.5 and 8 h, and 1, 

2, 4, 7, 10, 14, 18 and 25 days after drug administration.  Each mouse blood sample 

was placed into a lithium heparin anticoagulant tube (Vacutainer®; Becton-

Dickinson, NJ, U.S.A), centrifuged at 10,000 g for 5 min with the plasma then 

separated and stored at -80oC until HPLC analysis. 

 

A second pharmacokinetic study was conducted using malaria-infected mice.  Male 

Swiss mice (n=100) were inoculated with 107 P. berghei parasitised erythrocytes by 

i.p. injection and then were dosed, 64 h after inoculation, with a single i.p. dose of 

2,700 µg PQP (100 µL of suspension; approximately 90 mg/kg).  Blood was 

harvested from groups of n=5 mice at 0, 2, 4, 6, 12, 16 h and 1, 1.25, 2, 2.3, 3, 4, 7, 

9, 15, 22, 30, 40 and 52 days after drug administration.  All blood samples were 

prepared for HPLC analysis as described previously for the healthy mice.  

 

4.2.2.2.2 Pharmacokinetic analysis 

4.2.2.2.2.1 Preparation of stock solution and standard curve for HPLC assay 

All HPLC analyses were performed by Dr Madhu Page-Sharp (Research Fellow, 

Curtin University / UWA). 

 

Stock solutions of PQP (1 mg/mL PQ base in water) and the internal standard CQ 

phosphate (1 mg/mL CQ base in water) were prepared and stored in the dark at 

4°C.  When stored in these conditions the stock solutions were deemed stable for 

up to 50 days (231).  Working stock solutions were regularly prepared from the 

stock solutions.   For each analytical batch, a 5-point linear calibration curve was 

prepared by spiking blank human plasma with appropriate volumes of the working 

standards.  Quality Control (QC) samples (5 µg/L and 50 µg/L) were also included in 

each analysis. Human plasma was used for all quality control samples as this was 

readily available in large volumes.   
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4.2.2.2.2.2 Piperaquine assay 

Mouse plasma samples were assayed for PQ based on the method published by 

Hung et al. (231) with several minor modifications made as a result of the limited 

sample volume. Briefly, plasma samples (0.5 mL) were spiked with internal standard 

(200 ng CQ), then alkalinized with 0.1 mL of 1M NaOH.  The samples were extracted 

by manual shaking (10 min) with 8 mL of hexane:isoamyl alcohol (90:10). After 

centrifugation at 1,500 g for 10 min, the supernatant (7 mL) was back extracted into 

0.1 mL of 0.05M HCl by manually shaking for 5 min, followed by centrifugation at 

1,500 g for 10 min.  The organic layer was aspirated to waste whilst the HCl layer 

was transferred to a round-bottomed borosilicate glass tube which was then 

centrifuged at 1500 g for 20 min.   The HCl extract was then transferred to an HPLC 

sample vial and a 100 µL aliquot was injected onto the HPLC.   

 

Separations were achieved on a Waters XterraTM RP18 (3.5 µm, 4.6 x 100 mm) 

column attached to a Waters SymmetryTM C18 (5 µm, 3.9 x 20 mm) guard column.  

The mobile phase consisted of acetonitrile (7% v/v) in water containing sodium 

chloride (0.1% w/v), trifluroacetic acid (0.025% v/v) and triethylamine (0.008% v/v).  

The mobile phase was pumped at 1.2 mL/min and the UV absorbance of analytes 

was detected at 340 nm.  

 

The intra-day relative standard deviations of PQ were 10.8, 8.2, and 9.4% at 5, 200 

and 1000 µg/L, respectively (n=5).  Inter-day relative standard deviations were 11.6, 

4.4 and 6.7% at 5, 200 and 1000 µg/L, respectively (n=25). The limit of 

quantification and limit of detection were 1.5 µg/L and 0.7 µg/L, respectively.   

 

All samples were assayed within the frozen storage stability limits for PQ, which had 

previously been established as 12 months (Hung, T-Y, B Med Sci Thesis, University of 

Western Australia, 2003).   

 

4.2.2.3 PQ and DHA combination study 

The combination study compared the pharmacodynamic responses between groups 

of mice that received either single doses of PQP, DHA or PQP + DHA. Male Swiss 
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mice (5-6 weeks; n=50) were inoculated with 107 P. berghei parasitised erythrocytes 

by i.p. injection, then divided into a control group (n=8) and three treatment groups 

(Groups A, B and C; n=14 per group).  Sixty-four h after inoculation Group A mice 

received 10 mg/kg PQP, Group B mice received 30 mg/kg DHA and Group C mice 

received successive doses of 10 mg/kg PQP and 30 mg/kg DHA, by i.p. injection.  

Parasitaemia was monitored by examination of peripheral blood smears.   

 

4.2.3 Pharmacodynamic  analysis 

Peripheral blood films were stained with May-Grunwald Giemsa using a Hema-Tek 

staining machine within an hour of preparation with all films cover-slipped (DePex 

mounting medium) and stored until time of examination (Sections 2.2.2.4 and 

2.2.2.5).  To minimise counting variability, which is inevitable when multiple 

microscopists determine parasitaemia within a single study, all peripheral blood 

smears were examined and parasitaemia determined by the author.  Parasitaemia 

was determined by counting either 30 or 100 fields of view for >0.5% and <0.5% 

parasitised erythrocytes, respectively.  This procedure ensured an acceptable 

standard error of 22% at 0.1%  parasitaemia (277) and a limit of detection in the 

order of 0.002% parasitaemia.  

 

4.2.4 Pharmacokinetic  analysis 

For pharmacokinetic modelling, measured plasma PQ concentrations were 

normalised to a dose of 90 mg/kg PQP (52 mg/kg PQ base), according to the weight 

of each mouse at the time of dosing. Consistent with the principles of destructive 

testing (37, 593), the mean normalised plasma PQ concentration for each group of 

mice was used to estimate the pharmacokinetic parameters of PQ. Pharmacokinetic 

analysis was performed using Kinetica™ Version 4.2 (Thermo Fisher Scientific, Inc., 

Waltham, MA, USA). Non-compartmental analysis of the plasma drug 

concentration-time data was used to estimate area under the curve (AUC; log-linear 

trapezoidal method), terminal elimination half-life (t½), apparent clearance (CL/F) 

and apparent volume of distribution (V/F) (429). A two-compartment model was 

fitted to the data to estimate pharmacokinetic descriptors for the observed biphasic 

elimination (t½α and t½β; weighting = 1/y2). 
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4.3 RESULTS 

4.3.1 Single dose pharmacodynamic study 

Administration of single dose PQP (10, 30 or 90 mg/kg) resulted in a decline in 

parasitaemia at all doses tested (Fig. 4.2). The nadir parasitaemia in the 10 mg/kg 

group occurred 36 h after dosing and was 12.8 ± 3.1 fold below the pre-dose 

parasitaemia. Parasite nadir was immediately followed by parasite recrudescence 

and a rapid rise in parasitaemia until time of euthanasia. The median survival time 

was 10 days (range 5 to 12 days).  

 

After a single dose of 30 mg/kg PQP, the parasitaemia immediately declined and fell 

below the limit of detection (0.002%) 1.8 days after dosing.  However, a detectable 

parasitaemia was observed briefly, 2.5 days after dosing, but otherwise remained 

undetectable until 7-8 days after dosing.  At this time, recrudescence was observed 

and the parasitaemia continued to rise for a further 2-3 days (Fig. 4.2).  From 10-18 

days, the mean parasitaemia remained stable (0.5-2.5%) and then decreased to 

approximately 0.1% from days 22-30. Beyond day 30, the mean parasitaemia slowly 

increased until mice required euthanasia.  The median survival time for the 30 

mg/kg group was 54 days (range 8–59 days).  Within this 30 mg/kg group, 4 mice 

(30%) showed a steady increase in parasitaemia after recrudescence and required 

euthanasia after a median of 22 days (mean parasitaemia 11%).   

 

In the 90 mg/kg group, the mean parasitaemia declined rapidly and was 

undetectable by 36 h after dosing. Recrudescence occurred after 7-8 days in all 

mice, with a mean peak parasitaemia of 1.8 ± 1.6% observed 16 days after dosing. 

The parasitaemia declined and generally remained below 0.1% until the 

experimental end-point, 60 days after dosing. All mice were active, alert and had 

stable body weight throughout the course of the study.  
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Figure 4.2 Parasitaemia-time profile in Swiss mice following a single i.p. dose of 
PQP administered 64 h after inoculation with 107 P. berghei parasitised 
erythrocytes. Data are shown as total parasitaemia (% of infected erythrocytes ± 
SD), commencing from the time of PQP administration. Control (n=8;  ──); 10 
mg/kg (n=14;  ──); 30 mg/kg (n=13;  – –); 90 mg/kg (n=14;  ──). Panel B 
shows an expanded view for the first 5 days after drug administration. 
 
 

 

 

 

A 

B 
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4.3.2 Parasite re-inoculation at 60 days 

All 3 groups of control mice, which were either untreated or received vehicle or 90 

mg/kg PQP on Day 0 and then inoculated with 107 P. berghei parasites on day 60, 

demonstrated similar parasite responses.   After inoculation all groups showed 

rapidly increasing parasitaemias with euthanasia required 4 days after infection as 

peripheral parasitaemias reached >10% (Fig. 4.3).  Mice that had previously been 

inoculated and received 90 mg/kg PQP on Day 0, and were re-inoculated on Day 60, 

remained asymptomatic for two weeks (pre-determined end-point) with only low-

level parasitaemias observed during this period of time (generally <1%) (Fig. 4.3).   

 

4.3.3 Pharmacokinetic Study 

HPLC chromatograms are shown in Fig 4.4.  The CQ internal standard eluted at 1.4 

min whilst PQ eluted at 4.5 min (Fig. 4.4; B).  The chromatogram confirmed that CQ 

was a suitable internal standard as there was adequate separation between the two 

peaks, thus a reduced probability of the peaks interfering with one another.  The 

blank plasma was also shown to be free of endogenous substances (Fig. 4.4; A). All 

analysed mouse plasma samples showed two drug peaks (CQ and PQ) and no 

indication of drug metabolites or other interfering substances (Fig. 4.4; C).  Mouse 

plasma sample 22 (Fig. 4.4; C), taken from a healthy mouse 12 hours after drug 

administration, had a PQ concentration of 136 µg/L.      

 

Pharmacokinetic data from both healthy and malaria-infected mice are summarized 

in Table 4.1 and presented in Fig. 4.5.   The plasma PQ concentration-time profiles 

and pharmacokinetic descriptors were similar in healthy and malaria-infected mice. 
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Figure 4.3  Parasitaemia-time profile in Swiss mice following a single dose of PQP (90 mg/kg; n=14;  ──) at time zero, and also following 
subsequent re-inoculation with 107 P. berghei parasitised erythrocytes at 60 days. Data are shown as total parasitaemia (% of infected erythrocytes 
± SD). Three control groups studied at the 60 day point comprised uninfected Swiss mice that were age-matched and inoculated for the first time 
after 60 days: Untreated at day 0 (n=4;  ──); Vehicle at day 0 (n=4;  ──); PQP 90 mg/kg at day 0 (n=4;  ──).   
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Figure 4.4  High performance liquid chromatography chromatograms for analysis 

of piperaquine concentrations in mouse plasma samples.  Chromatograms 

demonstrate results for A: Blank human plasma; B: Drug Standards; C: Mouse plasma 

sample analysis.  Peaks identified were 1. PQ internal standard (1.4 min); 2. CQ 

standard (200ng; 4.5 min); 3. PQ in mouse plasma sample 22 (136 μg/L) and 4. CQ 

internal standard. 
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Figure 4.5 Concentration-time profile of PQ in mice given approximately 90 

mg/kg i.p. PQP (normalized for pharmacokinetic analysis, Section 4.2.3).  Data are 

given as mean ± SD plasma PQ concentration (n=5) in healthy ( ─ ─) and malaria-

infected ( ──) mice. The lines represent the best fit of a two-compartment model to 

the respective data sets (extrapolated beyond the last data point for healthy mice (25 

days) to facilitate comparisons). 
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Table 4.1  Pharmacokinetic parameters for PQ following i.p. (2,700 µg; 90 
mg/kg) administration in healthy and malaria-infected male Swiss mice.  
Pharmacokinetic parameters were determined using both non-compartmental 
analysis (t1/2, AUC, CL/F and V/F) and from a two-compartment model (t½α and 
t½β).  
 

 
Uninfected mice 

(n=50) 

P. berghei infected mice 

(n=100) 

t1/2  (days) 17.8 16.1 

t1/2α  (days) 0.59 0.35 

t1/2β  (days) 20.7 15.4 

AUC   (mg.h/L) 33.53 27.34 

CL/F   (L/h/kg) 1.55 1.9 

V/F   (L/kg) 956 1059 

 

 

4.3.4 PQ and DHA combination study 

The effects of single dose PQP (10 mg/kg), DHA (30 mg/kg) and a combined dose of 

PQP + DHA (10 mg/kg PQP + 30 mg/kg DHA) are summarized in Figure 4.6 (data 

normalized for clarity)  The starting parasitaemia was 4.5 ± 1.1% for control mice (n=8), 

4.6 ± 1.1% for DHA (n=14), 1.5 ± 0.6% for PQP (n=14; P<0.001 compared to other 

groups; ANOVA) and 3.7 ± 1.5% for PQP + DHA combination (n=14).  Because of the 

differences in the starting parasitaemias between the groups, it was decided to 

normalize the parasitaemias (expressing parasitaemia as a proportion of the initial 

parasitaemia) to facilitate comparison between treatment groups, particularly when 

determining the time to, and level of, parasite nadir.   

 

Parasite nadir occurred at 24, 28 and 36 h after administration of DHA alone, PQP+DHA 

and PQP alone, respectively.  Comparison of parasite nadirs for the DHA, PQP and PQP 

+ DHA treatment groups showed a 11.9 ± 4.8, 12.8 ± 3.1 and 22.4 ± 11.8 fold decrease 

in parasitaemia from the time of drug administration (P=0.007; PQP + DHA compared 

to both DHA and PQP alone; ANOVA).  
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Figure 4.6  Parasitaemia-time profiles in mice as a proportion of parasitaemia at 
the time of dosing (mean ± SD). Mice were given vehicle i.p. (n=8;  ──), 10 mg/kg 
PQP i.p. (n=14;  ──), 30 mg/kg dihydroartemisinin i.p. (n=14;  ──), 10 mg/kg PQP 
plus 30 mg/kg DHA (n=14;  ──). 
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4.4 DISCUSSION 

Using a modified murine efficacy model (Rane) this novel and detailed investigation of 

PQ demonstrated a potent, long lasting antimalarial efficacy in mice infected with P. 

berghei parasites.  Furthermore, the combination of PQP and DHA led to enhanced 

efficacy, compared to either drug alone, with a slightly faster decline in parasitaemia 

and a significantly lower nadir, suggesting an additive effect.   

 

The pharmacokinetic properties of PQ have recently been well established in humans 

with the highly lipid-soluble drug having a long elimination half-life of approximately  

23 days (19-28 days) in adults and 14 days (10-18 days) in children (10, 203, 232, 253, 

254, 286, 425, 443, 480, 484).  Meanwhile, pharmacokinetic parameters of PQ in a 

murine model are scant with a single Chinese report (95) which suggested a half-life of 

9 days in mice using 14C-labelled PQ phosphate.  The current study demonstrated that 

PQ has a long terminal elimination half-life.  Malaria-infected and healthy mice showed 

similar pharmacokinetic profiles with biphasic elimination and a terminal half-life of 

17.8 and 16.1 days, respectively.  Although the half-life determined in this study is 

almost double that previously reported, the method used to determine plasma PQ 

concentration (231) is more robust than the 14C-labelled PQP method used by Chen et 

al. (95), which has been described as problematic (127).   

 

The single dose pharmacodynamic study showed that PQ has a relatively prompt initial 

effect in decreasing the parasitaemia with an ED50 that appears to be in the order of 30 

mg/kg.  An ED50 within this dosing range was presumed because after receiving a single 

i.p. dose of 30 mg/kg PQP, the drug appeared to be relatively ineffective for 1/3 (n=4) 

of mice in this cohort (n=13) whilst the remaining 2/3 of mice showed long lasting 

antimalarial efficacy.  By comparison, an in vivo study of PQ and PQP in a CQ-sensitive 

strain of P. berghei determined that the ED50 of PQ and PQP (base equivalent) was 5.0 

± 0.2 mg/kg and 4.5 ± 0.1 mg/kg, respectively (127, 402).  

 

A single dose of 90 mg/kg PQP was seen to be highly effective for the clearance of 

parasitaemia in all mice.   Initially the parasitaemia fell below the limit of detection for 

approximately one week, at which time peripheral parasitaemia again became evident. 

However, instead of a terminal recrudescence, all mice maintained subclinical levels of 
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infection until the experimental endpoint, 60 days after the initial dose of PQ.  At this 

time all mice were re-challenged, resulting in an apparent resistance to the inoculum 

with no notable changes in parasitaemia observed.  The observed response is highly 

suggestive of the mice having a degree of immunity towards the P. berghei parasites. 

In order to consider the mechanisms responsible for the current observations, further 

investigation into the effect of host age, host immunological status, parasite viability 

and potential drug resistance was conducted in the next phase of PQ studies, which 

are reported in Chapter 5.   

 

Linking the parasitaemia-time profiles for the 90 mg/kg PQ dose group (Figs. 4.2; A and 

B), to the corresponding pharmacokinetic data (Fig. 4.4) indicates that plasma PQ 

concentrations fell from a mean of 250 µg/L, 2 h after the dose, to 45 µg/L 

approximately 36 h after the dose, at which time the parasitaemia was below the limit 

of detection (0.002%). During the period of undetectable parasitaemia, 2-7 days after 

drug administration, the plasma PQ concentration was approximately 20-50 µg/L. In 

most mice, PQ concentrations >10 µg/L persisted for at least 30 days and the 

extrapolated mean plasma PQ concentration at 60 days after dosing (the time of the 

re-inoculation experiment) was 3 µg/L in malaria-infected mice and 5.5 µg/L in control 

mice.  At these low drug concentrations it was presumed that the antimalarial efficacy 

of PQ was insufficient to control or prevent relapsed parasitaemia.  

 

Although the introduction of the potent artemisinin derivatives into the clinical setting 

has proved to be highly successful in the treatment of uncomplicated malaria, their 

characteristics as short acting drugs with high recrudescence rates (in short-term 

dosing regimens) means that it is imperative that they be combined with a second 

antimalarial drug for clinical use (127, 584).  It has been recommended that the 

partner antimalarial should be a long-acting drug with a half-life that extends at least 

two parasite life-cycles (>4 days), have good tolerability, be low cost and have limited 

pre-existing drug resistance (127, 232). In this context, PQ makes a good partner drug 

for the artemisinin derivatives as it has a median half-life that is 3 to 6 times greater 

than that recommended and rates well on tolerability, cost and shows limited 

resistance (127, 232).   
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The purpose of the combination study was to demonstrate the initial response of PQ 

both in direct comparison and in combination with DHA. After a single dose of PQ the 

parasitaemia was seen to remain stable for 12 h before any decline was observed.  In 

comparison, those mice receiving a single dose of DHA demonstrated an immediate 

decline in parasitaemia followed by a rapid rate of parasite recovery as shown 

previously (Chapter 3 and (179)).  Parasite nadir was also seen to differ between the 

two single dose administrations occurring 24 and 36 h after dosing for PQ and DHA, 

respectively. The combined dose resulted in a rapid decline in parasitaemia which was 

consistent with the single dose DHA profile, although the parasite nadir was lower and 

later than the single dose curve.  This therefore demonstrates the influence of PQ in 

the combination dose.  Those mice receiving the combined dose also demonstrated a 

slower rate of parasite recovery and a longer survival time in comparison to the single 

dose administrations.  This suggests that although single dose PQ is an effective 

antimalarial therapy, the rate of parasite decline and overall efficacy is enhanced when 

given in combination with DHA.   

 

The current data suggests an additive interaction between the combined PQ and DHA 

dose, however, the results do not provide enough evidence to dismiss the possibility of 

synergism.  This is consistent with published data in that previous animal models have 

demonstrated additive efficacy between DHA and PQ (27, 512), whilst a recent in vitro 

study conducted by Davis et al. (2006) demonstrated that DHA showed either no 

interaction or was mildly antagonistic when combined with PQ (126).    

 

Despite the persistence of low concentrations of PQ post-treatment, re-inoculation 

with P. berghei parasites shows that the low concentrations of drug in circulation may 

not necessarily impede the development of an infection.  The long elimination half-life 

of PQ is a predisposing factor for the potential emergence of any resistance, which was 

evident when PQ was used as a monotherapy in China in the 1970s (127, 209, 217, 

425).  However, when used in combination with artemisinin derivatives, which have a 

parasiticidal effect that both accelerates therapeutic responses and reduces parasite 

biomass, the extended efficacy of PQ is thought to prevent any potential 

recrudescence.   This would thereby eliminate residual parasites thus reducing the 

number of surviving mutant parasites which in turn prevents any resistance towards 
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either drug (46, 209, 252, 477).  Clinical studies have actually suggested that the 

extended post-treatment prophylaxis of PQ may reduce both relapse and reinfection 

for a period of 4-6 weeks after treatment (27, 209, 408).  As a result, patients remain 

asymptomatic for a longer period, which increases the time for haematological 

recovery, resulting in the risk of anaemia been halved, as well as a reduced gametocyte 

carriage rate (209, 408).  Therefore, it is thought that although the post-treatment 

prophylaxis provided by PQ in this combination therapy will not prevent subsequent 

relapses, this drug combination has the capability of delaying the potential of relapse 

(408).  

 

Results obtained in this series of investigations have determined that in this P. berghei 

malaria model PQ gave effective antimalarial efficacy after single dose administration, 

enhanced antimalarial efficacy when combined with DHA and an extended period of 

post-treatment prophylaxis.  However, the results also raised a number of questions 

relating to whether the demonstrated extended antimalarial efficacy was due primarily 

to PQ or if the animal had acquired immunity towards the infecting species of 

parasites.  In order to address these questions, further investigation into parasite 

viability, drug efficacy, drug resistance and immunological influences was performed 

(Chapter 5).   
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CHAPTER FIVE 

 
PIPERAQUINE EFFICACY STUDY 

 

5.1 INTRODUCTION 

5.1.1 Clinical efficacy of long half-life drugs 

Clinical studies involving the use of contemporary ACT strategies, where PQ has been 

incorporated as a partner to either DHA (27, 29, 127, 139, 209, 217, 244, 252, 253, 305, 

413, 456, 595) or artemisinin (476), demonstrate high efficacy and good tolerability for 

the treatment of both P. falciparum (27, 29, 139, 217, 252, 305) and P. vivax (209, 232, 

253, 336) infections.  The success of these ACT strategies, both in the resolution of 

parasitaemia and the prevention of drug resistance, has been attributed to PQ having a 

long terminal half-life in humans of 12-28 days (232, 286, 480, 481), fulfilling the 

requirement for a partner drug that is a long-acting schizontocide with a half-life 

exceeding 4 days (or two asexual parasite life-cycles) (232, 351).   

 

However, the long half-life of PQ also raises concerns about adverse effects and drug 

resistance (209, 232, 336, 386).   Traditionally, drugs with a long terminal elimination 

half-life have been sought as partner drugs in combination therapies, as the use of a 

single or small number of doses in treatment regimens ensures therapeutic 

compliance.  Also, if used for prophylaxis, treatment is only required on a once weekly 

basis (558).  It is well established that drugs with a long elimination half-life are 

potentially vulnerable to the development of resistance as parasites are inevitably 

exposed to suboptimal/ subtherapeutic drug concentrations for extended periods of 

times when these drugs are used as monotherapy (541, 558).  This phenomenon has 

been described by White (550), who demonstrated how slowly eliminated 

antimalarials such as CQ or PQ present a lengthy opportunity for the selection of 

resistance among sensitive parasites (MIC A; Fig. 5.1).  However, once resistance has 

become established (MIC B), blood concentrations are no longer inhibitory and the 

terminal elimination phase is no longer a factor in parasite clearance (Fig. 5.1; (550)).    
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Figure 5.1 Demonstration of prolonged duration of exposure to subtherapeutic 

concentrations of drug and the subsequent acquisition of drug resistance.   After the 

use of an antimalarial drug with a long terminal elimination half-life, such as 

chloroquine or piperaquine, sensitive parasites (MIC A) are exposed for prolonged 

periods of time to sub-therapeutic blood concentrations of the drug in monotherapy 

facilitating the opportunity for the acquisition of parasite resistance towards the 

antimalarial drug in use.   Once parasites have gained resistance towards the 

antimalarial drug (MIC B), the long terminal half-life effect of the drug is no longer 

effective and blood concentrations are no longer inhibitory.  Diagram from White, 

2004  (550).   

 

5.1.2 Acquired immunity 

In 1980, Bruce-Chwatt (72) wrote “Malaria immunity may be defined as the state of 

resistance to infection brought about by all those processes which are involved in 

destroying the plasmodia or by limiting their multiplication.  Acquired immunity may 

be either active or passive.  Active immunity is an enhancement of the defence 

mechanism of the host as a result of a previous encounter with a pathogen.  Passive 

immunity is conferred by the prenatal or postnatal transfer of protective substances 

from mother to child by the injection of such substances”.   
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Whilst the principal features of naturally acquired immunity have been defined, there 

is currently little known about the underlying mechanisms behind its activation and 

maintenance (25, 140, 144, 229, 321, 369).  The development of clinical and 

parasitological immunity to malaria is evident by the ability of the host to control the 

parasite density and hence the progression of the infection (144, 159).  Although 

achievable after a single infection, acquired immunity is seen to be primarily directed 

towards the erythrocytic stage with induction of adequate protective immunity usually 

requiring repeated infections (144, 159, 592).  Immunity is species specific (102, 245, 

591) but not necessarily strain specific (65, 66, 245).  Furthermore, acquired defence 

mechanisms often have been shown to lose their protective effect soon after the 

exposure to infection is interrupted, with the host becoming susceptible to new clinical 

infections of malaria (140).  The introduction of asexual erythrocytic stage immunity 

has been demonstrated in humans, monkeys, birds and mice (167, 168, 223, 226, 308, 

444, 460, 474, 479).  

 

5.1.3 Relationships between antimalarial therapy and immunity 

Despite the desire to eliminate parasites from infected patients as quickly as possible, 

it must also be considered that when treating patients living in endemic countries it 

may be preferable for the infection to clear through both a combination of active 

antimalarial therapy and the patient’s immunological response mechanisms (157, 304, 

478). This was demonstrated in a study by Enevold et al. (157) where it was observed 

that a child’s naturally acquired immunity enhanced the clinical efficacy of drug 

therapy in the clearance of P. falciparum infections.  These results suggested that 

recovery from malaria may depend on drug efficacy, parasite drug-resistance as well as 

a complex interaction with host factors such as acquired immunity and innate 

resistance (157).  Should a patient have had prior opportunity to acquire immune 

responses towards a strain of Plasmodium, the combination of both the natural 

immune response and drug therapy will strongly influence the rates of recrudescence 

following treatment, the perseverance of subclinical infection which normally would 

promote drug resistance, and the transmission of future progeny of infection (117, 

304).   
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Immunity to re-inoculation has also been shown in mice from which parasites were 

eradicated by use of a curative drug (64).  When this group of mice was challenged 

with a second infection (after treatment with drug), the majority of animals survived in 

comparison to those mice which remained untreated, which succumbed to the 

primary infection (64).  Further studies combining the use of treatment and natural 

immunity for the control of infection, demonstrated that only mice that received sub-

curative treatments, and thus had parasites present for a prolonged period during the 

primary course of infection, could induce a level of protective immunity (64, 113-115, 

287).  

 

5.1.4 PQ resistance in murine models 

The development of PQ-resistant strains of the murine malaria P. berghei were first 

described by Li et al. (279, 280).  Through increasing drug pressure over a period of 5 

months, two PQ-resistant P. berghei strains (P. berghei ANKA and P. berghei K 173), 

were developed using in vitro methods (127, 279, 280).   Although these two in vitro 

PQ-resistant strains were then utilised to test for cross resistance between PQ and a 

range of antimalarial drugs, it was observed that once drug pressure subsided the 

parasites returned to their sensitive phenotype (279, 280).   

 

More recently, an in vivo model of PQ-resistant P. berghei ANKA was described in 

which resistance was selected through continuous drug pressure over a period of 18 

months (259).  However, in contrast to earlier models this line of PQ-resistant malaria 

demonstrated stable selection of PQ-resistance, which was defined by the 

maintenance of the resistant phenotype when drug selection pressure was removed, 

for at least 10 serial passages (177, 259). 

 

5.1.5 Study aims 

Dose ranging studies of sub-therapeutic doses of PQP in the P. berghei murine malaria 

model demonstrated that after high dose (90 mg/kg) PQP a chronic P. berghei 

infection developed that extended to the experimental end-point of 60 days (Chapter 

4; see Fig. 5.2).   Furthermore, when all mice were re-infected with a second 107 P. 

berghei parasite inoculum there was no change in the course of infection, with the 

subclinical chronic infection remaining stable.  The previous study had also shown that 
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25 days after 90 mg/kg PQP, the subclinical parasitaemia was in the order of 1% 

infected erythrocytes and the plasma PQ concentration was approximately 14 µg/L 

(Section 4.3.3). By comparison, at 40 and 60 days the subclinical parasitaemia was 

stable at approximately 0.1% and the plasma PQ concentrations (3 to 7 µg/L) were 

considered unlikely to have an antimalarial effect.  As the previous study did not 

extend beyond 60 days, the present study was designed to clarify the duration of 

antimalarial efficacy.  

 

Therefore, the aims of the present study were to investigate drug efficacy, re-

inoculation outcomes and parasite viability after a single dose of PQP in the P. berghei 

murine malaria model.  The significance of determining all of these factors was to 

provide a greater understanding of how single dose administration of a long half-life 

drug such as PQ, influence parasite pharmacodynamics, mouse immunological 

responses and parasite response to continual exposure to suboptimal drug 

concentrations.  This could clarify the influence of PQ on both parasite and host 

responses.   Furthermore, detailed preclinical pharmacodynamic data for PQ, alone or 

in combination with artemisinin drugs will complement clinical studies, especially 

when there is interest in the therapeutic impact of persistent low PQ concentrations.  

 
5.2 METHODS 

5.2.1 Pharmacodynamic efficacy of 90 mg/kg PQP 

In order to investigate whether the observed prolonged subclinical infection was a 

result of the antimalarial effect of PQ alone or a combination of factors, three distinct 

groups of mice were studied simultaneously.  The purpose of this study design was to 

determine the effects of (i) animal age at time of inoculation, (ii) prolonged presence 

of PQP and (iii) acquired immunity at pre-determined time-points (25, 40, 60, 90 and 

130 days after PQP administration) along the pharmacodynamic curve.    

 

5.2.1.1 Selection of investigation time-points 

After careful consideration of the pharmacodynamic profile of 90 mg/kg PQP in the P. 

berghei murine model, as demonstrated in the previous chapter, investigation time-

points of 25, 40, 60, 90 and 130 days after drug administration were selected.  These 

time-points reflected times of significant change in the drug pharmacodynamics (Fig. 
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5.2).  After drug administration the parasitaemia was seen to rapidly decline, falling to 

undetectable levels by 36 h, with parasite recrudescence observed at 7 days after PQP.  

The parasitaemia was seen to plateau, and then steadily decline about 20-30 days after 

drug administration, with a persistent parasitaemia in the range of approximately 0.01-

0.1% until day 60.   

 

Therefore, the time-points selected for this investigation reflect a period of declining 

parasitaemia (25 days), low level persistent parasitaemia (40 and 60 days), and 

approximately one and two months after the experimental end point of the previous 

study (Fig. 5.2).  

 

Figure 5.2 Pharmacodynamic curve of 90 mg/kg PQP in the P. berghei murine 

malaria model (adapted from Fig 4.2 A, Chpt 4).  Time-points for further investigation 

(; 25, 40, 60, 90 and 130 days after PQ administration) were selected to reflect 

significant periods of time in the pharmacodynamic profile.   

 

 

5.2.1.2 Experimental protocol 

a) Group A (Age control) – Previous studies have identified that the age of a 

rodent, at the time of inoculation with plasmodium parasites, influences the 

course of infection (4, 596).  In particular, it was demonstrated in rats that 

when young (4 weeks) and mature (8 weeks) animals were infected with similar 

inoculums of P. berghei parasites, the young animals were more susceptible to 

infection and had a higher mortality rate, than the older rats (4).  It was 
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therefore desirable in the present study to determine whether there were any 

age related effects on time of inoculation, in the murine P. berghei model.    

 

Uninfected 5-6 week old male Swiss mice (n=20) were given a single 

administration of drug vehicle at Day 0.  At each of the pre-determined time-

points, groups (n=4) of mice were inoculated with a standardised inoculum of 

107 P. berghei parasites by i.p. injection (Fig. 5.3).  The mouse age at each 

inoculation time point was therefore, 9-10 weeks, 11-12 weeks, 14-15 weeks, 

18-19 weeks and 24-25 weeks at 25, 40, 60, 90 and 130 days, respectively.  

Parasitaemia was monitored through the preparation and examination of twice 

daily blood films. Mice were euthanased when parasitaemia exceeded 40%.  

 

b) Group B (PQ control) – The purpose of the second control group was to 

determine the antimalarial efficacy of PQ by establishing whether the PQ 

concentration at each designated time point was sufficient to suppress or 

resolve parasitaemia after inoculation.  

 

Uninfected 5-6 wk old male Swiss mice (n=30) received a single administration 

of 90 mg/kg PQP on Day 0 (Fig. 5.3).  At each pre-determined time point (25, 

40, 60, 90 or 130 days after drug administration) groups of mice (n=6) were 

injected with a standardised inoculum of 107 P. berghei parasites.  Parasitaemia 

was monitored through the preparation and examination of twice daily blood 

films.   

 

c) Group C – The purpose of the primary study group was to determine whether 

those mice that maintained a persistently low parasitaemia after drug 

treatment had acquired a degree of immunity to this strain of P. berghei.  In 

order to determine whether this had occurred, P. berghei infected and PQP-

treated mice were exposed to a second inoculum of P. berghei parasites at 

each designated time-point (25, 40, 60, 90 and 130 days after drug 

administration).  It was expected that if any parasite suppression was observed 

or if a new infection failed to develop, which could not be explained by animal 



- 181 - 
 

age or drug influences (control arms), this would suggest that a degree of 

immunity to the infecting strain of parasites had been acquired.  

 

The efficacy group consisted of 5-6 week old male Swiss mice (n=50) that were 

initially inoculated with a standardised inoculum of 107 P. berghei parasites.  

When parasitaemia had reached a level of approximately 3-5% (64 h after 

inoculation), each infected mouse received a single dose of 90 mg/kg PQP by 

i.p. injection (Fig. 5.3).  At each designated investigation time point, groups of 

mice (n=6) were re-inoculated with a standardised inoculum of 107 P. berghei 

parasites (from the same initial parasite stock as the initial infection; refer to 

5.2.2) by i.p. injection. Furthermore, at each experimental time point a second 

sub-group of mice (n=4) was used for parasite viability passage (Refer to 5.2.2). 

Parasitaemia was monitored through preparation and examination of twice 

daily blood films until time of euthanasia.  

 

5.2.1.3 Pharmacodynamic profile 

In order to determine the pharmacodynamic time-density profile for this series of 

investigations, the parasitaemia was monitored through the preparation and 

examination of twice daily blood films from all mice. As sub-groups of mice were used 

for further investigations at each designated time-point (25, 40, 60, 90 and 130 days 

after PQP administration) the numbers of mice used to construct the 

pharmacodynamic profile decreased accordingly throughout the experimental period.  

Therefore, for the first 25 days the parasitaemia curve reflects the mean parasitaemia 

for n=50 mice from Group C, between 26 and 40 days n=40 mice, between 41 and 60 

days reflects the mean parasitaemia for n=30 mice, between 61 and 90 days is the 

mean parasitaemia for n=20 mice and between 91 and 130 days reflects the 

parasitaemia of n=10 mice.  The mean parasitaemia for the entire Group C mice has 

been reported. 

 

In a complementary arm of the Group C investigations, a group of age-matched mice 

were simultaneously infected with 107 P. berghei parasitised erythrocytes but 

remained untreated, thereby acting as a control for the parasite inoculation (Fig. 5.3).   
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Figure 5.3 Schematic describing the experimental protocol for each of the 3 arms 

investigated in this study. Group A consisted of uninfected mice that received drug 

vehicle on Day 0 with groups of mice infected at each experimental time point to 

determine if mouse age at time of infection affected the course of infection.  Group B 

consisted of uninfected mice that received PQP on Day 0 with groups of mice 

inoculated with parasites at each time-point.  This control group was run to determine 

whether 90 mg/kg PQP was efficacious against infection at each experimental time 

point.  Group C consisted of infected mice that were treated with PQP on Day 0.  At 

each experimental time point a group of mice was re-inoculated with parasites to 

determine if the experimental mice had acquired immunity towards the infection 

whilst blood was harvested from a second sub-group of mice for passage into naive 

hosts to test for parasite viability.  Furthermore, two separate control arms that 

consisted of groups of naive mice were inoculated with either a 105 or 107 P. berghei 

inoculum at each time point to demonstrate a normal time-density profile with 

inoculums of this size.   
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5.2.2 Parasite viability 

This arm of the study was designed to evaluate the viability of parasites from 

previously infected, treated mice with subclinical parasitaemia. Although parasites 

were present in the peripheral circulation, albeit at low levels, it was not known if 

these parasites were dead or drug affected and therefore unable to produce progeny, 

or whether drug or immune mechanisms were able to suppress the parasitaemia by 

preventing replication. This was investigated by removing blood (containing parasites) 

from the host, washing the red blood cells to remove any drug or antibodies and then 

passaging the washed cells into uninfected, naive mice.  

 

Included in this component was an evaluation of P. berghei resistance to PQ.  It has 

been well documented than when used in monotherapy, parasites have had the 

propensity to develop resistance mechanisms against PQ.  Furthermore, several 

publications have demonstrated the acquisition of resistance to PQ in rodents, 

although this is predominantly obtained through repeated exposure to drug pressure 

(259, 402).  However, it was of interest in the present series to observe whether there 

was any difference in the pharmacodynamic response of 90 mg/kg PQP when 

administered to mice that had been inoculated with parasites from treated (Group C) 

hosts with subclinical infections.    

 

5.2.2.1 Experimental design 

At each designated time point (25, 40, 60, 90 and 130 days) blood was harvested from 

a sub-group of Group C mice (n=4) via cardiac puncture. The blood was centrifuged at 

3,000 g for 5 min and the plasma was separated, measured and stored at -80oC for 

later PQ analysis. The red blood cells were washed 3 times in 0.9% w/v NaCl 

(centrifuged each time for 5 min at 3,000 g), with care taken to remove all of the 

washing saline and buffy coat, in which sensitised leukocytes or free antibody may be 

present. The packed red blood cells were then re-suspended in the same volume of 

0.9% w/v NaCl as the plasma that was originally removed from the packed 

erythrocytes. A blood smear was prepared using the red blood cell suspension to 

estimate the parasitaemia for the donor sample.  
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Passage of the red blood cell suspension to naïve recipient mice was dependent upon 

the level of parasitaemia. In general, the parasitaemia was <1% and recipient mice 

were inoculated with a 1:5 dilution of the original suspension (200 µL i.p. injection). 

Where the parasitaemia was >1%, the parasite suspension was diluted to provide a 

standard inoculum of 105 P. berghei parasites in 100 µL.  Each of the four donor 

inoculums was passaged into a group of naïve male mice (5 weeks old; n=5) resulting in 

a total group size of 20 for each time point (Fig. 5.4). Simultaneously, a group of naive 

untreated age-matched mice (n=4) were inoculated with a 105 P. berghei inoculum to 

act as a control arm for the viability study. Five days after inoculation, three of the 

mice from each group of recipients were treated with a single 90 mg/kg i.p. dose of 

PQP and the remaining two mice per group remained untreated (Fig.5.4). Hence, at 

each time point both the parasite viability and the effect of PQ were evaluated. 

Parasitaemia was monitored by twice daily peripheral blood films. 

 

5.2.3 Pharmacokinetic parameters 

The plasma PQ concentration was determined in both malaria-infected (n=4) and 

uninfected age-matched control mice (n=2) at each time point (25, 40, 60, 90 and 130 

days). Blood was harvested by cardiac puncture, centrifuged at 3,000 g for 5 min and 

the plasma was separated and stored at -80oC until analysed using a validated HPLC 

assay with limits of quantification and detection of 1.6 µg/L and 0.7 µg/L, respectively 

(231, 254). The mean plasma PQ concentration was compared with data from the 

previous pharmacokinetic study (Chapter 4; Section 4.3.3). 
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Figure 5.4 Schematic simplifying the experimental protocol for testing parasite 

viability and drug response.  Groups of mice (n=4), initially infected then treated with 

90 mg/kg PQP at Day 0 (Group C), had blood harvested at each experimental time 

point for testing of parasite viability and drug response. 1.  At each experimental time 

point, blood from each mouse was harvested via cardiac puncture, washed to remove 

antibodies or residual plasma PQ concentrations, then prepared for inoculation to 

recipient mice;  2.  The prepared blood was injected into 5 naive mice by i.p. injection; 

3.  Mice were returned to cages with peripheral blood films prepared twice daily to 

monitor parasitaemia; 4.  Five days after inoculation with donor blood, 3 out of the 5 

mice received a single i.p. dose of 90 mg/kg PQP whilst the remaining two mice 

received drug vehicle.  Parasitaemia was monitored in all mice through preparation of 

twice daily blood films until time of euthanasia (parasitaemia > 40% or at experimental 

end-point, 25 days after inoculation) 

 

 

  

25 days  

 

 

 

Mice infected with 10
7
 

  
Drug vehicle 90 mg/kg PQP 

1. 

2. 

3. 
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5.3 RESULTS 

5.3.1 PQ pharmacodynamics. 

Administration of a single dose of 90 mg/kg PQP resulted in a rapid decline in 

parasitaemia which fell below the limit of detection (0.002%) by 36 h after dosing (Fig. 

5.5).  In all mice, recrudescence occurred 7-8 days after drug administration, with a 

mean peak parasitaemia of 1.32% ± 0.56% at 13 days. The parasitaemia remained 

relatively stable for approximately 8 days and declined to a mean of 0.03% by Day 25 

(Fig. 5.5). Thereafter the mean parasitaemia remained below 0.015% until 80 days 

after dosing, beyond which there were no detectable parasites in any mice up to and 

including the experimental endpoint of 130 days after initial dosing.  These findings 

were consistent with the previous study (Chapter 4).  

 

5.3.1.1 Group A  

Group A control mice that were initially uninfected and untreated then inoculated at 

each pre-determined time (25, 40, 60, 90 or 130 days), showed similar parasite 

density-time profiles to those in previous studies (Chapters 3, 4 and (49, 467)). This 

was characterised by rapidly rising parasitaemias until the time of euthanasia (6-8 days 

after inoculation; peripheral parasitaemia >40%; Fig. 5.6).  Hence, in this model, mouse 

age (between 5 and 25 weeks) did not influence the course of P. berghei infection. 

 

5.3.1.2 Group B 

Group B uninfected control mice, that received 90 mg/kg PQP on Day 0 and were 

inoculated for the first time at each experimental time-point, demonstrated a modest 

suppressive effect against the malaria parasites in the 25 day cohort only (Fig. 5.7). 

This cohort of mice had a mean parasitaemia approximately 10 fold lower than 

controls and a median survival time of 15 days (Fig. 5.7). By contrast, no apparent 

parasite suppression was seen at any other time-point, with median survival times of 

8, 8, 8 and 7 days for the 40, 60, 90 and 130 day cohorts, respectively. In the latter 

groups, parasite density-time profiles and survival times were comparable to those for 

Group A control mice that received only drug vehicle.  Therefore, it may be suggested 

that 90 mg/kg PQP was mildly suppressive until approximately 25 days after drug 

administration. 
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5.3.1.3 Group C 

Data for Group C mice that were previously inoculated and received 90 mg/kg PQP on 

Day 0, are shown in Figure 5.8. The cohort that was re-inoculated on day 25 

maintained a low, subclinical parasitaemia (<0.015%) with all mice remaining 

asymptomatic for 4 weeks (pre-determined endpoint of re-inoculation study; Fig. 5.8). 

A similar outcome was seen at 40, 60 and 90 days, with all mice remaining 

asymptomatic and peak parasitaemias of 0.03%, 0.3% and 0.9%, respectively. In 

contrast, mice re-inoculated 130 days after initial drug administration (which had been 

aparasitaemic for >50 days) showed a rapidly increasing parasitaemia, with a median 

survival time of 10 days (Fig. 5.8).   

 

The naive control group, which was run in parallel with the re-inoculation study, 

confirmed that the standard inoculum of 107 parasitised erythrocytes injected into the 

experimental mice would lead to predictable outcomes of a rapidly increasing 

parasitaemia and lethal outcome within one week (as seen in previous chapters).  

Therefore, this control arm adequately established that the parasite inoculum 

prepared for re-inoculation purposes was consistent with expected pharmacodynamic 

responses obtained in naive mice.  
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Figure 5.6  Parasitaemia-time profiles from the parasite re-inoculation arm of the 

study. Untreated uninfected age-matched Group A control mice (n=4 at each time 

point) that were inoculated with 107 P. berghei parasitised erythrocytes at pre-

determined times (, 25 days; ,40 days; , 60 days; , 90 days; , 130 days). Data 

are shown as total parasitaemia (mean percentage of erythrocytes infected ± SD), 

commencing from the time of inoculation. (see also text, sections 5.2.1.2a and 5.3.1.1). 
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Figure 5.7 Parasitaemia-time profiles from the parasite re-inoculation arm of the 

study. Drug efficacy was assessed through the use of age-matched uninfected (Group 

B) mice that received a single dose of 90 mg/kg PQP at day 0 and later infected with 

107 P. berghei parasitised erythrocytes at each pre-determined time point (n=6 at each 

time-point: , 25 days; ,40 days; , 60 days; , 90 days; , 130 days). Data are 

shown as total parasitaemia (mean percentage of erythrocytes infected ± SD), 

commencing from the time of inoculation. (see also text, sections 5.2.1.2b and 

5.3.1.2).  
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Figure 5.8 Parasitaemia-time profiles from the parasite re-inoculation arm of the 

study. Infected mice treated with 90 mg/kg PQP (Group C) at day 0 were re-inoculated 

with a second inoculum of 107 P. berghei  parasitised erythrocytes at each study point 

(n=6 at each pre-determined time point: , 25 days; , 40 days; , 60 days; , 90 

days; , 130 days. Data are shown as total parasitaemia (mean percentage of 

erythrocytes infected ± SD), commencing from the time of inoculation. (see also text, 

sections 5.2.1.2c and 5.3.1.3). 

 

  



- 192 - 
 

5.3.3 Parasite viability and drug resistance study. 

Blood harvested from Group C mice at the 25 day time-point (mean parasitaemia 0.03 

± 0.04% at time of harvesting) was shown to contain viable parasites, as all naïve mice 

inoculated with the donor red blood cell suspensions developed infections.   Mice 

receiving drug vehicle five days after inoculation progressed to experimental endpoints 

(high parasitaemia) with a median survival of 19 days (Fig. 5.9). Following 

administration of 90 mg/kg PQP five days after inoculation, parasitaemia in the treated 

mice was not markedly different to that for the vehicle group, and the median survival 

was also 19 days. A similar outcome was observed in the 40-day mice (Fig. 5.10) with 

the data from both the 25 day and 40 day groups indicating that the parasites were 

resistant to PQ.  

 

Blood harvested from the Group C mice at 60 days after drug treatment (mean 

parasitaemia 0.004 ± 0.006%) showed that viable parasites were present in only two of 

the donor mice, with the blood from two of the donor mice not producing a detectable 

parasitaemia in any of the naïve mice inoculated. In the 10 naïve recipient mice that 

developed an infection from the red blood cell suspension, mice that received drug 

vehicle five days after inoculation had a median survival of 10 days (n=4; Fig. 5.11). 

Administration of PQP to the remaining mice (five days after inoculation) resulted in a 

prompt decline in parasitaemia and recrudescence in all recipients (n=6; Fig. 5.11). 

Recipients from one donor (n=3) had a progressive infection that reached 10% 

parasitaemia within 25 days. However, the three recipients from the other donor 

showed a response to PQ that was consistent with successful treatment.  

 

The naive control arm, which was run in parallel with each viability experiment, 

demonstrated the expected pharmacodynamic response for mice inoculated with a 

105 P. berghei parasitised erythrocytes, consistent with Gibbons et al. 2007 (179).   

Furthermore, this control arm demonstrated that the 90 mg/kg PQP dose was 

efficacious, as all naive mice treated with the drug preparation exhibited the expected 

pharmacodynamic response. Therefore, this control arm adequately established that 

there were no inconsistencies with parasite inoculum or drug preparation.  
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Figure 5.9 Parasitaemia-time profiles at 25 days.  Parasitaemia-time profiles in 

naïve Swiss mice (n=5) after inoculation with red blood cell suspensions harvested 

from previously inoculated and PQP-treated mice (n=4) at 25 days after initial drug 

administration. Five days after inoculation, three out of five mice from each donor 

group received a single i.p. dose of 90 mg/kg PQP. Inoculations from the four PQP-

treated mice that were harvested at Day 25 produced a viable infection in all 20 

recipient mice. The untreated mice (; n=8) and PQP-treated mice (; n=12) had 

similar parasite density-time profiles, apart from Days 7 and 8 (2-3 days after PQ 

administration), and the median survival time was 19 days in both groups. Data are 

shown as total parasitaemia (mean percentage of parasitised erythrocytes infected 

± SD), commencing from the time of red blood cell passage. 
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Figure 5.10 Parasitaemia-time profiles at 40 days.  Parasitaemia-time profiles in 

naïve Swiss mice (n=5) after inoculation with red blood cell suspensions harvested 

from previously inoculated and PQP-treated mice (n=4) at 40 days after initial drug 

administration. Five days after inoculation, three out of five mice from each donor 

group received a single i.p. dose of 90 mg/kg PQP. Inoculations from the Day 40 

mice produced viable infections in all recipient mice ( untreated, n=8;  treated, 

n=12) and a similar profile to the Day 25 mice. Data are shown as total parasitaemia 

(mean percentage of parasitised erythrocytes infected ± SD), commencing from the 

time of red blood cell passage. 
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Figure 5.11 Parasitaemia time-profiles at 60 days.  Parasitaemia-time profiles in 

naïve Swiss mice (n=5) after inoculation with red blood cell suspensions harvested 

from previously inoculated and PQP-treated mice (n=4) at 60 days after initial drug 

administration. Five days after inoculation, three out of five mice from each donor 

group received a single i.p. dose of 90 mg/kg PQP. In the Day 60 group, viable 

infections were produced from only two of the four donor mice. Untreated 

recipient mice (; n=4) had a median survival of 10 days. Treated recipient mice 

(; n=12) showed different profiles, with the cohort from one donor mouse having 

a progressive infection (  ) and the other cohort having a strong 

response to PQP treatment (– – –).  Data are shown as total parasitaemia (mean 

percentage of parasitised erythrocytes infected ± SD), commencing from the time of 

red blood cell passage. 
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In the 90 day cohort mice, recipients from only one donor mouse developed a 

detectable infection (Fig. 5.12). All other recipients, from the other three donors, 

remained parasite free throughout the 30 day monitoring period. In mice with a 

positive infection, the lag period for the infection to develop suggested a low 

parasite count in the red blood cell suspension (inoculum). Furthermore, in these 

recipients PQ administration had little effect on the developing parasitaemia as the 

median mouse survival time (20 days) was similar to the mice given vehicle.  

 

In the final subset (130 days), none of the recipient mice developed an infection 

during the 30 day monitoring period.  This indicated that no viable parasites were 

present in Group C mice four months after inoculating and subsequent treatment 

with PQP.  

 

5.3.4 PQ concentrations 

The mean plasma PQ concentrations from malaria-infected mice (n=4) at each time 

point were 15 ± 8, 11 ± 1 and 2 ± 2 µg/L for 25, 40 and 60 days after PQP 

administration, respectively. Plasma PQ concentrations at 90 and 130 days were 

undetectable (Fig. 5.13). The plasma PQ concentrations in the present study were 

found to be comparable to the mean plasma concentration-time profile obtained in 

the previous chapter (Fig. 4.5, Chapter 4) Plasma PQ concentrations in uninfected 

control mice were 13.3 µg/L at 25 days (n=1), 4.9 µg/L at 40 days (n=1), 1.4 and 1.6 

µg/L at 60 days (n=2), 1.9 µg/L and undetectable at 90 days (n=2) and undetectable 

130 days (n=2) after PQP administration.  
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Figure 5.12 Parasitaemia-time profiles at 90 days.  Parasitaemia-time profiles in 

naïve Swiss mice (n=5) after inoculation with red blood cell suspensions harvested 

from previously inoculated and PQP-treated mice (n=4) at 90 days after initial drug 

administration. Five days after inoculation, three out of five mice from each donor 

group received a single i.p. dose of 90 mg/kg PQP. In the Day 90 group, a viable 

infection was found in recipients from only one donor mouse and, although 

development of the infection was delayed, the parasite density-time profile of the 

untreated mice (; n=2) was similar to the treated mice (; n=3).  Data are shown 

as total parasitaemia (mean percentage of parasitised erythrocytes infected ± SD), 

commencing from the time of red blood cell passage. 
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Figure 5.13 Plasma PQ concentrations in mice given PQP at approximately 90 

mg/kg i.p. (normalized for pharmacokinetic analysis). Data are given as mean ± SD 

plasma PQ concentration for malaria-infected mice at 25, 40 and 60 days after 

treatment with PQP (; n=4). The lines show the mean concentration-time profile 

(two-compartment model) for healthy (- - -) and malaria-infected mice (        ) as 

shown in Fig. 4.5, Chapter 4 (pg 166).  
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5.4 DISCUSSION 

The purpose of the current investigation was to perform a series of viability and re-

inoculation experiments to determine whether the previously observed, chronically 

low parasitaemia in PQ treated, P. berghei infected mice was a result of drug 

pressure, immune response or potentially a combination of both.  Whilst specific 

immunological testing involving the use of monoclonal antibodies and/or labelled 

CD4+ and CD8+ T-cells would have added further support to the investigation, it 

was beyond the scope and resources of this study.  Therefore, the conclusions from 

this study are based on the pharmacokinetic data and observed pharmacodynamic 

responses. 

 

Pharmacodynamic data obtained for Group A mice demonstrated that when 

inoculated at each of the experimental time-points, the previously uninfected, 

untreated mice developed lethal infections.  This suggests that in this P. berghei 

model, mouse age at the time of inoculation does not influence the course of 

infection.  A similar finding has been previously reported where it was shown that 

age had no influence on the progression or lethality of P. berghei infections in mice 

(192, 387).  By contrast, adult rats (>12 weeks) have an increased ability to clear P. 

berghei parasites and decreased mortality compared to young rats (4 weeks), albeit 

there was no significant difference in the initial progression of infection between 

the studied groups (4, 192, 387).  This would therefore suggest that the differences 

in observed disease progression, in the young and adult rat groups, was due to an 

age-associated deregulation of immune responses to primary infection (4).  By 

comparison, in the present studies, all experimental mice were obtained at an initial 

age of 5-6 weeks and by the time of inoculation would all be considered mature.  

Hence, it may be concluded that in these studies ‘mouse age’ at the time of 

inoculation may be excluded as a factor in improving survival.   

 

The duration of therapeutic effect after single dose 90 mg/kg PQP, was evaluated in 

Group B mice after their inoculation with P. berghei parasites.  The 

pharmacodynamic profiles clearly demonstrated that plasma PQ concentrations 

were only mildly efficacious at approximately 25 days after drug administration, 
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with mild parasite suppression being observed (Fig. 5.7).  Analysis of plasma 

concentrations at each time point correlated with the pharmacodynamic 

observations.  At 25 days, when modest parasite suppression was observed, the 

mean plasma PQ concentration was 15 ± 8 μg/L.  Plasma concentrations at 

subsequent time-points (< 10 μg/L) correlated to a lack of parasite suppression. 

Therefore, it was concluded that in this murine malaria model the contribution of 

residual PQ concentrations <20 μg/L was low, whilst PQ concentrations <10 μg/L 

were ineffective.  Although direct comparisons to human studies are not plausible, 

these findings are consistent with a recent report suggesting that plasma PQ 

concentrations >30 μg/L are required for successful treatment in clinical malaria 

(397).   

 

Persistence of residual drug concentrations is a concern in the context of the 

selection of drug resistant parasites to long half-life partner drugs in ACTs, such as 

PQ.  The most significant influence on the efficacy of antimalarial therapy is the 

parasite’s ability to acquire and/or maintain drug resistance.  General 

characteristics of the drug are perhaps the most important determinants in parasite 

resistance, particularly in regard to drugs with a long half-life such as mefloquine or 

PQ (548, 566).  However, exposure to persistent subtherapeutic concentrations that 

inhibit, rather than clear, parasitaemia may exert substantial residual selection 

pressure (541, 548, 558, 566).  Another issue to consider is the maintenance of 

adequate drug concentrations over a long period of time being important for the 

clearance of parasites within an infected individual.  Subtherapeutic concentrations 

may eliminate the most susceptible parasites but not clear more resilient forms.  As 

a result, eventually the necessary therapeutic dose required for therapy may 

increase beyond the maximum tolerated, thus drug resistance would emerge (566). 

Based on the results in this study, it is feasible that re-emergence of PQ resistant 

strains of P. falciparum, which in the 1980s led to the abandonment of PQ as an 

antimalarial agent (127, 386, 541), could occur as a result of residual PQ 

concentrations following ACT in endemic areas.  However, to date, there are no 

clinical reports of resistance to PQ as a result of PQ-based ACT, which may reflect 

the high success rates associated with this regimen (27, 29, 139, 252, 253, 336, 413, 
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456, 477). That is, by curing the infection (parasite elimination) there is no residual 

biomass exposed to prolonged, low drug concentration.  

 

In the current study, when parasites from previously treated mice were passaged 

into a naive host, the viable parasites appeared to not be affected by PQP, with 

parasite growth continuing at a constant rate after drug administration.  Whilst 

inadequate drug formulation was considered, the corresponding control arm (naive 

mice inoculated with a fresh P. berghei inoculum and similarly treated with 90 

mg/kg PQP) demonstrated the expected drug efficacy post drug administration.  

Therefore, the parasites’ lack of response to a second 90 mg/kg PQP exposure 

appeared to be more indicative of drug resistance.  By comparison, selected PQ 

resistance in a P. berghei ANKA murine malaria model after drug pressure was 

recently reported (259).  Initially the ED90 for PQ was determined to be 3.52 mg/kg, 

however, after continued drug pressure over >27 passages, resistance was obtained 

which was reflected by an altered ED90 of 68.86 mg/kg (259).  Furthermore, if drug 

pressure was removed it was observed that parasites slowly returned to being 

sensitive towards the drug.   These results therefore suggest that it is plausible for 

P. berghei parasites to become resistant to PQ, however, it has previously not been 

described after a single prolonged exposure. Therefore, although the current 

parasite responses to repeated drug administration do suggest attainment of at 

least partial resistance, the small sample size and study design precludes definitive 

conclusions.  Further studies, using a larger cohort of mice and appropriate 

immunological investigations, could provide more information on the mechanisms 

of resistance to PQ.    

 

Parasite re-inoculation at 25, 40, 60 and 90 days after PQP administration in Group 

C mice, failed to establish a lethal infection with all mean parasitaemias remaining 

below 1%.  However, when re-inoculated at 130 days after PQP, all mice developed 

a lethal infection.  Given that plasma PQ concentrations were shown to be 

ineffective at curbing parasitaemia at any of these time-points, the results are 

indicative of an immune response being mounted towards the infection.  Acquired 

resistance is considered to be the predominant factor in the development of 
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chronic P. berghei infections in mice (19, 114, 115).   Murine P. berghei studies, 

using Atabrine or Manzamine A as treatment therapy, have independently 

demonstrated the expression of chronic P. berghei infections, which resulted in 

either fatal relapses (as late as 100 days after treatment) or spontaneous cure (19, 

115).  Furthermore, mice that exhibited chronic infections were shown to survive 

for extended periods of time after re-infection with a second P. berghei inoculum 

(115).  These results, in conjunction with those obtained in the present study; 

suggest that if drug therapy has the ability to reduce the initial parasite burden to 

subclinical levels, the mouse immune system has the capacity to limit parasitaemia 

to low density chronic infections and a subsequent acquired partial immunity 

towards infection (114, 115, 278).   

 

Investigations into murine host responses to infection have demonstrated that the 

immune response mounted towards malaria infection has the capacity to eradicate 

parasites after further challenge, at least within an interval of 4 to 6 weeks (332, 

333).  Once infection was resolved and parasites were no longer present in 

circulation, the titre of humoral protective factor was seen to wane markedly within 

2 to 3 weeks of recovery from the P. berghei infection and as a result mice were 

once again susceptible to infection (332, 333).  These observations further support 

the theory that if drug treatment has the ability to reduce parasitaemia to a critical, 

but as yet unknown, parasite density for a period of time, the mouse immune 

system has the ability to clear remaining parasites from the infected animal.  This 

would then protect the mouse from further infection from the same parasites.   

 

The extended period of the present study ensured that the full scope of drug 

efficacy, parasite viability and host response components could be evaluated. It was 

found that the mean parasitaemia beyond 60 days was very low (<0.01% where 

detectable) and, possibly due to the low parasite densities, the inoculation success 

was 50% and 25% at 60 and 90 days, respectively. Treatment with PQ also showed a 

variable response, with some infected recipients in the 60 day group showing 

evidence of drug resistance and others showing susceptibility to drug (although 

immediate drug effects were less than the standard response in control mice). Re-
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inoculation of experimental mice with P. berghei parasites also failed to establish 

lethal infections at these time-points, suggesting persistence of immunity at a low 

parasitaemia and in mice with recently cleared infection.  

 

The peripheral parasitaemia remained undetectable from 80 days after the original 

treatment with PQP, indicating that infections had resolved or the residual parasite 

biomass was very low (<0.001%; approximately 160,000 parasites in comparison to 

a starting biomass of 500 million parasites). At the final time point of our study, 

passaging of blood into control mice failed to establish an infection and, in contrast 

to earlier times, the second P. berghei inoculum led to a typical, lethal infection. 

These results suggest that any immunity or immunological memory was absent, a 

finding that is also consistent with the view that maintenance of immunological 

memory requires continuous exposure to the parasites (220, 414).  

 

The present study may have been limited by the relatively small number of donor 

mice used to demonstrate parasite viability at each studied time-point. At the 25 

and 40 day time-points, where parasite responses were consistent, the small 

sample size was not a conflicting issue. However, as time progressed the variability 

of parasite viability increased and by 60 days only 50% of the donor parasite 

inoculums from Group C mice proved to be viable upon re-inoculation. It is possible 

that a more accurate outcome could have been achieved if the number of donor 

mice was increased at each time-point.  

 

In conclusion, the present study has demonstrated that the P. berghei murine 

malaria treatment model can be a valuable preclinical conceptual tool for 

investigation of the pharmacodynamic effects of antimalarial drugs such as PQ. It 

was found that PQ has a substantial antimalarial effect in this model, which appears 

sufficient for a host immunological response to be established. The study also 

suggests that residual PQ concentrations could lead to the development of PQ-

resistant parasites if initial ACT was not curative and/or a new infection arose 

during the early post-treatment period.  
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CHAPTER SIX 

 

INVESTIGATION OF THE PHARMACOKINETICS AND 

PHARMACODYNAMICS OF CHLOROQUINE IN MICE 

 

6.1 INTRODUCTION 

Since the discovery and development of chloroquine in the 1030s and its clinical 

application in the 1940s, CQ is still an important antimalarial drug today, particularly 

for the treatment of P. vivax malaria (REF). The clinical pharmacokenitics of CQ and 

its principal metabolites have been extensively studied in a variety of ethnicities, 

following various routes of administration, and in healthy subjects and malaria 

patients  (6, 9, 74, 100, 135, 146-148, 153, 170-173, 199, 201, 254, 264, 270, 273, 

338, 357, 359, 364, 410, 420, 490, 491, 504, 513, 514, 529, 549, 553, 559, 562).   

However, despite the intensive research into this drug and its metabolites in 

numerous populations, the pharmacokinetic parameters of the drug remain highly 

variable, if not inconclusive.  For example, the terminal elimination half-life of CQ, 

reported from clinical studies, ranges from 3 to 1512 h (74, 146-148, 169-173, 199, 

201, 264, 273, 357, 410, 491, 504, 513, 514, 540, 562).  This significant variability 

may be attributed to different analytical techniques, whether plasma, serum or 

whole blood was used for analysis, or even incorrectly assuming that the tissue 

distribution phase was the elimination half-life.   However, as drug administration 

and dosing regimens are often intimately linked with the reported terminal 

elimination half-life, it is concerning that there is a wide range of values for CQ, a 

potentially toxic drug, with a narrow therapeutic index (131). This point alone 

supports the strategy of acquiring basic pharmacokinetic information from 

preclinical models so that suitable and safe dosing regimens can be determined and 

implemented into the clinical setting.   
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6.1.1 Animal investigations 

6.1.1.1 Pharmacodynamic efficacy  

The pharmacodynamic efficacy of CQ has been previously investigated in a 

preclinical murine study observing the influence of initial parasite load and starting 

day of drug administration on the outcome of treatment, using both the Peter’s 4 

day test as well as treating post inoculation (239).  An outbred mouse model 

inoculated with P. berghei NK61 parasites was used for all investigations.  The 

results suggested that a complex relationship existed between the parasite load and 

efficacy of CQ (239).  For example, mice dosed for four consecutive days with 20 

mg/kg CQ before inoculation with 108 P. berghei parasites showed an undetectable 

parasitaemia until day 8 post-infection, with parasites observed from day 10 and 

eventual death by day 22 of infection (239).  Conversely, all mice inoculated with ≤ 

107 P. berghei parasites showed no presence of parasitaemia for the monitored 

period.  In experiments where mice were dosed post inoculation it was 

demonstrated that in mice inoculated with 103 P. berghei parasites, if parasitaemia 

at the time of treatment was ≤0.1%, all infections resolved with no parasite 

recrudescence observed up to the experimental endpoint.  By comparison,  if 

peripheral parasitaemia was ≥0.1% at time of treatment, 20 mg/kg CQ was shown 

to decrease the parasitaemia to undetectable levels until 7 days after treatment, 

however, parasite recrudescence soon followed and all mice died with progressively 

increasing parasitaemia by day 24 after CQ treatment (239).  The authors concluded 

that in this in vivo antimalarial “drug-assay” model, several factors such as initial 

parasite load and the starting time of treatment influenced the drug response in the 

host (239).    

 

This study may be relevant for other preclinical models, as it suggests the possibility 

of a threshold parasitaemia which could directly correlate to the treatment 

outcome.  Furthermore, in the context of dose regimen considerations, this study 

indicates that  at higher parasite burdens either a higher dose of CQ is required to 

resolve the infection or, if CQ toxicity prevents a higher dose being administered, a 

different antimalarial treatment strategy is required.  In regards to murine 

treatment models, where it is important to observe the entire pharmacodynamic 



- 206 - 
 

response of the trial antimalarial, it highlights the importance of using parasite 

inocula > 107 P. berghei parasites. Further investigation into the influence of initial 

parasite load could provide useful preliminary data for the construction of 

comprehensive mathematical models.  Such mathematical modelling could prove 

useful in the clinical setting where the selection of antimalarial therapy and 

corresponding treatment outcomes could be predicted given the initial blood 

parasitaemia.    

 

Further efficacy data has been collated using murine malaria models including the 

determination of the minimum effective dose of CQ being 10 mg/kg (51, 239), and 

establishing that the acute lethal dose 50% (LD50) of CQ in mice after i.p. injection 

was 79 mg/base/kg (range 68-78 mg/base/kg) (Table 6.1) (306). 

 

Table 6.1 Parameters of toxicity of chloroquine (CQ) (306).   Data given as 

means ± standard error  

**Original table modified to include murine data relevant to this chapter. 

 

Route of 

administration 

Acute LD50 

mg/base/kg 
 

Tolerated Dose 

mg/base/kg per day 

CQ  CQ 

Intravenous 25 ± 2†  – 

Intraperitoneal 79†, 68–78‡    >40,  >155†,§ 

Oral 387 ± 50†, 1,000‡           400 = LD10
‡ 

 

† Data from the files of the Sterling-Winthrop Research Institute 
‡ Data from Wiselogle, F.Y., 1946  (564) 
§ Five-day test 

 

Murine models have also played an integral role in the investigation of the 

mechanism of action of CQ. Whilst a range of studies have determined that CQ 

affects Plasmodium parasites in several ways, including (i) interaction of CQ with 

parasite DNA (101, 108, 109, 202, 493), (ii) inhibition of parasite feeding by CQ 
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administration (372, 424), and (iii) accumulation of CQ in the acidic food vacuole of 

the parasite (11, 174, 175, 185, 211), perhaps the most significant results have been 

in the study of the effect of CQ on haem polymerisation (166, 295, 296, 375, 452).   

Morphological studies observing the effect of a single dose of 40 mg/kg CQ on P. 

berghei malaria showed a progressive aggregation of malarial pigment within the 

parasite (296).  This effect was first observed within 30 min and was essentially 

complete within 4 h of drug administration.   However, by 8 h after CQ there was a 

noticeable decline in the percentage of pigment-containing parasites and within 48 

h very few parasites contained pigment (296).  Further investigation using electron 

microscopy showed that the malaria pigment granules were accumulating within 

large vesicles that were limited by a single membrane.  Within 1 h of CQ 

administration, these newly formed large vesicles also contained membrane bound 

inclusions of parasite cytoplasm and later, at 3–4 h, small vesicles contained 

unidentified material (296).   These microscopy studies suggested that the 

formation of haematin pigment by the parasite may serve to concentrate the drug 

within the parasite, particularly in the digestive vesicles.  It was further concluded 

that such an effect would account for the selective toxicity of CQ for the 

erythrocytic malarial parasites (296).   This conclusion is further supported by 

murine studies which have demonstrated an accumulation or clumping of pigment 

granules in murine trophozoites (98, 375, 538).  Furthermore, Peters demonstrated 

that a CQ-resistant line of P. berghei demonstrated significantly less pigment 

formation than a similarly treated CQ-sensitive P. berghei strain, which similarly 

suggests that the process of haemozoin formation is associated with the mechanism 

of action of CQ (375).   

 

Similarly, in vitro studies have demonstrated the stage specific affinity of CQ along 

with an increased accumulation of pigment granules within the parasite after CQ 

administration (452, 471, 472, 587).  In their investigation of the inhibition of haem 

polymerase by CQ, Slater and Cerami (452) used an in vitro model to identify 

specific aspects of the mechanism of action of CQ.  The results obtained in this 

study closely correlated to those published in earlier murine studies (452) although 

it has been more recently suggested that in order for in vitro investigations to 
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reflect the true nature of haem polymerisation, specific preformed parasite haem 

polymers must be first added to the culture (166).  Therefore, it may be suggested 

that both the in vitro and murine malaria preclinical models have contributed 

valuable, and correlating, information on the mechanisms of action of CQ.   

 

6.1.2 CQ Pharmacokinetics 

Preclinical pharmacokinetic studies in a variety of animal models have been 

reported, with all studies suggesting CQ has a long elimination half-life (8, 78, 396, 

494).  In healthy dogs after i.v. administration of 2 mg/kg CQ, the terminal 

elimination half life of CQ was estimated at 12.6 ± 1.84 days (8).  Comparison of the 

pharmacokinetic parameters in both healthy and malaria-infected (P. knowlesi) 

Rhesus monkeys determined that the plasma CQ half-life was significantly increased 

in infected compared to healthy (P<0.05) (396). It was postulated that the 

significant difference in the elimination half-life of CQ in the infected monkeys could 

be due to hepatic involvement during malaria infection (396).  This conclusion is 

further supported by an in vivo rat model which showed a decreased liver blood 

flow during malaria infection, therefore suggesting that the variations in hepatic 

metabolism could result in inconsistent CQ pharmacokinetics (148).   Furthermore, 

investigations in the tissue distribution of CQ in monkeys and albino rats showed 

that CQ is extensively distributed, with the liver, spleen, kidney and lungs being the 

main repositories (7, 148, 306, 307). 

 

Although murine malarias serve as preferable in vivo models for drug testing, the 

pharmacokinetic parameters of CQ in mice are limited.  Three studies have been 

published on the pharmacokinetic paramters of CQ in mice (14, 78, 494).  They have 

involved healthy mice administered s.c. 30 mg/kg CQ (494), and orally 100 mg/kg 

CQ (14), and in both healthy and malaria-infected mice administered s.c. either  5, 

10 or 50 mg/kg CQ (78).  However, all studies have limitations, especially 

incomplete pharmacokinetic analysis (78, 494).  For example, in one study (78),  

pharmacokinetic analysis only included data up to 120 min post-dose and the 

reported values do not represent terminal elimination but instead indicate tissue 

distribution (78).  Furthermore, no study takes into account the presence or 
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concentrations of CQ metabolites, such as desethylchloroquine (DECQ).  All studies, 

however, produced interesting assumptions which, to date have been used as 

preclinical pharmacokinetic values for CQ. After measuring blood CQ concentrations 

at 0.5, 1, 2 and 4 h, Thompson et al. (494) suggested that the time of peak CQ 

concentration was 2 h after dosing.   After observing the blood CQ concentration-

time profile in healthy mice, Cambie et al. (78) estimated the distribution of CQ to 

be 40 min, which was quite similar to the distribution of CQ in humans using a 

double decay model.  Furthermore, Cambie et al. reported that the rate of CQ 

elimination in malaria-infected mice is strongly influenced by the parasite load at 

the time of treatment.  It was observed in mice with a heavy infection (21-25% 

parasitaemia) of P. chabaudi, at the time of CQ administration, that the V/F, AUC, t½ 

and tmax of CQ were all significantly increased (78).  However, as t½α was not 

significantly different between mice with heavy infections and control mice, it was 

suggested that the increased tmax of CQ in heavily infected mice was due to an 

increase in t½β.  This observation was hypothesised to be a result of an increased 

capacity of the blood compartment to accumulate drug in those mice with a heavy 

load of parasites, thus the rate of drug efflux was smaller than the rate of influx 

(78).  It was concluded that CQ was dynamically retained in infected erythrocytes 

and that the blood CQ concentration was considerably lower than that found in 

healthy controls or those with low level parasitaemia, thus accounting for the low 

drug elimination rate observed in heavy infection (78).    

 

In order to address the paucity of pharmacokinetic data available for CQ in the 

murine malaria model the purpose of the present investigation was to produce 

robust pharmacokinetic data and corresponding pharmacodynamic data, for CQ in 

the P. berghei malaria model.  Furthermore, as preclinical pharmacokinetic studies 

have been restricted to CQ alone, a further aim of the study was to investigate the 

pharmacokinetic profile for DECQ, the major metabolite of CQ.  These 

pharmacokinetic data for CQ and DECQ in the P. berghei murine malaria model are 

expected to be a valuable guide for researchers using CQ in murine malaria studies.  
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6.2  METHODS 

6.2.1 Pharmacodynamic evaluation of single and multiple doses of CQ 

As the pharmacodynamic properties of CQ have been studied to some degree in 

murine malaria models (373, 374, 378, 381, 383), the focus of the present 

investigation was the pharmacokinetic properties of CQ, and the biologically active 

metabolite DECQ, after single and multiple dose administrations.  In conjunction 

with this novel pharmacokinetic data, the pharmacodynamic responses would 

provide a unique evaluation of the effect of CQ in mice with established P. berghei 

infections.  

 

A dose of 50 mg/kg CQ was selected for use in both the single and multiple dose 

studies.  Previous pilot studies conducted in our laboratory (Jillian Stoney, BPharm 

(Hons) thesis (467)) evaluated single dose (10–50 mg/kg. Fig. 6.1A.) and multiple 

dose regimens (Fig. 6.1B.).  Consideration of the results obtained in these studies, as 

well as toxicity data obtained for i.p. dose administration (LD50 after i.p. dosing in 

mice 79 mg/base/kg (306)) resulted in the selection of the 50 mg/kg dose, which 

after single dose administration, was expected to give a significant, yet 

subtherapeutic, antimalarial response.   

 

For multiple dose administrations, 50 mg/kg CQ also was selected for 

pharmacokinetic analysis with 5 doses given at 24 h intervals.  This dosing regimen 

was chosen because it had been observed in the pilot study (where doses were 

given 12 h apart; Fig. 6.1B.), that the antimalarial efficacy of CQ was extended when 

the treatment course was spread over more than one parasite erythrocytic cycle (24 

h in P. berghei).  Therefore, it was expected that although each individual dose 

would be subtherapeutic, the dosing regimen over a total of 4–5 parasite 

erythrocytic life cycles, could lead to parasitological cure.   

 

6.2.1.1 Pharmacodynamic analysis 

To monitor the pharmacodynamic effect of single and multiple doses of CQ on the 

parasitaemia of mice involved in the pharmacokinetic study, peripheral blood films 

were prepared and parasitaemia determined using two different subsets.   
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Figure 6.1A.  Parasitaemia-time profile in Swiss mice following administration of 

single i.p. doses of CQ administered 65 h after inoculation with 107 P. berghei-

parasitised erythrocytes (↑).  Data are shown as total parasitaemia (mean 

percentage of erythrocytes infected ± SD), commencing from the time of CQ 

administration.  Symbols: , control (n=4); , 10 mg/kg CQ (n=9); , 20 mg/kg 

(n=7); , 30 mg/kg CQ (n=9); , 50 mg/kg CQ (n=7). [Data from J. Stoney, BPharm 

(Hons) (467)]. 

 

Figure 6.1B.  Parasitaemia-time profile in Swiss mice following administration of 

either a single i.p. dose of 50 mg/kg CQ (↑x 1), a three dose regimen of CQ (↑ x 3; 

20, 20 and 10 mg/kg), or a five dose regimen of CQ (↑ x 5; 10, 10, 10, 10, and 10 

mg/kg) with the first dose administered 65 h after inoculation with 107 P. berghei-

parasitised erythrocytes, and subsequent doses administered ever 12 h.  Data are 

shown as total parasitaemia (mean percentage of erythrocytes infected ± SD), 

commencing from time of initial CQ administration.  Symbols: , control (n=4); , 

50 mg/kg CQ (n=7); , 3 dose regimen (n=8); , 5 dose regimen (n=8). [Data from 

J. Stoney, BPharm (Hons) (467)]. 
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Firstly, in both the single and multiple dose pharmacokinetic studies 10 mice (the 

mice grouped in the last 2 pharmacokinetic time-points i.e. 5 and 7 days for the 

single dose study and 21 and 30 days for the multiple dose analysis) were bled twice 

daily and parasitaemia determined.  These data were used to construct 

comprehensive parasite density-time plots which represented the 

pharmacodynamic effect seen in each cohort of mice after CQ therapy.   

 

In addition, peripheral blood films were prepared from every mouse immediately 

prior to dosing and at the time of blood collection and euthanasia.  The mean 

parasitaemia for each group of mice was determined and these were plotted on the 

pharmacodynamic curve produced from the representative mice, signifying 

parasitaemia from the second subset.   

 

All peripheral blood smears were prepared and stained, and parasitaemia 

quantified, as described in Chapter 2, Sections 2.2.1.3, 2.2.2.4 and 2.2.2.5. 

 

6.2.2 Pharmacokinetics of CQ and DECQ in mice 

6.2.2.1 Drug preparation for animal dosing 

All drug solutions were prepared from a single source of CQ diphosphate salt which 

was obtained from Sigma-Aldrich (St. Louis, MO, USA). 

 

To determine the required mass of CQ diphosphate salt to administer the required 

CQ dose, all mice were weighed prior to dosing.  Whilst individual mouse weights 

were recorded (important for dose normalisation during pharmacokinetic 

modelling), the average mouse weight was used when calculating the mass of 

required CQ salt (MW base: 319.8; salt: 515.9) needed to administer a 50 mg/kg 

dose of CQ.  As CQ diphosphate salt is readily soluble in water, the accurately 

weighed CQ diphosphate was dissolved in half the required volume of deionised 

water by vortex and, if necessary, sonification.  After dissolution, the solution was 

made to volume and passed through a Millex®-HV 0.45 μm filter unit (Millipore S.A., 

Molsheim, France).   
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6.2.2.2 Single dose pharmacokinetic study 

Pharmacokinetic parameters for CQ and DECQ were determined from 125 

uninfected male Swiss mice (6-7 weeks old; mean weight 33.8 ± 2.8 g) and 125 

malaria-infected mice (6-7 weeks old; mean weight 31.7 ± 2.9 g) which had been 

inoculated with 107 P. berghei parasitised erythrocytes 64 h prior to dosing. A 

standard 100 μL volume of drug solution was administered to each mouse i.p. as a 

single dose of 1,500 μg CQ. 

 

To determine a robust pharmacokinetic profile of single dose 50 mg/kg CQ in mice, 

blood was harvested from groups of mice (n=5) at 0, 10, 15, 20, 30, 45, 60, 75, and 

90 min, 2, 2.5, 3, 4, 5, 8, 12, 18, 24, 30, 36, 48 and 56 h, and 3, 4, 5, and 7 days after 

drug administration.  All blood samples were collected by the author, and accurate 

records were taken for the time of drug administration and the time of blood 

harvest was calculated.  For earlier time-points (10, 15, 20, 30, 45, 60, 75, and 90 

min, 2, 2.5, 3, 4, and 5 h), the CQ drug solution was administered at 5 min intervals 

between each mouse within the group (n=5) to ensure that blood could be 

harvested at the required time-point.  

 

At each pharmacokinetic data point, mice were anaesthetised with 50-100 mg/kg 

sodium pentobarbitone 5–10 min prior to blood collection.  Blood was harvested by 

cardiac puncture in a single draw using a 1 mL syringe (Terumo) and 26Gx½ inch 

needle (Terumo) and placed into 1 mL lithium heparin tubes (Vacutainer®, Beckton-

Dickinson, NJ, USA).  The tubes were then mixed well by manually inverting the tube 

>10 times.  At the completion of the time point, all five blood tubes were 

centrifuged at 3,000 g for 10 min and the plasma separated and stored at -80oC 

until analysed by HPLC (254).  During separation care was taken to minimise the 

contamination of the plasma by constituents of the buffy coat (white blood cells 

and platelets).   

 

A blood smear was prepared from each mouse blood sample at the time of 

harvesting to determine the peripheral parasitaemia.   
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6.2.2.3 Multiple dose pharmacokinetic study 

The pharmacokinetic properties for CQ and DECQ were determined in a multiple 

dose study using a total of 125 uninfected male Swiss mice (6–7 weeks of age; mean 

weight 30.8 ± 3.1 g) and 125 malaria-infected male Swiss mice (6–7 weeks of age; 

mean weight 29.2 ± 3.1 g) that had previously been inoculated with 107 P. berghei 

parasitised erythrocytes, 64 h before initial drug administration.  A total of five 

doses of 1,500 μg i.p. CQ were administered at 24 h intervals (as CQ phosphate 

solution in water; 100 μL injection volume).  Each mouse was weighed prior to dose 

preparation on each day with the average mouse weight determined for dose 

calculations. 

 

Blood was harvested for pharmacokinetic analysis from groups of mice (n=5) by 

cardiac puncture at 4, 8, 12, and 24 h after the first dose, 24 h after the 2nd, 3rd, and 

4th dose, then 1, 2, 4, 6, 8, 12, and 18 h after the fifth dose and at 5, 5.25, 5.5, 6, 6.5, 

7, 8, 10, 15, 21 and 30 days after commencement of the dosage regimen.  All blood 

samples were harvested and processed as described in Section 6.2.2.2.   

 

To monitor the pharmacodynamic effect of CQ on parasitaemia in mice used in the 

pharmacokinetic study, peripheral blood films were prepared and parasitaemia 

determined using two different subsets.  Firstly, in both the single and multiple dose 

pharmacokinetic studies 10 mice (the mice grouped in the last 2 pharmacokinetic 

time-points; i.e. 5 and 7 days for the single dose study and 21 and 30 days for the 

multiple dose analysis) were bled twice daily and parasitaemia determined.  The 

data were used to construct comprehensive parasite density-time plots which 

represented the pharmacodynamic effect seen in each cohort of mice after CQ 

therapy.  In addition, peripheral blood films were prepared from every mouse 

immediately prior to dosing and at the time of blood collection and euthanasia.  The 

mean parasitaemia for each group of mice was determined and these were plotted 

on the pharmacodynamic curve produced from the representative mice.  This 

procedure was followed for both the single and multiple dose cohorts.   
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6.2.3 HPLC analysis of CQ and DECQ 

All HPLC analysis was performed by the research group analyst, Dr Madhu Page-

Sharp, according to an established method (254), as described below.  

 

6.2.3.1 Materials 

CQ diphosphate was obtained from Sigma-Aldrich (St. Louis, MO) and DECQ 

dioxalate was from Starks Associates (Buffalo, NY).  The internal standards 

amodiaquine (AQ) and PQ were purchased from Sigma (Stockholm, Sweden) and 

Yick-Vic Chemicals and Pharmaceuticals Ltd. (Hong Kong), respectively.  Acetonitrile 

was obtained from Merck (Damstadt, Germany).  All other solvents and chemicals 

were of HPLC or analytical grade. 

 

6.2.3.2 Preparation of stock solution and standard curve 

Stock solutions of CQ and DECQ were prepared separately, equivalent to 1 mg/mL 

base in water.  PQ was initially chosen for use as the internal standard, however, AQ 

was added as a second internal standard, should any interference occur with the 

primary standard.  For each analytical batch a 5-point linear calibration curve with a 

blank standard was prepared by spiking human plasma with appropriate volumes of 

working standards.  Quality control samples (5 μg/L and 50 μg/L) were included for 

each analysis.  All samples were assayed within the storage stability period of 6 

months for CQ (unpublished data).   

 

6.2.3.3 CQ and DECQ assay 

CQ and DECQ were extracted based on a previously published method (254). Briefly, 

plasma standards and samples (500 µL) were spiked with internal standard (PQ; 200 

ng and AQ; 200 ng) and mixed with 5 mL of t-butylmethyl ether and 200 µL of 5M 

sodium hydroxide and then manually shaken for 10 min.  All tubes were then 

centrifuged at 1,500 g for 10 min, with 4.5 mL of the organic phase then transferred 

into clean tubes and back extracted into 0.1 mL of 0.1 M HCl by shaking for 5 min.  

This procedure was then followed by centrifugation for 10 min at 1,500 g after 

which time the organic layer was aspirated to waste.  The HCl layer was transferred 
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to a round-bottomed borosilicate glass tube and re-centrifuged at 1,500 g for 20 

min after which 60 µL aliquots were injected onto the HPLC column.  

 

The HPLC system comprised of Hewlett Packard model 1100 with a gradient pump, 

autosampler and a variable wavelength UV detector (Agilent Technology, 

Waldbronn, Germany). Analysis of chromatograms was undertaken using 

Chemstation Software (Version 9, Agilent Technology, Waldbronn, Germany). 

 

Separation was performed on a Gemini C6-phenyl 110A (150 x 4.6 mm, 5 μm) 

column connected to a Gemini C6-phenyl (4 x 3.0 mm) guard column (Phenomenex, 

Lane Cove, NSW, Australia) at 30oC. The mobile phase contained 0.05M KH2PO4 

adjusted to pH 2.5 and 13% v/v acetonitrile. The mobile phase was pumped at 1 

mL/min and analytes were detected by their UV absorbance at 343 nm. The 

approximate retention times for PQ, DECQ, CQ and AQ were 2.5, 4.2, 5.2 and 6.8 

min, respectively (Fig. 6.2).  Two small peaks were also observed at 6.0 and 7.5 min 

(either side of AQ internal control), however, their identities were not further 

investigated and remained unidentified.   
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Figure 6.2  High performance liquid chromatography chromatograms for 
analysis of chloroquine and desethylchloroquine concentrations in mouse plasma 
samples.  Chromatograms demonstrate results for A: Blank human plasma; B: Drug 
Standards; C: Mouse plasma sample analysis.  Peaks identified were 1. PQ internal 
standard (2.5 min); 2. DECQ standard (200 ng; 4.2 min); 3. CQ standard (200 ng; 5.2 
min); 4. AQ internal standard (6.8 min); 5.  PQ internal standard; 6.  DECQ in mouse 
plasma sample 20 (182 μg/L); 7. CQ in mouse plasma sample 20 (925 μg/L); 8. AQ 
internal standard. 
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The intra-day relative standard deviations (RSD’s) for CQ were 7.8, 4.2 and 3.6% at 5 

µg/L, 500 µg/L and 3,000 µg/L, respectively (n=5), while inter-day (RSDs) were 8.3, 

5.8 and 5.2% at 5 µg/L, 500 µg/L and 3,000 µg/L, respectively (n=25). The intra-day 

relative standard deviations (RSD’s) for DECQ were 6, 4.9 and 3.4% at 5 µg/L, 100 

µg/L and 1,000 µg/L, respectively (n=5), while inter-day (RSDs) were 7.9, 6.3 and 

5.4% at 5 µg/L, 100 µg/L and 1,000 µg/L, respectively (n=25).   The limit of 

quantification and limit of detection was 1.2 µg/L and 0.6 µg/L for CQ and 1 µg/L 

and 0.5 µg/L for DECQ, respectively, with a signal to noise ratio of 3. 

 

6.2.3.4 Pharmacokinetic analysis 

For pharmacokinetic modelling, measured plasma concentrations were normalised 

to a dose of 50 mg/kg CQ, according to the weight of each mouse at the time of 

dosing.  Consistent with the principles of destructive testing (37, 593), the mean 

normalised plasma concentration for each group of mice was used to estimate 

pharmacokinetic parameters.  Pharmacokinetic analysis was performed using 

KineticaTM Version 4.4 (Thermo Fisher Scientific, Inc., Waltham, MA, USA).  Non-

compartmental analysis of the plasma concentration-time data was used to 

estimate AUC (log-linear trapezoidal method), t½, CL/F and apparent V/F for the 

single dose data.  A two-compartmental model was fitted to the data to estimate 

pharmacokinetic descriptors for the observed biphasic elimination of CQ (t½α and 

t½β; weighting = 1/y2).  A two-compartment model (weighting = 1/y2) with first-order 

absorption was fitted to the DECQ plasma concentration-time data to estimate the 

formation rate constant (DECQ from CQ; kF). 

 

6.3 RESULTS 

6.3.1 Pharmacodynamic evaluation of single and multiple doses of CQ 

The complete (7-day) pharmacodynamic response to a single dose of 50 mg/kg CQ 

was determined in a representative group of 10 mice (final 2 groups for blood 

collection) and complemented by inclusion of the parasite density data for each 

sampling point in the pharmacokinetic arm of this study (Fig. 6.3).  Administration of 

a 50 mg/kg i.p. dose of CQ resulted in a rapid decline in parasitaemia with parasite 

nadir reached 79 h after drug administration at a mean parasitaemia of 0.01 ± 
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0.02%.  This represented a 406 fold decrease when compared to the starting 

parasitaemia.  Parasite nadir was followed by an exponential rise (approximately 10 

fold) in parasitaemia for > 3 days with all mice demonstrating high density 

parasitaemias at the experimental end-point (7 days).   

 

In mice receiving a series of five 50 mg/kg doses of CQ administered 24 h apart, a 

prompt decline in mean parasitaemia was observed, falling below the limit of 

detection (0.002%) 54 h after the initial dose (Fig. 6.4).  Parasites remained 

undetectable for a further 8 days until time of recrudescence, 10 days after the 

initial dose.   From 14 to 21 days, the mean parasitaemia remained relatively stable 

(0.37 to 0.59%) and then steadily decreased until it again fell below the limit of 

detection, 24 days after the first dose of CQ.  The parasitaemia remained 

undetectable until the experimental end-point, 30 days after the initial CQ dose.  

There was no statistically significant difference between parasitaemias determined 

from the representative groups of mice to that determined from each group of mice 

at time of euthanasia. 
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Figure 6.3.  Parasitaemia-time profile in mice following administration of single 

i.p. doses of 50 mg/kg CQ, 64 h after inoculation with 107 P. berghei-parasitised 

erythrocytes.  Data are shown as mean parasitaemia ± SD, from the time of drug 

administration (↑), in Swiss mice monitored for the duration of the study (, n=10) 

and from groups of mice whose blood was harvested at each pharmacokinetic time 

point (, n=5 per group). 
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Figure 6.4.  Parasitaemia-time profile in mice following administration of multiple 

doses of CQ (50 mg/kg CQ administered 65 h after inoculation with 107 P. berghei-

parasitised erythrocytes, then single i.p. doses of 50 mg/kg CQ given every 24 

hours for 4 days) (↑).   Data are shown as mean parasitaemia ± SD in both Swiss 

mice monitored for the duration of the study (, n=10) and from groups of mice 

whose blood was harvested at each pharmacokinetic time point ( n=5 per group). 
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6.3.2 Pharmacokinetics of CQ and DECQ in mice 

The plasma CQ and DECQ concentration-time profiles following single dose and 

multiple doses of CQ are shown in Figure 6.5 and Figure 6.6, respectively.  The 

elimination Cmax, tmax, t½, CL/F and V/F of CQ were 1,708 µg/L, 20 min, 46.6 h, 9.9 

L/h/kg and 667 L/kg, respectively, in healthy mice and 1,436 µg/L, 10 min, 99.3 h, 

7.9 L/h/kg and 1,122 L/kg in malaria-infected mice (single dose data; non-

compartmental analysis). The Cmax, tmax, and t½ of DECQ were 614 µg/L, 4 h, and 

32.6 h, respecitively, in healthy mice and 345 µg/L, 2.5 h and 74.4 h in malaria-

infected mice.  

 

Based on the two-compartment model, t½α and t½β were 3.3 and 53 h, respectively, 

in healthy mice and 4.7 and 163 h in malaria-infected mice (Fig. 6.5; Panel A; Table 

6.1).  CQ and DECQ data were incomplete (analytes not detected) after 7 days in the 

multiple dose study, hence detailed pharmacokinetic data could not be obtained 

from the two-compartmental model.  Based on the control and malaria-infected 

data from the single and multiple dose studies, the mean rate of formation of DECQ 

from CQ (kF) was 0.63 ± 0.55 h-1 and the formation half-life (t½,Formation) was 1.7 ± 1.0 

h.  The mean t½α from these four sets of data was 4.2 ± 0.7 h. The metabolic ratio of 

DECQ to CQ was estimated at 1.08 and 0.62 for healthy and malaria-infected mice, 

respectively.  

 

Table 6.1  Pharmacokinetic parameters for CQ following i.p. (1,500 µg; 50 

mg/kg) administration in healthy and malaria-infected male Swiss mice.  

Pharmacokinetic parameters were determined using both non-compartmental 

analysis (t1/2, CL/F and V/F) and from a two-compartment model (t½α and t½β).  

 Uninfected mice P. berghei infected mice 

t1/2  (h) 46.6 99.3 

t1/2α  (h) 3.3 4.7 

t1/2β  (h) 53 163 

CL/F   (L/h/kg) 9.9 7.9 

V/F   (L/kg) 667 1,122 
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Panel A 

 

Panel B 

 

Figure 6.5  Concentration-time profile of CQ [Panel A] and DECQ [Panel B] in 

mice given a single dose of approximately 50 mg/kg i.p. CQ (as CQ phosphate; 

data normalised for pharmacokinetic analysis). Data are mean ± SD (n=5) plasma 

CQ concentration [Panel A] in healthy ( ――) and malaria-infected ( —) mice 

and plasma DECQ concentration [Panel B] in healthy (――) and malaria-infected 

(—) mice.  The lines represent the best fit of a two-compartment model to the 

respective data sets. 
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Panel A 

 

Panel B 

 

Figure 6.6   Concentration-time profile of CQ [Panel A] and DECQ [Panel B] in mice 

given five doses of approximately 50 mg/kg i.p. CQ (as CQ phosphate) at 24 h 

intervals. Data were normalised for pharmacokinetic analysis and are mean ± SD 

(n=5) plasma CQ concentration [Panel A] in healthy ( ――) and malaria-infected 

( —) mice and plasma DECQ concentration [Panel B] in healthy (――) and 

malaria-infected (—) mice. The lines represent the best fit of a two-compartment 

model to the respective data sets. 
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6.4  DISCUSSION 
The current study demonstrated that the P. berghei murine malaria treatment 

model is suitable for detailed preclinical investigation of antimalarial compounds, 

particularly intensive pharmacokinetic studies. Furthermore, this is the first 

investigation which comprehensively describes the pharmacokinetic properties of 

CQ and DECQ, in both healthy and P. berghei infected mice.  Furthermore, this 

study provides detailed pharmacodynamic data that demonstrate the rate of 

antimalarial response and provides an understanding of ‘curative’ effects of CQ in 

murine models.   

 

To date, murine studies of CQ have not reported comprehensive pharmacokinetic 

data in either healthy nor malaria-infected mice, due to their short sampling periods 

(longest sampling period is 24 h) and/or small sample sizes (14, 78).  The ability to 

compare results obtained from these studies is also hindered as Cambie et al. (78) 

determined CQ concentrations in whole blood after subcutaneous injection, whilst 

Ali et al. (14) established pharmacokinetic parameters in plasma after oral dosing.  

The purpose of the present study was therefore to improve the body of data by 

determining the pharmacokinetic parameters of CQ and DECQ in both healthy and 

P.  berghei infected mice.     

 

To determine the pharmacokinetic parameters of CQ and DECQ in this study it was 

decided to analyse the plasma drug concentrations, as a robust analytical method 

was already available within the laboratory and had been used in previous clinical 

studies (253, 254, 257).    However, CQ has a high blood: plasma ratio (>5:1) and is 

thought to be retained within infected erythrocytes hence plasma CQ 

concentrations are likely to be considerably lower than those found in healthy 

controls (78) and pharmacokinetic parameters will be matrix dependent (148, 264, 

504).  Despite this concern, a study by Frisk-Holmberg et al. (173) demonstrated 

that in healthy subjects there is a direct correlation between the plasma and whole 

blood CQ concentrations.  Furthermore, whilst it is acknowledged that serum CQ 

concentrations are higher than corresponding plasma CQ concentrations, due to the 

release of platelet and leukocyte bound CQ during the clotting process, if 
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centrifuged correctly plasma CQ concentrations will reflt a comination of free and 

plasma protein bound CQ (148).  It is therefore presumed that although parasitised 

erythrocytes would accumulate more of the drug than non-parasitised erythrocytes, 

a light infection (<5% parasitaemia) would not be expected to significantly change 

the CQ concentrations or pharmacokinetic properties (78).  Conversely, it has been 

shown that heavy infections will significantly alter the pharmacokinetic profile of 

CQ; in particular the V, AUC and elimination half-life (78, 396).   Considering these 

findings in relation to the present study, it is unlikely that the parasitaemia had 

significant effect on the plasma CQ concentration, particularly at the time of 

treatment when peripheral parasitaemia was <5%.  However, during post-

treatment recrudescence, towards the latter stage of sample collection, there may 

be some misrepresentation of plasma CQ concentrations as a result of the 

increasing parasitaemia.   This was shown in a morphological study by Macomber et 

al. (295) in a P. berghei murine model, where 4 h following i.p. administration of 40 

mg/kg CQ the erythrocyte CQ concentrations was  approximately 100 times higher 

than corresponding plasma CQ concentration in infected mice, whilst in uninfected 

mice there was little accumulation of CQ into erythrocytes. Furthermore, CQ 

concentratiosn in erythrocytes progressively fell as the parasitaemia (295).   

 

In the single dose pharmacokinetic study the pharmacokinetic profiles of healthy 

and P. berghei infected mice appeared to be quite similar. However, in the multiple 

dose study there appeared to be a significant difference in the plasma CQ 

concentrations from 120 h after starting CQ treatment (Fig. 6.6).  The reasons for 

the variation in pharmacokinetic profiles, after the final 50 mg/kg CQ dose, are at 

this time unclear and it was beyond the scope of the study to explore this finding.  

However, accumulation of CQ in parasitised erythrocytes was considered unlikely 

because the pharmacodynamic profile demonstrates that the parasitaemia at this 

time was undetectable and the DECQ concentration-time profile was similar in 

malaria-infected and control mice.    

 

A general limitation of all murine malaria studies is that direct extrapolation to 

human infections is not usually possible.  However, murine malaria 
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pharmacokinetic/ pharmacodynamic models can be comparable to strategies used 

in the clinical setting (122).  Therefore, such models could play an important role in 

the investigation of outcomes of antimalarial drug therapy both in single or 

combination therapies, in the development of new regimens as well as in the design 

of new drugs or drug combinations (122).   Animal models also offer an opportunity 

for detailed investigations into the mechanisms of disease and the subsequent 

therapeutic response.  For example, the current study demonstrates that although 

CQ has a rapid effect on eliminating parasite burden, single dose administrations 

are inadequate for resolving infection, even at higher doses (50 mg/kg CQ base; 

lethal dose suggested to range between 68-78 mg/kg base in mice (306)).  

Furthermore, investigation of a series of multiple dose treatment regimens showed 

the importance of selecting a suitable dosing regimen, as resolution of infection was 

only observed after repetitive high doses of CQ spread of several parasite life-

cycles.   

 

Pharmacodynamic data from the current multiple dose study demonstrated that in 

the P. berghei model, the immune system has a role in drug efficacy.  Despite 

parasite recrudescence occurring 10 days after the initiation of therapy, a fatal 

parasitaemia was not observed in any mice with parasitaemias <0.5%.  

Furthermore, two weeks after parasite recrudescence was noted, the mean 

parasitaemia fell below the limit of detection (0.002%), with all mice appearing 

healthy and aparasitaemic for the remainder of the investigation.  As the 

pharmacokinetic data demonstrated that plasma CQ concentrations were not 

detectable after 7 days, it may be concluded that the observed decline in 

parasitaemia, and eventual resolution of infection, was due to a combination of 

initial parasite reduction after drug administration and the stimulation of an 

immune response.   A similar pharmacodynamic response was observed after high 

dose PQP (Chapters 4 and 5) at which time it was concluded that the resolution of 

infection was a result of both pharmacological and immunological mechanisms.   

 

In conclusion, this study has shown that the P. berghei murine malaria model has 

the potential to be a valuable conceptual model for the comparison of single dose 
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and multiple dose therapies.  Importantly, where immune and other regulatory 

mechanisms may be integral features, the murine model is a useful extension of 

more rapid, comparatively high-throughput in vitro studies.  Despite WHO 

recommendations due to widespread CQ-resistant malaria (584), CQ monotherapy 

remains a popular choice of antimalarial for the prevention and treatment of 

uncomplicated malaria (111, 135, 513, 549, 556, 559, 562, 586).   As a result, 

preclinical investigations into adequate treatment regimens (for single dose 

therapies) and acceptable combination therapies are of the utmost importance 

(357, 383, 522, 549).   In light of this, the present study demonstrated the 

pharmacokinetic properties of CQ and its metabolite DECQ in both healthy and P. 

berghei infected mice, observations that are believed to significantly contribute to 

the preclinical knowledge of this drug, which to date has not been adequately 

investigated.   
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CHAPTER SEVEN 

 

CONCLUSIONS 

 

Murine malaria models have proved to be important in the preclinical evaluation of 

antimalarial compounds and their therapeutic regimens.    Furthermore, a well 

selected murine model can provide valuable insight on the pathology and 

immunology of malaria infection in the infected host.  The Rane murine malaria 

model was initially proposed for the testing of antimalarial drug activity, using 

‘death’ and ‘survival’ as descriptors of success.  As a result, this model proved to be 

highly successful in the screening of potential antimalarial compounds. For the 

studies described in this thesis, it was thought that after minor modifications, the 

outcomes of the Rane model could be extended, thus allowing further investigation 

into descriptive pharmacokinetics, dose-ranging pharmacodynamics, organ 

histopathology and immunological interactions.  Hence, this series of studies was 

designed to investigate the pharmacodynamic and pharmacokinetic relationship of 

a range of antimalarial drugs, both novel and established, in mice.  This was deemed 

important, due to limited published (Western) literature wth detailed murine 

phamacodynamic-pharmacokinetic investigations of DHA, PQ and CQ.  Whilst it is 

acknowledged that murine investigations are not readily comparable to the clinical 

setting, it is also suggested that the results obtained in these studies will prove to 

be valuable for more detailed preclinical research into antimalarial drug 

combinations and treatment regimens.   

 

The research investigations presented in this thesis have demonstrated that the P. 

berghei murine malaria model provides a valuable conceptual model for the study 

of single dose, multiple dose and combination therapy pharmacodynamic and 

pharmacokinetic responses, which is clearly neither ethical nor feasible in the 

clinical setting.  In vitro culture models also lack the immune and regulatory 

mechanisms of a living model and therefore the immunological responses observed 

in these studies, which proved to be important in the maintenance of subclinical 
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levels of infection, would not be able to be observed or considered in an in vitro 

model.  Furthermore, pharmacokinetic data obtained from the present 

investigations have demonstrated that the P. berghei malaria model can provide 

robust evidence for ‘concentration efficacy thresholds’ with antimalarial drugs.   

 

The study of DHA efficacy in intact and asplenic, healthy and P. berghei infected 

mice demonstrated that DHA had a potent antimalarial effect in both populations.  

Furthermore, an investigation into the stage specificity of DHA against P. berghei 

parasites showed that this antimalarial drug was effective against all of the 

erythrocytic stage Plasmodium parasites.  Histopathological investigation of key 

organs (liver, kidney and lung) indicated an enhanced role of the liver in asplenic 

mice, which was a likely compensatory mechanism for the clearance of parasites in 

this population of mice.   

 

Although PQ has been utilized as an antimalarial compound in the clinical setting 

since the early 1960s, to date there is little published data on the efficacy or 

pharmacokinetic-pharmacodynamic relationship of PQ in mice.  The present 

detailed investigations therefore provided a valuable insight into this novel 

antimalarial drug.  Single dose-ranging PQ studies demonstrated a potent, long 

lasting antimalarial effect in mice infected with P. berghei parasites.  Furthermore, 

this antimalarial efficacy was shown to be enhanced when mice were treated with a 

combination of PQ and DHA.  High dose PQP (90 mg/kg) administration resulted in a 

pharmacodynamic profile that suggested a period of post-treatment prophylaxis, 

which was further investigated to determine if this effect was due primarily to drug 

administration, the acquisition of immunity towards the infecting parasite strain or 

a combination of factors.   A series of viability and re-inoculation experiments 

looking specifically at parasite viability, drug efficacy, drug resistance and 

immunological influences demonstrated that whilst PQ provided a substantial 

antimalarial effect, the period of post-treatment prophylaxis was predominantly a 

result of immunological mechanisms.  Furthermore, the study suggested that 

residual PQ concentrations could lead to the development of PQ-resistant parasites. 
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The pharmacokinetic investigation of CQ in the P. berghei malaria model was 

performed because despite the extensive use of CQ as a comparator drug in 

preclinical efficacy investigations, there remains a paucity of murine 

pharmacokinetic data.  This investigation found little difference, after single dose 

administration, between the pharmacokinetic profiles of healthy and P. berghei 

infected mice.  However, after multiple dose administrations of CQ, a significant 

difference in the plasma CQ concentrations was observed.   Corresponding 

pharmacodynamic data demonstrated that after multiple doses of CQ (5 x 50 

mg/kg), parasitaemia was suppressed for a sufficient period of time in which an 

immunological response could be mounted towards infection.  

 

The present series of investigations established that this P. berghei murine model is 

suitable for detailed preclinical investigations of antimalarial compounds, 

particularly intensive pharmacokinetic studies. Whilst the current studies appear to 

be the first to comprehensively describe the pharmacokinetic properties of PQ, CQ 

and DECQ, in both healthy and P. berghei infected mice, novel pharmacodynamic 

and immunological responses to the administration of DHA, PQ and CQ have also 

been demonstrated.    It is therefore concluded that the work described in this 

thesis will be viewed as a valuable contribution to the preclinical investigation of 

antimalarial drugs.  
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APPENDIX 1 

MURINE SEROLOGY 

 

Murine Virus Monitoring Service 

101 Blacks Rad 

Gilles Plan 5086 

South Austalia 

Telephone: +61 8 8261 1033 

Fax:              +61 8 8261 2280 

 

SEROLOGY 

‘All samples will be tested by ELISA for antibody directed against: Cilia Associated 
Respiratory Bacillus (CAR), Murine Cytomegalovirus (CMV), E. Cuniculi (CUN), 
Ectromelia Virus (ECT), Hantaan Virus (HAN), Lymphocytic Choriomeningitis Virus 
(LCM), Mouse Adenovirus (MAD), Mouse Hepatitis Virus (MHV), Minute Virus of 
Mice & Mouse Parvovirus (combined test using recombinant antigen PARV – rNS1), 
Polyoma Virus (POL), Mycoplasma pulmonis (PUL), Pneumonia Virus of Mice (PVM), 
Reovirus Type 3 (REO), Epidemic Diarrhoea of Infant Mice (ROT), Sendai Virus (SEN), 
Theiler’s Murine Encephalomyelitis Virus (TMV) and Clostridium piliformis (TYZ).’ 

 

All results will be reported as: 

POS = Positive 

NEG = Negative 

EQU = Unconfirmed low level reaction 

NS = Non-specific reaction 
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APPENDIX 2 

REAGENTS AND BUFFERS 

 
A2.1 Acetic Acid; 1 M 

 Acetic acid, glacial (17.43 M)    57.4 mL 

 Water       to 1 L 

 

A2.2 Alsever’s Solution 

 Dextrose (anhydrous)     20.5 g 

 Trisodium citrate (Na3C6H5O7.2H20)   8.0 g 

 Sodium chloride     4.2 g 

 Citric acid (monohydrate)    0.5 g 

 Water        to 1 L 

 

A2.3 Citrate-Phosphate-Dextrose Solution; pH 6.9  

 Trisodium citrate (Na3C6H5O7.2H2O   30.0 g 

 Sodium dihydrogen phosphate (NaH2PO4.2H2O) 0.16 g 

 Dextrose (anhydrous)     2.0 g 

 Water       to 1 L 

 

A2.4 Formaldehyde-Citrate Solution 

 Formaldehyde solution (40% w/w CH2O)  10 mL 

 Trisodium citrate solution (109 mM)   to 1 L 

 

A2.5 Glycerol in Alsever’s Solution    

 Glycerol      100 mL 

 Alsever’s solution     to 1 L 

 

* Sterilised by filtration (0.45 μm Millex ®-HA filter unit; Millipore, Bedford, MA) 
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A2.6 Phosphate Buffer 

 Potassium dihydrogen phosphate (KH2PO4)  2.72 g 

 Disodium hydrogen phosphate (Na2HPO4)  11.36 g 

 Water        to 1 L 

 

A2.7 Sorenson’s Phosphate Buffer (pH 7.0) 

 Potassium dihydrogen phosphate (KH2PO4)  3.75 g 

 Disodium hydrogen phosphate (Na2HPO4)  5.56 g 

 Water       to 1 L 

 

A2.8 Trisodium Citrate Solution 

 Trisodium citrate (Na3C6H5O7.2H2O)   32 g 

 Water       to 1 L 


